PROBLEM SOLVING MASTERCLASS WEEK 2

1. Let f be a real function on the real line with continuous third derivative. Prove that there exists a point a such that

$$
f(a) \cdot f^{\prime}(a) \cdot f^{\prime \prime}(a) \cdot f^{\prime \prime \prime}(a) \geq 0
$$

(Alex, Putnam 1998A3)
2. Prove that for $n \geq 2$,

$$
\left.\left.2^{2}{ }^{\cdot{ }^{2}}\right\}^{n} \equiv 2^{2^{\cdot 2}}\right\}^{n-1} \quad(\bmod n)
$$

(Yuanli, Putnam 1997B5)
3. Let $n \geq 2$ be an integer and T_{n} be the number of non-empty subsets S of $\{1,2,3, \ldots, n\}$ with the property that the average of the elements of S is an integer. Prove that $T_{n}-n$ is always even. (Youngjun, Putnam 2002A3)
4. The vertices of a triangle are lattice points in the plane. Show that the diameter of its circumcircle does not exceed the product of its side lengths. (Paul, Putnam 1971A3)
5. For a positive real number r, let $G(r)$ be the minimum value of $\left|r-\sqrt{m^{2}+2 n^{2}}\right|$ for all integers m and n. Prove or disprove the assertion that $\lim _{r \rightarrow \infty} G(r)$ exists and equals 0 . (Frank, Putnam 1986B4)
6. Let A be a matrix in $S O(n)$, i.e. an $n \times n$ matrix with determinant 1 , whose n column vectors are orthonormal. If $0<k<n$, show that the determinant of the $k \times k$ matrix in the upper-left corner equals the determinant of the $(n-k) \times(n-k)$ matrix in the lower-right corner. (One interesting consequence: Show that the area of the shadow of a unit cube is equal to its "height" (the difference in height between its highest and lowest points). Hence find the area of the largest possible shadow of a unit cube, and of the smallest.) (Ravi)

E-mail address: vaki1@math.stanford.edu

