PROBLEM-SOLVING MASTERCLASS WEEK 2

1. If $2 n+1$ and $3 n+1$ are both perfect squares, show that n is divisible by 40 . (Steph Abegg, \# 2 from last week's seminar; Cihan Biran will give a second proof)
2. If $A_{1}+\cdots+A_{n}=\pi, 0<A_{i}<\pi, i=1, \ldots, n$, then show that

$$
\sin A_{1}+\cdots+\sin A_{n} \leq n \sin \pi / n
$$

(Brian Munson)
3. Let $A(n)$ denote the number of sums of positive integers $a_{1}+a_{2}+\cdots+a_{r}$ which add up to n with $a_{1}>a_{2}+a_{3}, a_{2}>a_{3}+a_{4}, \ldots, a_{r-2}>a_{r-1}+a_{r}, a_{r-1}>a_{r}$. Let $B(n)$ denote the number of $b_{1}+b_{2}+\cdots+b_{s}$ which add up to n, with
(i) $\mathrm{b}_{1} \geq \mathrm{b}_{2} \geq \cdots \geq \mathrm{b}_{\mathrm{s}}$,
(ii) each b_{i} is in the sequence $1,2,4, \ldots, g_{j}, \ldots$ defined by $g_{1}=1, g_{2}=2$, and $g_{j}=$ $g_{j-1}+g_{j-2}+1$, and
(iii) if $b_{1}=g_{k}$ then every element in $\left\{1,2,4, \ldots, g_{k}\right\}$ appears at least once as a b_{i}.

Prove that $A(n)=B(n)$ for each $n \geq 1$.
For example, $A(7)=5$ because the relevant sums are $7,6+1,5+2,4+3,4+2+1$, and $B(7)=5$ because the relevant sums are $4+2+1,2+2+2+1,2+2+1+1+1$, $2+1+1+1+1+1,1+1+1+1+1+1+1$. (John Hegeman, Putnam 1991A6 - we might do this one next week)
4. Suppose x_{1}, \ldots, x_{n} are each ± 1, and

$$
\sum_{i=1}^{n} x_{i} x_{i+1} x_{i+2} x_{i+3}=0
$$

where x_{n+i} is interpreted as x_{i}. Show that n is divisible by 4. (Ravi Vakil)
5. $2 n$ points are drawn on the circumference of a circle. In how many ways can these points be joined in pairs by n chords which do not intersect within the circle? (Alok Aggarwal)
6. Show that there is some N so that if you take any N points on the plane, no three on a line, then you can find 2005 of them that form a convex 2005-gon. (Ravi Vakil, from a book by Polya, Tarjan, and Woods - Polya was professor here long ago, famous for his books on problem-solving)

E-mail address: vakil@math.stanford.edu

