PROBLEM SOLVING MASTERCLASS WEEK 5

1. A follow-up to Paul's problem from last week (Putnam 1982B6): "Let $A(a, b, c)$ be the area of a triangle with sides a, b, c. Let $f(a, b, c)=\sqrt{A(a, b, c)}$. Prove that for any two triangles with sides a, b, c and $a^{\prime}, b^{\prime}, c^{\prime}$ we have

$$
f(a, b, c)+f\left(a^{\prime}, b^{\prime}, c^{\prime}\right) \leq f\left(a+a^{\prime}, b+b^{\prime}, c+c^{\prime}\right)
$$

When do we have equality?" Show that

$$
\left(\begin{array}{cccc}
-3 & 1 & 1 & 1 \\
1 & -3 & 1 & 1 \\
1 & 1 & -3 & 1 \\
1 & 1 & 1 & -3
\end{array}\right)
$$

has only non-positive eigenvalues. (More generally, how do you find eigenvalues of "circulant" matrices"?) (Ravi)
2. Consider a triangle S in 3-space, and a fixed plane π such that the triangle and the plane do not intersect. Assume the sun is direclty above the plane so that the triangle casts a shadow onto the plane (i.e. the shadow is an orthogonal projection of the triangle onto the plane). Call the image triangle S^{\prime}. Show that S^{\prime} always fits inside S. (Kiyoto)
3. Let $P(t)$ be a nonconstant polynomial with real coefficients. Prove that the system of simultaneous equations

$$
0=\int_{0}^{x} P(t) \sin t d t=\int_{0}^{x} P(t) \cos t d t
$$

has only finitely many real solutions x. (Alex, Putnam 1980A5)
4. Given an arbitrary triangle, find the circumscribed (inscribed) ellipse with the smallest (largest) area. (Yuanli)
5. Prove that there are unique positive integers a, n such that $a^{n+1}-(a+1)^{n}=2001$. (Frank, Putnam 2001A5)
6. Show that for every positive integer n,

$$
\left(\frac{2 n-1}{e}\right)^{\frac{2 n-1}{2}}<1 \cdot 3 \cdot 5 \cdots(2 n-1)<\left(\frac{2 n+1}{e}\right)^{\frac{2 n+1}{2}}
$$

(Ravi, Putnam 1996B2)
7. Suppose that a_{1}, a_{2}, \ldots is a sequence of distinct positive integers. Prove that for all positive integers n,

$$
\sum_{k=1}^{n} \frac{a_{k}}{k^{2}} \geq \sum_{k=1}^{n} \frac{1}{k}
$$

(Shrenik, IMO 1978\#5)
Follow-up: Let $x_{1} \geq x_{2} \geq \cdots \geq x_{n}$, and $y_{1} \geq y_{2} \geq \cdots \geq y_{n}$ be real numbers. Prove that if z_{i} is any permutation of the y_{i}, then

$$
\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2} \leq \sum_{i=1}^{n}\left(x_{i}-z_{i}\right)^{2}
$$

(IMO 1975 \#1)
E-mail address: vakil@math.stanford.edu

