Problem 1
1. Complete the following sentence: A set of vectors \(\{v_1, \ldots, v_k\} \) is defined to be linearly dependent if..

2. Suppose that \(x \) belongs to \(\text{Span}(u, v, w) \), the subspace of \(\mathbb{R}^4 \) spanned by nonzero vectors \(u, v, w \); and suppose further that \(x \) is orthogonal to each of the vectors \(u, v, \) and \(w \). Show that \(x = 0 \).

3. Find a linear dependence of the three vectors below, or prove that they are independent.
\[
\begin{bmatrix}
1 \\
2 \\
4
\end{bmatrix}, \quad
\begin{bmatrix}
0 \\
2 \\
1
\end{bmatrix}, \quad
\begin{bmatrix}
-2 \\
5 \\
7
\end{bmatrix}.
\]

Problem 2
1. Suppose that \(||a|| = 3, ||b|| = 2 \) and \(a \cdot b = 2 \). Calculate \((3a + 5b) \cdot (a - 2b) \) and find the angle between \(a \) and \(b \). (You can leave your answer in the form of an inverse sine, cosine or tangent function, for example.)

2. What does it mean for two vectors \(a \) and \(b \) in \(\mathbb{R}^n \) to be orthogonal to one another? State your answer as a mathematical formula, not in words.

3. Suppose \(a, b \) are two nonzero vectors in \(\mathbb{R}^n \). Show that they have the same magnitude (i.e., \(||a|| = ||b|| \)) if and only if \(a - b \) and \(a + b \) are orthogonal.

Problem 3 Let \(P \) be the parallelogram with vertices \((0, 0, 0), (1, 0, 1), (2, 2, 1), (1, 2, 0)\). Find its area using the cross product.

Problem 4 Let \(P \) be the plane in \(\mathbb{R}^3 \) spanned by the vectors
\[
\begin{bmatrix}
1 \\
-1 \\
1
\end{bmatrix} \quad \text{and} \quad \begin{bmatrix}
1 \\
0 \\
2
\end{bmatrix}.
\]

1. Find a nonzero vector which is normal to \(P \).

2. Write down the equation for the plane \(P \) in the form \(ax + by + cz = d \).

3. Let \(Q \) be a plane parallel to \(P \) that contains the point \((1, 0, 0)\). Write down a parametric representation of the plane \(Q \).

4. Let \(L \) be the line spanned by \(\begin{bmatrix}
1 \\
-1 \\
1
\end{bmatrix} \). Find a parametric equation of a plane \(S \) whose intersection with \(P \) is \(L \).

Problem 5 (LA 6.5) : Solve the system of linear equations by expressing the given system as an augmented matrix and finding its rref:

\[
\begin{align*}
u + 2v + 3w &= -1 \\
u + 2v + 4w &= -2 \\
-2u - 4v - 4w &= 2
\end{align*}
\]