PROBLEM SOLVING MASTERCLASS WEEK 3

1. Prove that for $n \geq 2$,

$$
\left.\left.2^{2^{2}}\right\}^{2^{2}} \equiv 2^{2^{2^{2}}}\right\}^{n-1} \quad(\bmod n)
$$

(Yuanli, Putnam 1997B5)
2a. Does there exist a function $g: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$with the property that $g(g(n))=n+1987$ for all n ? (Frank, IMO 1987)

2b. (Follow-up) Prove that $f(n)=1-n$ is the only integer-valued function defined on the integers that satisfies the following conditions:
(i) $f(f(n))=n$, for all integers n;
(ii) $f(f(n+2)+2)=n$ for all integers n;
(iii) $f(0)=1$.
(Putnam 1992A1)
3a. Given any 5 distinct points on the surface of a sphere, show that we can find a closed hemisphere which contains at least 4 of them. (Andy, Putnam 2002A2)

3b. (Follow-up) A stick is broken at random in two places. What is the probability that the three pieces can form a triangle?
4. A function f is defined on the positive integers by

$$
\begin{array}{cl}
f(1)=1, & f(3)=3, \quad f(2 n)=f(n) \\
f(4 n+1) & =2 f(2 n+1)-f(n), \\
f(4 n+3) & =3 f(2 n+1)-2 f(n)
\end{array}
$$

for all positive integers n. Determine the number of positive integers n, less than or equal to 1988 , for which $f(n)=n$. (Shrenik, IMO 1988)
5. A rectangle is tiled with smaller rectangles. Each smaller rectangle has a side of integer length. Show that the same is true of the larger rectangle. (Ravi)

This handout can be found at

http://math.stanford.edu/~vakil/putnam03/

E-mail address: vakil@math. stanford.edu

