PROBLEM-SOLVING MASTERCLASS WEEK 2

1. If 2n + 1 and 3n + 1 are both perfect squares, show that n is divisible by 40. (Steph Abegg, # 2 from last week's seminar; Cihan Biran will give a second proof)

2. If $A_1 + \cdots + A_n = \pi$, $0 < A_i < \pi$, $i = 1, \ldots, n$, then show that $\sin A_1 + \cdots + \sin A_n \le n \sin \pi/n$.

(Brian Munson)

3. Let A(n) denote the number of sums of positive integers $a_1 + a_2 + \cdots + a_r$ which add up to n with $a_1 > a_2 + a_3$, $a_2 > a_3 + a_4$, ..., $a_{r-2} > a_{r-1} + a_r$, $a_{r-1} > a_r$. Let B(n) denote the number of $b_1 + b_2 + \cdots + b_s$ which add up to n, with

- (i) $b_1 \geq b_2 \geq \cdots \geq b_s$,
- (ii) each b_i is in the sequence $1, 2, 4, \ldots, g_j, \ldots$ defined by $g_1 = 1$, $g_2 = 2$, and $g_j = g_{j-1} + g_{j-2} + 1$, and
- (iii) if $b_1 = g_k$ then every element in $\{1, 2, 4, \dots, g_k\}$ appears at least once as a b_i .

Prove that A(n) = B(n) for each $n \ge 1$.

4. Suppose x_1, \ldots, x_n are each ± 1 , and

$$\sum_{i=1}^{n} x_i x_{i+1} x_{i+2} x_{i+3} = 0,$$

where x_{n+i} is interpreted as x_i . Show that n is divisible by 4. (Ravi Vakil)

5. 2n points are drawn on the circumference of a circle. In how many ways can these points be joined in pairs by n chords which do not intersect within the circle? (Alok Aggarwal)

6. Show that there is some N so that if you take any N points on the plane, no three on a line, then you can find 2005 of them that form a convex 2005-gon. (Ravi Vakil, from a book by Polya, Tarjan, and Woods — Polya was professor here long ago, famous for his books on problem-solving)

E-mail address: vakil@math.stanford.edu

Date: Monday, October 24, 2005. (Revised morning Oct. 24.)