PROBLEM-SOLVING MASTERCLASS WEEK π (SOMEWHERE BETWEEN 3 AND 4)

1. Let $p(x)$ be a nonzero polynomial of degree less than 1992 having no nonconstant factor in common with $x^{3}-x$. Let

$$
\frac{d^{1992}}{d x^{1992}}\left(\frac{p(x)}{x^{3}-x}\right)=\frac{f(x)}{g(x)}
$$

for polynomials $f(x)$ and $g(x)$. Find the smallest possible degree of $f(x)$. (Kiat Chuan Tan, 1992B4)
2. Let $A(n)$ denote the number of sums of positive integers $a_{1}+a_{2}+\cdots+a_{r}$ which add up to n with $a_{1}>a_{2}+a_{3}, a_{2}>a_{3}+a_{4}, \ldots, a_{r-2}>a_{r-1}+a_{r}, a_{r-1}>a_{r}$. Let $B(n)$ denote the number of $b_{1}+b_{2}+\cdots+b_{s}$ which add up to n, with
(i) $\mathrm{b}_{1} \geq \mathrm{b}_{2} \geq \cdots \geq \mathrm{b}_{\mathrm{s}}$,
(ii) each b_{i} is in the sequence $1,2,4, \ldots, g_{j}, \ldots$ defined by $g_{1}=1, g_{2}=2$, and $g_{j}=$ $g_{j-1}+g_{j-2}+1$, and
(iii) if $b_{1}=g_{k}$ then every element in $\left\{1,2,4, \ldots, g_{k}\right\}$ appears at least once as a b_{i}.

Prove that $A(n)=B(n)$ for each $n \geq 1$.
For example, $\mathcal{A}(7)=5$ because the relevant sums are $7,6+1,5+2,4+3,4+2+1$, and $B(7)=5$ because the relevant sums are $4+2+1,2+2+2+1,2+2+1+1+1$, $2+1+1+1+1+1,1+1+1+1+1+1+1$. (John Hegeman, Putnam 1991A6)
3. Show that for every positive integer n,

$$
\left(\frac{2 n-1}{e}\right)^{\frac{2 n-1}{2}}<1 \cdot 3 \cdot 5 \cdots(2 n-1)<\left(\frac{2 n+1}{e}\right)^{\frac{2 n+1}{2}}
$$

(Nathan Pflueger, Putnam 1996B2)
4. Suppose x_{1}, \ldots, x_{n} are each ± 1, and

$$
\sum_{i=1}^{n} x_{i} x_{i+1} x_{i+2} x_{i+3}=0
$$

where x_{n+i} is interpreted as x_{i}. Show that \mathfrak{n} is divisible by 4. (Ravi Vakil)
5. Prove that if

$$
11 z^{10}+10 i z^{9}+10 i z-11=0
$$

then $|z|=1$. (Here z is a complex number and $i^{2}=-1$.) (Kiat Chuan Tan, 1989A3)
6. Show that there is some N so that if you take any N points on the plane, no three on a line, then you can find 2005 of them that form a convex 2005-gon. (Ravi Vakil, from a
book by Polya, Tarjan, and Woods - Polya was professor here long ago, famous for his books on problem-solving)

E-mail address: vakil@math.stanford.edu

