PROBLEM-SOLVING MASTERCLASS WEEK π (SOMEWHERE BETWEEN 3 AND 4)

1. Let p(x) be a nonzero polynomial of degree less than 1992 having no nonconstant factor in common with $x^3 - x$. Let

$$\frac{\mathrm{d}^{1992}}{\mathrm{d}x^{1992}}\left(\frac{\mathrm{p}(\mathrm{x})}{\mathrm{x}^3-\mathrm{x}}\right) = \frac{\mathrm{f}(\mathrm{x})}{\mathrm{g}(\mathrm{x})}$$

for polynomials f(x) and g(x). Find the smallest possible degree of f(x). (Kiat Chuan Tan, 1992B4)

2. Let A(n) denote the number of sums of positive integers $a_1 + a_2 + \cdots + a_r$ which add up to n with $a_1 > a_2 + a_3$, $a_2 > a_3 + a_4$, ..., $a_{r-2} > a_{r-1} + a_r$, $a_{r-1} > a_r$. Let B(n) denote the number of $b_1 + b_2 + \cdots + b_s$ which add up to n, with

- (i) $b_1 \geq b_2 \geq \cdots \geq b_s$,
- (ii) each b_i is in the sequence $1, 2, 4, \ldots, g_j, \ldots$ defined by $g_1 = 1$, $g_2 = 2$, and $g_j = g_{j-1} + g_{j-2} + 1$, and
- (iii) if $b_1 = g_k$ then every element in $\{1, 2, 4, \dots, g_k\}$ appears at least once as a b_i .

Prove that A(n) = B(n) for each $n \ge 1$.

3. Show that for every positive integer n,

$$\left(\frac{2n-1}{e}\right)^{\frac{2n-1}{2}} < 1 \cdot 3 \cdot 5 \cdots (2n-1) < \left(\frac{2n+1}{e}\right)^{\frac{2n+1}{2}}$$

(Nathan Pflueger, Putnam 1996B2)

4. Suppose x_1, \ldots, x_n are each ± 1 , and

$$\sum_{i=1}^{n} x_i x_{i+1} x_{i+2} x_{i+3} = 0,$$

where x_{n+i} is interpreted as x_i . Show that n is divisible by 4. (Ravi Vakil)

5. Prove that if

 $11z^{10} + 10iz^9 + 10iz - 11 = 0$,

then |z| = 1. (Here z is a complex number and $i^2 = -1$.) (Kiat Chuan Tan, 1989A3)

6. Show that there is some N so that if you take any N points on the plane, no three on a line, then you can find 2005 of them that form a convex 2005-gon. (Ravi Vakil, from a

Date: Monday, October 24, 2005.

book by Polya, Tarjan, and Woods — Polya was professor here long ago, famous for his books on problem-solving)

E-mail address: vakil@math.stanford.edu