
GENUS 0 AND 1 HURWITZ NUMBERS: RECURSIONS, FORMULAS,
AND GRAPH-THEORETIC INTERPRETATIONS

RAVI VAKIL

Abstract. We derive a closed-form expression for all genus 1 Hurwitz numbers, and give a
simple new graph-theoretic interpretation of Hurwitz numbers in genus 0 and 1. (Hurwitz
numbers essentially count irreducible genus g covers of the sphere, with arbitrary specified
branching over one point, simple branching over other specified points, and no other branching.
The problem is equivalent to counting transitive factorisations of permutations into transposi-
tions.) These results prove a conjecture of Goulden, Jackson and Vainshtein, and extend results
of Hurwitz and many others.
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1. Introduction

The problem of enumerating factorisations of a permutation α ∈ Sd into transpositions
is one of long-standing interest in combinatorics, functional analysis, knot theory, geometry,
and physics. It is essentially equivalent to counting covers of the Riemann sphere CP1 with
branching over∞ given by α, fixed simple branching at other specified points of the sphere, and
no other branching, and it suffices to count irreducible covers of genus g, for all g. Hurwitz gave
a simple formula when g = 0 (for any α, [H]); his result was largely forgotten until recently.
(Strehl has extended Hurwitz’s idea to a complete proof, [St].)

Let l(α) be the number of cycles in α. Dénes gave a formula for the case g = 0 and l(α) = 1
([D]), and Arnol’d extended this to g = 0, l(α) = 2 ([A]). The physicists Crescimanno and
Taylor solved the case when g = 0 and α is the identity ([CT]). Goulden and Jackson dealt
with the genus 0 case in its entirety, independently recovering Hurwitz’s result ([GJ1]). Other
proofs have since been given (e.g. [GL]).

In positive genus, B. Shapiro, M. Shapiro, and Vainshtein have given a striking formula
([SSV]) when l(α) = 1 (and g is anything), involving the co-efficients of the generating function(

sinhx/2

x/2

)d−1

.

They also give formulas for g = 1 and l(α) = 2. Graber and Pandharipande have proved
recursions for g = 0 and 1 when α is the identity (g = 0 due to Pandharipande, g = 1 to
Graber and Pandharipande, [GP]) using divisor theory on the moduli space of stable maps.
Goulden, Jackson, and Vainshtein ([GJVn]) have derived formulas when g + l(α) ≤ 6, when
g = 1, l(α) = 6, and when g = 1 and α is the identity (the latter using the recursion of Graber
and Pandharipande). They also conjectured a general formula when g = 1. Recently, Ekedahl,
Lando, M. Shapiro, and Vainshtein announced ([ELSV1]) a remarkable formula for all Hurwitz
numbers as intersections of natural classes on Mg,n, the moduli space of n-pointed genus g
curves (see Section 4.3).

In this article, we use the space of stable maps to give a closed form expression for all genus
0 and 1 Hurwitz numbers, generalizing the genus 1 results described above, and proving the
conjecture of Goulden, Jackson, and Vainshtein (Corollary 1.5). En route, we interpret the
genus 0 and 1 numbers as counting graphs with simple properties (Theorem 1.4). This idea
appears to be new (even in genus 0) and suggests promising avenues for exploration in higher
genus.

1.1. Outline. We use the theory of stable maps to P1. If g = 0 or 1, on the component
of the moduli stack generically parametrizing degree d covers by smooth curves, the divisor
corresponding to maps ramified above a certain fixed point is linearly equivalent to a divisor
supported on the locus of maps from singular curves (the “boundary”). By restricting this
equivalence to appropriate one-parameter families, we obtain recursions satisfied by Hurwitz
numbers (Theorem 2.7), and the recursions determine the Hurwitz numbers (given the “base
case” that there is one degree 1 cover of P1). These recursions (and initial condition) are also
satisfied by the solution to a certain graph-counting problem. Finally, it is straightforward to
get a closed-form solution to the graph-counting problem.

In Section 2, we derive the recursions, using results of [V1]. Readers unfamiliar with the
language of algebraic geometry may prefer to skip the section, reading only Theorem 2.7. In
Section 3, we relate the Hurwitz numbers to the graph-counting problem, and derived closed-
form formulas. In Section 4, we translate the recursions into differential equations, and speculate
on connections to others’ work and to higher genus.
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Figure 1. Counting T 1
α = 4 when α is the partition 3 = 1+2 (the last two both

count with multiplicity 1/2)

1.2. Conventions. If an edge of a graph has both endpoints attached to the same vertex,
we say it is a loop. If a connected graph has V vertices and E edges, call 1− V +E the genus
of the graph. (Thus trees are genus 0 graphs, and connected graphs with a single cycle have
genus 1.) When we count objects (e.g. covers of P1, or graphs with marked edges), if the
automorphism group of the object is G, then the object is counted with multiplicity 1

|G| . For

example, the number of connected genus 1 graphs on two labelled vertices with no loops is 1
2
.

A labelled partition of d is a partition in which the terms are considered distinguished. For
example, there are

(
7
3

)
ways of splitting the labelled partition α = [17] into two labelled parti-

tions β = [13] and γ = [14]. We use set notation for labelled partitions (e.g. in this example,
α = β

∐
γ, γ = α \ β). If α is a labelled partition of d, let l(a) be the number of terms in

α, and let α1, α2, . . . , αl(α) be the terms in the partition (so d = α1 + · · · + αl(α)). A set of
transpositions in Sd is transitive if it generates Sd. If g is an integer, set rgα := d+ l(α) + 2g−2.
Let cgα be the number of factorizations of a fixed permutation σ ∈ Cd, with cycle structure
given by α, into a transitive product of rgα transpositions.

Let Gg
α be the number of smooth degree d covers of P1

C
with ramification above ∞ given by

α, simple branching at rgα other fixed points, and no other branching, where the ramification
points above ∞ are labelled. Then by the Riemann-Hurwitz formula, the covering curve has
genus g. By a simple argument, Gg

α = cgα/
∏

i αi. We call the numbers Gg
α Hurwitz numbers.

Another number of previous interest is a variation of these: if hα is the size of the conjugacy
class of α in Sd, then Cg

αhα/d! is the number of smooth degree d covers of P1 with ramification
above ∞ given by α, simple branching at rgα other fixed points, and no other branching (and
no marking of points above ∞). In [GJVn], this number is denoted µgl(α)(α); elsewhere in the

literature it is denoted Hg
α. These numbers are often called Hurwitz numbers as well.

Consider d labelled vertices, partitioned into subsets of size given by a labelled partition
α; call these subsets clumps. A clump of size i will be referred to as an i-clump. Let T gα
be the number of connected genus g graphs on these vertices, with no loops, with a set of∑

i(αi− 1) = d− l(α) of its edges that form trees on each of the clumps; we call these d− l(α)
edges the edges in the clumps. (Thus T 0

α counts trees whose restriction to each of the clumps is
also a tree.) For example, if α is the partition 3 = 1 + 2, T 1

α = 4. This is illustrated in Figure
1, with the clumps indicated by ovals, and the edge in clumps indicated by drawing the edge
entirely inside the corresponding oval.

1.3. Statement of results.

1.4. Theorem. —

G0
α =

r0
α!T 0

α

d
∏

(αi − 1)!
, G1

α =
r1
α!T 1

α

12
∏

(αi − 1)!
.

The proof is given in Section 3.1.

It is not hard to find formulas for T 0
α, T 1

α (Proposition 3.2), so the above theorem gives
formulas for Gg

α (and hence cgα = Gg
α

∏
i αi) for g = 0, 1:
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1.5. Corollary. —

G0
α =

r0
α!dl(α)−3

∏
ααi−1
i∏

(αi − 1)!
, G1

α =
r1
α!dl(α)−2

∏
ααi−1
i

24
∏

(αi − 1)!

(
d2 − d−

∑
j≥2

d2−j(j − 2)!ej

)
,

where ej is the jth symmetric polynomial in the αi.

The formula for G0
α is the same as that of Hurwitz, and the formula for G1

α is the conjecture
of Goulden, Jackson, and Vainshtein.

1.6. Remark. Goulden and Jackson have also proved the above formula for G1
α, by purely

combinatorial means ([GJ2]). Their method seems unrelated.

1.7. Acknowledgements. The author is grateful for discussions with A. J. de Jong,
I. P. Goulden, D. M. Jackson, M. Shapiro, and A. Vainshtein. This project was sparked by
conversations with T. Graber and R. Pandharipande. The deformation theory in Sections 2.2,
2.3 and 2.5 was worked out jointly with de Jong. This paper is essentially the same as the
preprint Recursions, formulas, and graph-theoretic interpretations of ramified coverings of the
sphere by surfaces of genus 0 and 1.

2. Geometry

Fix a labelled partition α of a positive integer d. We work over the complex numbers, and
rely heavily on Sections 2–4 of [V1]. All curves are assumed to be complete.

2.1. Background: Stable maps to P1. Recall that the moduli stack of stable maps
Mg,n(P1, d) is a fine moduli space for degree d stable maps from genus g curves with n la-
belled points to P1. When g = 0, it is a smooth stack. For definitions and basic results, see
[FP]. Let Mg,n(P1, d)+ be the (stack-theoretic) closure in Mg,n(P1, d) of points corresponding
to maps from smooth curves, or equivalently (from Section 2.3) the closure of points corre-
sponding to maps with no contracted component (i.e. where no irreducible component of the
source curve is mapped to a point).

The points of Mg,n(P1, d)+ corresponding to maps from singular curves is a union of Weil
divisors. Such points are called boundary points. Let ∆0 be the locus inMg,n(P1, d) that is the
closure of the locus of maps of irreducible curves with one node. If 0 ≤ i ≤ g and 0 < j < d,
let ∆i,j be the locus in Mg,n(P1, d) that is the closure of maps from a reducible curve C1 ∪ C2

where C1 is smooth of genus i and mapping with degree j, C2 is smooth of genus g − i and
mapping with degree d− j, and C1 and C2 meet at a node.

By [V1] Section 3 there is a naturally defined divisor β on Mg(P1, d)+ (in the operational
Chow ring) such that the locus of maps branching above a fixed general point in P1 lies in
class β[Mg(P1, d)+]. If g = 0 or 1, β is linearly equivalent to a sum of boundary divisors (with

multiplicities). If g = 0, the divisor ∆0,j appears with multiplicity j(d−j)
d

(Pandharipande’s
relation, [P] Lemma 2.3.1, [V1] equation 5). If g = 1, the divisor ∆0 appears with multiplicity
d
12

, and the divisor ∆0,j appears with multiplicity j ([V1] Claim 4.4 and equation 6).

2.2. Background: Deformations of a germ of a map.

(The results of the next two sections are not surprising in the analytic category.)

We recall results about “germs” of maps from nodal curves to smooth curves. Define τ :
C[[z]]→ C[[x, y]], τ(z) = xp + yq. Let C be the category of Artin local rings (A,m) over C with
A/m ∼= C. Define the functor F : C → Sets as follows:
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F (A) = {(δ : A[[z]]→ B,α)} up to isomorphism, where B is an Artin local ring flat over A,
α is an isomorphism B ⊗A (A/m)→ C[[x, y]]/(x, y), and the diagram

A[[z]]
δ→ B

↓ ↓
C[[z]]

τ→ C[[x, y]]/(x, y)
α← B ⊗C

commutes (where the vertical arrows are restriction modulo m). Isomorphism in this category
requires the commutativity of the obvious diagrams.

It is left to the reader to verify Schlessinger’s conditions ([Sch]). This functor has a hull,
which can be taken to be

R = C[[t, a, b1, . . . , bp−1, c1, . . . , cq−1]],

with hR → F given by the “universal curve”

z = xp + yq + a+ b1x+ · · ·+ bp−1x
p−1 + c1y + · · ·+ cq−1y

q−1,(1)

xy = t.(2)

Geometrically, this hull can be loosely thought of as parametrizing deformations of the germ
of a map from a node to a pointed smooth curve (with formal co-ordinate z and point z = 0),
where the node maps to the point z = 0, and the branches of the node ramify with order p
and q. The source curve is given by (2), and the map to the pointed curve with parameter z
and point z = 0 is given by (1). The locus where the curve remains singular is t = 0, which is
clearly smooth (and irreducible).

Similarly, deformations of a ramification of order p over a pointed curve z = xp are given by
z = xp + bp−1x

p−1 + · · ·+ b0. This is well-known, and details (and the precise formulation) are
left to the reader.

2.3. Background: Deformations of maps to P1.

Suppose ρ : C → P1 is a degree d map from a nodal curve of arithmetic genus g, such
that no component of C is contracted. Call formal (or analytic) neighborhoods of connected
components A of Sing(ρ) ⊂ C special loci of ρ; denote such a special locus by (A, ρ). Special
loci are (formal) neighborhoods of ramification points of C or nodes of C. The map ρ is
stable, so the functor parametrizing deformations of the stable map ρ is pro-representable by
the formal neighbourhood X of the corresponding point in the moduli stack of stable maps.
The deformations are unobstructed of dimension 2d+ 2g− 2. Sketch of proof: the deformation
theory of ρ is controlled by Exti(ρ∗ΩP1 → ΩC ,OC). In this case the complex (ρ∗ΩP1 → ΩC)
is quasi-isomorphic to (0 → Q) where Q is the cokernel of ρ∗ΩP1 → ΩC , supported on the
(zero-dimensional) special loci of ρ. Hence the obstruction space Ext2(ρ∗ΩP1 → ΩC ,OC) =
Ext2(Q,OC) is 0, and Ext2(ρ∗ΩP1 → ΩC ,OC) = Ext0(Q,OC) is 0 as well. Then an easy
calculation using the long exact Ext(·,OC)-sequence for 0 → (0 → ΩC) → (ρ∗ΩP1 → ΩC) →
(ρ∗ΩP1 → 0) → 0 gives Ext1(ρ∗ΩP1 → ΩC ,O) = 2d + 2g − 2. Thus ∆0 and ∆i,j lie in
Mg,n(P1, d)+, and (by a quick dimension count) are Weil divisors there.

Denote the formal schemes corresponding to the hulls of the special loci by X1, . . . , Xn

(whose local structure was given in Section 2.2). Then the natural map X → X1 × · · · ×Xn

is an isomorphism. A proof of this fact appears in [V2] Section 4.2; essentially it is because
the sheaf Q defined in the previous paragraph is a skyscraper sheaf on the special loci, and
the restriction of Q to a particular locus controls the deformation theory of that locus. (More
generally, it is shown that if ρ : C → P1 is any stable map, perhaps with contracted components,
the deformation space of ρ factors into a product of “deformation spaces of the special loci”.)
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2.4. The stack Hg

α. Let Hg
α be the locus in Mg(P1, d) corresponding to smooth covers of

P1 with ramification over ∞ given by α, and with simple branching over rgα − 1 fixed general
points of P1. By the Riemann-Hurwitz formula, only one ramification point is unaccounted for.
Thus Hg

α is a one-parameter family with one “roaming” simple ramification point. Let Hg

α be
the (stack-theoretic) closure of Hg

α inMg(P1, d)+. Then Hg

α is a proper one-dimensional stack.

The family Hg

α includes points of the boundary of one of two types. They correspond to
when the “roaming” ramification hits a fixed ramification not over ∞, or when it hits one of
the ramifications above ∞. In both cases the source curve is either an irreducible (1-nodal)
curve of geometric genus g−1 (i.e. where Hg

α meets ∆0), or two smooth curves of genera adding
to g, joined at a node (i.e. where Hg

α meets some ∆i,j).

2.5. Multiplicity calculation. We can use deformation theory to compute the multiplicity
with which Hg

α meets the boundary divisor ∆0 or ∆i,j at a boundary point. Let H be the locus
in the hull described by (1) and (2) where the pre-image of z = 0 remains a single point (with
multiplicity p+ q), and the source curve is smoothed. Suppose I is the ideal of

R := C[[t, a, b1, . . . , bp−1, c1, . . . , cq−1]]

defining H. Multiplying (1) by xq and using xy = t yields

zxq ≡ xp+q + bp−1x
p+q−1 + · · ·+ b1x

q+1 + axq + t1c1x
q−1 + · · ·+ tq−1cq−1x+ tq (mod I).(3)

For convenience, let b = bp−1

p+q
, c = cq−1

p+q
, D = gcd(p, q). When z = 0, the right side of (3) must

be a perfect (p+ q)th power, i.e. (x+ b)p+q, so

bp−j ≡
(
p+ q

j

)
bj , a ≡

(
p+ q

p

)
bp, tjcj ≡

(
p+ q

p+ j

)
bp+j , tq ≡ bp+q (mod I),(4)

and by symmetry

cq−j ≡
(
p + q

j

)
cj, a ≡

(
p + q

q

)
cq, tjbj ≡

(
p+ q

q + j

)
cq+j, tp ≡ cp+q (mod I).(5)

Note that tc1 =
(
p+q
p+1

)
bp+1 and c1 =

(
p+q
q−1

)
cq−1, so tcq−1 = bp+1.

Thus R/I is generated by b, c, and t with relations

bp = cq, tq = bp+q, tp = cp+q, tcq−1 = bp+1

(and possibly more). If D > 1, bp − cq = 0 factors into
∏D

i=1(bp/D − ζ icq/D) = 0, where ζ is
a primitive Dth root of 1. Thus SpecC[b, c, t]/(bp − cq, tq − bp+q, tp − cp+q, bp+1 − tcq−1) has
D irreducible components, with normalization parametrized by s, with b = ζ isq/D, c = sp/D,
t = ζ is(p+q)/D. (From the last formula, each branch meets t = 0 with multiplicity (p + q)/D.)
Conversely, each such branch lies in the deformations described by (1) and (2), where the source
curve is smoothed and the pre-image of z = 0 remains a single point, as these branches satisfy
(4) and (5).

Hence the hull of this germ of a map, keeping ramification of order p+ q above z = 0, has D
branches, each of which intersect the boundary divisor t = 0 with multiplicity (p+ q)/D. Thus
the intersection of Hg

α with the boundary at this point is p+ q.

2.6. Recursions in genus 0 and 1.

Define Igα as the closure of the locus in Mg,l(α)(P1, d) corresponding to smooth covers of P1

with ramification over ∞ given by α, with simple branching over rgα − 1 fixed general points
of P1, and with the points over ∞ labelled. In short, Igα can be thought of as parametrizing
the same maps as Hg

α, except the points over ∞ are labelled. There is a natural “forgetful”
6



morphism Igα →H
g

α, generically of degree
∏
zα(i)!, where zα(i) is the number of times i appears

in α. The linear equivalences for β in genus 0 and 1 relate the number of points onHg

α where the
roaming ramification maps to a fixed general point of P1 to the number of various boundary
points (with various multiplicities). Each such point has

∏
zα(i)! pre-images in Igα. Thus

instead of counting points of Hg

α in the relation, we instead count points of Igα. (In effect, we
are pulling back the relation for β on Hg

α to Igα.) This will be more convenient computationally
as, for example, deg(β[Igα]) = Gg

α.

2.7. Theorem. — If α is a labelled partition of a positive integer d, then

G0
α = (r0

α − 1)
∑

α=β
`
γ

i2j2

d
G0
βG

0
γ

(
r0
α − 2

r0
β

)
+
∑ αk

2

(
r0
α − 1

r0
β

)
ij

d
G0
βG

0
γ, and(6)

G1
α = 2

(
d

2

)
d

12
(r1
α − 1)G0

α +
d

24

∑
αkG

0
α′ + 2(r1

α − 1)
∑

α=β
`
γ

i2jG0
βG

1
γ

(
r1
α − 2

r0
β

)
(7)

+
∑

αkiG
0
βG

1
γ

(
r1
α − 1

r0
β

)
The first sum in (6) and the second sum in (7) is over all ways of splitting α into two labelled
partitions β of i and γ of j. The first sum in (7) is over all terms αk of α, p + q = αk, and
where α′ is the labelled partition d = α1 + · · ·+ α̂k + · · ·+ αl(α) + p + q. Similarly, the second
sum in (6) and the third sum in (7) is over all terms αk of α, p+ q = αk, and ways of splitting
α′ into two labelled partitions β of i and γ of j, with the p in labelled partition β and the q in
labelled partition γ.

Note that along with the data G0
[1] = 1, G1

[1] = 0 (there is one degree 1 cover of P1, and it

has genus 0), these recursions determine G0
α and G1

α for all α. In the case α = [1d] (i.e. no
ramification over ∞), these are the recursions of Graber and Pandharipande described in the
introduction.

Proof. If g = 0, the left side of (6) is deg(β[I0

α]). By Section 2.1, it can be expressed as the
sum of boundary points with certain multiplicities. The boundary points are of two types.

If the “roaming” ramification meets one of the r0
α − 1 fixed ramification points over some

point P 6= ∞, the source curve splits into two components, one mapping with degree i (say),
and one with degree j — this is a point of ∆0,i. The ramification over ∞ must be partitioned
among these components, as must the remaining r0

α−2 branch points away from∞. Given such
degree i and j maps, there are ij ways of gluing a branch of the first curve over P to a branch
of the second over P . There is an additional multiplicity of ij

d
(from Pandharipande’s relation,

Section 2.1), and a multiplicity of 2 from the multiplicity of the intersection of H0

α with ∆0,j

(Section 2.5). Finally, we must divide by 2 because the two components are not distinguished
(any such degeneration of the curve into C1 ∪ C2 is counted twice, once when C1 corresponds
to i, and once when it corresponds to j). This gives the first term in (6).

If the boundary point corresponds to when the “roaming” ramification meets one of the
ramifications over ∞ (corresponding to the term αk, say), and the branches of the node ramify
with order p and q (p+q = αk), the source curve splits into two components, one mapping with
degree i, and one with degree j — this is a point of ∆0,i. The ramification over ∞ must be
partitioned among these components (with the p belonging to one labelled partition, and the
q belonging to the other), as must the remaining r0

α − 1 branch points away from ∞. There is
a multiplicity of ij

d
from Section 2.1, and we must divide by 2 because the two components are
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not distinguished. By Section 2.5, H0

α meets ∆0,i with multiplicity αk. This gives the second
term in (6).

Equation (7), genus 1, is essentially the same.

If the “roaming” ramification meets one of the r1
α − 1 fixed ramification points over P 6=∞,

the source curve has a node. First, suppose the source curve is irreducible (and genus 0) —
this is a point of ∆0. Given a map from the normalization of that curve, there are

(
d
2

)
ways

of gluing 2 different branches above P together to get a nodal curve. There is an additional
multiplicity of d

12
from Section 2.1, and a multiplicity of 2 from the multiplicity of intersection

of H1

α with ∆0 (Section 2.5). This gives the first term in (7).

Second, suppose the source curve splits into two components, one of genus 0 and mapping
with degree i (say), and one of genus 1 and mapping with degree j — this is a point of ∆0,i.
The ramification over ∞ must be partitioned among these components, as must the remaining
r1
α−2 branch points away from∞. Given such degree i and j maps, there are ij ways of gluing

a branch of the first curve over P to a branch of the second over P . There is an additional
multiplicity of i from Section 2.1, and a multiplicity of 2 from Section 2.5. This gives the third
term in (7).

If the boundary point corresponds to when the “roaming” ramification meets one of the
ramifications over∞ (corresponding to the term αk, say), and the branches of the node ramify
with order p and q (p + q = αk), suppose the source curve is irreducible — i.e. the boundary
point lies on ∆0. There is a multiplicity of d

12
from Section 2.1, and we must divide by 2 because

the two branches are not distinguished. By Section 2.5, H1

α meets ∆0 with multiplicity αk. This
gives the second term in (7).

Suppose otherwise that the source curve splits into two components, one of genus 0 mapping
with degree i, and one of genus 1 mapping with degree j — i.e. the boundary point lies on ∆0,i.
The ramification over∞ must be partitioned among these components (with the p belonging to
one labelled partition, and the q belonging to the other), as must the remaining r1

α − 1 branch

points away from ∞. There is a multiplicity of i from Section 2.1. By Section 2.5, H1

α meets
∆0,i with multiplicity αk. This gives the fourth term in (7).

3. Combinatorics

3.1. Proof of Theorem 1.4. By inspection the result holds when d = 1. When d > 1, we

show that r0
α!T 0

α

d
Q

(αi−1)!
(resp. r1

α!T 1
α

12
Q

(αi−1)!
) satisfies the same recursion (Theorem 2.7) as G0

α (resp.

G1
α).

Genus 0. Each tree counted by T 0
α has l(α)− 1 edges outside the clumps and d− l(α) edges

inside the clumps.

The number of such trees with the choice of an edge e outside the clumps and the choice of
a vertex v on that edge is 2(l(α)− 1)T 0

α. If edge e is removed, the tree breaks into two subtrees
(and each clump belongs to one of the subtrees, splitting α into two labelled partitions β and
γ), with (say) i and j vertices respectively (i + j = d). The number of ways of choosing the
subtrees, along with the vertex in each subtree to lie on e, is

∑
α=β

`
γ(iT

0
β )(jT 0

γ ). Hence

2(l(α)− 1)T 0
α =

∑
α=β

`
γ

iT 0
β jT

0
γ .(8)

The number of trees counted by T 0
α with the choice of an edge e inside the clump C corre-

sponding to αk, and a choice of a vertex v on edge e, is 2(αk − 1)T 0
α. If edge e is removed,
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the tree breaks into subtrees, the αk vertices in C are split into p and q (p + q = αk), and the
remaining clumps each belong to one of the subtrees as well. The number of ways of choosing
this data is

2(αk − 1)T 0
α =

∑(
αk
p, q

)
(pT 0

β )(qT 0
γ )

where the sum is over all p+ q = αk, and the labelled partition α1 + · · ·+ α̂k + · · ·+αl(α) +p+ q
is split into labelled partitions β (which must contain the p) and γ (which must contain the q).
Summing over all αk gives

2(d− l(α))T 0
α =

∑(
αk
p, q

)
(pT 0

β )(qT 0
γ )(9)

where the sum is now as described in Theorem 2.7. As r0
α = (d − l(α)) + 2(l(α) − 1), adding

(8) to half (9) gives

r0
αT

0
α =

∑
α=β

`
γ

iT 0
β jT

0
γ +

1

2

∑(
αk
p, q

)
(pT 0

β )(qT 0
γ ).

Multiplying both sides by (r0
α− 1)!/(d

∏
(αi− 1)!) gives the same recursion as in Theorem 2.7,

with G0
δ replaced by

r0
δ !T 0

δ

d
Q

(δi−1)!
for all δ, as desired.

Genus 1. This case is essentially the same. Each genus 1 graph counted by T 1
α has l(α) edges

outside the clumps and d− l(α) edges inside the clumps.

The number of such graphs with the choice of an edge e outside the clumps and the choice of
a vertex v on edge e is 2l(α)T 1

α. If edge e is removed, then the graph either remains connected,
or breaks into two connected subgraphs.

Suppose the graph stays connected (and is hence a tree). Then the number of ways of choosing
the tree, along with an ordered pair of distinct vertices (the endpoints of e), is d(d− 1)T 0

α.

Next, suppose the graph breaks into two connected subgraphs (so each clump belongs to one
of the subgraphs, splitting α into β and γ), with (say) i and j vertices respectively (i+ j = d).
One of the subgraphs is genus 0, and the other is genus 1. The number of ways of choosing
the subgraphs, along with the vertex in each subgraph to lie on e, is

∑
α=β

`
γ(iT

0
β )(jT 1

γ ) +

(iT 1
β )(jT 0

γ ).

Adding these two cases, we find:

2l(α)T 1
α = d(d− 1)T 0

α + 2
∑

α=β
`
γ

(iT 0
β )(jT 1

γ ).(10)

The number of graphs counted by T 1
α with the choice of an edge e inside the clump C

corresponding to αk, and a choice of a vertex v on edge e, is 2(αk− 1)T 1
α. If edge e is removed,

the graph either remains connected (and genus 0) or breaks into two subgraphs (of genus 0 and
1).

If the graph remains connected, then edge e still breaks the clump of size αk into two subtrees
on p and q vertices (p+ q = αk). The number of ways of splitting the αk-clump into a p-clump
and a q-clump, then choosing the genus 0 graph, and then choosing the vertices in the p-
clump and q-clump (for endpoints of e) is

∑
pqT 0

α′
(
αk
p,q

)
(where α′ is the labelled partition

d = α1 + · · ·+ α̂k + · · ·+ αl(α) + p+ q).

If the graph splits into two connected subgraphs, then the number of ways of splitting the
αk-clump into a p-clump and a q-clump, partitioning the remaining clumps between β and γ,
choosing the endpoints of e in the p-clump and q-clump, and choosing the genus 0 and genus
1 subgraphs is 2

∑(
αk
p,q

)
pT 0

β qT
1
γ .
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Adding these up over all αk gives

2(d− l(α))T 1
α =

∑
pqT 0

α′

(
αk
p, q

)
+ 2

∑(
αk
p, q

)
pT 0

β qT
1
γ .(11)

As r1
α = d+ l(α), adding (10) to half (11) gives

r1
αT

1
α = d(d− 1)T 0

α +
1

2

∑
pqT 0

α′

(
αk
p, q

)
+ 2

∑
α=β

`
γ

iT 0
β jT

1
γ +

∑(
αk
p, q

)
pT 0

β qT
1
γ .

Multiplying both sides by (r1
α−1)!/(12

∏
(αi−1)!) gives the same recursion as in Theorem 2.7,

with Gg
δ replaced by

rgδ !T gδ
12
Q

(δi−1)!
for all δ, and g = 0,1 as desired.

3.2. Proposition. — T 0
α = dl(α)−2

∏
ααi−1
i . If ej is the jth symmetric polynomial in the αi,

T 1
α =

T 0
α

2

(
d2 − d−

∑
j≥2

d2−j(j − 2)!ej

)
.

Proof. The formula for T 0
α follows immediately from [L] Ex. 4.4.

For convenience, let

Si =
∑
α′⊂α
l(α′)=i

(∏
j

α′j

)(∑
j

α′j

)
=

∑
α′
`
α′′=α

l(α′)=i

(∏
j

α′j

)(
d−

∑
j

α′′j

)
= dei − (i+ 1)ei+1.

The number of graphs counted in T 1
α where the cycle passes through only 1 clump of size

αk is
(
αk
2

)
T 0
α: one edge of the cycle is outside the clump, and there are T 0

α choices for such

graphs not including this edge, and
(
αk
2

)
choices for this edges. Summing over all k, we have

1
2
T 0
α(d2 − d− 2e2).

We next count the number of graphs counted in T 1
α where the cycle passes through i clumps

(i > 1). The number of such graphs where the cycle passes through the i clumps corresponding

to some α′ ⊂ α, l(α′) = i (where α′′ = α \ α′) can be counted as follows. There are
∏
α
αj−2
j

ways of choosing the edges inside the clumps (Cayley’s theorem). There are (i − 1)!/2 ways
of choosing the cyclic ordering of the i clumps in the cycle. Then there are

∏
(α′j)

2 ways of

choosing the cycle itself. Finally, by [L] Ex. 4.4 there are (
∑
α′j)(

∏
α′′j )d

(l(α)−i+1)−2 ways of
completing the graph. Adding these factors up over all the choices of α′ gives

∏
j

α
αj−2
j

∑
α′
`
α′′=α

l(α′)=i

(i− 1)!

2

∏
j

(α′j)
2
∑
j

α′j
∏
j

α′′jd
l(α)−i−1 = dl(α)−2

∏
j

α
αj−1
j

(i− 1)!

2
d1−iSi

= T 0
α

(i− 1)!

2
d1−iSi

10



Summing over all i, and dividing by T 0
α ,

T 1
α/T

0
α =

1

2

(
d2 − d− 2e2 +

∑
i≥2

(i− 1)!d1−i(dei − (i+ 1)ei+1)

)

=
1

2

(
d2 − d+

∑
i≥2

(
(i− 1)!eid

2−i − (i− 2)!d2−iiei
))

=
1

2

(
d2 − d−

∑
i≥2

d2−i(i− 2)!ei

)

Corollary 1.5 follows immediately.

4. Discussion and speculation

4.1. Other recursions. Other recursions initially seem more straightforward and natural
than those of Theorem 2.7. For example, the number of factorisations of a permutation σ with
given cycle structure into transpositions σ1 · · ·σr can be recursively computed by considering the
possibilities for σr (and the possible cycle structures of σσr), as in [GJ1] Lemma 2.2. However,
the simplicity of the combinatorics of Section 3 suggests that the recursions of Theorem 2.7 are
in some way the “right” way to view the problem.

4.2. Generating functions/potentials. If α is a partition (not labelled) of d, define vα =∏
i≥1 v

zα(i)
i where v1, v2, . . . are formal variables, and zα(i) is the number of i’s in the partition

α. Recall that hα was defined as the size of the conjugacy class corresponding to α in Sd.
Consider the following generating functions (or potential functions) for G0

α and G1
α:

F 0 =
∑
α`d

d
G0
αz

dur
0
αvαhα

d!r0
α!

, F 1 =
∑
α`d

12
G1
αz

dur
1
αvαhα

d!r1
α!

.

Both sums are over ordinary partitions (i.e. not labelled) of d. (F 0 is similar to the generating
functions F̃ of [GJ1] Lemma 2.2 and Φ of [GJVn] Section 3.)

Then Theorem 2.7 can be rephrased as a differential equation, analogous to the differential
equation satisfied by the genus 0 Gromov-Witten potential ([FP]), or the differential equations
satisfied by potentials for characteristic numbers of plane curves ([EK] Section 6, [V1]):

F 0
u = uz2(F 0

z )2 +
1

2

∑
p,q

pqvp+qF
0
vpF

0
vq ,(12)

F 1
u = uz2(F 0

zz + 2F 0
z F

1
z ) +

∑
p,q

pqvp+q

(
1

2
F 0
vpvq + F 0

vpF
1
vq

)
.(13)

In the genus 1 equation (13), the second term corresponds to the third term of (7) and vice
versa. As these equations do not seem especially enlightening, the details of their derivations
are omitted.

4.3. Higher genus.

The form of Theorem 1.4 is striking, and suggests immediate generalizations to higher genus.
However, none of the obvious extensions seem to work. Surprising and beautiful partial results

11



in higher genus are already known (described in the introduction), and it would be of interest
to try to give these results a similar graph-theoretic interpretation.

Other approaches to Hurwitz numbers also involve graph enumeration problems. In partic-
ular, [A] and [SSV] both involved edge-ordered graphs. It would be worthwhile to understand
the relationship between this graph-counting problem and that of this article, as the two in-
terpretations are advantageous in different circumstances (here when g ≤ 1, there when l(α) is
very small).

Another promising direction seems to be through the work of Ekedahl et al, who express
Hurwitz numbers as Hodge integrals on Mg,n. The recursions of Theorem 2.7 should follow
from their analysis, as they are a consequence of the fact that the Hodge class is linearly
equivalent to a sum of boundary divisors when g = 0 or 1. Also, intersections on Mg,n are
naturally sums over graphs, so the logical next step would be to try to give graph-theoretic
interpretations to higher genus Hurwitz numbers.

Graber and Pandharipande have conjectured ([GP]) a recursion for genus 2 Hurwitz numbers
with no ramification over ∞ (i.e. α is the labelled partition d = 1 + · · ·+ 1):

G2
[1d] = d2

(
97

136
d− 20

17

)
G1

[1d] +
d−1∑
j=1

G0
[1j ]G

2
[1d−j ]

(
2d

2j − 2

)
j(d− j)

(
−115

17
j + 8d

)

+
d−1∑
j=1

G1
[1j ]G

1
[1d−j ]

(
2d

2j

)
j(d− j)

(
11697

34
j(d− j)− 3899

68
d2

)
.

It is unclear why a genus 2 relation should exist (either combinatorially or algebro-geometrically).
The relation looks as though it is induced by a relation in the Picard group of the moduli space,
but no such relation exists. A proof of this conjecture may shed some light on the geometry of
genus 2 pointed curves through the work of Ekedahl et al.

The grand motivating problem behind all of these results is that of enumerating the fac-
torisations of a permutation σ ∈ Sd into r transpositions (not necessarily transitive) for any
d, σ and r, and of giving this number concrete combinatorial meaning. One might speculate
that this number would be an appropriate multiple of the number of graphs on d vertices (not
necessarily connected), with clumps given by σ, with d − 1 + g edges (where g is given by
r = d+ l(σ) + 2g − 2), with some additional structure.

4.4. Notes added after submission. Proofs of [ELSV1]’s powerful Hodge-Hurwitz formula
(see Section 1) appear in [GV] and [ELSV2]. Another proof of Goulden, Jackson and Vain-
shtein’s conjecture (see Corollary 1.5 and Remark 1.6) using this formula appears in [ELSV2]
Theorem 2.3. The “potentials” F 0 and F 1 of Section 4.2 turn out in all genus to be (general-
izations of) Witten’s free energy (or the Gromov-Witten potential) of a point ([GJV] Theorem
2.5, where they are called G rather than F ). A proof of the Graber-Pandharipande conjecture
of Section 4.3 appears in [GJ3], and a general machine for dealing with higher-genus recursions
appears in [GJV].
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