π_p , the value of π in ℓ_p

Joseph B. Keller and Ravi Vakil

Department of Mathematics

Stanford University, Stanford, CA 93405-2125

email: keller@math.stanford.edu

April 29, 2007

The two dimensional space ℓ_p is the set of points in the plane, with the distance between two points (x, y) and (x', y') defined by $(|x - x'|^p + |y - y'|^p)^{1/p}$, $1 \le p \le \infty$. The distance of (x, y) from the origin is then $(|x|^p + |y|^p)^{1/p}$. The equation of the unit circle C_p , i.e. the circle with its center at the origin and radius 1, is

$$(|x|^p + |y|^p)^{1/p} = 1. (1)$$

Figure 1 shows C_p for p = 1, 3/2, 2, 3 and ∞ . Equation (1) is unchanged when x is replaced by -x, when y is replaced by -y, and when x and y are interchanged. Therefore C_p is symmetric about the y-axis, about the x-axis, and about the line x = y.

We define π_p to be the ratio of the circumference of C_p to two times its radius, which is its diameter 2. The circumference is the integral of the element of arclength ds =

 $(|dx|^p + |dy|^p)^{1/p}$ around C_p . Thus

$$\pi_p = \frac{1}{2} \int_{C_p} (|dx|^p + |dy|^p)^{1/p} = \frac{1}{2} \int_{C_p} \left(1 + \left| \frac{dy}{dx} \right|^p \right)^{1/p} |dx|. \tag{2}$$

Because of the symmetry of C_p , its circumference is equal to four times its arclength in the first quadrant, or eight times its arclength in the first quadrant between the lines x = 0 and x = y. When x = y, (1) shows that $x = 2^{-1/p}$, so the integral in (2) is 8 times the integral from 0 to $2^{-1/p}$. By calculating dy/dx from (1), we can rewrite (2) as

$$\pi_p = 4 \int_{0}^{2^{-1/p}} \left[1 + \left| x^{-p} - 1 \right|^{1-p} \right]^{1/p} dx. \tag{3}$$

For p=1, (3) yields $\pi_1=4(2^{1/p})(2^{-1/p})=4$. For $p=\infty$, the integrand is 1 and the upper limit is 1, so $\pi_\infty=4$. At p=2, $\pi_2=\pi$. If geometry had been developed using the ℓ_p distance instead of the ℓ_2 distance, π_p would have replaced π_2 , which is just the familiar π .

Figure 2 shows a graph of π_p as a function of p, obtained by numerical integration of (3). The graph shows that as p increases from p=1, π_p decreases monotonically from its maximum value $\pi_1=4$ to its minimum value $\pi_2=\pi$, and then increases monotonically to $\pi_\infty=4$. Thus for each p in $1 \le p \le 2$, there is a q in $2 \le q \le \infty$ such that

$$\pi_p = \pi_q. \tag{4}$$

To find q we recall that the Hölder inequality involves two exponents p and q related by

$$\frac{1}{p} + \frac{1}{q} = 1. ag{5}$$

We conjecture that (4) will hold when (5) does, and the numerical results shown in Figure 2 confirm this. In fact, when (5) holds, the domains bounded by C_p and C_q are polar to one another. Then a result of Schäffer [1] (see also Thompson [2]) shows that (4) holds.

We shall now give another proof that (4) holds when (5) does, by showing that then the integral (3) for π_p equals that for π_q . We begin by writing the equation for the arc of C_p in the first quadrant in terms of a parameter $t \in [0, \infty]$, setting $x = f_1(t)$ and $y = f_2(t)$. Then the length L_p of that arc can be written as

$$L_p = \int_0^\infty \frac{f_2' \left(f_1^{p(p-1)} + f_2^{p(p-1)} \right)^{1/p}}{f_1^{p-1}} dt = \int_0^\infty f_2' \left(1 + \left(\frac{f_2}{f_1} \right)^{p(p-1)} \right)^{1/p} dt.$$
 (6)

The integrand in (6) is obtained from that on the right side of (2). We choose the parameter t such that $t^{q/p}$ is the slope of the line from the origin to the point $f_1(t)$, $f_2(t)$ on C_p , so that $t^{q/p} = f_2(t)/f_1(t)$. From this equation and (1) we find that

$$f_1(t) = (t^q + 1)^{-1/p}, \quad f_2(t) = (t^{-q} + 1)^{-1/p}.$$
 (7)

We parameterize C_q in the same way, setting $x = g_1(t)$ and $y = g_2(t)$, with

$$g_1(t) = (t^p + 1)^{-1/q}, \quad g_2(t) = (t^{-p} + 1)^{-1/q}.$$
 (8)

Now we define the function $F(t) = -f_1g_2 + f_2g_1$. At the ends of the two arcs, t = 0 and $t = \infty$, we have $f_1 = g_1$ and $f_2 = g_2$. Therefore F(0) = 0 and $F(\infty) = 0$, so $\int_0^\infty F'(t)dt = 0$. This equation can be rewritten as follows, by differentiating the definition of F(t) to get F'(t) and then transposing:

$$\int_0^\infty (-f_1'g_2 + f_2'g_1) dt = \int_0^\infty (-g_1'f_2 + g_2'f_1) dt.$$
 (9)

The integrand on the left side of (9) can be rewritten as

$$-f_1'g_2 + f_2'g_1 = f_2' \left(1 + \left(\frac{f_2}{f_1}\right)^{p(p-1)}\right)^{1/p}.$$
 (10)

To prove (3) we first transform the left side as follows:

$$-f_1'g_2 + f_2'g_1 = -\left(-\frac{1}{p}\right)(t^q + 1)^{-\frac{p+1}{p}}qt^{q-1}(t^{-p} + 1)^{-1/q}$$

$$+\left(-\frac{1}{p}\right)(t^{-q} + 1)^{-\frac{p+1}{p}}(-q)t^{-(q+1)}(t^p + 1)^{-1/q}$$

$$= \frac{q}{p}(t^q + 1)^{-\frac{p+1}{p}}(t^p + 1)^{-1/q}(t^{q-1+p/q} + t^{q(p+1)/p-(q+1)})$$

$$= \frac{q}{p}(t^q + 1)^{-\frac{p+1}{p}}(t^p + 1)^{1/p-1}t^{\frac{1}{p-1}-1}(t^p + 1)$$

$$= \frac{q}{p}(t^q + 1)^{-\frac{p+1}{p}}(t^p + 1)^{1/p}t^{\frac{1}{p-1}-1}$$

$$(11)$$

Then we transform the right side:

$$f_2' \left(1 + \left(\frac{f_2}{f_1} \right)^{p(p-1)} \right)^{1/p} = f_2' (1 + t^{(q/p) \cdot p(p-1)})^{1/p}$$

$$= f_2' (1 + t^p)^{1/p}$$

$$= -\frac{1}{p} (t^{-q} + 1)^{-(p+1)/p} (-q) t^{-q-1} (1 + t^p)^{1/p}$$

$$= \frac{q}{p} (t^q + 1)^{-\frac{p+1}{p}} (t^p + 1)^{1/p} t^{\frac{q}{p}(p+1)-q-1}$$

$$= \frac{q}{p} (t^q + 1)^{-\frac{p+1}{p}} (t^p + 1)^{1/p} t^{\frac{1}{p-1}-1}. \tag{12}$$

The last forms of (11) and (12) are the same, which proves (10).

The integral from 0 to ∞ of the right side of (10) is just L_p , as (6) shows. Therefore the integral of the left side, which is also the left side of (9), is also L_p . A symmetrical argument shows that the right side of (9) is L_q , so (9) shows that $L_p = L_q$. This proves that (4) is true when p and q are related by (5).

The geometry behind this proof is rather interesting. Suppose q > p. As t goes from 0 to 1, the point on C_p is "behind" the point on C_q . At t = 1 the p-point passes the q-point. The cumulative lengths at "time" t are not the same; the difference is twice the area of

the triangle spanned by the origin, the p-point and the q-point. This difference vanishes at $t = \infty$, when the two points coincide.

Acknowledgement

Jonathan C. Mattingly and Arnold D. Kim calculated π_p . Rafe Mazzeo and Zhongmin Shen brought to our attention the work of Schäffer. We thank them all.

References

- [1] Schäffer, J.J., "The self-circumference of polar convex bodies," Arch. Math. 24, 87–90, 1973.
- [2] Thompson, A.C., Minkowski Geometry, Cambridge Univ. Press 1996, p. 118, Corollary 4.3.9 and p. 202, Corollary 6.3.2.

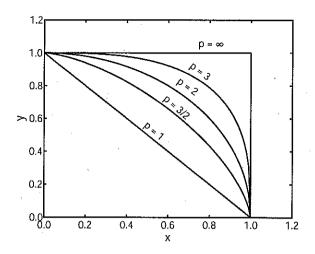


Figure 1. The unit circle C_p in the first quadrant, defined by (1), for $p=1,3/2,2,3,\infty$.

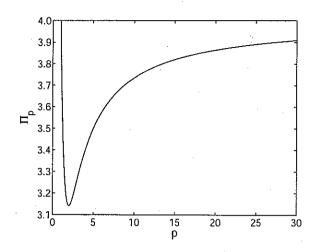


Figure 2. π_p as a function of p, obtained by numerical integration of (3).