PROBLEM SOLVING MASTERCLASS WEEK 4

1. (Repeat) A stick is broken at random in two places. What is the probability that the three pieces can form a triangle? (A 20-second solution by Andy)

2. (Repeat) A rectangle is tiled with smaller rectangles. Each smaller rectangle has a side of integer length. Show that the same is true of the larger rectangle. (Another 20-second solution, by Ravi)

3. Prove that there exists a *unique* function f from the set \mathbb{R}^+ of positive real numbers to \mathbb{R}^+ such that

f(f(x)) = 6x - f(x) and f(x) > 0 for all x > 0.

(Frank, Putnam 1988A5)

4. Prove that the decimal part of

$$\left(5+\sqrt{26}\right)^n$$

begins with either n zeros or n nines for all positive integers n. (Andy)

5. Let *S* denote the set of rational numbers different from $\{-1, 0, 1\}$. Define $f : S \to S$ by f(x) = x - 1/x. Prove or disprove that

$$\bigcap_{n=1}^{\infty} f^{(n)}(S) = \emptyset,$$

where $f^{(n)}$ denotes *f* composed with itself *n* times. (Frank, Putnam 2001B4)

6. Let *p* be an odd prime and let \mathbb{F}_p denote (the field of) integers modulo *p*. How many elements are in the set

$$\{x^2 : x \in \mathbb{F}_p\} \cap \{y^2 + 1 : y \in \mathbb{F}_p\}?$$

(Ravi, Putnam 1991B5) Follow-up: using this and unique factorization property of Gaussian integers ($\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\}$), show that every prime congruent to 1 modulo 4 is a sum of two squares.

This handout can be found at

http://math.stanford.edu/~vakil/putnam03/

E-mail address: vakil@math.stanford.edu

Date: Monday, November 17, 2003.