PROBLEM-SOLVING MASTERCLASS WEEK 6

1. Let p be an odd prime and let \mathbb{Z}_{p} denote (the field of) integers modulo p. How many elements are in the set

$$
\left\{x^{2}: x \in \mathbb{Z}_{p}\right\} \cap\left\{y^{2}+1: y \in \mathbb{Z}_{p}\right\} ?
$$

(Kiat Chuan Tan, 1991B5)
2. Let N_{n} denote the number of ordered n-tuples of positive integers $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ such that $1 / a_{1}+1 / a_{2}+\cdots+1 / a_{n}=1$. Determine whether N_{10} is even or odd. (Nathan Pflueger, 1997A5)
3. Suppose f and g are two increasing functions on \mathbb{R}. Prove that for any real numbers a and b the inequality

$$
(b-a) \int_{a}^{b} f(x) g(x) d x \geq \int_{a}^{b} f(x) d x \times \int_{a}^{b} g(x) d x
$$

(John Hegeman, from Andreescu and Gelca's forthcoming book Putnam and beyond)
4. Prove the "logarithmic mean" inequality for $a>b>0$:

$$
\sqrt{a b}<\frac{a-b}{\ln a-\ln b}<\frac{a+b}{2} .
$$

(Ravi Vakil; \# 10 from last week, proposed by Mark Lucianovic)
5. For any integer a, set

$$
n_{a}=101 a-100 \cdot 2^{a} .
$$

Show that for $0 \leq a, b, c, d \leq 99, n_{a}+n_{b} \equiv n_{c}+n_{d}(\bmod 10100)$ implies $\{a, b\}=\{c, d\}$. (Kiat Chuan Tan, 1994B6)
6. Let S be a nonempty closed bounded convex set in the plane. Let K be a line and $t a$ positive number. Let L_{1} and L_{2} be support lines for S parallel to K, and let \bar{L} be the line parallel to K and midway between L_{1} and L_{2}. Let $B_{S}(K, t)$ be the band of points whose distance from \bar{L} is at most $(t / 2) w$, where w is the distance between L_{1} and L_{2}. What is the smallest t such that

$$
S \cap \bigcap_{K} B_{S}(K, t) \neq \emptyset
$$

for all S? (K runs over all lines in the plane.) (Ravi Vakil, 1990B6)
E-mail address: vakil@math.stanford.edu

