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1. Introduction

The moduli space Mg,n of n-pointed genus g curves, with stability condition

2g − 2 + n > 0(1)

has dimension

3g − 3 + n.(2)

It is the Deligne-Mumford compactification of the moduli space Mg,n of smooth
n-pointed genus g curves. It has n natural line bundles Li (roughly, the cotangent
space to the ith marked point) and a natural rank g vector bundle E (the Hodge
bundle; its fibers corresponds to global differentials on the curve). Let ψi = c1(Li)
and λk = ck(E), where cj is the j-th Chern class; intersections of ψ-classes are
called descendant integrals, and intersections of ψ-classes and λ-classes are called
Hodge integrals (see [FbP1] for fuller information).

The Gromov-Witten potential F of a point (Witten’s total free energy of two-
dimensional gravity) is a generating series for all descendant integrals. Witten’s
conjecture (Kontsevich’s theorem, [K]) and the Virasoro conjecture for a point can
be expressed as the fact that eF is annihilated by certain differential operators (see
[G] for example). We define G as a generalization of F (Section 2), a generating
series for all intersections of ψ-classes and (up to) one “λ-class”. (This is part of
the very large phase space of [MZ].) Then F can be easily recovered from G.

Hurwitz numbers enumerate covers of the projective line by smooth connected
curves of specified degree and genus, with specified branching above one point,
simple branching over other specified points, and no other branching. Equivalently,
they are purely combinatorial objects counting factorizations of permutations into
transpositions that generate a group which acts transitively on the sheets. Hurwitz
numbers have long been of interest (see, for example, [H], [V3] for more recent ref-
erences, and [CT] for the relation to mathematical physics). Let H be a generating
series for Hurwitz numbers (defined precisely in Section 2).

It is straightforward (if tedious) to produce expressions for Hurwitz numbers
for any given degree (see [H] and [EEHS] for degrees up to 6), but geometrical
arguments are required for obtaining expressions for fixed genus and it is the latter
that we consider.

1.1. Recursions and Gromov-Witten theory. One proof of the power of the
theory of stable maps is the large number of striking recursions it has produced for
solutions to classical problems in enumerative geometry, often as consequences of
“topological recursion relations”. The original example was Kontsevich and Manin’s
remarkable recursion for rational plane curves ([KM] Claim 5.2.1). Eguchi, Hori,
and Xiong [EHX] used the Virasoro conjecture to find a recursion for genus 1 plane
curves (proved in [P] Theorem 2; see also [DZ] for genus 1 Virasoro in the semisimple
case). Similar recursive structure also underlies characteristic numbers in low genus
([EK], [V2], [GKP]).
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There are strong analogies between plane curves and covers of the projective line.
Similar techniques in Gromov-Witten theory have produced recursions for Hurwitz
numbers (see [FnP] pp. 17–18 or [V2] Section 5.11 for a summary), including a
genus 2 relation conjectured by Graber and Pandharipande and proved in [GJ2].
Ionel has produced recursions using topological recursion relations and the Virasoro
conjecture ([I]). Some geometers (including the third author) have thought that
recursions among Hurwitz numbers should be rare, and should not occur in high
genus. Philosophically, Section 4 shows that in fact recursions are “thick on the
ground”, and that there is an algorithm for producing (and verifying) them. It
is expected that only a few will have straightforward (and enlightening) geometric
explanations. (It would be interesting to reverse the Gromov-Witten approach and,
for example, to produce relations in the cohomology ofMg,n using recursions, but
this does not seem to be tractable.)

Recurrences can be obtained in the more general setting of ramified coverings
of surfaces of higher genera. These were considered by Hurwitz ([H]). When his
approach is carried out by means of a cut-and-join analysis, the resulting partial
differential equation (e.g. see Section 4.2) is, of course, identical to the one for the
sphere, although the initial conditions are different. It is then a straightforward
matter to write down the recurrence for arbitrary ramification over infinity. [LZZ]
have obtained such a recurrence by other methods, although boundary conditions
were not included (see also [LZZ] Thm. B and [GJV] Lemma 3.1).

As we expect this paper also to be of interest to combinatorialists, we have
tried to make it as self-contained as possible, including reviewing some results and
definitions well known in algebraic and symplectic geometry, and mathematical
physics.

1.2. Organization of the paper. We first show that, after a non-trivial change
of variables (denoted by Ξ), G = H in positive genus (Theorem 2.5). Hence the
Gromov-Witten potential of a point is a purely combinatorial object in a new way.
The proof uses a remarkable formula of Ekedahl, Lando, Shapiro, and Vainshtein
([ELSV1] Theorem 1.1) expressing Hurwitz numbers in terms of Hodge integrals.
In some sense this addresses an obstacle to dealing with descendant integrals, the
fact that they “do not admit so easily of an enumerative interpretation” ([G] p.
1). (Of course, Kontsevich’s original formula ([K] p. 10) is also combinatorial, and
much more useful.) However, the awkwardness of the change of variables makes it
difficult to transpose results between “the world of H” (involving Hurwitz numbers)
and “the world of G” (involving the moduli space of curves).

Second, we prove a generalization (Theorem 3.1) of an ansatz of Itzykson and
Zuber ([IZ] (5.32), hereinafter the “[IZ] genus expansion ansatz”). The philosophy
behind the [IZ] genus expansion ansatz is that, for a fixed genus, starting from a
finite number of descendant integrals (involving those monomials in the ψ’s where
each ψ-class appears with multiplicity at least two), one can calculate any descen-
dant integral using only the string equation and the dilaton equation. The [IZ]
genus expansion ansatz algebraically encodes this fact.
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Thirdly, we use this to prove a conjecture of Goulden and Jackson on Hurwitz
numbers (Theorem 3.2, [GJ2] Conjecture 1.2), revealing it as a “genus expansion
ansatz for Hurwitz numbers”. The erstwhile mysterious combinatorial constants in
the conjecture are actually single Hodge integrals.

As an application, we observe that there are trivial combinatorial recurrences on
H, which lead to new conditions satisfied by G (and hence F ). It would be desirable
to give a new proof of Witten’s conjecture using the combinatorics of covers of
the projective line. Such a proof has recently been announced by Okounkov and
Pandharipande (manuscript in preparation). As a second application, Theorem 3.2
provides an algorithm for proving and producing recursions for Hurwitz numbers.
We produce simple (and surprising) new recursions in genus up to 3 as examples of
the algorithm’s effectiveness. Theorem 3.2 also yields explicit formulas for Hurwitz
numbers of any given genus; we give an example (28) in genus 3.

1.3. For combinatorialists. Conjecture 1.2 [GJ2] came from a combinatorial ap-
proach to Hurwitz’s encoding of ramified covers, and the proof given here suggests
that further combinatorial questions of substance remain to be investigated (for
example, the combinatorialization of Hodge integrals). Therefore, to make this pa-
per more accessible to combinatorialists, we specify the essential results that are
taken without proof from algebraic and differential geometry. These are the stabil-
ity condition (1) and dimension condition (2) for Mg,n, λk = 0 unless 0 ≤ k ≤ g,
the convention λ0 = 1, the genus condition (4) for the nonvanishing of Hodge in-
tegrals, the evaluation (6) of the base values 〈τ3

0 〉0, 〈τ1〉1 and 〈λ1〉1, the string (8)
and dilaton (10) equations for Hodge integrals, the Riemann-Hurwitz formula (12)
for the genus of a ramified cover and the result (13) of Ekedahl, Lando, Shapiro
and Vainshtein relating Hurwitz numbers to Hodge integrals. References are given
to sources where the proofs of these are to be found. All of our work with Hodge
integrals is through the dilaton and string equation which, in a real sense, remove
the need to use the primary definition (3) of Hodge integrals.

It is hoped that, for the most part, the remainder of the paper can be read
without recourse to algebraic or differential geometry.

2. Background

We begin with the necessary background on the generating series F,G and H
that are central to the subject of this paper.

2.1. Algebraic notation. Suppose α is the composition d = α1 + · · ·+αm where
the αi are non-negative integers. Set l(α) = m, the length of α, and let # Aut(α)
be the number of automorphisms of the multiset {α1, α2, . . . , αm} (so if βj of the
αi’s are j, then # Aut(α) = β0!β1! . . . ). If the αi are positive and non-decreasing,
we write α ` d, and α is a partition. If, furthermore, all αi are at least 2, we write
α |= d.
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Throughout, t = (t0, t1, . . . ) and p = (p1, p2, . . . ) where t0, t1, . . . and p1, p2, . . .
are indeterminates. Thus, for example, Q[[t]] = Q[[t0, t1, . . . ]] and Q[[x, p]] =

Q[[x, p0, p1, . . . ]]. If Z is a polynomial in t, let
[
t
k0
0
k0! · · ·

t
ki
i

ki!

]
Z be the coefficient

of t
k0
0
k0! · · ·

t
ki
i

ki!
in Z.

Functional equations of the form v = xg(v), where v ∈ Q[[x]] and g(0) 6= 0,
have a unique solution v(x) in Q[[x]] and an explicit expression for f(v), where f
is an arbitrary series, may be obtained by Lagrange inversion (see, for example ,
[GJ3] Section 1.2; also known as Lagrange’s Implicit Function Theorem). We will
invoke Lagrange inversion a number of times, particularly when deriving explicit
expressions for certain Hurwitz numbers.

2.2. The Gromov-Witten and enriched Gromov-Witten potentials F and
G of a point. Recall that ψi (resp. λk) is a codimension 1 (resp. k) Chow class
on Mg,n where 1 ≤ i ≤ n (resp. 0 ≤ k ≤ g; λ0 = 1). For non-negative integers
θ1, . . . , θn define

〈τθ1 · · · τθnλk〉g =
∫
Mg,n

ψθ11 · · ·ψθnn λk(3)

if

3g − 3 + n =
∑

θi + k(4)

and 2g−2+n > 0, and is 0 otherwise. (Condition (4) arises because non-zero inter-
sections can only occur when the sum of the codimensions of the classes intersected
equals the dimension 3g−3+n of the spaceMg,n.) The condition equivalent to (4)
for 〈τ b00 τ b11 . . . λk〉g is

k =
∑

(1− i)bi + 3g − 3.(5)

In sums involving Hodge integrals it is convenient to include k as a summation
index, but then to recall that the condition (either (4) or (5)) on k is implicit.
When k = 0, this agrees with the usual definition. In particular,

〈τ3
0 〉0 = 1, 〈τ1〉1 = 〈λ1〉1 =

1
24
.(6)

Definition 2.1. Let g ≥ 0. The genus g Gromov-Witten potential of a point is

Fg(t) =
∑
n≥0

1
n!

∑
θ1,...,θn≥0

tθ1 · · · tθn〈τθ1 · · · τθn〉g.

where the sum is constrained by (4) with k = 0.

The Gromov-Witten potential of a point is

F =
∑
g≥0

yg−1Fg.

5



The genus g enriched Gromov-Witten potential of a point is

Gg(t) =
∑
n≥0

1
n!

∑
θ1,...,θn≥0,0≤k≤g

(−1)ktθ1 · · · tθn〈τθ1 · · · τθnλk〉g.(7)

where the sum is constrained by (4).

The enriched Gromov-Witten potential of a point is

G =
∑
g≥0

Ggy
g−1.

It will be convenient to use Gg in the form

Gg(t) =
∑

a1,a2,...≥0,0≤k≤g
(−1)k〈τa0

0 τa1
1 · · ·λk〉g

ta0
0

a0!
ta1
1

a1!
· · ·

where the sum is constrained by (5). (The (−1)k in the definition of Gg is included
to make the change of variables simpler.) Note that F0 = G0. Note also that F
can be recovered from G by substituting v1−iti for ti, and v3y for y, and letting
G#(t, y, v) be the resulting generating series in the ti, y, and v. Then F (t, y) =
G#(t, y, 0) and G(t, y) = G#(t, y, 1). Phrased differently, if ti is given degree 1− i
and y is given degree 3, then Gg has terms only in degrees 0 to g, and Fg is the
degree 0 part of Gg. Also,[

tl00
l0!
· · · t

li
i

li!
vk

]
G#
g = (−1)k〈τ l00 · · · τ lii λk〉g.

The following equations facilitate the systematic elimination of τ0 and τ1 from
the Hodge integrals. Let a0, a1, . . . be non-negative integers. The string equation
(or puncture equation) is

〈τa0+1
0 τa1

1 · · ·λk〉g =
∑
i≥0

ai+1〈τa0
0 · · · τai+1

i τ
ai+1−1
i+1 · · ·λk〉g,(8)

unless g = 0, k = 0, a0 = 2, and all other ai are zero (in which case the left hand
side is 〈τ3

0 〉0 = 1 by (6)). In genus 0, for example,∫
M0,n

ψθ11 · · ·ψθnn =
(

n− 3
θ1, . . . , θn

)
(9)

by a trivial induction from the string equation (observe that one of the θi has to
be zero, so the string equation may be applied) with 〈τ3

0 〉0 = 1 as the base case.

The dilaton equation is

〈τa0
0 τa1+1

1 τa2
2 · · ·λk〉g =

(
2g − 2 +

∑
i

ai

)
〈τa0

0 τa1
1 τa2

2 · · ·λk〉g,(10)

unless g = 1, k = 0, and ai are all zero (in which case the left hand side is
〈τ1〉1 = 1/24 by (6)). The proofs of the string and dilaton equations are the same
as the usual proofs (for example, [L] p. 191) when no λ-class is present so we
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suppress them. In particular, by induction, we obtain the following repeated form
of the dilaton equation from the dilaton equation: if a = a0 + a1 + · · · , then

〈τa0
0 τa1

1 τa2
2 · · ·λk〉g =

(a+ 2g − 3)!
(a+ 2g − 3− a1)!

〈τa0
0 τa2

2 · · ·λk〉g(11)

(except when the equation does not make sense, i.e. when g = 0 and a−a1 < 3, or
g = 1 and a− a1 = k = 0), expressing the consequence of eliminating each τ1. The
string and dilaton equations can be easily translated into differential equations for
Gg.

2.3. The Hurwitz generating series H. Fix a genus g, a degree d, and a par-
tition (α1, . . . , αm) of d with m parts. Let

r = d+m+ 2(g − 1),(12)

so a branched cover of P1, with monodromy above∞ given by α, and r other spec-
ified simple branch points (and no other branching) has genus g (by the Riemann-
Hurwitz formula). Let Hg

α be the number of such branched covers that are con-
nected. (We do not take the branched points over ∞ to be labelled.)

The remarkable formula of Ekedahl, Lando, Shapiro and Vainshtein ([ELSV1] The-
orem 1.1, [ELSV2])

Hg
α =

r!
# Aut(α)

m∏
i=1

αi
αi

αi!

∫
Mg,m

1− λ1 + · · · ± λg∏
(1− αiψi)

(13)

expresses Hurwitz numbers in terms of Hodge integrals.

A proof of (13) using virtual localization ([GP]) in the moduli space of stable
maps to P1 will appear in [GV]. It is explained there how (13) follows quickly from
virtual localization on an appropriate “relative” moduli space, not yet defined in the
algebraic category (yielding relative Gromov-Witten invariants; see [LR] Section 7
and [IP] for discussion in the symplectic category, and [Ga] for some discussion in
the algebraic category in the case g = 0). In the case where there is no ramification
above ∞ (i.e. α = (1d)), the argument reduces to Fantechi and Pandharipande’s
independent proof of (13), [FnP] Theorem 2.

Definition 2.2. The Hurwitz generating series is

H =
∑
g≥0

Hgy
g−1,

where Hg is the generating series

Hg = Hg(x, p) =
∑

d≥1,α`d

Hg
α

r!
pαx

d

for the Hg
α, p1, p2, . . . and x are indeterminates, and where 2− 2g = d− r + l(α)

and pα = pα1 · · · pαm .

Note that eH counts all covers, not just connected ones. (Hg is denoted by Fg
in [GJ2].)
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Goulden and Jackson have conjectured that Hg is of a particular form in terms
of an implicitly defined set of variables {φi(s, p) : i ≥ 0} defined as follows. Let

φi(z, p) =
∑
n≥1

nn+i

n!
pnz

n,(14)

where i is an integer, be a formal power series (denoted by ψi(z, p) in [GJ2]). Then,
through the functional equation

s = xeφ0(s,p),(15)

s is uniquely defined as a formal power series in x (and p).

In particular, H0 and H1 are given in (24) and (25), respectively. The remaining
Hg are the subject of the following conjecture.

Conjecture 2.3 (Goulden and Jackson [GJ2] Conj. 1.2). For g ≥ 2,

Hg(x, p) =
5g−5∑
e=2g−1

1
(1− φ1(s, p))e

e+g−1∑
n=e−1

∑
θ|=n

l(θ)=e−2(g−1)

Kg
θ

# Aut(θ)
φθ1(s, p)φθ2(s, p) · · ·

(16)

for some rational numbers Kg
θ .

We prove this conjecture (Theorem 3.2). Remarkably, each unknown constant
Kg
θ turns out to be a single Hodge integral, up to sign.

Remark 2.4. Goulden and Jackson proved Conjecture 2.3 for g = 2, and conjec-
tured explicit values for certain Kg

θ (for g = 3 and all θ [GJ2] Appendix A, and
for (e, l(θ)) = (2g − 1, 1) and all admissible g and n [GJ2] p. 3); we discuss these
further in Section 3.3.

2.4. The relationship between Hg and Gg. The following is a useful result that
connects Hg and Gg. Throughout this section and the next we will make use of the
mapping

Ξ: tk 7−→ φk(x, p),

for k ≥ 0, extended as a homomorphism to Q[[t]].

Theorem 2.5. If g > 0, then Hg(x, p) = ΞGg(t).
8



Proof. For g > 0, by (13),

Hg =
∑
α`d

1
# Aut(α)

∏
ααii∏
αi!

pαx
d

∫
Mg,m

1− λ1 + · · · ± λg∏
(1− αiψi)

=
∑

α1+···+αm=d

1
m!

∏
ααii∏
αi!

pαx
d

∫
Mg,m

1− λ1 + · · · ± λg∏
(1− αiψi)

=
∑
m

1
m!

∑
α1,...,αm≥1

∏
i

(
ααii pαix

αi

αi!

)
·

∑
b1+···+bm=3g−3+m−k

0≤k≤g,bi≥0

∫
Mg,m

(α1ψ1)b1 · · · (αmψm)bm(−1)kλk

=
∑
m

1
m!

∑
b1+···+bm=3g−3+m−k

0≤k≤g,bi≥0

(−1)k〈τb1 · · · τbmλk〉g

·
∑

α1,...,αm≥1

∏
i

(
ααi+bii pαix

αi

αi!

)
.

Hence

Hg =
∑
m≥0

1
m!

∑
b1,...,bm≥0,0≤k≤g

(−1)k
(

m∏
i=1

φbi(x, p)

)
〈τb1 · · · τbmλk〉g.

The result then follows from (7). 2

If g = 0, the above statement must be modified. The formula (13) applies when
l(α) ≥ 3, so if Hg[m] is the summand of Hg corresponding to all α with l(α) = m,
then

H0 = H0[1] +H0[2] +
∑
m≥3

H0[m] = H0[1] +H0[2] + ΞG0,

so

H0 = H0[1] +H0[2] + ΞF0.

A. J. de Jong has pointed out that the change of variables Ξ is not invertible.
In other words, ignoring the irrelevant variable x by setting it equal to 1, Ξ is not
invertible. To see this, let ρ : pn 7−→ npn and σ : tn 7−→ tn+1. Then ρΞ = Ξσ. But
ρ is invertible and σ is not. Thus Ξ is not invertible.

3. Structure theorems for G and H

For k ≥ 0, let

Ik =
∑
i≥0

tk+i
Ii0
i!
.(17)

When k = 0, this is a functional equation that, by Lagrange inversion, uniquely
defines I0 ∈ Q[[t]], and thence Ik is uniquely defined as a series in Q[[t]] for all k ≥ 0.
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If t0 = 0, the unique solution of (17) is I0 = 0, so that with this specialization

Ik = tk for k ≥ 1.(18)

3.1. Structure theorem for G. The following is a generalization of the [IZ] genus
expansion ansatz. This argument also gives a much more direct proof of the original
[IZ] genus expansion ansatz, by “setting λk = 0” for k > 0 (excising terms for all
θ such that

∑
j(1 − j)θj + 3g − 3 > 0). (The only proof of the [IZ] ansatz in the

literature known to the authors is in [EYY].) Denote ∂/∂ti by ∂i for the sake of
brevity.

Theorem 3.1 (Genus expansion ansatz). If g > 1,

Gg(t) =
1

(1− I1)2g−2
Gg

(
0, 0,

I2
1− I1

,
I3

1− I1
, . . .

)
(19)

=
∑

P
2≤j≤3g−2(j−1)lj

+k=3g−3

(−1)k
〈τ l22 τ

l3
3 · · · τ

l3g−2
3g−2 λk〉g

(1− I1)2(g−1)+
P
lj

I l22
l2!
· · ·

I
l3g−2
3g−2

l3g−2!
.(20)

(It is straightforward to show that the right hand sides of equations (19) and
(20) are the same.)

In [FbP2] Section 2.1, Faber and Pandharipande use the terminology “primitive”
to denote Hodge integrals without τ0 or τ1. Essentially the formal derivation here
(like the work of [IZ]) is to write an explicit formula for Gg in terms of primitive
Hodge integrals. Viewed in this way, it is clear there are only finitely many degrees
of freedom for each genus (as there are only finitely many primitive Hodge integrals
for a fixed genus); the interesting part is the precise form.

Proof. Let ∆ =
∑
m≥0 tm+1∂m − ∂0. Then, from the string equation (8),

∆Gg(t) = 0,

for g > 0, and Gg(t) is the unique such series with the initial value Gg(0, t1, . . . ) at
t0 = 0. We begin the proof by exploiting this uniqueness to establish that

Gg(t) = Gg(0, I1, I2, . . . ), for g > 0.(21)

Let ζi = 0 if i < 0 and 1 if i ≥ 0. Then, from (17), for m, k ≥ 0,

∂mIk = ζm−k
Im−k0

(m− k)!
+

∑
i≥1

tk+i
Ii−1
0

(i− 1)!

 ∂mI0,

so

∂mIk = ζm−k
Im−k0

(m− k)!
+ Ik+1 ∂mI0.

Then, substituting k = 0 above, we obtain for m ≥ 0

∂mI0 =
1
m!

Im0
1− I1

,

10



so, for k,m ≥ 0,

∂mIk = ζm−k
Im−k0

(m− k)!
+
Im0
m!

Ik+1

1− I1
.(22)

Now, by the chain rule,

∆Gg(0, I1, I2, . . . ) =
∑
k≥1

∑
m≥0

tm+1∂mIk − ∂0Ik

 ∂

∂Ik
Gg(0, I1, I2, . . . ).

But, from (22),∑
m≥0

tm+1∂mIk − ∂0Ik =
∑
m≥k

tm+1
Im−k0

(m− k)!
+

Ik+1

1− I1
∑
m≥0

tm+1
Im0
m!
− Ik+1

1− I1
= 0,

for k ≥ 1. Thus ∆Gg(0, I1, I2, . . . ) = 0. But Gg(0, I1, I2, . . . )|t0=0 = Gg(0, t1, t2, . . . )
from (18), and thus we have established (21) by the uniqueness argument.

To complete the proof, we use the repeated form (11) of the dilaton equation for
g > 1.

Gg(0, I1, I2, . . . ) =
∑

b1,b2,...≥0

(−1)
P
i≥1(1−i)bi+3g−3〈τ b11 τ b22 · · ·λk〉g

Ib11

b1!
Ib22

b2!
· · ·

=
∑

b2,b3,...≥0

(−1)
P
i≥2(1−i)bi+3g−3〈τ b22 τ b33 · · ·λk〉g

Ib22

b2!
Ib33

b3!
· · ·

·
∑
b1≥0

(
−(b1 + b2 + · · · )− 2g + 2

b1

)
Ib11

from (11). Thus

Gg(0, I1, I2, . . . ) =
1

(1− I1)2g−2
Gg

(
0, 0,

I2
1− I1

,
I3

1− I1
, . . .

)
, for g > 1,

and the result now follows from (21). 2

3.2. Structure theorem for H. We now give the main structure theorem for H.

Theorem 3.2 ([GJ2] Conjecture 1.2). Conjecture 2.3 is true, with

Kg
θ = (−1)k〈τθ1τθ2 · · ·λk〉g,(23)

where k =
∑
j(1− j)θj + 3g − 3.

Proof. From Theorem 2.5 with g > 0, Hg(x, p) = ΞGg(t) where, from Theorem 3.1
(20), for g > 1,

Gg =
∑

(−1)k
〈τ l22 τ

l3
3 · · · τ

l3g−2
3g−2 λk〉g

(1− I1)2(g−1)+
P
lj

I l22
l2!
· · ·

I
l3g−2
3g−2

l3g−2!
,

11



where the sum is over those lj and k such that
∑

2≤j≤3g−2(j − 1)lj + k = 3g − 3,
as in (20). We want to prove (16), for g ≥ 2; that is,

Hg(x, p) =
5g−5∑
e=2g−1

1
(1− φ1(s, p))e

e+g−1∑
n=e−1

∑
θ|=n

l(θ)=e−2(g−1)

Kg
θ

# Aut(θ)
φθ1(s, p)φθ2(s, p) · · ·

where Kg
θ satisfies (23). Since this can be rewritten in the form

Hg(x, p) =
∑ Kg

(2l23l3 ··· )

(1− φ1(s, p))2(g−1)+
P
lj

φ2(s, p)l2

l2!
· · · φ3g−2(s, p)l3g−2

l3g−2!
,

where the sum (as in (20)) is over those lj and k such that
∑

2≤j≤3g−2(j−1)lj+k =
3g − 3, the proof is therefore complete if we can establish that Ξ Ik(t) = φk(s, p)
for k ≥ 1, thereby making the identification Kg

θ = (−1)k〈τθ1τθ2 · · ·λk〉g.

From (14) and (15), for k ≥ 0,

φk(s, p) =
∑
n≥0

nn+k

n!
pnx

nenφ0(s,p)

=
∑
m,n≥0

nn+k+m

n!
pnx

nφ0(s, p)m

m!
,

so

φk(s, p) =
∑
m≥0

φk+m(x, p)
φ0(s, p)m

m!
.

By comparing this with the definition (17) of Ik, it follows that Ξ Ik(t) = φk(s, p)
for k ≥ 0, completing the proof. 2

We record the observation on the action of Ξ that

Ξ Ik = φk(s, p), for k ≥ 0.

Thus we have established the connexion between the indeterminates x, pi on the
Hurwitz side and the indeterminates tr and Ir on the Gromov-Witten side (see
Section 4.3).

3.3. Analogous statements in genus 0 and 1. We note that ([GJ0] Proposi-
tion 3.1(1)) (

x
∂

∂x

)2

H0(x, p) = φ0(s, p).(24)

In the light of Theorem 2.5, stating that ΞGg(t) = Hg(x, p) for g > 0, earlier
statements in geometry and in combinatorics can now be seen to be equivalent. In
genus 1,

H1(x, p) = ΞG1(t) =
1
24
(
log(1− φ1(s, p))−1 − φ0(s, p)

)
(25)

12



([V3], [GJ1] Theorem 4.2), and

ΞF1(t) =
1
24

log(1− φ1(s, p))−1

([IZ] (5.30), [EYY] (3.7), [DW]). The difference − 1
24φ0(s, p) can be seen to be the

contribution to ΞG1(t) from λ1.

Surprisingly, the picture is least clear in genus 0. F0(t) = G0(t), and the dif-
ference H0(x, p) − ΞG0(t) arises from where (13) breaks down: it is a generating
series for covers of P1 with at most 2 pre-images of ∞, H0[1](x, p) + H0[2](x, p).
By [GJ0] or [D],

H0[1](x, p) = φ−2(x, p).
By [A] or [GJ0],

H0[2](x, p) =
∑
i,j≥1

(i+ j − 1)!
(i− 1)!(j − 1)!

ii−1jj−1pipjx
i+j .

From (17), ΞF0(t) + H0[1](x, p) + H0[2](x, p) = H0(x, p) so, using formula (9) for
F0 and [GJ0] Theorem 1.1 for H0, this gives an explicit relation. However, it does
not seem enlightening.

Remark 3.3. Using Theorem 3.2, it follows that the conjectures of Goulden and
Jackson described in Remark 2.4 are true. The conjectured values of K3

θ can be
checked using Faber’s program [Fb]. The conjectured values of Kg

θ for e = 2g − 1,

l(θ) = 1 (involving coefficients of
(

z/2
sin(z/2)

)k+1

) turn out to be equivalent to [FbP1]
Theorem 2 and [ELSV1] Theorem 1.2.

4. Consequences and applications

4.1. Combinatorial comments on Hodge integrals. The terms that appear in
Conjecture 2.3 can be given, in principle, a combinatorial interpretation. The left
hand side already has a combinatorial interpretation, through Hurwitz’s encoding,
in terms of transitive ordered factorizations of permutations into transpositions.

For the right hand side, nn+i is the number of rooted (vertex-) labelled trees
with i + 1 marked vertices (vertices may be multiply marked). The generating
series for this number is φi(z, p), where pn records the number of vertices in a tree.
φ0(z, p) is therefore the number of rooted labelled trees with exactly one marked
vertex. Similar interpretations can therefore be given to s and 1/(1 − φ1(s, p))e.
The right hand side therefore has an interpretation in terms of structures obtained
by gluing together and ordering collections of rooted labelled trees with marked
vertices. This suggests that Kg

θ , which has been identified up to sign as a Hodge
integral through Theorem 3.2, can be defined purely combinatorially, provided the
mapping between the structures corresponding to the left hand and right hand sides
of (16) is made explicit. In particular, this would involve determining how markers
attached to the vertices of the trees from the right hand side encode transitive
ordered factorizations of permutations into transpositions, that occur on the left
hand side of (16). This is, of course, where the difficulty lies since the theorem itself
provides no information about the elementwise action of such a mapping.

13



4.2. Consequences of Theorem 2.5. Theorem 2.5 gives a new combinatorial
structure on G (and hence F ), and one could hope to prove results about F using H,
i.e. the combinatorics of branched covers. For example, there is a simple differential
operator T (the “cut-and-join” operator) annihilating eH , corresponding to the
interpretation of H as counting factorizations of permutations ([GJ0] Lemma 2.2,
and independently [V1] p. 8), defined as follows.

Define H# = H#(x, y, u, p) by substituting xu2 for x, yu2 for y, and piu
1−i for

pi in H. Then H#
g =

∑
d≥0,α`d

Hgα
r! pαx

dur where r = l(α)+d+2g−2 is the number
of simple branch points (now marked by u). Let

T =
1
2

∑
a,b≥1

[
(a+ b)papb

∂

∂pa+b
+

1
y
abpa+b

∂

∂pa

∂

∂pb

]
− ∂

∂u
.

Then TeH
#

= 0, and H# is uniquely determined by this equation and the condition
H#(x, y, 0, p) = p1x (i.e. there is only one cover of P1 unbranched away from ∞).

Note that even the string equation becomes mysterious when translated to a
statement about H:

∂

∂t0
H =

1
2
t20 + x

∂

∂x
H.

It is not combinatorially clear why this should be true.

4.3. Comments on the connexion between H and G (and F ). It is worth
noting how the variables used by physicists to study F (and that are equally useful
for G) have exactly paralleled the variables used by combinatorialists to study H.
Specifically, physicists (and geometers) write F in terms of:

P1. The variables ti; the power series Fg, Gg ∈ Q[[t]] are naturally generating
series for all Hodge integrals.

P2. For g > 1, Fg and Gg lie in a much smaller ring. Via the genus reduction
ansatz, Theorem 3.1, Fg and Gg can be rewritten as elements of Q[1/(1 −
I1), I2, I3, . . . ], and this representation is particularly simple (as only a finite
number of monomials appear, and their coefficients are each single Hodge
integrals).

P3. It is often physically enlightening ([IZ], [EYY]) to rewrite the above in terms
of other variables. Let u0 = ∂2

0F0. Then for g > 1,

Fg, Gg ∈ Q[1/∂0u0, ∂0u0, ∂
2
0u0, . . . ]

(and in fact Fg has a particular bigrading in terms of these variables, where
deg ∂r0u0 = (1, r − 1)). In [EYY], these variables are used in the proof of the
[IZ] genus reduction ansatz. It is not hard to translate between the ∂r0u0 and
the Ik; in particular, u0 = I0; see [EYY] p. 284.

Combinatorialists write H in terms of:

C1. The variables x and pi; the power series Hg ∈ Q[[x, p]] is a generating series
for all Hurwitz numbers.

14



C2. In fact, for g > 1, Hg lies in a much smaller ring:

Hg ∈ Q[1/(1− φ1(s, p)), φ2(s, p), φ3(s, p), . . . ],

which via Ξ is the same as P2 above.
C3. Also, Hg lies in Q[[φ0(x, p), φ1(x, p), . . . ]]; via Ξ this is the same as P1 above.

4.4. Applications of Theorem 3.2. Along with techniques from [GJ2], Theo-
rem 3.2 gives a machine for developing and proving recurrences and explicit formulas
for Hurwitz numbers, given that the necessary Hodge integrals can be calculated by
Faber’s program [Fb]. As an example, in [GJ2], a conjectured recursion of Graber
and Pandharipande was proved using the Theorem in genus 2 (proved there). We
now give further examples.

The examples are for the case in which there is no ramification over ∞. We will
refer to the corresponding numbers as simple Hurwitz numbers. They are obtained
by setting p1 = 1 and pi = 0 for i 6= 1. Under this specialization, φi(x, p) = x for
all i, and, from (15), s = w where w is the unique solution of

w = xew,

and is given explicitly by

w =
∑
n≥1

nn−1x
n

n!
.

Then Hg becomes

H̃g =
∑
d≥1

Hg
(1d)

(2d+ 2g − 2)!
xd,

the generating series for simple Hurwitz numbers.

Example 4.1 (A recurrence equation for genus 3). From a geometric perspective,
“it is not likely such simple recursive formulas [similar to Graber-Pandharipande’s
formula in genus 2, and simpler recursions in genus 0 and 1 [V3] Theorem 2.7
(our intercalation)] occur in g ≥ 3” ([FnP] p. 18). However, using Theorem 3.2,
recurrences can be obtained as follows. Let D = x d/dx. Then

D2H̃0(x) = w,

H̃1(x) =
1
24
(
log(1− w)−1 − w

)
,

H̃2(x) =
1

5760

(
4w2

(1− w)4
+

28w3

(1− w)5

)
,

H̃3(x) =
1

80640
w2

(1− w)6 +
73

90720
w3

(1− w)7 +
37

5184
w4

(1− w)8

+
89

5184
w5

(1− w)9 +
245

20736
w6

(1− w)10 .

These are from [GJ2], although the final two can now be obtained from Theorem 3.2,
with the help of Faber’s program [Fb] to compute the necessary Hodge integrals.

It is convenient to set w = 1−W−1, so D = W 2(W − 1)d/dW . Then DnH̃g(x)
is a polynomial in W provided 2g − 2 + n > 0. (The resemblance to the stability
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condition for Mg,n is probably not coincidental; D can be interpreted as marking
a point above a fixed general point of P1.) For (g, n) = (0, 1), (0, 2), DnH̃g(x) is a
rational series in W. A number of these series are given below.

D H̃0(x) = (1−W−2)/2

H̃1(x) =
log(W )W −W + 1

24W
DH̃1(x) = (W − 1)2 /24

H̃2(x) = (W − 1)2
W 2 (−6 + 7W ) /1440

H̃3(x) = (W − 1)2W 4

·
(
720− 6696W + 19250W 2 − 21840W 3 + 8575W 4

)
/725760.

Various relations can be found between the DnH̃g(x) for (g, n) 6= (0, 0), (1, 0) by
positing a general form for them and equating coefficients of powers of W to obtain
a set of linear equations for the parameters appearing in this form.

With the form containing the twenty six terms
(
DpH̃i

)(
DqH̃j

)
for p+ q = 4,

i + j = 3, and DpH̃i, for i = 3, 1 ≤ p ≤ 4, for i = 2, 1 ≤ p ≤ 5, and for
i = 1, 1 ≤ p ≤ 7, the null space has dimension 11. (We choose this form for
potential recursions because this is the form of the recursions previously produced
via Gromov-Witten theory.) Thus further conditions on the parameters may be
applied, although it is not at all clear whether there is a geometrically natural
choice to make. One such expression, obtained by imposing linearity, is

2880 H̃3 = −
(

2
49
− 227

294
D +

99845
588

D2

)
H̃2

−
(

1
490

D2 − 11
294

D3 +
38845
14112

D4 − 1225
576

D5

)
H̃1.

This gives the following explicit formula for H3
(1d) linearly in terms of H2

(1d) and
H1

(1d) :

2880H3
(1d) = −

(
24− 454 d+ 99845 d2

)(2d+ 4
2

)H2
(1d)

294

+d2
(
−288 + 5280 d− 388450 d2 + 300125 d3

)(2d+ 4
4

)H1
(1d)

5880
.

Similar recursions exist for all genera, and these may be obtained in the same
way.

Example 4.2 (Another recurrence equation for genus 3, of “geometric form”). As
another example to show how common recursions are, we give a genus 3 recursion
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that is of a potentially geometrically meaningful form:

H3
(1d) = f(d)

(
d

2

)
H2

(1d) +
∑
i+j=d

(
g(i, j)

(
2d+ 2
2i− 2

)
ijH0

(1i)H
3
(1j)

+h(i, j)
(

2d+ 2
2i

)
ijH1

(1i)H
2
(1j)

)
.

where f(d), g(i, j), and h(i, j) are polynomials of low degree.

Any formula coming from a divisorial relation on the space of maps would
have such a form. Even though such a divisorial relation should not exist, a
geometrically-motivated recursion might still exist of this form; the recursion for
genus 1 plane curves of [EHX] has this property, for example. One might hope for
some geometrical understanding from such a recursion.

The terms on the right-hand side of the equation correspond to divisors on the
space of maps. The first term corresponds to degree d genus 2 covers where two of
the d points mapping to the same point of P1 are attached; hence the multiplicity
of
(
d
2

)
. The second term corresponds to maps where the cover is a genus 0 degree i

cover (a general such cover has 2i− 2 branch points) and a genus 3 degree j cover
(a general such cover has 2j + 4 branch points) such that two points mapping to
the same point of P1 (one on each component) are glued together; the multiplicity
ij comes from the choice of the two points, and the multiplicity

(
2d+2
2i−2

)
comes from

partitioning the branch points between the two components. The third corresponds
to maps where the cover is a genus 1 degree i cover and a genus 2 degree j cover with
a point of one glued to a point of the other; the multiplicity calculation is similar
to the second term. These divisors might appear with various multiplicities, given
by the polynomials f , g and h.

Unfortunately, many such recursions can be found (by the same method as in
Example 4.1), even if the degrees of f , g, and h are required to be small. One such
is

f(d) =
1

1702263010
(1532127678d− 2213123851),

g(i, j) = − 2
121590215

(760192125ij − 12054428314i

−2006745110j + 1033797958),

h(i, j) = − 4
2553394515

(798201731250ij − 217500288725i

−473678414332j − 42109762821).

There seems to be no reason why this recursion should admit a geometrical expla-
nation.

Example 4.3 (A recurrence equation for genus 2). The method of Example 4.1
can be applied to the genus 2 case; we suppress the details. The linear differential
equation that is satisfied is

4320H̃2(x) = −300D2H̃1 + 7
(
D5 −D4

)
H̃0.
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The corresponding linear recurrence equation is

180H2
(1d) = −25d2

(
2d+ 2

2

)
H1

(1d) + 7d4(d− 1)
(

2d+ 2
4

)
H0

(1d).

For genus 2 and 3, Hg
(1d)

has been expressed in terms of Hg−1
(1d)

and Hg−2
(1d)

. A
reason this is not entirely unexpected is that D preserves the parity of the degree
of polynomials in W. But the degree in W of DnHg(x) is 2n + 5g − 5, and the
parity of this mod 2 is the parity of g − 1 mod 2. Polynomials of both parities are
required on the right hand side in the posited form of the differential equation to
match terms on the left hand side. This is to be expected to persist for g ≥ 2.

Example 4.4 (Recurrence equations for genus 1 and 0). The parity argument in
the previous example suggests that, if there is a recurrence equation, it must be
of degree (at least) two for the genus 1 case, and indeed a degree two example is
known (due to Graber and Pandharipande, [V2] Section 5.11 or [FnP] p. 18). This
recurrence can be rewritten as the differential equation

DH̃1 = D3H̃0/24−D2H̃0/24 +
(
D2H̃0

)(
DH̃1

)
which is an immediate consequence of the observations that DH̃1(x) = (W−1)2/24,
D2H̃0(x) = 1−W−1 and and D3H̃0(x) = W − 1.

An even simpler recursion exists originating from the differential equation

DH̃1 =
1
24

(
D3H̃0

)2

.

This gives

H1
(1d) =

1
d

(
2d
4

) d−1∑
i=1

i3(d− i)3

(
2d− 4
2i− 2

)
H0

(1i)H
0
(1d−i).(26)

The differential equation is an immediate consequence of the above expressions for
D H̃1 and D3H̃0. Although it might not be difficult to prove (26) geometrically,
there was no geometrical reason to suspect its existence.

The sphere is included for completeness from this point of view. Again, by
the parity argument, a recurrence of degree two is expected. The simplest such
differential equation is

D2H̃0 =
1
2

(
D2H̃0

)2

+DH̃0,

which is an immediate consequence of the observations that D2H̃0(x) = 1 −W−1

and DH̃0(x) = (1−W−2)/2. The resulting recurrence equation is

H0
(1d) =

1
d(d− 1)

(
2d− 2

2

) d−1∑
i=1

i2(d− i)2

(
2d− 4
2i− 2

)
H0

(1i)H
0
(1d−i),(27)

which is a well known recurrence found by Pandharipande (see [V2] Section 5.11 or
[FnP] p. 17). Other (more complicated) genus 0 recurrences can also be found in
this manner.
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Example 4.5 (Closed form expressions for simple Hurwitz numbers). Closed form
expressions for simple Hurwitz numbers can be found for all genera (using the
method of [GJ2] Cor. 4.1). The expression for the genus g case can be obtained
from Theorem 3.2, with the specializations of p, s and φi given above, and is the
following.

Hg
(1d)

(2d+ 2g − 2)!
=
[
xd
]
H̃g(x) =

5g−5∑
r=2g−1

r+g−1∑
n=r−1

Kn,g,r

([
xd
] wn

(1− w)r

)
where

Kn,g,r =
∑
θ|=n

l(θ)=r−2(g−1)

(−1)k〈τθ1τθ2 · · ·λk〉g

and k =
∑
i(1−i)θi+3g−3. Thus Kn,g,r can be computed by Faber’s program [Fb].

The remaining term is obtained by Lagrange inversion as[
xd
] wn

(1− w)r
=

1
d

[
µd−1

] ( nµn−1

(1− µ)r
+

rµn

(1− µ)r+1

)
edµ

=
d−n∑
i=0

(
r + i− 1
r − 1

)
ndd−n−i−1

(d− n− i)! +
d−n−1∑
i=0

(
r + i

r

)
r dd−n−i−2

(d− n− i− 1)!
.

For example, for H̃3(x), by Lagrange inversion,

H3
(1d)

(2d+ 4)!
=

1
1008

A4(d)− 113
10080

A5(d) +
2383
51840

A6(d)− 16759
181440

A7(d)

+
227
2304

A8(d)− 557
10368

A9(d) +
245

20736
A10(d)(28)

where

Ak(d) =
k

d

d−1∑
r=0

(
k + r

k

)
dd−r−1

(d− r − 1)!
.

This can be rewritten as

H3
(1d) =

(2d+ 4)!
25339!

d−1∑
r=0

dd−r−2

(d− r − 1)!

(
r + 4

5

)
(r + 1)

·
(
1225 r4 + 3770 r3 + 35 r2 − 2822 r + 1680

)
.

It is clear that in general the simple Hurwitz numbers have the form

Hg
(1d)

= (2d+ 2g − 2)!
d−1∑
r=0

dd−r−2

(d− r − 1)!
Pg(d− r − 1)

where Pg(r) is a polynomial in r of degree 5g − 5.
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