Problem 1
Let \(B = \begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix} \)

(a) Compute the matrix \(B^2 \).
(b) Find the inverse (if it exists) of the matrix
\[I_4 - B = \begin{bmatrix}
1 & -1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1
\end{bmatrix} \]

Problem 2
Let
\[A = \begin{bmatrix}
1 & 1 & 2 \\
3 & 2 & 3 \\
2 & 1 & 2
\end{bmatrix} \]

Is \(A \) invertible? If so, find \(A^{-1} \), showing all reasoning. If not, explain why not.

Problem 3
For the following question, please show your work.
(a) Let \(\beta = \{v_1, v_2\} \), where \(v_1 = \begin{bmatrix} -1 \\ 1 \end{bmatrix} \) and \(v_2 = \begin{bmatrix} 2 \\ -1 \end{bmatrix} \). Transform the following vectors (shown in standard coordinates) into coordinates with respect to the basis \(\beta : \begin{bmatrix} 2/3 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \).
(b) Let \(A \) be such a \(2 \times 2 \) matrix that \(Av_1 = -v_1 \) and \(Av_2 = 2v_2 \). Find \(A \begin{bmatrix} 2 \\ 1 \end{bmatrix}, A \begin{bmatrix} 0 \\ 1 \end{bmatrix}, A \begin{bmatrix} 1 \\ 0 \end{bmatrix} \).
(c) Write down the matrix for \(A \) (in the standard basis).

Problem 4
(a) Let \(T : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) be a linear transformation given by \(T(x) = Ax \), where \(A \) is a \(2 \times 2 \) matrix; and suppose we know that \(T \left(\begin{bmatrix} 2 \\ 3 \end{bmatrix} \right) = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \) and \(T \left(\begin{bmatrix} 3 \\ 5 \end{bmatrix} \right) = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \)

Find \(A \); show all your reasoning.
(b) Find, with justification, a \(2 \times 2 \) matrix \(M \) such that \(M \neq I_2, M^2 \neq I_2 \), and \(M^3 \neq I_2 \), but \(M^4 = I_2 \). (Here \(I_2 \) is the \(2 \times 2 \) identity matrix.)

Problem 5
Let \(\{u, v\} \) be the linear coordinates on \(\mathbb{R}^2 \) with respect to the basis \(B = \left\{ \begin{bmatrix} 3 \\ -2 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right\} \).

Express \(u \) and \(v \) in terms of \(x \) and \(y \), and also express \(x \) and \(y \) in terms of \(u \) and \(v \). Use the latter to express the equation \(x^2 + y^2 = 1 \) in terms of \(\{u, v\} \)-coordinates; your answer should be \(au^2 + buv + cv^2 = 1 \) for some integers \(a, b, c \).

Midterm review problems: Problem #3(a), #8, Midterm 2, Winter 2015 (skip the first two functions), Problem #8, #11(a) Final Exam, Spring 2014, Problem #5, Midterm 2, Winter 2012.