PROBLEM SOLVING MASTERCLASS WEEK 1

1. Let A and B be 2×2 matrices with integer entries such that $A, A+B, A+2 B, A+3 B$, and $A+4 B$ are all invertible matrices whose inverses have integer entries. Show that $A+5 B$ is invertible and that its inverse has integer entries. (Paul, Putnam 1994A4)
2. Find the smallest integer n such that if n squares of a 1000×1000 chessboard are colored, then there will exist three colored squares whose centers form a right triangle with sides parallel to the edges of the board. (Chee Hau, USAMO 2000)
3. Let

$$
\begin{array}{cccc}
a_{1,1} & a_{1,2} & a_{1,3} & \ldots \\
a_{2,1} & a_{2,2} & a_{2,3} & \ldots \\
a_{3,1} & a_{3,2} & a_{3,3} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}
$$

be a doubly infinite array of positive integers, and suppose each positive integer appears exactly eight times in the array. Prove that $a_{m, n}>m n$ for some pair of positive integers (m, n). (Frank, Putnam 1985B3)
4. Let f be a real function on the real line with continuous third derivative. Prove that there exists a point a such that

$$
f(a) \cdot f^{\prime}(a) \cdot f^{\prime \prime}(a) \cdot f^{\prime \prime \prime}(a) \geq 0
$$

(Alex, Putnam 1998A3)
5. Prove that for $n \geq 2$,

$$
\left.\left.2^{2 \cdot \cdot^{2}}\right\}^{n} \equiv 2^{\cdot 2^{2}}\right\}^{n-1} \quad(\bmod n)
$$

(Yuanli, Putnam 1997B5)
6. Let $n \geq 2$ be an integer and T_{n} be the number of non-empty subsets S of $\{1,2,3, \ldots, n\}$ with the property that the average of the elements of S is an integer. Prove that $T_{n}-n$ is always even. (Youngjun, Putnam 2002A3)
7. Let A be a matrix in $S O(n)$, i.e. an $n \times n$ matrix with determinant 1 , whose n column vectors are orthonormal. If $0<k<n$, show that the determinant of the $k \times k$ matrix in the upper-left corner equals the determinant of the $(n-k) \times(n-k)$ matrix in the lower-right corner. (One interesting consequence: Show that the area of the shadow of a unit cube is equal to its "height" (the difference in height between its highest and lowest points). Hence find the area of the largest possible shadow of a unit cube, and of the smallest.) (Ravi)

E-mail address: vakil@math.stanford.edu

[^0]
[^0]: Date: Monday, October 27, 2003.

