The William Lowell Putnam Mathematical Competition

takes place Saturday, December 3, 2005.

In the last four years, we've been in the top three in terms of top-scoring students. Our team placed fifth twice.

Sign-up and Introductory Meeting Mon. Oct. 3, 5:15-5:45 pm, in 380-383N

We will also discuss times and dates of problem-solving preparatory sessions. If you can't
make it and are even potentially interested, please e-mail vakil@math.stanford.edu.

Sample problems:

1. In a certain college of under 5000 total enrollment, a third of the students were freshmen, two-sevenths were sophomores, a fifth were juniors and the rest seniors. The history department offered a popular course in which were registered a fortieth of all the freshmen in college, a sixteenth of all the sophomores, and a ninth of all the juniors, while the remaining third of the history class were all seniors. How many students were there in the history class?
2. Let p_{n} denote the nth prime, and let π_{n} the count of primes less than n. For example:

$$
\begin{aligned}
\{p\}: & 2,3,5,7,11,13,17,19,23,29, \ldots \\
\{\pi\}: & 0,0,1,2,2,3,3,4,4,4, \ldots
\end{aligned}
$$

Let q_{n} denote the number of terms of π less than n. What can you say about q_{n} ? (Try a few small cases!) Why is this true?
3. Determine all real numbers $a>0$ for which there exists a nonnegative continuous function $f(x)$ defined on $[0, a]$ with the property that the region

$$
R=\{(x, y): 0 \leq x \leq a, 0 \leq y \leq f(x)\}
$$

has perimeter k units and area k square units for some real number k.

For more information: http://math.stanford.edu/~vakil/putnam05/

