PROBLEM-SOLVING MASTERCLASS WEEK 1

1. Consider two lists. List A consists of the positive powers of $10(10,100,1000, \ldots)$ written in base 2. List B consists of the positive powers of 10 written in base 5 . Show that, for any integer $n>1$, there is exactly one number in exactly one of the lists that is exactly n digits long.

Powers of 10	List A	List B
10	$1010(4$ digits $)$	$20(2$ digits $)$
100	$1100100(7$ digits $)$	$400(3$ digits $)$
1000	$1111101000(10$ digits $)$	$13000(5$ digits $)$
10000	$10011100010000(14$ digits $)$	$310000(6$ digits $)$

(Ravi Vakil, a problem I made up long ago, that appeared on the 1994 Asian Pacific Mathematical Olympiad)
2. Let $f(x)$ be differentiable on $[0,1]$ with $f(0)=0$ and $f(1)=1$. For each positive integer n and arbitrary given positive numbers $k_{1}, k_{2}, \ldots, k_{n}$, show that there exist distinct x_{1}, x_{2}, \ldots, x_{n} such that

$$
\frac{k_{1}}{f^{\prime}\left(x_{1}\right)}+\frac{k_{2}}{f^{\prime}\left(x_{2}\right)}+\cdots+\frac{k_{n}}{f^{\prime}\left(x_{n}\right)}=k_{1}+k_{2}+\cdots+k_{n} .
$$

(Bob Hough, from Larson 6.6.9)
3. For a positive real number r, let $G(r)$ be the minimum value of $\left|r-\sqrt{m^{2}+2 n^{2}}\right|$ for all integers m and n. Prove or disprove the assertion that $\lim _{r \rightarrow \infty} G(r)$ exists and equals 0 . (Theo Johnson-Freyd, Putnam 1986 B4)
4. The first 2 n natural numbers are arbitrarily divided into two groups of n numbers each. The numbers in the first group are sorted in ascending order, i.e., $a_{1}<\cdots<a_{n}$, and the numbers in the second group are sorted in descending order: $b_{1}>\cdots>b_{n}$. Find, with proof, the sum

$$
\left|a_{1}-b_{1}\right|+\cdots+\left|a_{n}-b_{n}\right| .
$$

(Paul-Olivier Dehaye)
5. Consider a regular n-gon inscribed in a unit circle with vertices labeled (cyclically) P_{1}, \ldots, P_{n}. Show that

$$
\left|\mathrm{P}_{1} \mathrm{P}_{2}\right|\left|\mathrm{P}_{1} \mathrm{P}_{3}\right| \cdots\left|\mathrm{P}_{1} \mathrm{P}_{\mathrm{n}}\right|=\mathrm{n}
$$

(Ravi Vakil)

