PROBLEM-SOLVING MASTERCLASS WEEK 7

We'll end with an "all-star" session of seven problems.

1. Show that

$$
\pi \cot (\pi x)=\lim _{N \rightarrow \infty} \sum_{n=-N}^{N} \frac{1}{x+n}
$$

(Theo Johnson-Freyd, from Proofs from the Book, which is an amazing book)
2. You have coins $C_{1}, C_{2}, \ldots, C_{n}$. For each k, C_{k} is biased so that, when tossed, it has probability $1 /(2 k+1)$ of falling heads. If the n coins are tossed, what is the probability that the number of heads is odd? Express the answer as a rational function of n. (Cihan Baran, Putnam 2001A2)
3. Let G_{n} be the geometric mean of the binomial co-efficients in the nth row of Pascal's triangle $\binom{n}{0}, \ldots,\binom{n}{n}$. Find $\lim _{n \rightarrow \infty} G_{n}^{1 / n}$. (Bob Hough, from Andreescu and Galcea's book Putnam and Beyond)
4. If p is a prime number greater than 3 and $k=\lfloor 2 p / 3\rfloor$, prove that the sum

$$
\binom{p}{1}+\binom{p}{2}+\cdots+\binom{p}{k}
$$

of binomial coefficients is divisible by p^{2}. (Nathan Pflueger, Putnam 1996A5)
5. For positive a, b, and c, show that

$$
\left(a^{5}-a^{2}+3\right)\left(b^{5}-b^{2}+3\right)\left(c^{5}-c^{2}+3\right) \geq(a+b+c)^{3}
$$

(Kiyoto Tamura, likely from a recent USAMO)
6. The sequence u_{n} is defined by $u_{0}=1, u_{2 n}=u_{n}+u_{n-1}, u_{2 n+1}=u_{n}$. Show that for any positive rational k we can find n such that $\frac{u_{n}}{u_{n+1}}=k$. (Kiat Chuan Tan, Putnam 2002A5)
7. Pick's theorem! The area of any (not necessarily convex) polygon $\mathrm{Q} \subset \mathbb{R}^{2}$ with integral vertices is given by:

$$
A(Q)=n_{i n t}+\frac{1}{2} n_{\mathrm{bd}}-1
$$

where $n_{\text {int }}$ is the number of integral points in the interior of Q and $n_{b d}$ is the number of integral points on the boundary of Q. (Woodley Packard)

E-mail address: vakil@math.stanford.edu

