Problem 1
Suppose \(V \) is a subset of \(\mathbb{R}^n \).

1. List the three properties that \(V \) must have in order to be a linear subspace of \(\mathbb{R}^n \).

2. Which of the following are linear subspaces of \(\mathbb{R}^2 \)? Please explain your answer.
 - The set \(V = \{ (x, y) \in \mathbb{R}^2 \mid x + y \leq 0 \} \).
 - The set \(W = \{ (x, y) \in \mathbb{R}^2 \mid xy \geq 0 \} \).

Problem 2
Consider the following set:

\[
V = \{ (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid x_1 - x_2 + x_3 = 0 \}.
\]

1. Show that \(V \) is a linear subspace.

2. Find a basis for \(V \). What is the dimension of \(V \)?

3. Give an example of a matrix \(A \) such that \(\text{N}(A) = V \).

4. Give an example of a matrix \(A \) such that \(\text{C}(A) = V \).

Problem 3
Let \(A = \begin{bmatrix} 1 & 0 & 4 & 0 & -3 \\ 0 & 1 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \).

1. Find all solutions to the equation \(Ax = \begin{bmatrix} 3 \\ 5 \\ -7 \end{bmatrix} \).

2. Find a basis for \(\text{N}(A) \).

3. Find a basis for \(\text{N}(A) \) that contains the vector \(\begin{bmatrix} 11 \\ 0 \\ -2 \\ 0 \\ 1 \end{bmatrix} \), or state why no such basis exists.

4. Find a basis for \(\text{C}(A) \) that contains the vector \(\begin{bmatrix} 4 \\ 1 \\ 0 \end{bmatrix} \), or state why no such basis exists.

5. What is \(\dim(\text{C}(A)) \)? How about \(\dim(\text{N}(A)) \)? What is their sum? How would you compute their sum if you didn’t know each of them individually?

Problem 4
Consider the pair of equations

\[
\begin{align*}
x + 4y + 5az &= -2 \\
3x + 5y + az &= 1
\end{align*}
\]

in \((x, y, z)\) with the coefficients of \(z \) involving the unspecified number \(a \).
1. Assume $a = 2$. In this case, give a parametric formula for the solutions of this pair of equations. Your answer should be written in the form of a parameterization of a line.

2. Compute an analogous parametric formula for every value of a (i.e., parametrize the solutions in a manner that works for every value of a); this should recover your answer to the previous part upon setting $a = 2$. Again, your answer should be written in the form of a parameterization of a line.

Problem 5 The matrix A below has the given reduced row echelon form (You don’t need to verify this):

$$A = \begin{bmatrix}
3 & 6 & 1 & 17 & 3 \\
2 & 4 & 1 & 12 & 3 \\
4 & 8 & -1 & 18 & -3 \\
7 & 14 & -10 & 15 & -30
\end{bmatrix}, \quad \text{rref}(A) = \begin{bmatrix}
1 & 2 & 0 & 5 & 0 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix},$$

1. Find a basis for the column space $C(A)$ and the null space $N(A)$ of A.

2. Given that $A \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 11 \\ 8 \\ 10 \\ 1 \end{bmatrix}$ find all solutions of $Ax = \begin{bmatrix} 11 \\ 8 \\ 10 \\ 1 \end{bmatrix}$.

Midterm preparation. Review the concepts and definitions and answer the questions from Problem 8 from Midterm 1, Autumn 2014.