\overline{M}_q IS IRREDUCIBLE ## RAVI VAKIL April 1998: The original note was from some time in 1996. I've edited it slightly, and removed excessively naive (or wrong) statements. We will show that \overline{M}_g is irreducible (in characteristic 0) using semistable reduction and minimal facts about \overline{M}_g . This idea was provoked by a comment Joe Harris once made about the power of tightly-controlled codimension 1 degenerations. I have since looked at Fulton's two-page note "On the Irreducibility of the Moduli Space of Curves", and I realize that this note is only the additional observation that we don't even need to invoke anything like the compactification of the Hurwitz scheme. 0.1. A degeneration question. Fix a point $\infty \in \mathbb{P}^1$, and consider a regular curve C with a degree d map π to \mathbb{P}^1 , with r simple ramifications away from ∞ , and $\pi^{-1}(\infty)$ a union of p distinct points. Call these p points " ∞ -sections". Then by Riemann-Hurwitz, we have $$r = d + 2q + p - 2 \tag{1}$$ ramification points away from ∞ . Move one of the ramification points to ∞ , keeping the others fixed. We can use the (characteristic 0) recipe for semistable reduction to find a limit map from a nodal curve, after an appropriate base change.¹ (Essentially, take the limit stable map.) By base-changing at the start, we may assume that the ∞ -sections are distinguishable. The limit curve has two parts, one part C' consisting of components mapping dominantly to \mathbb{P}^1 , and the other C^{∞} of components mapping Date: April 27, 2000. ¹In a nutshell, take any limit map — where the total family of curves if flat, and there is a family of maps, but the central fiber may have non-reduced components and various singularities. Blow up the surface until it is regular and the central fiber is set-theoretically nodal, make a base change of order the lcm of the multiplicities of the components of the central fiber, normalize, and then blow down (-1)-curves (of the family) on the central fiber that don't map dominantly to \mathbb{P}^1 . to ∞ . By blowing up further, we may assume C' is regular, and that the total space of the family is regular (so the ∞ -sections have limits that are regular points of the central fiber). Let g' and g^{∞} be the arithmetic genera of C', C^{∞} respectively, n the number of nodes where C' and C^{∞} meet, p' the number of preimages of ∞ on C', β the number of the p ∞ -sections whose limit is in C^{∞} . Of the p' pre-images of ∞ in C', n of them are points of intersection with C^{∞} , and the rest are limits of the remaining $p-\beta$ ∞ -sections of the general curve (which could theoretically come together). Hence $$p' \le n + (p - \beta). \tag{2}$$ By Riemann-Hurwitz for the curve C' (similar to (1)), r-1 = d+2g'+p'-2, so (comparing with (1)) $$2g' + p' = 2g + p - 1. (3)$$ As the arithmetic genus of the central fiber is g, $$g' + g^{\infty} + n - 1 = g. \tag{4}$$ By combining (2)-(4) ((2) - (3)+ (4)), $$2g^{\infty} - 2 + n + \beta \le 1. \tag{5}$$ For the j^{th} of the (say, k) connected components of C^{∞} , let g_j^{∞} be the arithmetic genus, let n_j be the number of intersections with C', and let β_j be the number of (limits of) ∞ -sections on it. Then (5) can be restated as $\sum_{j=1}^k (2g_j^{\infty} - 2 + n_j + \beta_j) \leq 1$. As the central fiber is connected, $n_j \geq 1$. Also, for each connected component of C^{∞} , at least one of the p ∞ -sections must lie on it.² Hence $\sum_{j=1}^k 2g_j^{\infty} \leq 1$, so the arithmetic genus of each connected component of C^k must be 0. Thus all collapsed components of the central fiber are rational. (We can conclude more, but we won't need to for our purposes.) ## 0.2. Brief sketch of irreducibility argument. By the usual arguments, we need only show that any regular genus q curve C can be This is intuitively clear to me, but I haven't thought of a two-line argument, although I'm sure one exists. Here's a longer argument. Assume otherwise that C_j^{∞} is a connected component of C^{∞} not meeting any ∞ -section. The pullback of $\mathcal{O}_{\mathbb{P}^1}(\infty)$ to the universal family has degree 0 when restricted to C_j^{∞} . The pullback of the divisor ∞ is a positive linear combination of irreducible components of C_j^{∞} (plus other components not meeting C_j^{∞}). But each irreducible component of C_j^{∞} has non-positive intersection number with C_j^{∞} , and at least one has strictly negative intersection (as $(C_j^{\infty})^2 = -n_j$). Thus we have a contradiction. degenerated to a nodal stable curve. (By this, I mean that the component of \overline{M}_g containing [C] also contains a nodal curve.) Map C to \mathbb{P}^1 so that all ramification is simple. Fix a point $\infty \in \mathbb{P}^1$. Specialize the ramifications to lie over ∞ one at a time. If it breaks into pieces where the stable model has a genus g component, this component must map dominantly to \mathbb{P}^1 , so we'll throw away the "rational tails" and continue. (This may decrease d.) This process can't continue forever, as no dominant morphism from a genus g curve to \mathbb{P}^1 can be ramified over only one point.