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1 Introduction

This short note is intended to provide a functional introduction to jet bundles from the point of view of
enumerative algebraic geometry. These methods are certainly known, but as far as I know they have never
been collected in one place. The title also admits another reading: the authour has little background in the
field. This note is more a collection of my thoughts than a comprehensive introduction to the subject. I am
most interested in explaining how jets give very quick solutions to a whole class of enumerative problems.

All references are to Hartshorne unless otherwise noted. Familiarity with some of the following will be
useful: Chern classes (especially doing calculations and understanding Chern classes as degeneracy loci),
vector bundles and coherent sheaves (II.5), and some differentials (II.8). You might want to skip the proofs
the first time through. ’∼’ denotes an equivalence relation between vector bundles; it means that their Chern
polynomials are equal.

2 Jets

2.1 The Intuition

Let’s think about the following problem. If you had a general pencil of degree d curves in P2, how many
times would you expect to see a singular curve? One plan of attack is to consider an auxiliary bundle. We
have our line bundle L = O(d) on P2. Consider a section s ∈ H0(P2,O(d)) near a point p ((0, 0) in local
co-ordinates). s has a local defining equation near p

a1 + axx+ ayy + ax2x2 + · · · .

Loosely speaking, we would like a (rank 3) bundle V that has for its stalk at p the information (a1, ax, ay).
Our global section s induces a section s′ of V.

If s′ is zero at p, then s is singular at p. For a web of general sections s′, we expect this to happen c2(V )
times over all of P2.

It turns out that the bundle we want is the bundle of first-order jets J1L, and that J1L ∼ L⊗ (O⊕Ω).
The Chern classes of this latter bundle are very easy to compute, and you can verify that

c2(L⊗ (O ⊕ Ω)) = 3(d− 1)2 points.
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2.2 The Method

In general, the bundle containing the information

(a1, ax, ay, . . . , axn , . . . , axyn−1 , ayn)

of a section of L is the nth jet bundle JnL, and there is a natural map H0(P2, L) → H0(P2, JnL) that
“usually” maps general sections to general sections, allowing us to do Chern class calculations to work out
degeneracy loci. Most important for computations,

JnL ∼ L⊗ (1⊕ Ω⊕ . . .⊕ SymnΩ)

(This will be proved in Section 2.4.)

2.3 An Example

If we have three general polynomials of degree d in P1, how many triple points do we expect to see in their
net? We want a bundle to take into account (a1, ax, ax2); this is J2(O(d)). The answer will be c1(J2(O(d))).

J2(O(d)) ∼ O(d)⊗ (O ⊕ Ω⊕ Ω2)
= O(d)⊗ (O ⊕O(−2)⊕O(−4))
= O(d)⊕O(d− 2)⊕O(d− 4)

Thus c1(J2(O(d))) = d+ (d− 2) + (d− 4)
= 3d− 6

Very quick!

2.4 Rigorously Defining Jet Bundles

Let Y be a Cohen-Macaulay variety. (So the results shown will hold for Y smooth, or more generally local
complete intersection or even Gorenstein.) Consider Y × Y with diagonal ∆ and projections π1 and π2.

Y × Y π2→ Y
π1 ↓
Y

Define JnL = π1∗(OY×Y /In+1
∆ ⊗ π∗2L).

Quick fact (*): π1 gives an isomorphism from the diagonal, so this gives us a lot of algebraic leeway
when pushing forward a sheaf supported on (the reduced subscheme given by) the diagonal. In particular,
the higher direct image sheaves will all vanish.

Note that J0L = L.

Theorem 1 0→ L⊗ SymnΩ→ JnL→ Jn−1L→ 0 is exact.

Proof.

SymnΩ = Symn(π1∗(I∆/I2
∆))

= π1∗Sym
n(I∆/I2

∆)
= π1∗(In∆/In+1

∆ )
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(Theorem II.8.21A p. 185; actually a result from Matsumura. Here we use the Cohen-Macaulay hypothesis.)

0→ In∆/In+1
∆ → O/In+1

∆ → O/In∆ → 0 is exact

⇒ 0→ (In∆/In+1
∆ )⊗ π∗2L→ (O/In+1

∆ )⊗ π∗2L→ (O/In∆)⊗ π∗2L→ 0 is exact

⇒ 0→ (In∆/In+1
∆ )⊗ π∗1L→ (O/In+1

∆ )⊗ π∗2L→ (O/In∆)⊗ π∗2L→ 0 is exact

as In∆/In+1
∆ is supported on the reduced subscheme given by the diagonal. Pushing forward by π1,

0→ L⊗ SymnΩ→ Jn+1L→ JnL→ R1π1∗(In∆/In+1
∆ ) is exact

But by (*), R1π1∗(In∆/In+1
∆ ) = 0. �

Corollary 1 JnL ∼ L⊗ (O ⊕ Ω⊕ Sym2Ω⊕ . . .⊕ SymnΩ) ∼ L⊗ JnO

Corollary 2 If dim Y = k, then JnL is a vector bundle of rank
(
n+k−1

k

)
.

Proof. By induction using the exactness of

0→ L⊗ SymnΩ→ JnL→ Jn−1L→ 0

Use the fact that if
0→ F → G → H→0

is an exact sequence of quasi-coherent sheaves, with F and H vector bundles of rank f and h respectively,
then G is a vector bundle of rank f + h. (Do this on affine open sets.) �

There is a natural map H0(Y,L)→ H0(Y, JnL) that is the composition of the following maps:1

H0(Y,L)→ H0(Y × Y, π∗2L)→ H0(Y × Y,O/In∆ ⊗ π∗2L)→ H0(Y, π1∗(O/In∆ ⊗ π∗2L)) = H0(Y, JnL)

These maps are easily checked to be compatible, by which I mean the following diagram commutes:

H0(Y,L) −−−−−−−−−→ H0(Y, JnL)

↘ ↗

H0(Y, Jn+1L)

In most cases, the map H0(Y,L) → H0(Y, JnL) will “send general sections to sections that are general
enough,” so our Chern class calculations will give the correct information about the degeneracy locus, but
this isn’t always true. I haven’t investigated criteria for when one would expect the existence of global
sections of JnL coming from sections of L, that have degeneracy loci of expected dimension.

Theorem 2 If s ∈ H0(P2, L) gives s′ ∈ H0(Pn, Jn−1L), then s has a zero of multiplicity n at a point P
exactly when s′ has a zero at P . (Thus JnL is really the bundle we want.)

1The same method gives us maps H0(U,L)→ H0(U, JnL) for each open set U ⊂ Y . When L = O, this is a map O → JnO
of vector bundles. The composition O → JnO → O is the identity, so O is a summand of JnO. In particular, J1O = O ⊕ Ω.
However, the composition of maps JnO → O → JnO is not the identity.

In general (when L 6= O), the map L → JnL is a map of sheaves, but not a map of O-modules. As a result, J1L won’t
usually split. The extension

0→ Ω→ L∗ ⊗ J1L→ O → 0

is likely given by the image of the class of L in

Pic Y = H1(Y,O∗Y )→ H1(Y,OY )→ H1(Y,Ω) = Ext1(O,Ω).
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Proof. A section of L induces a section s′ of π1∗(O/In∆ ⊗ π∗2L) = Jn−1L and s′′ of π1∗(O/In∆ ⊗ π∗1L) =
L ⊗ Jn−1O. Although they are not (in general) the same vector bundle on Y , the induced sections have
zeroes at the same points.

We compare the image of s at P with the induced image of s′′ at P through the following sequences of
isomorphisms:

π1∗(O/In∆ ⊗ π∗1L)⊗O/m = π1∗(O/In∆)⊗ L⊗ (O/m)
= π1∗((O/In∆)⊗ (O/π∗1m))⊗ L
= π1∗(O/(In∆ ∩ π∗1m))⊗ L
= (O/mn)⊗ L

The image of s′′ in the stalk of JnL is precisely the image of s under the map

H0(P2, L)→ H0(P2, (O/mn)⊗ L).

�

I found it worthwhile to actually see how this works by playing with simple examples. [Was that proof
okay? Perhaps explain why we defined the jets as π1∗(O/In∆ ⊗ π∗2L) instead of π1∗(O/In∆ ⊗ π∗1L).]

2.5 Further Discussion

1. This method allows us to compute the Chern polynomial of π1∗(O/In+1
∆ ⊗ π∗2L) by way of a filtration

whose successive quotients (L ⊗ SymnΩ) we understand well. The other common way of computing
the Chern classes of a pushforward is the Grothendieck-Riemann-Roch formula, which would require
proving that certain higher direct image sheaves vanish. (In this case, Riπ1∗ = 0 (i > 0) for all sheaves
supported on the diagonal, so G-R-R will work.) Finding filtrations seems to be a good way of dodging
the unpleasantness of G-R-R.

2. We have an inverse system of vector bundles

· · · → JnL→ Jn−1L→ · · · → J1L→ L→ 0

so we can construct the inverse limit J∞L = lim
←

JnL. This vector bundle contains all the information
of the power series expansion at each point. Likely

J∞L = π1∗((lim← O/I
n
∆)⊗ π∗2L).

lim
←
O/In∆ might remind you of the formal completion of Y × Y along the diagonal ∆ (see Section II.9

if you care).

3. We can define JnL = (JnL)∗. (This notation is my own.) This gives us a direct system:

0→ L∗ → J1L→ J2L→ · · ·

which will give us J∞L = lim
→

JnL. Presumably J∞L = (J∞L)∗. Locally, under reasonable conditions

(such as smoothness), sections of J∞ will look like (finite) polynomials in { d
dx1

, d
dx2

, . . .}. (They will
read off finite linear combinations of co-efficients in the power series.)

4



3 Splitting Jet Bundles

3.1 The Intuition and Method

The concept of jet bundles can be extended slightly to deal with a much wider class of problems. Here is
a motivating problem: how many flexes will appear on a general degree d curve on P2? As before, we can
evaluate this class by constructing the appropriate auxiliary bundle.

We construct a variety PT that is the projectivized tangent space of P2 (parametrizing lines, not quo-
tients) with hyperplane class M = O(1). (PT parametrizes those length 2 subschemes of P2 supported at
one point.) Let φ be the projection φ : PT → P2. We can easily compute its Chow ring.2

As before, each section s of O(d) looks locally like

a1 + axx+ ayy + ax2x2 + · · · .
We would like a rank three vector bundle containing the information (a1, ax, ax2). A generic section of
L = O(d) will induce a generic section of V , and our section of V will have c3(V ) zeroes, which will
correspond to flexes. It turns out that

V ∼ L⊗ (O ⊕M⊕M2)

• L⊗O represents the a1 information.

• L⊗M represents the ax information.

• L⊗M2 represents the ax2 information.

In general, if W keeps track of ap1(x,y), ap2(x,y), ... , apn(x,y) then W ⊗M keeps track of axp1(x,y),
axp2(x,y), ... , axpn(x,y). For example, to hunt for cusps we would want to look at the bundle V ′ containing
the information a1, ax, ay, ax2 , axy, so

V ′ ∼ L⊗ (O ⊕ Ω⊕ Ω⊗M)

• L⊗O represents the a1 information.

• L⊗ Ω represents the ax, ay information (as it did in J1L).

• L⊗ (Ω⊗M) represents the ax2 , axy information.

Counting flexes is now reduced to a computation.

A∗PΩ = Z[h,m]/(h3,m2 + 3mh+ 3h2)

ct(O) = 1
ct(M) = 1 +mt

ct(M2) = 1 + 2mt

ct(O ⊕M⊕M2) = 1 + 3mt+ 2m2t2

ct(V ) = ct(L⊗ (O ⊕M⊕M2)
= 1 + (3dh+ 3m)t+ (3d2h2 + 6mdh+ 2m2)t2 + (d3h3 + 3md2h2 + 2m2dh)t3

Thus c3(V ) = d3h3 + 3d2mh2 + 2dm2h

= 0 + 3d2mh2 − 6dmh2

= 3d(d− 2) points.
2Given a space Y with Chow ring R and a rank r vector bundle W with Chern classes c1, ..., cr, the Chow ring of PW is

A∗(PW ) = R[m]/(mr + c1m
r−1 + . . .+ cr−1m+ cr)

where m is the class of O(1), the hyperplane class. (see Example 8.3.4, p. 141 of [1]). In this case, m =M.
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3.2 Analysis of the Method

For concreteness, we’ll work on a smooth surface Y , but the analysis will carry through for any smooth
variety.

Let S be a finite set of monomials of the form xmyn with graded pieces denoted by Sn (and S<n, S≤n
having their obvious meanings) such that

1. Sn = {xn, xn−1y, . . . , xn−t(n)yt(n)} for some integer t(n) ∈ [−1, n]. (If t(n) = −1, Sn is taken to be
empty.)

2. If xmyn ∈ S and m > 0 then xm−1yn ∈ S.

In other words, S looks like a basis for k[x, y] modulo some monomial relations. The possible choices of
S represent those subschemes (supported at one point) that can be parametrized by PT (or Y itself). Each
S can be represented by a Ferrers diagram. For example, {1, x, y, x2, x3} would be represented by:

The above two requirements correspond to characteristics of the diagram that are visually simple. Given
a square in the diagram, Condition 1 states that (if possible) the square above and to the right is also in the
diagram. Condition 2 states that (if possible) the square to the left is also in the diagram. Our construction
will use the following commutative diagram, where each square is a fibre product.

X → ∆
↓ ↓

PT × Y (φ,1)→ Y × Y π2→ Y
Π1 ↓ ↓ π1 ↓

PT
φ→ Y → pt

Π1, Π2 are the projections from PT×Y to its factors. X is the incidence correspondence and is isomorphic
to PT via Π1. Note that

(φ, 1)−1I∆ · OPT×Y = IX
AsM is O(1) on PT ,

0→ Q→ φ∗Ω→M→ 0 (1)

is the exact sequence corresponding to the projective bundle, where Q is the dual of the universal quotient
bundle. (Actually, Q = ΩPT/P ⊗M, although we won’t need this fact.) This induces a dual filtration on
φ∗SymnΩ:

SymnΩ �M⊗ Symn−1Ω �M2 ⊗ Symn−2Ω � · · · �Mn
� 0. (2)

We will define JS(L) with the following propoerties:

(A) JS(L) ∼ φ∗L⊗ JS(O)

(B) J{1,x,y,...,x
n ,xn−1y,...,yn}L = φ∗Jn(L)

(C) 0→ L⊗ (Mn−t(n)⊗Symt(n)Ω)→ JS≤n(L)→ JS<n(L)→ 0 is exact. (Notice thatMn−t(n)⊗Symt(n)

is the (n− t(n))th term in the filtration (2).) This will justify the Chern class calculations described
in the previous subsection. In general, if S ⊂ T , then there will be a natural surjective morphism
JT → JS .

(D) We have a natural map H0(Y,L)→ H0(Y, JS(L)), and if s ∈ H0(Y,L) determines s′ ∈ H0(Y, JS(L)),
then s′ is zero exactly when s is zero on the corresponding (length | Sn |) subscheme.
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As we did with ordinary jets, we will take a sheaf of ideals IS (to be defined soon) supported on X , and

JS(L) = Π1∗(O/IS ⊗Π∗2L).

We construct the IS by way of two filtrations on OPT×Y . The first comes from the filtration giving us
the usual jet bundles:

O ⊃ IX ⊃ I2
X ⊃ I3

X ⊃ · · ·
As before, IkX corresponds to {xmyn | m+ n ≥ k}. Diagramatically:

PT parametrizes the codimension 1 quotients of I∆/I2
∆, which determines an ideal J such that I2

∆ ⊂
J ⊂ I∆. Formally, Q ↪→ IX /I2

X (from eq. 1), so we get a fiber square

J → IX
↓ ↓
Q → IX /I2

X

Notice that

M = (IX /I2
X )/Q

= IX /J (3)

The second filtration is:
O ⊃ J ⊃ J 2 ⊃ · · · .

J k corresponds to {xmyn | n ≥ k}. Diagramatically,

This allows us to define JS in general. For example, to hunt for tacnodes, we must examine subschemes
with basis {1, x, y, x2, xy, x3}, represented diagramatically by:

We think about what needs to be “cut out” from the J∞ diagram:

to get: IS = (J 2,J ∩ I3
X , I4

X ) ( = (J 2,J · I2
X , I4

X ) using the following lemma.)
[Do I need to explain the construction of IS more explicitly? How can I better describe the construction

of J ?]

Lemma 1 ImX · J n = Im+n
X ∩ J n
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Proof. Not difficult. Essentially, this is the same as saying that (x, y)myn = (x, y)m+n ∩ yn in k[x, y]. �

Lemma 2

M⊗ ItX
ItX ∩ J s + It+1

X
=

It+1
X

It+1
X ∩ J s + It+2

X

Proof. By the previous lemma, the result is equivalent to:

M⊗ ItX
It−sX · J s + It+1

X
=

It+1
X

It+1−s
X · J s + It+2

X
(4)

Twisting the exact sequence

0 −→ It−sX · J s + It+1
X −→ ItX −→

ItX
It−sX · J s + It+1

X
−→ 0

by M = IX /J (see eq. 3), we get:

0 −→ It+1−s
X · J s + It+2

X
It−sX · J s+1 + It+1

X J

α−→I
t+1
X
ItXJ

−→M⊗ ItX
It−sX · J s + It+1

X
−→ 0

The cokernel of α is the cokernel of

It+1−s
X · J s + It+2

X −→ It+1
X

which is what we sought to prove in eq. 4. �

Theorem 3 The following sequence is exact:

0→Mn−t(n) ⊗ Symt(n)Ω→ JS≤nO → JS<nO → 0.

Proof.
IS≤n = (. . . ,J t(n)+1 ∩ InX , In+1

X )

IS<n = (IS≤n , InX )

0 −→ Π1∗(IS<n/IS≤n) −→ Π1∗(OPT×Y /IS≤n) −→ Π1∗(OPT×Y /IS<n) −→ 0

is exact, so

0 −→ Π1∗
InX

J t(n)+1 ∩ InX + In+1
X

−→ JS≤nO −→ JS<nO −→ 0

is exact. But
Π1∗

InX
J t(n)+1 ∩ InX + In+1

X
=Mn−t(n) ⊗ Symt(n)Ω

by the previous lemma (used repeatedly). �

(C) will follow by a similar argument (cf. Theorem 1). (A) follows from (C). (B) follows from In+1
X =

φ∗In+1
∆ . (D) will likely follow from an argument similar to the proof of Theorem 2.
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3.3 Further Discussion

1. Another (Perhaps Better) Description of J∞. PΩ = Proj R where R is a sheaf of graded algebras
(R =

⊕
In∆/In+1

∆ ). Consider Spec R with the projection σ : Spec R→ Y . Then

σ∗OSpec R = J∞,

and the IS are ideals in this sheaf of algebras.

2. Once again, finding a good filtration allows us to dodge G-R-R.

3. For Y of dimension greater than 2, instead of just splitting off a line bundle from Ω, we can split Ω
completely. Instead of PT , consider Fl T , a flag bundle over Y . Not co-incidentally, this construction
is exactly the one used to prove the splitting principle (see [6] p. 270 or [1]).

4. As before, we can construct φ∗J∞. We now have a double filtration of both φ∗J∞ and φ∗J∞. For Y
of dimension greater than 2, we can get a multiple filtration, which should make fans of mixed Hodge
structures jump for joy.

5. If we have a sheaf of ideals I in J∞, M⊗I is xI, so we can loosely think of M as “multiplication”
or “twisting” by x.

4 Examples and Exercises

1. In a general pencil of degree d curves on P2, how many hyperflexes will appear?

2. In a general pencil of degree d hypersurfaces in Pn, how many are singular?

3. In a general web of degree d curves in P2, how many tacnodes will appear?

4. Let PN be the parameter space of degree d curves in P2. What is the degree of the (codimension 6)
locus of curves with triple points?

5. Given a line bundle L on a surface (with known K and c2(T )) and four general sections, how many
nodes would you expect to see in a general pencil of sections? How many cusps in a general net? How
many tacnodes in a general web?

6. Show that a general cubic surface in P3 has 27 lines.

7. In a general pencil of cubic surfaces in P3, show that three lines will come together at a single point 100
times. (Strictly speaking, a slightly different construction is necessary here. But the same formalism
works.)

8. Prove part of the classical Plücker formulas for curves (see [2] p. 288):

Let C be an irreducible curve of degree d in P2 with only δ nodes and κ cusps as singularities, and
such that its dual curve is of degree d∗. Show that

d∗ = d(d− 1)− 2δ − 3κ.

(The rest of the Plücker formulas can also be proved in this fashion.)

Acknowledgements. I am grateful to Brendan Hassett, Michael Roth, John Loftin, and Michael Thaddeus
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