A3 Let k be a positive integer. Suppose that the integers $1, 2, 3, \ldots, 3k + 1$ are written down in random order. What is the probability that at no time during this process, the sum of the integers that have been written up to that time is a positive integer divisible by 3? Your answer should be in closed form, but may include factorials. (Max Libbrecht)

A4 A repunit is a positive integer whose digits in base 10 are all ones. Find all polynomials f with real coefficients such that if n is a repunit, then so is $f(n)$. (Jackson Gorham)

A5 Suppose that a finite group has exactly n elements of order p, where p is a prime. Prove that either $n = 0$ or p divides $n + 1$. (Daniel Le)

A6 A triangulation T of a polygon P is a finite collection of triangles whose union is P, and such that the intersection of any two triangles is either empty, or a shared vertex, or a shared side. Moreover, each side is a side of exactly one triangle in T. Say that T is admissible if every internal vertex is shared by 6 or more triangles. For example, [figure omitted.] Prove that there is an integer M_n, depending only on n, such that any admissible triangulation of a polygon P with n sides has at most M_n triangles. (Kiat Chuan Tan)

B1 Let f be a polynomial with positive integer coefficients. Prove that if n is a positive integer, then $f(n)$ divides $f(f(n) + 1)$ if and only if $n = 1$. [Editor's note: one must assume f is nonconstant.] (Nath Bejraburnin)

B2 Suppose that $f : [0, 1] \to \mathbb{R}$ has a continuous derivative and that $\int_0^1 f(x) \, dx = 0$. Prove that for every $\alpha \in (0, 1)$,
\[
\left| \int_0^\alpha f(x) \, dx \right| \leq \frac{1}{8} \max_{0 \leq x \leq 1} |f'(x)|.
\]
(Elena Robeva)

B3 Let $x_0 = 1$ and for $n \geq 0$, let $x_{n+1} = 3x_n + \lfloor x_n \sqrt{5} \rfloor$. In particular, $x_1 = 5, x_2 = 26, x_3 = 136, x_4 = 712$. Find a closed-form expression for x_{2007}. ([a] means the largest integer $\leq a$.) (Nathan Pflueger)

B4 Let n be a positive integer. Find the number of pairs P, Q of polynomials with real coefficients such that
\[
(P(X))^2 + (Q(X))^2 = X^{2n} + 1
\]
and $\deg P > \deg Q$. (Silas Johnson)

B5 Let k be a positive integer. Prove that there exist polynomials $P_0(n), P_1(n), \ldots, P_{k-1}(n)$ (which may depend on k) such that for any integer n,
\[
\left\lfloor \frac{n}{k} \right\rfloor = P_0(n) + P_1(n) \left\lfloor \frac{n}{k} \right\rfloor + \cdots + P_{k-1}(n) \left\lfloor \frac{n}{k} \right\rfloor^{k-1}.
\]
([a] means the largest integer $\leq a$.) (Kiat Chuan Tan)

B6 For each positive integer n, let $f(n)$ be the number of ways to make $n!$ cents using an unordered collection of coins, each worth $k!$ cents for some $k, 1 \leq k \leq n$. Prove that for some constant C, independent of n,
\[
n^{n^2/2 - Cn}e^{-n^2/4} \leq f(n) \leq n^{n^2/2 + Cn}e^{-n^2/4}.
\]
(Nathan Pflueger)