PROBLEM-SOLVING MASTERCLASS WEEK 1

1. Consider two lists. List A consists of the positive powers of 10 (10, 100, 1000, ...) written in base 2. List B consists of the positive powers of 10 written in base 5. Show that, for any integer n > 1, there is exactly one number in exactly one of the lists that is exactly n digits long.

Powers of 10	List A	List B
10	1010 (4 digits)	20 (2 digits)
100	1100100 (7 digits)	400 (3 digits)
1000	1111101000 (10 digits)	13000 (5 digits)
10000	10011100010000 (14 digits)	310000 (6 digits)

(Ravi Vakil, a problem I made up long ago, that appeared on the 1994 Asian Pacific Mathematical Olympiad)

2. Let f(x) be differentiable on [0, 1] with f(0) = 0 and f(1) = 1. For each positive integer n and arbitrary given positive numbers $k_1, k_2, ..., k_n$, show that there exist distinct $x_1, x_2, ..., x_n$ such that

$$\frac{k_1}{f'(x_1)} + \frac{k_2}{f'(x_2)} + \dots + \frac{k_n}{f'(x_n)} = k_1 + k_2 + \dots + k_n.$$

(Bob Hough, from Larson 6.6.9)

3. For a positive real number r, let G(r) be the minimum value of $\left|r - \sqrt{m^2 + 2n^2}\right|$ for all integers m and n. Prove or disprove the assertion that $\lim_{r\to\infty} G(r)$ exists and equals 0. (Theo Johnson-Freyd, Putnam 1986 B4)

4. The first 2n natural numbers are arbitrarily divided into two groups of n numbers each. The numbers in the first group are sorted in ascending order, i.e., $a_1 < \cdots < a_n$, and the numbers in the second group are sorted in descending order: $b_1 > \cdots > b_n$. Find, with proof, the sum

$$|a_1-b_1|+\cdots+|a_n-b_n|.$$

(Paul-Olivier Dehaye)

5. Consider a regular n-gon inscribed in a unit circle with vertices labeled (cyclically) P_1 , ..., P_n . Show that

$$|P_1P_2||P_1P_3|\cdots|P_1P_n|=n.$$

(Ravi Vakil)

Date: Monday, October 17, 2005.