
GLUING SCHEMES AND A SCHEME WITHOUT CLOSED POINTS

KARL SCHWEDE

Abstract. We first construct and give basic properties of the fibered coproduct in the
category of ringed spaces. We then look at some special cases where this actually gives a
fibered coproduct in the category of schemes. Intuitively this is gluing a collection of schemes
along some collection of subschemes. We then use this to construct a scheme without closed
points.

1. Introduction

This paper is in essence a look at a naive attempt to glue schemes together. I define
first a fibered coproduct in the category of ringed spaces. This particular coproduct is the
natural generalization of gluing schemes along open subschemes. The coproduct is simply
the pushout of the topological spaces combined with the appropriate pullback of the rings.
This method, as we will see, does not always produce a scheme even when the ringed spaces
involved are schemes and the morphisms between them are morphisms of schemes. However
we will examine several cases where the coproduct is a scheme.

If we glue two affine schemes together using this method and the object along which we
are gluing is a closed subscheme of one of the two schemes, the resulting coproduct is in fact
an affine scheme (Theorem 3.3). Furthermore since every scheme is a ringed space we see
that a fibered coproduct exists in the category of schemes at least in this case. This theorem
has many immediate and perhaps unexpected consequences. First it allows us to glue two
abstract schemes together along a common closed subscheme without first embedding the
schemes in any ambient space. It allows us to contract any closed subscheme of an affine
scheme over a field k, to a point. We do this by gluing the closed subscheme we wish to
contract to a k-point. In particular, although it is well known that a line on P

2
k cannot be

contracted, we will see explicitly that a line on A
2 can be (even though the resulting scheme

will not be noetherian).
A more specialized application of this method is gluing together a finite collection of

closed (but not necessarily reduced) points of an affine scheme over a field k. This can be
generalized to gluing together a finite collection of closed points in a quasi-projective variety
because in that case every finite collection of points is contained in a single affine open
subset. Specifically, if we glue two distinct single points of A

1
k to a single k-point using this

method we get a nodal cubic. If we glue a double point k[x]/(x2) to a single k-point, we get
a cuspidal cubic. This method gives us control over how the points are identified and lets us
glue abstractly without first mapping the scheme into some projective space.

Another case where 3.3 can be directly applied is if we remove a part of an affine scheme
via some localization (inverting certain elements). Then we can glue back a closed subscheme
of the original affine scheme to recover some of the points that were removed (those that sat
on the closed subscheme we glued back on). These points however have some topological
oddities associated with them. In the resulting scheme we can only get to those recovered
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points along the scheme we glued back. See Proposition 2.6, Corollary 3.11, and Example
3.12.

Finally as a corollary of 3.3, we give an example of a scheme without closed points. We
then look at an alternate construction of the same scheme using valuation rings. This
second construction was also independently suggested to Arthur Ogus by Offer Gabber and
the details were verified by Bjorn Poonen [2], but to my knowledge it has not been published.

This paper is self contained. For basic properties of schemes see [1]. Basic categorical
definitions can be found in [3].

2. The coproduct in the category of ringed spaces and basic properties

We assume that all rings are commutative with unity and maps between rings send 1 to
1.

Suppose {Xi}i∈I is a collection of ringed spaces and for each (unordered) pair i, j ∈ I
there exists a ringed space Zi,j and morphisms of ringed spaces φ(i,j),i : Zi,j → Xi and
φ(i,j),j : Zi,j → Xj .

Definition We define the union of the Xi’s along the Zi,j’s (which we from now on will
denote as ∪Zs,t

Xi or when there are only two sets to glue, X ∪Z Y ) as the set
∐

Xi/ ∼
where the relation is generated by relations of the form xi ∼ xj (xi ∈ Xi, xj ∈ Xj) if there
exists z ∈ Zi,j such that φ(i,j),i(z) = xi and φ(i,j),j(z) = xj . Thus two points xi ∈ Xi and
xj ∈ Xj are identified if and only if there exists a finite chain xnt

∈ Xnt
where t = 1 . . .m

with xi = xn1 and xj = xnm
and for each pair (nt, nt+1) we have a znt,nt+1 ∈ Z such that

φ(nt,nt+1),nt
(znt,nt+1) = xnt

and φ(nt,nt+1),nt+1
(znt,nt+1) = xnt+1 as above. Note that it is possible

that i = j. We give it the strongest topology such that the natural maps αs fromXs to ∪Zi,j
Xi

are all continuous. We will now put a sheaf structure on the union. On each open U ⊂ ∪Zi,j
Xi

note that α−1
i (U) is an open subset of Xi and that φ−1

(i,j),i(α
−1
i (U)) = φ−1

(i,j),j(α
−1
j (U)). Define

Γ(U,O∪Zs,t
Xi

) to be the subring of the direct product
∏

i∈I α
−1
i (U) consisting of all tuples

(ai)i∈I such that φ](i,j),i(ai) = φ](i,j),j(aj) (where in this case the ] notation refers to the ring

map portion of φ) for all pairs i, j ∈ I; in other words, the set of all sections of the Xi that
agree on the Zi. If I is empty we define ∪Zs,t

Xi as the empty scheme.

All we have done here is pushout the topological spaces and pullback the sheaf structure.
We will now show that this is in fact a sheaf.

Proposition 2.1. ∪Zi,j
Xi is a ringed space.

Proof: Given the open sets V ⊂ U ⊂ ∪Zi,j
Xi, the restriction map from U to V (on a tuple

(ai)) is just the restriction on each entry separately, that is (ai)i∈I |V = (ai|α−1
i (V ))i∈I . It is

clear that this satisfies the conditions of a presheaf. If U is an open subset of ∪Zi,j
Xi, Vt is a

covering of U and s ∈ O∪Zi,j
Xi

(U) is such that s|Vt
= 0 for all t it is clear the s = 0 since the

Xi are sheaves. Likewise if U is again an open subset of ∪Zi,j
Xi, {Vt} is a covering of U and

for each t there exists st ∈ O∪Zi,j
Xi

(Vt) such that st|Vt∩Vt′
= st′ |Vt∩Vt′

we need to show there

exists s ∈ O∪Zi,j
Xi

(U) such that s|Vt
= st for each t. But st|Vt∩Vt′

= ((st)i|α−1
i (Vt∩Vt′)

)i∈I =

((st)i|α−1
i (Vt)∩α

−1
i (Vt′ )

)i∈I . So there exist si ∈ α−1
i (U) such that (si)|α−1(Vt)

= (st)i since the

Xi are sheaves. Therefore all we need to show is that φ](i,j),i(si) = φ](i,j),j(sj). However, that

is easy because (φ](si) − ψ](sj))|φ−1
(i,j),i

(α−1
i (Vt))

= φ](i,j),i((st)i) − φ](i,j),j((st)j) = 0 since st was
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defined that way, the Zi,j are sheaves, and the inverse images of the Vt’s cover the inverse
image of U .

This gives us morphisms of ringed spaces from the Xi to ∪Zi,j
Xi (via the αi) where (on

the rings) we simply project to each coordinate. In the same way we get morphisms γi,j from
Zi,j to ∪Zi,j

Xi, those being the composition maps αi ◦ φ(i,j),i = αj ◦ φ(i,j),j.
This procedure does not in general produce a scheme even if the Xi and Zi,j are schemes.

Furthermore, even when it does it may not produce a noetherian scheme even if the all the
schemes being glued together are noetherian.

The advantage of this definition is that it immediately gives us the following universal
property.

Theorem 2.2. Suppose that W is a ringed spaces and there exists maps ψi : Xi → W for
each i ∈ I such that each square of the form

Zi,j
φ(i,j),j

  
BB

BB
BB

BBφ(i,j),i

~~||
||

||
||

Xi

ψi

!!
CC

CC
CC

CC
Xj

ψj

}}{{
{{

{{
{{

W

commutes. Then the maps ψi factor through the natural maps αi to Y = ∪Zi,j
Xi, so that the

following diagrams commute for each i, j ∈ I.

Zi,j
φ(i,j),j

%%J
JJJJJJJJJJ

φ(i,j),i

yyttttttttttt

Xi

αi

%%J
JJJJJJJJJ

ψi

%%

Xj

αj

yytttttttttt

ψj

yy

Xi ∪Zi,j
Xj

��

W

Proof: The proof of this fact is an easy consequence of the definition.

Let us first record some basic properties of this construction. First we will show that
gluing X to Y along X simply gives us Y again.

Proposition 2.3. Suppose that X and Y are ringed spaces and ψ : X → Y is a morphism.
Then X ∪X Y ∼= Y where the map from X to X is the identity.

Proof: As sets Y and X∪X Y are naturally identified by the map β. They are homeomorphic
since the topology on X ∪X Y is the strongest that make α and β continuous. On an
open subset U of X ∪X Y = Y the sections are the pairs (f, g) where f ∈ OX(ψ−1(U))
and g ∈ OY (U) such that f = ψ](g). Thus the sections are the pairs (ψ](g), g) which is
isomorphic to OY (U). This completes the proof.

3



Now we will prove some results which will shed some light on the topological structure of
this object.

Lemma 2.4. The open (closed) subsets ∪Zi,j
Xi, i ∈ I correspond bijectively to tuples (Ui)i∈I

of open (closed) subsets of the Xi such that φ−1
(i,j),i(Ui) = φ−1

(i,j),j(Uj)

Proof: Clearly an open subset of ∪Zi,j
Xi gives a natural tuple of open subsets of the Xi

that agree on the Zi,j (their preimages). On the other hand, if (Ui) is such a tuple we
need to show that W = ∪αi(Ui) is an open subset of ∪Zi,j

Xi. Now clearly Ui ⊂ α−1
i (W )

so we need to prove equality. The following is essentially a small lemma. Suppose x ∈ Xi

and there exists z ∈ Zi,j such that φ(i,j),i(z) = x. Let us also denote φ(i,j),j(z) by xj and
finally suppose that xj ∈ Uj . I will show that x ∈ Ui. But z ∈ φ−1

(i,j),j(Uj) = φ−1
(i,j),i(Ui) so

x = φ(i,j),i(z) ∈ φ(i,j),i(φ
−1
(i,j),i(Ui)) which is contained in Ui. Now for the more general case.

Suppose x ∈ Xi and αi(x) ∈ W . Then there exists j1, . . . , jn with j1 = i and zjm,jm+1 ∈
Zjm,jm+1 where φ(jm,jm+1),jm+1(zjm,jm+1) = φ(jm+1,jm+2),jm+1(zjm+1,jm+2), φ(j1,j2),j1(zj1,j2) = x
and φ(jn−1,jn),jn(zjn−1,jn) ∈ Ujn. Finally let us denote φ(jn−1,jn),jn(zjn−1,jn) as xn so we have by
defintion αjn(xn) = αj1(x) ∈ W . Using induction and the previous statement we conclude
that x ∈ Ui = Uj1 .

Lemma 2.5. Let φ : Z → X and ψ : Z → Y be morphisms of ringed spaces and let
α : X → X ∪Z Y and β : Y → X ∪Z Y be the induced maps. Suppose that φ (or ψ) is a
homeomorphism onto its image. Then so is β (or α).

Proof: First note that when φ is injective (as a map of topological spaces) there is no collaps-
ing of points of Y (which can happen in general) so at least β is an injective map. The map
β is continuous by definition so all we need to show is that if U ⊂ Y is open there exists an
open V ⊂ X ∪Z Y such that β−1(V ) = U . So given U as above, since φ is a homeomorphism
onto its image there exists U ′ ⊂ X such that ψ−1(U) = φ−1(U ′). Now consider α(U)∪β(U ′).
This is an open subset of X ∪Z Y (by lemma 2.4) so it satisfies the desired property.

Proposition 2.6. Let X, Y and Z be as in the previous lemma with the maps between
them labelled in the same way. Now suppose that ψ is a homeomorphism onto its image and
that Z is a Zariski space (noetherian and every irreducible closed set has a unique generic
point). Then if x ∈ X and y ∈ Y and if β(y) ∈ {α(x)}− then there exists z ∈ Z such that
y ∈ {ψ(z)}− and φ(z) ∈ {x}−.

Proof: First note that since ψ is a homeomorphism onto its image, α is also, which implies
that {x}− = α−1({α(x)}−). Now look at φ−1({x}−). We can assume this is nonempty
because if it were empty then α({x}−)∪β(∅) would be closed, in which case β(y) ∈ α({x}−)
. But the points of {x}− ∈ X cannot be identified with any points of Y since φ−1({x}−) = ∅
which is a contradiction. Since ψ is a homeomorphism onto its image, every closed subset of
Z arises as the inverse image of a closed subset of Y , (including the inverse images of closed
subsets of X). Then because β(y) is in the closure of α(x), by 2.4, for every closed subset
of V ⊂ X containing x, each closed subset (there exists at least one) W of Y such that
ψ−1(W ) = ψ−1(V ) contains y. In particular ψ(φ−1({x}−))− contains y. Since Z is Zariski
and φ−1({x}−) is closed we can write φ−1({x}−) = Z1 ∪ . . . ∪ Zn for irreducible closed sets
Zi with generic points zi ∈ Zi. Thus y ∈ ψ(Z1 ∪ . . . ∪ Zn)

− = ψ(Z1)
− ∪ . . . ∪ ψ(Zn)

− which
implies that y ∈ ψ(Zi)

− for some i. Since continuous maps preserve specialization (points
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being in the closure of other points) we conclude that y ∈ {ψ(zi)}
−. On the other hand

φ(zi) ∈ {x}−, which completes the proof.

We will now prove a result saying we do not have to glue all at once.

Proposition 2.7. Let Xi and S = {Zi,j} be as in definition at the start of the section.
Suppose I = I ′∪I ′′ and I ′∩I ′′ = ∅. Let S ′ be the subset of S where both indices of Zi,j are in
I ′ and let S ′′ be the subset of S where both indices of Zi,j are in I ′′. Let S0 = S − (S ′ ∪ S ′′).
Let Z =

∐

S0
Zi,j (as a topological space this is just the disjoint union and on the rings we

simply take direct products). Let X ′ = ∪S′Xi where in this union the Xi are indexed by I ′.
Likewise let X ′′ = ∪S′′Xi. Then there exist maps φ′ : Z → X ′ and φ′′ : Z → X ′′ induced by
the Zi,j’s making up Z and X ′ ∪Z X

′′ ∼= ∪Zi,j
Xi.

Proof: This is a direct consequence of the definition.

Obviously we could take more general partitions as well. This proposition is the compu-
tational tool I will use to compute all examples where more than two schemes are glued to
together.

3. An Application to Schemes

We will now use this construction to glue schemes together. Unless otherwise noted, for
the rest of the paper X, Y , and Z will be schemes, φ will be a map from Z to X and ψ will
be a map from Z to Y .

Before we actually do any computations we need to make one more observation. Suppose
that we have X, Y and Z as above and there exist open U ⊂ X, V ⊂ Y such that W =
φ−1(U) = ψ−1(V ). Then U ∪W V is isomorphic to (X ∪Z Y )|α(U)∪β(V ). Topologically this is

clear (note what the open subsets of U ∪W V are). The sections are naturally identified as
well.

Example 3.1. (Gluing along open sets) Suppose φ and ψ are open immersions. ThenX∪ZY
is easily seen to be the standard gluing of X and Y along Z and thus a scheme.

Example 3.2. (Gluing along an open/closed subscheme) Suppose X = A
2
k = Spec k[x, y]

and Z = X − {0} where 0 is the origin. Also let Y = A
3
k − {0} = Spec k[x, y, z] − {0}.

Let the maps φ and ψ be the natural ones, where φ is an open immersion and ψ is a closed
immersion. We will show that X ∪Z Y is not a scheme. Let P be the origin of X (the point
missed by φ). Each neighborhood of P in X ∪Z Y corresponds to a pair of open sets U ⊂ X
and V ⊂ Y such that φ−1(U) = ψ−1(V ). But for any such pair with P ∈ U , V cannot
be affine and the prime spectrum of the sections of V will contain the missing origin point.
Note that the sections of U ⊂ X and φ−1(U) ⊂ Z are isomorphic for each U so gluing to
X neither adds nor removes any new sections besides those associated with Y , i.e. for each
open set U ∪W V ⊂ X ∪Z Y , the sections OX∪ZY (U ∪W V ) = OY (V ). However, the topology
on X ∪Z Y is too strong for this to be a scheme since not every line (which we think of
going through the origin in A

3) actually contains the origin of X ∪Z Y in its closure as per
proposition 2.6. In particular the line Z corresponding to z = 0 in Y ⊂ A

3 does not contain
P in it’s closure in X ∪Z Y since φ−1(∅) = ψ−1(Z). So that the line minus the point is a
closed set.

The next theorem is the main theorem of the section. It provides a condition for when
we can glue schemes together and get a scheme. We will see that this works in many special
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cases as well. It also will be important for one construction of a scheme without closed
points.

Theorem 3.3. Suppose A and B are rings. Further suppose I is an ideal of A and there
exists a map γ from B to A/I. We will denote the quotient map from A to A/I by π. Let
X = SpecA, Y = SpecB and Z = SpecA/I, so that Z is a closed subscheme of X. Then
X ∪Z Y is an affine scheme with Y a closed subscheme, (X ∪Z Y ) − Y ∼= X − Z, and the
maps α : X → X ∪Z Y and β : Y → X ∪Z Y are morphisms of schemes.

Informally we are going to glue Y = SpecB onto X along Z (the map from Z to Y is the
one induced by γ). This will replace Z with Y (whatever that might mean) while keeping
X ∪Z Y an affine scheme.

Proof: First let us look at what X ∪Z Y will look like as a set. Since φ : Z → X is a
homeomorphism onto its image β : Y → X ∪Z Y is also. Since Z is a closed subset of X
and we are gluing along Z, we see that X must remain the same outside of Z. Furthermore
Z will be replaced by Y via the map ψ : Z → Y induced by γ.

Since I am claiming X ∪Z Y is affine let us look first at the global sections. The global
sections are C = {(a, b) | a ∈ A, b ∈ B, a+ I = γ(b)}. Let the maps C → A, C → B induced
by restricting to each coordinate be denoted by f and g respectively. Let J = {(a, 0) ∈
C} = ker g and let J ′ = {(0, b) ∈ C} ker f . It is then easy to see that C/J ∼= B with this
isomorphism being induced by g. We can view C/J ′ as a subring of A and in fact it can be
described as π−1(γ(B))[I], the π−1(γ(B)) subalgebra of A generated by I. In the future we
will denote π−1(γ(B)) as B′ and im(C/J ′) ⊂ A as B′[i].

Let P be a prime ideal of C. Since JJ ′ = (0), P must contain either J or J ′. If P contains
J then P corresponds via g to a prime ideal in B. On the other hand if P does not contain
J then it must contain J ′, so it corresponds to a prime ideal Q′ of B′[I]. Since it didn’t
contain J it cannot contain I since J = {(I, 0)}. Thus there exists a ∈ I, a /∈ Q′. Then Q′

corresponds to a prime ideal of B′[I][a−1] = A since a ∈ I. So P corresponds to a prime
ideal Q of A. Note that by the naturality of this chain we have f−1(Q) = P and the Q
satisfying this property is unique. Thus at least as a set, SpecC corresponds to (X−Z)∪Y
and the maps f and g induce the expected correspondences.

Now we need to show that this correspondence is in fact a homeomorphism of topological
spaces. Let W be a closed subset of the topological space of X ∪Z Y . Thus α−1(W ) and
β−1(W ) are closed subsets of X and Y respectively so they are cut out by ideals K ⊂ A
and K ′ ⊂ B. Let L = f−1(K) ∩ g−1(K ′) ⊂ C. I will show that the points cut out by L are
precisely the points of W . First suppose P is a prime ideal of C corresponding to a point of
W . Then P comes from a point in X or from a point in Y so it is either a point of α−1(W )
or of β−1(W ). Thus the appropriate corresponding prime of A or B contains either K or
K ′ so it follows that P must contain L. On the other hand, suppose P is a prime ideal of
C containing L. Then P must contain f−1(K) or g−1(K). If P contains g−1(K ′) then it
must also contain J = ker g ⊂ g−1(K ′) so that P corresponds to an element of β−1(W ). If
P contains f−1(K) and does not contain J then P corresponds to a prime of A containing
K, that is an element of α−1(W ). The one case we must worry about is if P contains both
f−1(K) and J . In this case I will show that P contains g−1(K ′) which puts P in the first
case again. In particular it is enough to show that K ′ ⊂ g(P ) since g surjects and P contains

J = ker g. Note that
√

γ(K ′)A/I =
√

π(K) since the inverse images of W in Z must be
the same whether we take inverse images through X or Y . Now take b ∈ K ′ ⊂ B, then
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γ(b) ∈ γ(K ′) ⊂
√

π(K) so γ(bn) ∈ π(K) for some n. Choose a representative a+ I = γ(bn)
so that a ∈ K. Then (a, bn) ∈ C. Since a ∈ K and bn ∈ K ′ we have (a, bn) ⊂ L which
implies (a, bn) ∈ P so bn ∈ g(P ) and since g(P ) is still prime we conclude b ∈ g(P ) as
desired. Therefore, since the topology on X ∪Z Y was chosen to be the strongest possible,
the correspondence we established between SpecC and X ∪Z Y is a homeomorphism.

Next we need to show that X ∪Z Y and SpecC are isomorphic as schemes. We need only
work on the affine open sets SpecCc since these sets form a basis. If c = (s, t) ∈ C then we
need to show that the natural map of Cc to the global sections of (X − V (s)) ∪(Z−V (s+I))

(Y − V (t)) is an isomorphism. This map is (a, b)/cn 7→ (a/sn, b/tn). First let us show that
it is injective. Suppose (a/sn, b/tn) = 0 = (0, 0), so there exists m1, m2 such that sm1a = 0
and tm2b = 0. But then we can choose m large enough so that cm(a, b) = 0 so (a, b)/cn = 0
as well. To show surjectivity take (a/sn, b/tm) and note that either by scaling a or b by s or
t respectively we can assume n = m. So we have (a/sn, b/tn). But π(a)/π(s)n = γ(b)/γ(t)n

and since π(s) = γ(t) we see that there exists l such that π(s)l(π(a)− γ(b)) = 0 so π(asl) =
γ(btl) for some l. Then (asl, btl)/cn+l is mapped to (a/sn, b/tn) as desired. Since these
maps were chosen to be compatible with the restriction maps, we have X ∪Z Y ∼= SpecC.
Furthermore, SpecC has Y as a closed subscheme and is isomorphic to X −Z outside of it.

Finally since the maps between the ringed spaces α : X → X ∪Z Y and β : Y → X ∪Z Y
are induced by maps of the global sections of these affine schemes we see that α and β are
morphisms of schemes as desired.

Corollary 3.4. (Contracting a closed set to a point in an affine scheme) Let A, I, and B
be as above and further assume that A is a k algebra and that B = k. Then X ∪Z Y is
isomorphic to SpecA outside of SpecA/I and the closed subscheme SpecA/I is contracted
to a point.

Proof: Direct from 3.3.

Example 3.5. (Contracting a line in A
2
k). Let A = k[x, y], I = (x), B = k, then X ∪Z Y =

Spec k[x, xy, xy2, xy3, . . .]. This is A
2
k with the line x = 0 contracted to a point. Note that

in this case the resulting scheme is not noetherian even though the originals were.

Example 3.6. (Gluing points on A1
k) Let A = k[x] and let I = ((x−1)(x+1)); then X∪Z Y

is easily seen to be isomorphic to the nodal cubic. If I = (x2) then X ∪Z Y is the cuspidal
cubic.

We are going to use 3.3 to glue along closed subschemes of arbitrary schemes.

Corollary 3.7. (Gluing closed subschemes in general) Suppose Z is a closed subscheme of
both X and Y . Then X ∪Z Y is a scheme.

Proof: Outside of Z we must have a scheme, so choose x ∈ X in the image of Z with
z ∈ Z such that φ(z) = x. Choose an affine open U ⊂ X with x ∈ U . Then φ−1(U) is an
open affine subset of Z. Since ψ : Z → Y is a homeomorphism onto its image there exists
an open W ⊂ Y such that ψ−1(W ) = φ−1(U). Choose an affine subset V of W such that
ψ(z) ∈ V . Then ψ−1(V ) is an affine subset of φ−1(U). Then there exist further affine subsets
(localizations in fact from U and V ) V ′ ⊂ V , U ′ ⊂ U such that z ∈ φ−1(U ′), ψ−1(V ′) and
φ−1(U ′) = ψ−1(V ′). Then U ′ ∪φ−1(U ′) V

′ is an open neighborhood of x in X ∪Z Y . But by
3.3, that is affine. Thus X ∪Z Y is locally affine so it is a scheme.
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In fact it is not hard to see that if X and Y are closed subschemes of an ambient scheme
and if Z is the scheme corresponding to the intersection (whose ideal sheaf is the sum of
X and Y ’s ideal sheaves) then X ∪Z Y in fact corresponds to the scheme cut out by the
intersection of the ideal sheaf of X with the ideal sheaf of Y . At this point it would be
natural to wonder whether we can glue more than two schemes together (perhaps along
closed subsets) and still get a scheme. We shall next give an example when this does indeed
happen, although not always in the way we expect. First we need a lemma that improves
3.3

Lemma 3.8. Suppose X = SpecA and Y = SpecB are affine schemes and suppose the
scheme Z = SpecC maps to them via the maps φ and ψ as before. Further suppose imA ⊂
imB ⊂ C and that ψ is a closed map (of topological spaces). Then X ∪Z Y is an affine
scheme with X as a closed subscheme.

Proof: Let W = Spec(imB). Immediately we notice that we have the following diagram.

Z

φ

��

ψ

��

δ
��

W

φ′
zzuu

uu
uu

uu
uu

ψ′
$$

II
II

II
II

II

X
α

$$
HHHHHHHHH Y

β

zzvvvvvvvvv

X ∪Z Y

where the map δ is induced by the inclusion of imB into C, thus W is just the closure of
the image of Z in X, but since ψ is closed this is just the image of ψ, and so δ is surjective
as well. First let us show that X ∪W Y and X ∪Z Y are the same as topological spaces.
Since δ is surjective no additional relations are added and by the factorization all original
relations are kept; thus X ∪W Y and X ∪Z Y are identified as sets. To see that they are
identified topologically too, we recall 2.4 and note that if U ⊂ X and V ⊂ Y are open subsets
such that φ−1(U) = ψ−1(V ) then φ′−1(U) = δ(φ−1(U)) = δ(ψ−1(V )) = ψ′−1(V ) again since
δ is surjective. Likewise if φ′−1(U) = ψ′−1(V ) we have that φ−1(U) = δ−1(φ′−1(U)) =
δ−1(ψ′−1(U)) = ψ−1(U). Now we will show that they are isomorphic as sheaves. Choose
an open subset of X ∪W Y corresponding to a pair U ⊂ X, V ⊂ Y . Then the sections of
this are the sections that agree in W . But since δ] is an injective map of sheaves, these
are just the sections that agree in Z as desired. However now we are in the case of 3.3 so
X ∪Z Y = X ∪W Y is an affine scheme.

We will now see that if we have a collection of closed subsets of a scheme we can glue them
together along their intersections to get a scheme. However, as we will see, this scheme is
not always a closed subscheme of the ambient space, although it does always map there (via
the universal property).

Theorem 3.9. Suppose Y is a scheme and X1, . . . , Xn are closed subschemes. Let us denote
by Zi,j the closed subscheme corresponding to the intersection of Xi and Xj. Then ∪Zi,j

Xi

is a scheme and the Xi are closed subschemes.
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Proof: Without loss of generality we may assume that Y is affine (say equal to SpecA) since
we can always restrict. Let us denote by Ii the ideal corresponding the Xi so that Zi,j =
Spec(A/(Ii+Ij)). We will proceed by induction on n. The base case is clear so suppose we can
glue up to n closed subschemes. Let Xn+1 be another closed subscheme corresponding to an
ideal In+1. Let us denote X = (∪Zi,j ,1≤,i,j≤nXi) = SpecB and Z =

∐n
i=1 Zi,n+1 = SpecC =

Spec⊕n
i=1A/(Ii + In + 1). Then by proposition 2.7 we have ∪Zi,j ,1≤,i,j≤n+1Xi = Xn+1 ∪Z X.

By the universal property 2.2 we see that there are maps A→ B → C however we also have
A → A/(In+1) → C with the first map surjective. Thus imA/(In+1 ⊂ imB ⊂ C so we can
apply lemma 3.8 which shows ∪Zi,j

Xi is a scheme. The lemma also guarantees that each Xi

is a closed subscheme since the choice of Xn+1 was arbitrary.

Example 3.10. As noted the scheme constructed this way is not always a subscheme of
the ambient space (Y in the notation of 3.9). For example let Y = A

2 = Spec k[x, y],
X1 = Spec k[x, y]/(x), X2 = Spec k[x, y]/(y), and X3 = Spec k[x, y]/(x − y). Now all of
the Zi,j’s are just Spec k = Spec k[x, y]/(x, y). If we glue all three together simultaneously
we get a scheme isomorphic to Spec k[x, y, z]/(x, y) ∩ (x, z) ∩ (y, z) which is not equal to
Spec k[x, y]/(x)∩(y)∩(x−y) since the dimension of the tangent space at the intersection point
of the first is three and the dimension at the intersection point of the second is two. However
if we replace the Xi’s by schemes with embedded points at the intersection points, that is
X1 = Spec k[x, y]/(x2, xy),X2 = Spec k[x, y]/(y2, xy) andX3 = Spec k[x, y]/((x−y)2, x2−y2)
the scheme obtained by gluing all three simultaneously is k[x, y, z]/(x) ∩ (y) ∩ (x− y).

We will now continue on with some other corollaries of 3.3

Corollary 3.11. (Gluing a closed subset of a SpecR onto SpecS−1R) Let R be a ring, S a
multiplicative subset of R, and J an ideal of R. Then we let A = S−1R, B = R/J , and let
the ideal I of A be S−1J . Then X ∪Z Y can be identified (as sets) as the union of SpecS−1R
and R/J .

Note that while we can make this identification as sets, the topology may be stronger than
we might expect. We see this in the next example.

Example 3.12. As in the above corollary let R = k[x, y], S = {1, y, y2, . . .} and let I = (x).
Then X ∪Z Y = Spec k[x, y, x

y
, x
y2
, . . .] and this scheme looks like A

2 minus the line y = 0

but with the origin put back in (actually the whole line x = 0 was put in, but most of it
was already there). However, there is a topological pathology created. Proposition 2.6 tells
us that the only curves going through the origin must now contain x = 0 in their closure.
For example the line corresponding to x − y = 0 now misses the origin. We can see this
algebraically since the ideal (x − y) = (y)(x

y
− 1) and (x

y
− 1) which is the corresponding

prime ideal clearly doesn’t go through the origin m = (x, y, x
y
, x
y2
, . . .) / k[x, y, x

y
, x
y2
, . . .]. If

we took I = (y) instead in an attempt to glue back the line we removed, we notice that Z
becomes the empty scheme, so we have only the disjoint union of the plane minus a line and
the line.

Finally let us look at a related example where we do not get a scheme.

Example 3.13. Let X = Spec k[x, y]y, Y = Spec k[x, y](x,y), and Z = Spec(k[x, y](x,y))[y
−1].

Thus X is the plane without a line, Y is the local ring of the origin, and Z is the local
ring of the origin with the line y = 0 missing and thus of course the original (closed) point

9



missing as well. Let the maps φ and ψ be those induced by inclusions. None of these maps
are surjective so 3.3 does not apply. Now on any open neighborhood of the origin in X ∪Z Y ,
the corresponding open subset of Y must be all of Y . So y must not be invertible in that
open set. Therefore we pick up at the very least an open dense subset of the line y = 0 in
the plane A

2. None of these points (except the origin itself) are in X ∪Z Y , so we do not
have a scheme. Note in this case the global sections are just k[x, y].

4. A scheme without closed points

In this section we will give two constructions of a scheme without closed points. We will
utilize the gluing methods from the previous section, the other will use valuation rings. The
two schemes we get in this section are easily seen to be the same.

Proposition 4.1. If X is a quasi-compact scheme then X has a closed point.

Proof: Since X is quasi-compact there is a cover by affine {Ui}, Ui = SpecAi. Take a
maximal ideal (closed point) P1 of U1. If P1 is closed in X we are done. If not, take P2 to
be any point (besides P1 itself ) in its closure. Now P2 is in some Ui (but not U1) so without
loss of generality say P2 is in U2. If P2 is closed we are done. If not take a point P3 in its
closure. Again P3 is in one of the Ui’s but this time it cannot be in either U1 or U2 (since
it is in the closure of both P1 and P2), so without loss of generality we say P3 ∈ U3. This
process must stop since there are only finitely many Ui, so X has a closed point.

Since every noetherian scheme is quasi-compact, every noetherian scheme has a closed
point.

First we will construct a scheme without closed points using 3.3 and 2.7.

Theorem 4.2. Let An = (k(xn+1, xn+2, . . .))[xn](xn). This is a DVR with generic point
Pn−1 = Zn−1,n = Spec k(xn, xn+1, . . .) and closed point Pn = Spec k(xn+1, xn+2, . . .). Let
Xn = SpecAn. Note that Xn’s closed point is identified with Xn+1’s generic point so the Zi,j
notation is justified. Let all other Zi,j’s be the empty scheme. Let us denote the ringed space
∪Zi,j

Xn by X. Then X is a scheme.

Proof: First notice that what we are doing is gluing DVR’s end to end (closed point to open
point) in infinite succession. What we have is a succession of points P0, P1, P2, . . . with each
Pi in the closure of all previous P ’s. Thus clearly X has no closed points. Thus the only
open sets (besides the whole set) are finite sets of the form Yn = {P0, P1, . . . , Pn}. I claim
these finite open sets are affine schemes. We will proceed by induction. Note that the inverse
image of Yn in all but the first n Xi’s are empty (therefore the inverse image of the Yn in
higher Zi,i+1’s are empty as well), so we can essentially ignore them. Further this means
that the sections we get from them are only zero sections. A sort of minimal diagram of this
situation is the following.

Z1,2

}}{{
{{

{{
{{

!!
CC

CC
CC

CC
Z2,3

}}{{
{{

{{
{{

!!
CC

CC
CC

CC
Z3,4

}}{{
{{

{{
{{

!!
CC

CC
CC

CC
C

X1 X2 X3
. . .

Since these sets are all finite, we can get a perhaps clearer picture of what is going on by
simply denoting them by their points.
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{P1}

zzttttttttt

$$
JJJJJJJJJ

{P2}

zzttttttttt

$$
JJJJJJJJJ

{P3}

zzttttttttt

!!
DDD

DDD
DD

D

{P0, P1} {P1, P2} {P2, P3} . . .

Obviously each pair of Pi’s is identified in the coproduct giving the chain of points where
each Pi+1 is in the closure of Pi. Now consider Y1 = {P0, P1}. This is clearly a scheme
because it is the spectrum of k(x2, x3, . . .)[x1] = A1. So suppose Yi is a scheme for up to Yn.
Consider Yn+1. By 2.7 we can construct Yn+1 by first gluing together Yn and gluing on the
rest. Our induction hypothesis tells us that Yn is an affine scheme. Let us look at the setup
from 2.7. The schemes X ′ = Yn and X ′′ = Xn+1 are both affine. The Z object from 2.7 is
simply Zn−1,n since all the other possible Zi,j’s are empty. But the map from Yn to Zn−1,n

is a closed immersion so we can apply 3.3 which tells us that Yn ∪Zn−1,n
Xn+1 = Yn+1 is a

scheme. Therefore all Yn’s are schemes and since the collection of all such finite open Yi’s
covers X, X is also a scheme. Note that X has no finite affine cover.

Now we will present an alternate view using valuation rings.
Let

A′ = k[x1, x2, . . .][
x1

x2
,
x1

x2
2

. . .][
x2

x3
,
x2

x2
3

. . .] . . .

Now the principle of proposition 2.6 suggests that the local ring at the origin will be a local
ring with no largest prime ideal among the non-maximal prime ideals. Let A = A′

(x1,x2,x3,...)

(of course the ideal m = (x1, x2 . . .) contains all the monomials of A′). A is the set of global
sections of the scheme without closed points constructed above. Note that in A or A′ I will
call finite products of the generators of A (the xi

xn
i+1

) monomials. If n < m I will denote
xn

xn+1

xn+1

xn+2
. . . xm−1

xl
m

by xn

xl
m

.

When we take the prime spectrum of A, we will get an infinite chain of points and then a
closed point (corresponding to the maximal ideal). If we remove that closed point we get a
scheme without closed points.

We are going to see that A is in fact a valuation ring with valuation toG = Z⊕Z⊕. . . which
gives it properties very much like those of a DVR and actually makes the analysis surprisingly
easy. The ordering we are going to use on G is the lexicographic order, (n1, n2, . . .) >
(n′

1, n
′
2, . . .) if the first nonzero entry of (n1 − n′

1, n2 − n′
2, . . .) is greater than 0. Given g ∈ G

let lv(g) be the value of the leading term of g, let li(g) be the index of the leading term of
g, and let gi denote the i’th entry of g. So for example if g = (0, 0, 4,−2, . . .) then lv(g) = 4
while li(g) = 3 (the first two entries are zero). First we will define the valuation v on the
monomials of A (or A′). Let m be a monomial of A, and view m as an element of Frac
A, then we define v(m) to be the degree (positive or negative) of xi in m. So for example
v(x1

x1

x2
2

x2

x3
) = (2,−1,−1, 0, 0, 0, . . .). We shall now prove a number of quick results which will

allow us to conclude that A is the desired ring.

Proposition 4.3. For every g ≥ (0, 0, . . .) there exists a unique monic monomial x ∈ A (or
A′) such that v(x) = g.

Proof: Let l = li(g) and nl = lv(g). Note that without loss of generality we can assume
nl = 1 for if not we can find an x such that v(x) matches g except at the leading term. That
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is lv(v(x)) = 1 and v(xx
lv(g)−1
l ) = g. By the same method we can assume that gi ≤ 0 for all

i > l Let t =
∑

i>l | gi |. Then let x = xl

xt
l+1

∏

i>l

x
|gi|

l+1

x
|gi|
i

and note that it satisfies the desired

condition. It is unique because monomials of Frac A satisfying that property are unique.

We will now show that every element of A is a unit times a monomial but first we need a
very important lemma.

Lemma 4.4. If m1 and m2 are monomials of A and if v(m1) > v(m2) then m2 divides m1.

Proof: Let m3 be the monomial corresponding to v(m1)−v(m2), then λm2m3 = m1 for some
constant λ ∈ k

Proposition 4.5. Every element f ∈ A that is not a unit (so it has no constant term) is a
unit multiplied by a unique monic monomial.

Proof: Represent f as (λ1m1 + . . . + λnmn)/h where the λi ∈ K, m1 > m2 > . . . > mn and
h is an element of A′ − m. Let m′

i = mi

mn
∈ A′ ⊂ A. Thus f = (λ1m

′
1mn + . . . λnmn)/h =

mn(λ1m
′
1 + . . . λn)/h which is a monic monomial multiplied by a unit as desired. The fact

that it is unique is easy to see since it is clear that any two distinct monomials are not
associates (they do not differ by a unit).

We can immediately conclude that every ideal of A is monomial. Now we have the required
machinery to actually identify the prime ideals of A and use this to construct a scheme
without closed points.

Theorem 4.6. With A as described above, SpecA− m is a scheme without closed points.

Proof: Suppose P ∈ SpecA and suppose P 6= m and P 6= (0). Note that xl ∈ P for some l
since if m ∈ P is any monomial then there exists l and n such that v(xnl ) > v(m) so that
xnl ∈ P which implies that xl ∈ P . Let l be the largest number such that xl ∈ P . Because
P 6= m such an l exists. Note that now for every monomial m ∈ P , li(m) ≤ l, for if not we
could choose l to be bigger. On the other hand, for all monomials m ∈ A such that li(m) = l
it turns out thatm ∈ P . To see this simply note that as in the proof of proposition 4.3 we can
assume without loss of generality that lv(m) = v(m)l = 1 and that v(m)i <= 0 for all i > l.
Thus we can represent m as xl

m′ where m′ is a monomial of k[x1, x2 . . .] and li(m′) > l. Now
xl

m′m
′ = xl ∈ P so that m′ ∈ P or xl

m′ ∈ P but m′ cannot be in P because if it were it would
contradict the maximality of l. Of course P automatically contains all monomials m such
that v(m) > v(xl), which includes all monomials m such that li(m) < l. This completely
identifies the monomials of P (which from this point forward we will denote by Pl). They are
the monomials m such that li(m) ≤ l and since every ideal of A is monomial this completely
determines P . At this point I have yet to prove that the Pi actually exist (as prime ideals),
but if you look at A/Pi this is A without the first i variables of A (and all their quotients).
It is easy to see that this leaves you with a ring isomorphic to A. Now note that Pi contains
Pj for all i > j, thus the set of prime ideals of A is the set {(0), P1, P2, . . .m} and we also
have (0) ⊂ P1 ⊂ P2 ⊂ . . . ⊂ m. Therefore SpecA− m is a scheme without closed points.

Finally we should note that SpecA − m is the same scheme as the one constructed in
4.2. This is easy to see since the universal property 2.2 guarantees a map from the scheme
constructed in 4.2 and it is not to difficult to see that this induces an isomorphism on the
finite open (affine) subsets.
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