1. Consider two lists. List A consists of the positive powers of 10 (10, 100, 1000, …) written in base 2. List B consists of the positive powers of 10 written in base 5. Show that, for any integer \(n > 1 \), there is exactly one number in exactly one of the lists that is exactly \(n \) digits long.

<table>
<thead>
<tr>
<th>Powers of 10</th>
<th>List A</th>
<th>List B</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1010 (4 digits)</td>
<td>20 (2 digits)</td>
</tr>
<tr>
<td>100</td>
<td>1100100 (7 digits)</td>
<td>400 (3 digits)</td>
</tr>
<tr>
<td>1000</td>
<td>1111101000 (10 digits)</td>
<td>13000 (5 digits)</td>
</tr>
<tr>
<td>10000</td>
<td>1001110001000 (14 digits)</td>
<td>310000 (6 digits)</td>
</tr>
</tbody>
</table>

(Ravi Vakil, a problem I made up long ago, that appeared on the 1994 Asian Pacific Mathematical Olympiad)

2. Let \(f(x) \) be differentiable on \([0, 1]\) with \(f(0) = 0 \) and \(f(1) = 1 \). For each positive integer \(n \) and arbitrary given positive numbers \(k_1, k_2, \ldots, k_n \), show that there exist distinct \(x_1, x_2, \ldots, x_n \) such that

\[
\frac{k_1}{f'(x_1)} + \frac{k_2}{f'(x_2)} + \cdots + \frac{k_n}{f'(x_n)} = k_1 + k_2 + \cdots + k_n.
\]

(Bob Hough, from Larson 6.6.9)

3. For a positive real number \(r \), let \(G(r) \) be the minimum value of \(|r - \sqrt{m^2 + 2n^2}| \) for all integers \(m \) and \(n \). Prove or disprove the assertion that \(\lim_{r \to \infty} G(r) \) exists and equals 0.

(Theo Johnson-Freyd, Putnam 1986 B4)

4. The first \(2n \) natural numbers are arbitrarily divided into two groups of \(n \) numbers each. The numbers in the first group are sorted in ascending order, i.e., \(a_1 < \cdots < a_n \), and the numbers in the second group are sorted in descending order: \(b_1 > \cdots > b_n \). Find, with proof, the sum

\[
|a_1 - b_1| + \cdots + |a_n - b_n|.
\]

(Paul-Olivier Dehaye)

5. Consider a regular \(n \)-gon inscribed in a unit circle with vertices labeled (cyclically) \(P_1, \ldots, P_n \). Show that

\[
|P_1P_2| |P_1P_3| \cdots |P_1P_n| = n.
\]

(Ravi Vakil)

Date: Monday, October 17, 2005.