INTERSECTIONS OF SCHUBERT VARIETIES AND
OTHER PERMUTATION ARRAY SCHEMES
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Abstract. Using a blend of combinatorics and geometry, we give an algorithm for
algebraically finding all flags in any zero-dimensional intersection of Schubert varieties
with respect to three transverse flags, and more generally, any number of flags. The
number of flags in a triple intersection is also a structure constant for the cohomology
ring of the flag manifold. Our algorithm is based on solving a limited number of deter-
minantal equations for each intersection (far fewer than the naive approach in the case of
triple intersections). These equations may be used to compute Galois and monodromy
groups of intersections of Schubert varieties. We are able to limit the number of equa-
tions by using the permutation arrays of Eriksson and Linusson, and their permutation
array varieties, introduced as generalizations of Schubert varieties. We show that there
exists a unique permutation array corresponding to each realizable Schubert problem
and give a simple recurrence to compute the corresponding rank table, giving in par-
ticular a simple criterion for a Littlewood-Richardson coefficient to be 0. We describe
pathologies of Eriksson and Linusson’s permutation array varieties (failure of existence,
irreducibility, equidimensionality, and reducedness of equations), and define the more
natural permutation array schemes. In particular, we give several counterexamples to
the Realizability Conjecture based on classical projective geometry. Finally, we give
examples where Galois/monodromy groups experimentally appear to be smaller than
expected.
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1. Introduction. A typical Schubert problem asks how many lines in
three-space meet four generally chosen lines. The answer, two, may be ob-
tained by computation in the cohomology ring of the Grassmannian variety
of two-dimensional planes in four-space. Such questions were considered by
H. Schubert in the nineteenth century. During the past century, the study
of the Grassmannian has been generalized to the flag manifold where one
can ask analogous questions.

The flag manifold Fl,,(K) parameterizes the complete flags

F={{}=RhchcCc---CF,=K"}

where F; is a vector space of dimension i. (Unless otherwise noted, we will
work over an arbitrary base field K. The reader, and Schubert, is welcome
to assume K = C throughout. For a general field, we should use the Chow
ring rather than the cohomology ring, but they agree for K = C. For
simplicity, we will use the term “cohomology” throughout.)
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A modern Schubert problem asks how many flags have relative posi-
tion u, v, w with respect to three generally chosen fixed flags X,, Y, and Z,.
One concrete solution to this problem, due to Lascoux and Schiitzenberger
[Lascoux and Schiitzenberger, 1982], is to compute a product of Schubert
polynomials and expand in the Schubert polynomial basis. The coeffi-
cient indexed by w,v,w is the solution. This corresponds to a computa-
tion in the cohomology ring of the flag variety. (Caution: this solution is
known to work only in characteristic 0, due to the potential failure of the
Kleiman-Bertini theorem in positive characteristic, cf. [Vakil, 2006b, Sect.
2].) The quest for a combinatorial rule for expanding these products is a
long-standing open problem, and corresponds to the multiplication rule for
Schubert polynomials.

The main goal of this paper is to describe a method for directly identi-
fying all flags in X, (Fy) N X,(Ge) N Xy (H,) when £(u) +£(v) +£(w) = (%),
thereby computing ¢y, explicitly. This method extends to Schubert prob-
lems with more than three flags, and more generally to parameter spaces
of flags in given relative position. The only geometrically reasonable mean-
ing of “given relative position” is the specification of a “rank table” of
intersection dimensions, tracking how the pieces of the various flags meet.
Achievable or realizable rank tables yield unique “permutation arrays”, and
indeed this problem motivated their definition by Eriksson and Linusson.
These permutation arrays are closely related to the checker boards used
in [Vakil, 2006a, Vakil, 2006b]. The resulting permutation array varieties
are natural generalizations of Schubert varieties to an arbitrary number of
flags. The advantages of our method are further described in Remark 5.1.

The benefit of permutation arrays is that the elements identify the
minimal jumps in dimension, and therefore naturally correspond to critical
vectors in the geometry. We use the data from the permutation array to
identify and solve a collection of determinantal equations for the permuta-
tion array varieties, allowing us to solve Schubert problems explicitly and
effectively, for example allowing us to compute Galois/monodromy groups.
Maple code for solving Schubert problems using permutation arrays is avail-
able at

http://www.math.washington.edu/~billey /papers/maple.code/

We show that permutation array varieties may be badly behaved. For
example, their equations are not always reduced or irreducible, so we ar-
gue that the “correct” generalization of Schubert varieties are permutation
array schemes. We describe pathologies of these varieties/schemes, and
show that they are not irreducible nor even equidimensional in general,
making a generalization of the Bruhat order problematic. We also give
counterexamples to Eriksson and Linusson’s Realizability Conjecture 4.1.

We emphasize that the pathologies described here are not an artifact
of permutation arrays; permutation arrays are equivalent to tables of in-
tersection dimensions. Permutation arrays are much more manageable as
data sets than the full table of intersection dimensions.
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On one hand our results are bad news for permutation arrays: the
hope that they would predict which rank tables (tables of all intersection
dimensions) are possible does not hold true, and this deep question re-
mains open. This difficulty of this problem is very similar to the problem
of determining which matroids are realizable. On the other hand, by high-
lighting key linear-algebraic data, they provide more geometric information
about a Schubert problem which can be used for computation. In many of
the examples we have tried, the new approach is more effective than any
earlier naive approach, sometimes requiring no calculations at all beyond
construction of the permutation array. It is an interesting open problem
to determine which method is most effective for large Schubert problems.
Furthermore, permutation arrays are a “complete flag analog” of Vakil’s
checkerboards [Vakil, 2006a]. So, one could ask if there exists a rule for
multiplying Schubert classes based on these arrays.

Varieties based on rank tables have appeared in several other places
in the literature as well, including [Eisenbud and Saltman, 1987]

[Fulton, 1991, Magyar, 2005, Magyar and van der Kallen, 1999].

The outline of the paper is as follows. In Section 2, we review Schubert
varieties and the flag manifold. In Section 3, we review the construction
of permutation arrays and the Eriksson-Linusson algorithm for generat-
ing all such arrays. In Section 4, we describe permutation varieties and
their pathologies, and explain why their correct definition is as schemes.
In Section 5, we describe how to use permutation arrays to solve Schubert
problems and give equations for certain intersections of Schubert varieties.
In Section 6, we give two examples of an algorithm for computing triple in-
tersections of Schubert varieties and thereby computing the cup product in
the cohomology ring of the flag manifold. The equations we give also allow
us to compute Galois and monodromy groups for intersections of Schubert
varieties; we describe this application in Section 7. To our knowledge, this
is the first use of the Hilbert irreducibility theorem to compute monodromy
groups. Our computations lead to examples where the Galois/monodromy
group is “smaller than expected”.

2. The flag manifold and Schubert varieties. In this section we
briefly review the notation and basic concepts for flag manifolds and Schu-
bert varieties. We refer the reader to one of the following books for further
background information: [Fulton, 1997, Macdonald, 1991, Manivel, 1998,
Gonciulea and V. Lakshmibai, 2001, Kumar, 2002].

As described earlier, the flag manifold FI,, = Fl,(K) parametrizes the
complete flags

F.:{{O}:F()CFlC"'CFn:Kn}

where Fj; is a vector space of dimension 7 over the field K. Fl, is a smooth
projective variety of dimension (3). A complete flag is determined by an
ordered basis (f1,..., fn) for K™ by taking F; = span(fi,..., fi)-
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Two flags [F,],[Ge] € Fl,, are in relative position w € S, when
dim(F; N G;) =rankw(i,j] forall 1<i,j<n

where wli, j] is the principal submatrix of the permutation matrix for w
with lower right hand corner in position (%, j). We use the notation

pos(F,,G,e) = w.

Warning: in order to use the typical meaning for a principal submatrix we
are using a nonstandard labeling of a permutation matrix. The permuta-
tion matrix we associate to w has a 1 in the w(z)th row of column n —7+1
for 1 <14 < n. For example, the matrix associated to w = (5,3,1,2,4) is

O =HOOO
S OO -=O
S o oo
OO =OO
—oocoo

If pos(F,,Ge) = (5,3,1,2,4) then dim(F>NG3) = 2 and dim(F3NG,) = 1.
Define a Schubert cell with respect to a fixed flag F, in Fl,, to be

X2 (Fs) = {G. | Fs and G, have relative position w}
={G, | dim(F; N G,) = rkwls, j]}.

Using our labeling of a permutation matrix, the codimension of X is equal
to the length of w (the number of inversions in w), denoted £(w). In fact,
X is isomorphic to the affine space K (3)—tw) we say the flags F, and
G, are in transverse position if G¢ € X;q(F,). A randomly chosen flag will
be transverse to any fixed flag Fy with probability 1 (using any reasonable
measure, assuming the field is infinite).

The Schubert variety X,,(F,) is the closure of X¢ (F,) in Fl,,. Schubert

varieties may also be written in terms of rank conditions:
Xuw(Fe) = {G, | dim(F; N G;) > rkwli, j]}. (2.1)

If the flags F, and G, are determined by ordered bases for K™ then these
inequalities can be rephrased as determinantal equations on the coefficients
in the bases [Fulton, 1997, 10.5, Ex. 10, 11]. Of course this allows one in
theory to solve all Schubert problems, but the number and complexity of
the equations conditions grows quickly to make this prohibitive for large n
or d. See Section 5.2 for more details.

We remark that the rank equations in (2.1) are typically written in
terms of an increasing rank function in the literature as we have done.
However, when one wants to write down polynomial equations which vanish
on this set, one must use a decreasing rank function. A rank function
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strictly less than k on a matrix means that every k x k determinantal minor
vanishes, while a rank function strictly greater than k means that SOME
jxj minor for j > k does NOT vanish. The first description defines a closed
subvariety, but the second condition does not. Luckily the rank functions
that we are interested in are the coranks of the matrices with the ordered
basis reversed so when we need to explicitly present polynomial equations
that define a Schubert variety, we will use decreasing rank functions.
The cohomology ring H*(Fl,) of Fl, is isomorphic to

Lz, ...,xn]/{e1,€2,...,€n)

where e; is the ith elementary symmetric function on x4, ..., z,. For details
see [Fulton, 1997, 10.2, B.3]. The cycles [X,] corresponding to Schubert
varieties form a Z-basis for the ring. The class [X,] := [Xy(F,)] is inde-
pendent of the choice of base flag. The product is defined by

[XU] : [Xv] = [Xu(FO) N Xv(GO)]

where F, and G, are in transverse position. Speaking informally, X, (Fe)N
Xy(G,) is a union of irreducible components which are GL,-translates of
Schubert varieties. Therefore, in the cohomology ring, the expansion of a
product of Schubert cycles

[Xu] - [Xo] = Z Cg,v[Xw] (2.2)
L(w)=L(u)+L(v)

has nonnegative integer coefficients in the basis of Schubert cycles.

A simpler geometric interpretation of the coefficients c;; , may be given
in terms of triple intersections [Fulton, 1997, 10.2]. There exists a perfect
pairing on H*(Fl,,) such that

[Xw.] y=wow
Xl - [X,] = ° (2.3)
Pul Xl {o v # wow, £(y) = (8) — ((w).
Here w, = (n,n —1,...,1) is the longest permutation in S,, of length

(%) = dim(Fl,), and [X,,] is the class of a point. Combining equations
(2.2) and (2.3) we have

[Xu] - [Xo] - [Xwow] = Cg,v[Xwo]-

In characteristic 0, ¢}/, counts the number of points [F,] € Fl, in the
variety

Xu(Fa) N Xo(Ge) N Xuw(Ha) (2.4)

when £(u) + £(v) + l(wow) = (%) and Fo,G., H, are three generally cho-
sen flags. Note, it is not sufficient to assume the three flags are pairwise
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transverse in order to get the expected number of points in the intersec-
tion. There can be additional dependencies among the subspaces of the
form F; N G]' N Hy,.

The main goal of this article is to describe a method to find all flags in
a general d-fold intersection of Schubert varieties when the intersection is
zero-dimensional. Enumerating the flags found explicitly in a triple inter-
section would give the numbers ¢ ,. We will use the permutation arrays
defined in the next section to identify a different set of equations defining
the intersections of Schubert varieties which are easier to solve.

3. Permutation arrays. In [Eriksson and Linusson, 2000a] and
[Eriksson and Linusson, 2000b], Eriksson and Linusson develop a d dimen-
sional analog of a permutation matrix. One way to generalize permutation
matrices is to consider all d-dimensional arrays of 0’s and 1’s with a single
1 in each hyperplane with a single fixed coordinate. They claim that a
better way is to consider a permutation matrix to be a two-dimensional
array of 0’s and 1’s such that the rank of any principal minor is equal to
the number of occupied rows in that submatrix or equivalently equal to the
number of occupied columns in that submatrix. The locations of the 1’s in
a permutation matrix will be the elements in the corresponding permuta-
tion array. We will summarize their work here and refer the reader to their
well-written paper for further details.

Let P be any collection of points in [n]? := {1,2,...,n}%. We will
think of these points as the locations of dots in an [n]¢-dot array. Define a
partial order on [n]? by

xz(xla"'axd)jy:(yh'"ayd):

read “z is dominated by y”, if z; < y; for all 1 < ¢ < d. This poset is a
lattice with meet and join operation defined by

xVy=z if z; = max(x;,y;) for all ¢
TAy=z2 if z; = min(z;,y;) for all 4.

These operations extend to any set of points R by taking \/ R = 2
where z; is the the maximum value in coordinate ¢ over the whole set, and
similarly for A\ R.

Let Ply] = {z € P | x < y} be the principal subarray of P containing
all points of P which are dominated by y. Define

rk; P = #{1 < k < n | there exists € P with z; = k}.

P is rankable of rank r if rk; P =r for all 1 < j < d. P is totally rankable
if every principal subarray of P is rankable.

For example, with n = 4, d = 3 the following example is a totally
rankable dot array:

{(3,4,1),(4,2,2),(1,4,3),(3,3,3),(2,3,4),(3,2,4), (4, 1,4)}.
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We picture this as four 2-dimensional slices, where the first one is “slice 1”
and the last is “slice 4”:

Thus (3,4,1) corresponds to the dot in the first slice on the left.

The array {(3,4,1), (4,2,2),(1,4,3)} is not rankable since it has only
two distinct values appearing in the second index and three in the first and
third.

Many pairs P, P’ of totally rankable dot arrays are rank equivalent,
i.e. rk;P[x] = rk;P'[z], for all  and j. However, among all rank equiv-
alent dot arrays there is a unique one with a minimal number of dots
[Eriksson and Linusson, 2000a, Prop. 4.1]. In order to characterize the
minimal totally rankable dot arrays, we give the following two definitions.
We say a position z is redundant in P if there exists a collection of points
R C P such that z = \/ R, #R > 1, and every y € R has at least one
y; = x;. We say a position z is covered by dots in P if z is redundant for
some R C P, z ¢ R, and for each 1 < j < d there exists some y € R such
that y; < z;. We show in Lemma 3.1 that it suffices to check only subsets
R of size at most d when determining if a position is redundant or covered.

THEOREM 3.1. [Eriksson and Linusson, 2000b, Theorem 3.2] Let P
be a dot array. The following are equivalent:

1. P is totally rankable.

2. Every two dimensional projection of every principal subarray is
totally rankable.

3. Every redundant position is covered by dots in P.

4. If there exist dots in P in positions y and z and integers i,j such
that y; < z; and y; = z;, then there exists a dot in some position
z X (yV z) such that z; = z; and x; < z;.

Define a permutation array in [n]? to be a totally rankable dot array
of rank n with no redundant dots (or equivalently, no covered dots). The
permutation arrays are the unique representatives of each rank equivalence
class of totally rankable dot arrays with no redundant dots. These arrays
are Eriksson and Linusson’s analogs of permutation matrices.

The definition of permutation arrays was motivated because they in-
clude the possible relative configurations of flags:

THEOREM 3.2. [Eriksson and Linusson, 2000b, Thm. 8.1] Given flags
EL E2? ... El, there exists an [n]%-permutation array P describing the
rank table of all intersection dimensions as follows. For each z € [n],

rk(P[z]) = dim (E} NE2, N---NE%). (3.1)
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A special case is the permutation array corresponding to n generally
chosen flags, which we denote the transverse permutation array

Tn,dz{(ggl,.__,xd)e[n]d| Zx,~=(d—1)n+1}_ (3.2)

This corresponds to

d
rk(Ty, q[z]) = max (0, n— Z(n - arl)) .

i=1

Eriksson and Linusson give an algorithm for producing all permu-
tation arrays in [n]? recursively from the permutation arrays in [n]?~!
[Eriksson and Linusson, 2000b, Sect.  2.3]. We review their algorithm,
which we call the EL-algorithm below, as this is key to our algorithm for
intersecting Schubert varieties.

Let A be any antichain of dots in P under the dominance order. Let
C(A) be the set of positions covered by dots in A. Define the downsizing
operator D(A, P) with respect to A on P to be the result of the following
process.

1. Set Q1 = P\ A.

2. Set Q2 =Q1 U C(A)

3. Set D(A,P) = Q2 \ R(Q2) where R(Q) is the set of redundant

positions of Q.

The downsizing of a totally rankable array P is successful if the re-
sulting array is again totally rankable and has rank rk(P) — 1.

THEOREM 3.3. (The EL-Algorithm) For each pair n,d of positive
integers, the set of all permutation arrays in [n]? can be obtained by the
following algorithm:

1. For each permutation array P, in [n]?1.

2. If P,,, ..., P; have been defined, and i > 1, then choose an an-

tichain A; of dots in P; such that the downsizing D(A;, P;) is suc-
cessful. Set P;_1 = D(A;, P;).
3. Set A1 = P1 .
4. Set P = {(z1,...,24-1,%) | (®1,...,24-1) € A;}. Add P to the
list of permutation arrays in [n]? constructed thus far.
Furthermore, each permutation array P is constructed from a unique P,
in [n]4~1 and a unique sequence of anti-chains.
For example, starting with the 2-dimensional array

{(1,4),(2,3),(3,1),(4,2)}

corresponding to the permutation w = (1,2,4,3), we run through the al-
gorithm as follows. (In the figure, dots correspond to elements in P and
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circled dots correspond to elements in A.)

Py =:{(1a4)7(213)7(3a1)7(4a2)} Ay _'{(174)a(273)}
P = {(2;4)7(31 1)7(4a2) Az = (371)}
P, ={(2,4),(4,2)} Ar ={(2,4),(4,2)}
P ={(4,4)} A ={(4,4)}
®
0 ] @
(0 °
P [® [+ :

This produces the 3-dimensional array
P = {(4’43 1)’ (23 4, 2)5 (4a 2, 2)a (35 1, 3)5 (1545 4)5 (25 3, 4)}

We prefer to display 3-dimensional dot-arrays as 2-dimensional number
arrays as in [Eriksson and Linusson, 2000b, Vakil, 2006a] where a square
(4,7) contains the number k if (7, j, k) € P. The previous example is repre-
sented by

Note that there is at most one number in any square if the number-array
represents a permutation array: by Theorem 3.1 Part 4, if two dots y, z in
a totally rankable array P existed such that y; = 21,y2 = 22,y3 < 23, then
there exists a third dot z < (y V 2) = z in P with z3 = 23 and z; < y;
for i = 1 or 2, but this implies that z is redundant for the set R = {z,y},
hence P is not a permutation array.

COROLLARY 3.1. In Theorem 3.3, each P; is an [n]¢~1-permutation
array of rank i. Furthermore, if P determines the rank table for flags
El, ... E2, then P; determines the rank table for EL, ..., ES~1 intersecting
the vector space EZ, i.e.

rk (Pi[z]) = dim (E;l NE.LN---nEX' 0 E;i) .

Td—1

Proof. P; is the permutation array obtained from the projection
{(z1,.--,2zq) | (®1,..-,2d,Za+1) € P and zg41 < i}

by removing all repeated or covered elements. O
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To represent a 4-dimensional permutation array, we often draw the n

3-dimensional permutation arrays P, ..., P, from the EL-algorithm. For
example,
1
4 4 4
413 3
4 4| & 4] [3][2 2

represents the 4-dimensional permutation array with entries

We finish this section with a substantial improvement on the speed
to the Eriksson-Linusson algorithm. In Step 2 of Theorem 3.3, one must
find all positions covered by a subset of points in the antichain A;. This
appears to require on the order of 2|4l computations. However, here we
show that subsets of size at most d are sufficient.

LEMMA 3.1. A position © € [n]¢ is covered (or equivalently, redun-
dant) in a permutation array P if and only if there exists a subset S with
|S| < d which covers x.

Proof. Assume z is covered by a set Y = {y',42,...,y*} for k > d.
That is,

e For each position 1 < j < d, there exists a y* such that y! < z;
and there exists a y' such that y} = z;.
e For each y' € Y, there exists a j such that y; < z; and there exists
an [ such that yj = z;.
Consider a complete bipartite graph with left vertices labeled by Y and
right vertices labeled by {z1,...,z4}. Color the edge from y’ to z; red if
y} = z;, and blue if y! < z;. Since z = /Y, y} > z; is not possible. This
is a complete bipartite graph such that each vertex meets at least one red
and one blue edge, and conversely any such complete bipartite graph with
left vertices chosen from P and right vertices {z1,...,24} corresponds to
a covering of z.

We can easily bound the minimum size of a covering set for x to be at
most d+1 as follows. Choose one red and one blue edge adjacent to z;. Let
S be the left end-points of these two edges. Vertex x» is connected to both
elements of S in the complete bipartite graph. If the edges connecting z2
to S are different colors, proceed to x3. If the edges agree in color, choose
one additional edge of a different color adjacent to z2. Add its left endpoint
to S. Continuing in this way for x3,...,z4, we have |S| < d + 1 and that
x is covered by S.
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Given a covering set S of size d + 1, we now find a subset of size d
which covers z. Say zi,,%;,,...,%; are all the right vertices which are
adjacent to a unique edge of either color. Let T be the left endpoints of
all of these edges; these are necessary in any covering subset. Choose one
vertex in Y\ T, say §. Each remaining z; has at least two edges of each
color, so we can choose one of each color which is not adjacent to §. The
induced subgraph on (S \ {3}, {z1,...,24}) is again a complete bipartite
graph where every vertex is adjacent to at least one red and one blue edge,
hence S\ {§} covers z. O

4. Permutation array varieties/schemes and their patholo-
gies. In analogy with Schubert cells, for any [n]¢-permutation array P,
Eriksson and Linusson define the permutation array variety X3 to be the
subset of FI¢ = {(E,,...,EZ)} in “relative position P”

[Eriksson and Linusson, 2000b, §1.2.2]. We will soon see why X¢ is a lo-
cally closed subvariety of FI%; this will reinforce the idea that the correct

notion is of a permutation array scheme. The closure of X $ will be defined
by the rank equations

rk(P[z]) > dim (B}, NE2, N---NEZ ). (4.1)

These rank equations can then be interpreted as determinantal equations
as we explain below. These varieties/schemes will give a convenient way to
manage the equations of intersections of Schubert varieties.

Based on many examples, Eriksson and Linusson
[Eriksson and Linusson, 2000b, Conj. 3.2] conjectured the following state-
ment.

REALIZABILITY CONJECTURE 4.1. FEvery permutation array can be
realized by flags. Equivalently, every X$ is nonempty.

This question is motivated by more than curiosity. A fundamental
question is: what are the possible relative configurations of d flags? In
other words: what rank (intersection dimension) tables are possible? For
d = 2, the answer leads to the theory of Schubert varieties. By Theorem 3.2,
each achievable rank table yields a permutation array, and the permutation
arrays may be enumerated by Theorem 3.3. The Realizability Conjecture
then says that we have fully answered this fundamental question. Failure
of realizability would imply that we still have a poor understanding of how
flags can meet.

The Realizability Conjecture is true for d = 1,2, 3. For d = 1, the only
permutation array variety is the flag variety. For d = 2, the permutation
array varieties are the “generalized” Schubert cells (where the reference
flag may vary). The case d = 3 follows from [Shapiro et al., 1997] (as
described in [Eriksson and Linusson, 2000b, §3.2]), see also [Vakil, 2006a,
§4.8]. The case n < 2 is fairly clear, involving only one-dimensional sub-
spaces of a two-dimensional vector space (or projectively, points on P!), cf.
[Eriksson and Linusson, 2000b, Lemma 4.3]. Nonetheless, the conjecture is
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false, and we give examples below which show the bounds d < 3 and n < 2
are maximal for such a realizability statement. We found it interesting
that the combinatorics of permutation arrays prevent some naive attempts
at counterexamples from working; somehow, permutation arrays see some
subtle linear algebraic information, but not all.

Fiber permutation array varieties. If P is an [n]?t! permuta-
tion array, then there is a natural morphism X% — FI¢ corresponding to
“forgetting the last flag”. We call the fiber over a point (El,...,E%) a
fiber permutation array variety, and denote it X%(EL, ..., E). If the flags
El, ..., EZ are chosen generally, we call the fiber permutation array variety
a generic fiber permutation array variety. Note that a generic fiber per-
mutation array variety is empty unless the projection of the permutation
array to the “bottom hyperplane of P” is the transverse permutation array
Th,q, as this projection describes the relative positions of the first d flags.

The Schubert cells X (E}) are fiber permutation array varieties, with
d = 2. Also, any intersection of Schubert cells

le (Ei) N sz(Ef) n---N de(E:l)

is a disjoint union of fiber permutation array varieties, and if the E! are
generally chosen, the intersection is a disjoint union of generic fiber per-
mutation array varieties.

Permutation array varieties were introduced partially for this reason,
to study intersections of Schubert varieties, and indeed that is the point
of this paper. It was hoped that they would in general be tractable and
well-behaved (cf. the Realizability Conjecture 4.1), but sadly this is not the
case. The remainder of this section is devoted to their pathologies, and is
independent of the rest of the paper.

Permutation array schemes. We first observe that the more natu-
ral algebro-geometric definition is of permutation array schemes: the set of
d-tuples of flags in configuration P comes with a natural scheme structure,
and it would be naive to expect that the resulting schemes are reduced.
In other words, the “correct” definition of Xg will contain infinitesimal
information not present in the varieties. More precisely, the X7 defined
above may be defined scheme-theoretically by the equations (3.1), and these
equations will not in general be all the equations cutting out the set X%
(see the “Further Pathologies” discussion below). Those readers preferring
to avoid the notion of schemes may ignore this definition. Other readers
should re-define X to be the scheme cut out by equations (3.1), which is
a locally closed subscheme of FI¢. More explicitly, (3.1) specifies certain
rank conditions, which can be written in terms of equations as follows. Re-
quiring that the rank of a matrix is r corresponds to requiring that all of
the (r + 1) x (r + 1) minors vanish, and that some r x 7 minor does not
vanish.

We now give a series of counterexamples to the Realizability Conjec-
ture 4.1.
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Counterexample 1. Eriksson and Linusson defined their permuta-
tion array varieties over C, so we begin with a counterexample to realiz-
ability over K = C, and it may be read simply as an admonition to always
consider a more general base field (or indeed to work over the integers).
The Fano plane is the projective plane over the field F,, consisting of 7 lines
l1, ..., 47 and 7 points py, ..., pr. We may name them so that p; lies on
¢;, as in Figure 1. Thus we have a configuration of 7 flags over Fy. (This is
a projective picture, so this configuration is in affine dimension n = 3, and
the points p; should be interpreted as one-dimensional subspaces, and the
lines ¢; as two-dimensional subspaces, of K3.) The proof of Theorem 3.2 is
independent of the base field, so the rank table of intersection dimensions
of the flags yields a permutation array. However, a classical and straight-
forward argument in projective coordinates shows that the configuration
of Figure 1 may not be achieved over the complex numbers (or indeed over
any field of characteristic not 2). In particular, this permutation array va-
riety is not realizable over C. In order to patch this counterexample, one
might now restate the Realizability Conjecture 4.1 by saying that there
always exists a field such that X¢ is nonempty. However, the problems
have only just begun.

Fi1g. 1. The Fano plane, and a bijection of points and lines (indicated by arrows
from points to the corresponding line).

Counterexample 2. We next sketch an elementary counterexample
for n = 3 and d = 9, over an arbitrary field, with the disadvantage that it
requires a computer check. Recall Pappus’ Theorem in classical geometry:
if A, B, and C are collinear, and D, E, and F are collinear, and X =
AENBD,Y = AFNCD, and Z = BFNCE, then X, Y, and Z are
collinear [Coxeter and Greitzer, 1967, §3.5]. The result holds over any field.
A picture is shown in Figure 2. (Ignore the dashed arc and the stars for
now.)

We construct an unrealizable permutation array as follows. We imag-
ine that line Y Z does not meet X . (In the figure, the starred line Y'Z “hops
over” the point marked X.) We construct a counterexample with nine flags
by letting the flags correspond to the nine lines of our “deformed Pappus
configuration”, choosing points on the lines arbitrarily. We then construct
the rank table of this configuration, and verify that this corresponds to
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F1Gc. 2. Pappus’ Theorem, and a counterezample to Realizability in dimension
d=3 withn=29

a valid permutation array. (This last step was done by computer.) This
permutation array is not realizable, by Pappus’ theorem.

Counterexample 3. Our next example shows that realizability al-
ready fails for n = 4, d = 4. The projective intuition is as follows. Suppose
41, o, £, 4 are four lines in projective space, no three meeting in a point,
such that we require ¢; and £; to meet, except (possibly) 3 and £4. This
forces all 4 lines to be coplanar, so #3 and £, must meet. Hence we construct
an unrealizable configuration as follows: we “imagine” (as in Figure 3) that
¢35 and ¢4 don’t meet. Again, we must turn the projective picture in P? into
linear algebra in 4-space, so the projective points in the figure correspond
to one-dimensional subspaces, the projective lines in the figure correspond
to two-dimensional subspaces of their respective flags, etc. Again, the tail
of each arrow corresponds with the point which lies on the line the arrow
follows. We construct the corresponding dot array:

4

1
13 3
1 I 13 1 [3]2 2

Here the rows represent the flag F}, columns represent the flag F2, num-
bers represent the flag F2, and the boards represent the flag F. This is
readily checked to be a permutation array. The easiest way is to compare
it to the dot array for the “legitimate” configuration, where F§ and Fj do
meet, and using the fact that this second array is a permutation array by
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Theorem 3.2. The only difference between the permutation array above
and the “legitimate” one is that the circled 3 should be a 2.

1 2

F1G. 3. A counterezample to realizability with n =d = 4

Remark. Eriksson and Linusson have verified the Realizability Conjec-
ture 4.1 for n = 3 and d = 4 [Eriksson and Linusson, 2000b, §3.1]. Hence
the only four open cases left are n = 3 and 5 < d < 8. These cases seem
simple, as they involve (projectively) between 5 and 8 lines in the plane.
Can these remaining cases be settled?

Further pathologies from Mnév’s universality theorem: fail-
ure of irreducible and equidimensionality. Mnév’s universality the-
orem shows that permutation array schemes will be “arbitrarily” badly
behaved in general, even for n = 3. Informally, Mnév’s theorem states
that given any singularity type of finite type over the integers there is a
configuration of projective lines in the plane such that the corresponding
permutation array scheme has that singularity type. By a singularity type
of finite type over the integers, we mean up to smooth parameters, any sin-
gularity cut out by polynomials with integer co-efficients in a finite number
of variables. See [Mnév, 1985, Mnév, 1988] for the original sources, and
[Vakil, 2006c, §3] for a precise statement and for an exposition of the ver-
sion we need. (Mnév’s theorem is usually stated in a different language of
course.)

In particular, (i) permutation array schemes need not be irreducible,
answering a question raised in [Eriksson and Linusson, 2000b, §1.2.3].
They can have arbitrarily many components, indeed of arbitrarily many
different dimensions. (ii) Permutation array schemes need not be reduced,
i.e. they have genuine scheme-theoretic (or infinitesimal) structure not
present in the variety. In other words, the definition of permutation ar-
ray schemes is indeed different from that of permutation array varieties,
and the equations (3.1) do not cut out the permutation array varieties
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scheme-theoretically. (iii) Permutation array schemes need not be equidi-
mensional. Hence the hope that permutation array varieties/schemes might
be well-behaved is misplaced. In particular, the notion of Bruhat order is
problematic as already noted in [Eriksson and Linusson, 2000b]. We sus-
pect, for example, that there exist two permutation array schemes X and
Y such that Y is reducible, and some but not all components of Y lie in
the closure of X.

Although Mnév’s theorem is constructive, we have not attempted to
explicitly produce a reducible or non-reduced permutation array scheme.

5. Intersecting Schubert varieties. In this section, we consider a
Schubert problem in FI,, of the form

X=X, (ENNXp2(E2)N--- N Xya(EY)

with E},..., E¢ chosen generally and ). £(w') = (%). We show there is
a unique permutation array P for this problem if X is nonempty, and we
identify it. In Theorem 5.2 we show how to use P to write down equations
for X. These equations can also be used to determine if E!, ... E¢ are
sufficiently general for computing intersection numbers. The number of
solutions will always be either infinite or no greater than the expected
number. The expected number is achieved on a dense open subset of FI<.
It may be useful for the reader to refer to the examples in Section 6 while
reading this section.

THEOREM 5.1. If X is 0-dimensional and nonempty, there exists a
unique permutation array P C [n]¢t! such that

dim (E} NE2, N---NE} NF,,,) =rkP[z]

d+1)

for all Fy € X and all z € [n]%*1. Hence, X is equal to the fiber permuta-
tion array variety X% (EL,... E%).

It is natural to ask which permutation array this is, and this will be
necessary for later computations. We describe the permutation array (in
the guise of its rank table) in Subsection 5.1.

The generalization to the case where X has positive dimension is left
to the interested reader; the permutation array then describes the generic
behavior on every component of X. The argument below carries through
essentially without change.

Proof. Consider the variety

X' = X1 (Fy) X 71, X2 (Fo) X7, -+ X 71, Xypa(Fy). (5.1)

Here F, is the flag parametrized by the base Fl,,. The “incidence variety”
X' is a product of Schubert variety bundles over the flag variety, and hence
clearly irreducible; its dimension is

dimX' = (d+1) (;‘) - ;e(wi) = d(Z).
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Let E! be the flag parametrized by the ith factor of (5.1). To each point
of X' there is a permutation array describing how the d + 1 flags E.,
EZ, F, meet, i.e. with rank table
dim (E} NE2,N---NE} NF,,.,).

As each entry in the rank table is uppersemicontinuous, there is a dense
open subset U C X' on which the rank table (and hence the permutation
array) is constant. Let X' = X' — U. By the hypothesis ., {(w?) = (3),
the morphism X’ — FI¢ (remembering the flags E.,..., EZ) is generically
finite, and as dim 0X' < dim X' = dim FI¢, the preimage of a general point
of FiI¢ (i.e. X) misses dimdX'. O

We next describe how to compute the rank table described in Theo-
rem 5.1.

5.1. Permutation array algorithm. We describe the rank table of
the general element of the product of bundles (5.1). We will compute

dim (B3, NN E2 N F,,,)

inductively on p, where the base case p = 0 is trivial. We assume that the
answer is known for p—1, and describe the case p. Let V = E;l n-- -ﬂE;’;_ll.
This meets flag F, in a known way (by the inductive hypothesis, say the
it lies in the Schubert cell X, (F,) in the Grassmannian G(dim V,n)), and
E% meets F, in a known way, corresponding to permutation wP. As we
are considering a general element of the product of bundles, the question
boils down to the following: given a general element [V] € X,(F,) C
G(dim V,n), and a general element [E}] € Xy (Fs) C Fl,, how do V, EY,
and F, meet, i.e. what is

dim(VNE] NFy,,,)

as zp and z441 vary through {1,...,n}? In other words, we have the data
of one n x n table, containing the entries dim(EL N Fj,,,) (the data of
wP; here z, and z441 vary through {1,...,n}), and we wish to fill in the
entries of another n x n table, with entries dim(V N Ef N F, where
one edge (where z, = n) is known (the data of V).

We now address this linear algebra problem. We fix EL and F,, and
let V' vary in X{(F,). Choose a basis ei, ..., e, of our n-dimensional
space, so that F; = (e1,...,e;), and E! is the span of the appropriate ¢
basis elements in terms of the permutation array for the permutation w?,
ie. E;’ is the span of the e;’s where i € {w,...,w;} and w = wo(wP)~!.
We can assume that F, is actually in the Schubert cell X2,(EY), not just
the Schubert variety X,»(E?%): by repeating this discussion with any com-
ponent of the boundary, we see that such a boundary locus is of strictly
smaller dimension. (Again, the interested reader will readily generalize this

d+l)7
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discussion to the case where X has positive dimension; the generalization
of Theorem 5.1 gives a permutation array for the behavior at the general
point of each component of X.)

The Schubert cell X corresponds to a subset A = {A1,..., Adimv } C
{1,...,n}, and a general element [V] of X, (F,) is spanned by the vectors

vy =T%e1 + -+ +7ey, (5.2)

vy =71 + -+ + Tex, + - +7ex,, (5.3)
5.4)

Vaimy =71+ 4 Texs + - + 2eram vy + o F€xrmm v (5.5)

where the non-zero coefficients (the question marks) are chosen generally.
Let V; be the set of indices j such that e; has non-zero coefficient in v;.

We wish to compute dim(V N E N Fy) for each j = ) and k = z441.
This is now a rank calculation: V N Fj, is the span of those basis elements
of V (in (5.2)-(5.5)) involving no basis elements above ej. We seek the
dimension of the intersection of this with E;’ , which is the span of known
standard basis elements indexed by I;. Therefore,

dim(V' N EY N Fy,) = dim(span{v; : A\; < k} Nspan{ew,,---,ew;}) (5.6)

where w = wo(wP) ! as above. This dimension is the corank of the matrix
whose rows are determined by the given basis of V N F;,,, and the basis
of EZ . This can be computed “by eye” as follows. We then look for k
columns, and more than k of the first dim V' rows each of whose question
marks all appear in the chosen k columns. Whenever we find such a con-
figuration, we erase all but the first k& of those rows — the remaining rows
are dependent on the first k. The number of rows of the matrix remaining
after this operation is the rank of the matrix, and the number of erased
rows is the corank.

Thus we have described how to compute the rank table of the general
element of the product of bundles (5.1).

One interesting problem in Schubert calculus is to determine efficiently
if a structure constant for H*(G/B,Z) is zero, or equivalently if X is
empty. In the case of the Grassmannian manifold, non-empty Schubert
problems are related to triples of eigenvalues satisfying Horn’s recurrence
and Knutson-Tao honeycombs [Knutson and Tao, 2001]. For the flag man-
ifold, both Knutson [Knutson, 2001] and Purbhoo [Purbhoo, 2006] gave a
sufficient criteria for vanishing in terms of decent cycling and “root games”
respectively. Below we give a criteria for vanishing that is very easy to
compute, in fact more efficient than Knutson or Purbhoo’s result, how-
ever, less comprehensive. As evidence that our criteria is more efficient,
we give a pseudo random example in Sy which was computed in a few
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seconds on by a computer. This technique has been extended recently
in [Ardila and Billey, 2006] by considering a matroid on the 1-dimensional
spans E} N---NEJ .

COROLLARY 5.1. Let P be the permutation array whose rank table
coincides with the table constructed by the algorithm in Section 5.1 for a
given collection of permutations w', ..., w? such that 3, £(w?) = (%3). Let
P, be the projection of P onto the first d coordinates following the notation
of Theorem 3.3. If P, # T, q4, then X is the empty set.

When d = 4, this corollary can often be used to detect when the
coefficients c;;, are zero in Equation 2.2. This criterion catches 7 of the
8 zero coefficients in 3 dimensions, 373 of the 425 in 4 dimensions, and
28920 of the 33265 in dimension 5. The dimension 3 case missed by this
criterion is presumably typical of what the criterion fails to see: there are
no 2-planes in 3-space containing three general 1-dimensional subspaces.
However, given a 2-plane V', three general flags with 1-subspaces contained
in V are indeed transverse.

The corollary and algorithm are efficient to apply. For example, con-
sider the following three permutations (anagrams) of the name “Richard
P. Stanley” in Si5.! To interpret these phases as permutations, only the
letters count — not spaces or punctuation — the permutation is not case-
sensitive, and repeated letters are listed in their original order in the name
which is also the identity element.

e y = A Children’s Party
e v = Hip Trendy Rascal

e w = Raid Ranch Let Spy.
Using a computer, we can easily compute P, corresponding to X = X, N
X, N Xyt

11 7
14
14 11 3
15
15 14 11 5

15 8
P15 = 15 14 13
15 14 8 4
15 14 13 12
15 14 13 8 3 2
15 14 13 12 1 9
5 8 2 1
15 13 11 10

L 15 13 8 7

Clearly, P15 # T15,3 so X is empty and c;%" = 0.

The array T, 4 is an antichain under the dominance order on [n]¢ so
each element x € T,, 4 corresponds with a principle subarray T, 4[z] = {x}
consisting of a single element. Therefore, each z € T}, 4 corresponds with

a 1-dimensional vector space E} NE2 N---NEJ 1 NE!. Define

1 d
V(Eov"'7Eo) = {/Uw | z € Tn,d}
!The name Richard P. Stanley has an unusually high number of interesting ana-

grams. Stanley has a long list of such anagrams on his office door. They are also
available on his homepage by clicking on his name.
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to be a collection of non-zero vectors chosen such that v, € E} NE? N---N
Egd. These lines will provide a “skeleton” for the given Schubert problem.

THEOREM 5.2. Let X = X1 (EH) N X2 (E2) N - N Xpa(E2) be a
0-dimensional intersection, with E},... EZ general. Let P C [n]?*! be
the unique permutation array associated to this intersection. Then poly-

nomial equations defining X can be determined simply by knowing P and
V(EL,...,Ed).

To prove the theorem, we give an algorithm for constructing the prom-
ised equations in terms of the data in P and V(EL, ..., E?). Then we ex-
plain how to construct all the flags in X from the solutions to the equations.

Proof. Let Py,..., P, be the sequence of permutation arrays in [n]?
used to obtain P in the EL-Algorithm in Theorem 3.3. If F, € X, then
by Corollary 3.1 P; is the unique permutation array encoding dim(E;1 N
EgZ n---N Egd N F;). Furthermore, for each z € P;,1 < i < n, choose
a representative vector in the corresponding intersection, say v € El N
E2 N---NE! NF;. Define

Vi={v, |y € B}
Vilz] = {v, | y € Pa]}.

More specifically, choose the vectors v so that v} ¢ Span(V;[z] \ {vi})
since the rank function must increase at position z. Therefore, we have

v.rk(Vi[z]) = rk(P;[z]) (5.7)

for all z € [n]? and all 1 < i < n where v.rk(S) is the dimension of the
vector space spanned by the vectors in S. These rank conditions define X.

Let V,, = V(EL, ..., E2) be the finite collection of vectors in the case
i =n. Given Viy1, Piy1 and P;, we compute

Vi={v, | z € P}

recursively as follows. If z € P; N P;;; then set

i _ il
vl =it
If z € P\ Piy1 and y,...,z is a basis set for Piq[z], ie. oit!, ... oit!

are independent and span the vector space generated by all vit! with w €
P;;1[z], then set

i
T

Uy = CyUy + e+ CLU (5.8)

where ¢! ,...,ci are indeterminate. Now the same rank equations as in
(56.7) must hold. In fact, it is sufficient in a 0-dimensional variety X to
require only

vrk{v} | y € Pi[z]} < rk(P[x]) (5.9)
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for all z € [n]¢ and all 1 <4 < n. Let minors,(M) be the set of all k x k
determinantal minors of a matrix M. Let M(V;[z]) be the matrix whose
rows are given by the vectors in V;[z]. Then, the rank conditions (5.9) can
be rephrased as

minorsTk(P;[:c])—i—l (M(V;[JI])) =0 (510)

for all 1 <i < n and z € [n]? such that 3" z; > (d — 1)n.

For each set of solutions S to the equations in (5.10), we obtain a
collection of vector sets by substituting solutions for the indeterminates in
the formulas (5.8) for the vectors. Note, these “solutions” may be written
in terms of other variables so at an intermediate point in the computation,
there could potentially be an infinite number of solutions. We further
eliminate variables whenever a vector depends only on one variable cé by
setting it equal to any nonzero value which does not force another ¢ = 0.
If ever a solution implies ¢! = 0, then the choice of E.,..., EZ was not
general. Let V;°,... V.S be the final collection of vector sets depending on
the solutions S. Since X is 0-dimensional, if V;%,...V,> depends on any
indeterminate then El,..., Ed was not general. Let F° be the span of
the vectors in V;°. Then the flag FY = (F7,..., F?) satisfies all the rank
conditions defining X = X(E!,..., E¢). Hence, FY € X. O

COROLLARY 5.2. The equations appearing in (5.10) provide a test
for determining if EL, ..., E2 is sufficiently general for the given Schubert
problem. Namely, the number of flags satisfying the equations (5.10) is the
generic intersection number if each indeterminate ct takes a nonzero value,
and the solution space determined by the equations is 0-dimensional.

REMARK 5.1. Theorem 5.2 has two clear advantages over a naive
approach to intersecting Schubert varieties. First, we have reduced the
computational complexity for finding all solutions to certain Schubert prob-
lems. See Section 5.2 for a detailed analysis. Second, we see the permuta-
tion arrays as a complete flag analog of the checkerboards in the geomet-
ric Littlewood-Richardson rule of [Vakil, 2006a]. More specifically, checker
boards are two nested [n]*> permutation arrays. A permutation array P can
be thought of as n nested permutation arrays Py, Ps, ..., P, using the nota-
tion in Theorem 3.3. Then the analog of the initial board in the checker’s
game would be the unique [n)? permutation array corresponding to two per-
mutations u and v, the final boards in the tree would encode the permu-
tations w such that c¥, # 0 in (2.2). The “legal moves” from level i
to level i + 1 can be determined by degenerations in specific cases solving
the equations in Theorem 5.2, but we don’t know a general rule at this

time. A two-step version of such a rule is given in [Coskun], see also
[Coskun and Vakil].

5.2. Algorithmic Complexity. It is well known that solving Schu-
bert problems are “hard”. To our knowledge, no complete analysis of the
algorithmic complexity is known. We will attempt to show that the ap-
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proach outlined in Theorem 5.2 typically reduces the number of variables
introduced into the system, while unfortunately increasing the number of
rank conditions. Therefore, the entire process is still exponential as both
n and d grow large.

For a fixed n and d, the following naive approach would imply that a
typical Schubert problem would require one to consider d - n? rank condi-
tions in n? variables. First, consider an arbitrary flag Fy, € Fl,,. In terms
of a fixed basis, {e1,...,en,}, one could give an ordered basis for F, with n?
variable coefficients. Then for each permutation w? for 1 < i < d, the con-
dition that Fy € X,,:(E?) is equivalent to n? rank conditions by definition
(2.1). Each rank condition, can be checked via determinantal equations on
matrices with entries among the n? variables.

One could easily improve the naive computations in two ways:

1. Assume F, € X,:(E'). Then one would need at most (%) vari-
ables and only (d — 1)n? additional rank conditions.

2. Second, some of the rank conditions in (2.1) are redundant. One
only needs to check the conditions for pairs in Fulton’s essential
set [Fulton, 1991]. Eriksson and Linusson
[Eriksson and Linusson, 1995] have shown that the average size of
the essential set is %n? However, this does not significantly reduce
the number of rank equations on average or in the worst case.

In our approach, the number of rank conditions grows like n?, i.e.
polynomial in n for a fixed d but exponential in d. We have succeeded in
solving many Schubert problems for n = 6 and d = 3 using this approach.
There are Schubert problems for n = 8 and d = 3 for which our code
in Maple cannot solve the associated system of equations. Computing
the unique permutation array associated to a collection of permutations is
relatively quick. In the next section we give an example with n = 15 and
d = 3 which was calculated in just a few seconds. Examples with n = 25
and d = 3 take just over 1 minute.

The main advantage of our approach is that variables are only in-
troduced as necessary. In order to minimize the number of variables, we
recommend solving the equations in a particular order. First, it is useful
to solve all equations pertaining to V; 1 before computing the initial form
of the vectors in V;. Second, we have found that proceeding through all
z € [n]? such that >~ z; > (d — 1)n in lexicographic order works well, with
the additional caveat that if P;[z] = {z} then the matrix M with rows
given by the vectors indexed by {z} U (P; N P;41) must have rank at most
i. Solve all of the determinantal equations implying the rank condition
v.rk(Vi[z]) = rk(P;[z]) simultaneously and substitute each solution back
into the collection of vectors before considering the next rank condition.
The second point is helpful because we solve all rank ¢ equations before
considering the rank 7 + 1 equations.

The following table gives the number of free variables necessary for
solving all Schubert problems with n = 3,4,5 and d = 3. Row n and
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column ¢ gives the number of Schubert problems for that n requiring i free
variables.

0 1 2 3 4 5
n=3 8 1 0 0 0 0
n=4 176 23 11 1 0 0
n=>5 10639 910 585 457 135 0

For n = 6, all examples computed so far (over 10,000) require at most
5 free variables.

It is well known in that solving more equations with fewer variables is
not necessarily an improvement. More experiments are required to charac-
terize the “best” method of computing Schubert problems. We are limited
in experimenting with this solution technique to what a symbolic program-
ming language like Maple can do in a reasonable period of time. The
examples in the next section will illustrate how this technique is useful
in keeping both the number of variables and the complexity of the rank
equations to a minimum.

6. The key example: triple intersections. We now implement the
algorithm of the previous section in an important special case. Our goal
is to describe a method for directly identifying all flags in X = X, (E}) N
X, (E?) N Xy(E2) when £(u) + £(v) + {(w) = (%) and E!, E2?, and E?
are in general position. This gives a method for computing the structure
constants in the cohomology ring of the flag variety from equations (2.2)
and (2.4) .

There are two parts to this algorithm. First, we use Algorithm 5.1 to
find the unique permutation array P C [n]* with position vector (u,v,w)
such that P, = T, 3. Second, given P we use the equations in (5.10) to
find all flags in X.

As a demonstration, we explicitly compute the flags in X in two cases.
For convenience, we work over C, but of course the algorithm is independent
of the field. In the first there is just one solution which is relatively easy to
see “by eye”. In the second case, there are two solutions, and the equations
are more complicated. The algorithm has been implemented in Maple and
works well on examples where n < 8.

ExampLe 1. Let u=(1,3,2,4), v = (3,2,1,4), w = (1,3,4,2). The
sum of their lengths is 1+3+2 =6 = (3). The unique permutation array
P € [4]* determined by Algorithm 5.1 consists of the following dots:

(4421) (4142) (2442) (4233) (3243)
(3433) (4414) (4324) (3424) (3334)
(2434) (2344) (1444)

The EL-algorithm produces the following list of permutation arrays
Py, Py, P3, Py in [4] corresponding to P:
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1

1 1 i3

il [3 1132

2] [4 2] [4[3] 12] [4[3]2]1
P P P; 2

Notice that P, is the transverse permutation array Ty 3. Notice also how
to read u, v, and w from Py, ..., Py: P; has one less row than P;;; listing
these excised rows from right to left yields u. Similarly, listing the excised
columns from right to left yields v, and listing the excised numbers from
right to left yields w (see the example immediately above).

We want to specify three transverse fixed flags E}, E?, E2. It will
be notationally convenient to represent a vector v = (v1,...,v,) by the
polynomial v; 4+ vox + - - - +v,2" 1. We choose three flags, or equivalently
three “transverse” ordered bases, as follows:

El- = <17:L.7 $2’$3)
Eg = <m37m27'r7 ]‘)
E} = ((@+1)P(@+1)?(z+1),1)

We will show that the only flag in X, (E!) N X, (E?) N X, (E?) is
Fy=(2+3z 2% 23, 2%, 1). (6.1)

For each element (i, j, k) in Py, we choose a vector in the corresponding
1-dimensional intersection E} N EF N E} N Fy and put it in position (4, j)
in the matrix below:

0 0 0 1
102 g3y 1 | O 0 z z+1
V(ananEo) - V4 - 0 2 .’L’(iC + ]_) (.’L’ + ]_)2

x3 x2($+ 1) z(z+1)? (z+1)3

In P;3, every element in the 4th column is covered by a subset in the an-
tichain removed from P;. This column adds only one degree of freedom so
we establish V3 by adding only one variable in position (2,4) and solving
all other rank two equations in terms of this one:

0 0 0 0
Ve — 0 0 0 1+4+2z)+cz
2710 z? 0 142+ 1+c)z(1+2)

2 2’z +1) 0 (z+1)2+cx(z+1)2

According to equation (5.8) the entry in position (4,2) can have two inde-
terminates: b(1 + x) + cx, where b,c¢ # 0. As any two linearly dependent
ordered pairs (b, ¢) yield the same configuration of subspaces, we may nor-
malize b to 1.
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Once V3 is determined, we find the vectors in V5. In Ps, every element
is contained in P3, so V5 is a subset of V3:

0 00 0
Vo — 0 00 1+ 2+ o)z
10 00 0
2 0 0 (z+1)2+cx(z+1)>2
The rank of P, is 2, so all 3 x 3 minors of the following matrix must be
Zero:
0 0 0 1
1 2+4¢ 0 0
1 24¢ 142¢ ¢
In particular, 1 + 2¢ = 0, so the only solution is ¢ = —%. Substituting for
¢, we have
0 00 0
ys_| 0 00 1+ 32
2 0 00 0

2 0 0 (z+1)%—iz(z+1)?
Finally P is contained in P, so V;° contains just the vector
1 1
v%4’4’2) = v%4’4’2) =(x+1)% - 53:(3: +1) = 5(2 + 3z — 23).

Therefore, there is just one solution, namely the flag spanned by the
collections of vectors V;%, V5%, V3%, V;° which is equivalent to the flag in (6.1).

If we choose an arbitrary general collection of three flags, we can always
change bases so that we have the following situation:

El = (1,z,2% 2°)
E% = <m37m27m7 1)
E? = (a1 +asz+azx®+23 by +box+22 ¢ +x,1).

Using these coordinates, the same procedure as above will produce the
unique solution

F, = {(a; — agby) + (az — byaz)zx — z3, 23, 22, 1).

ExaAMPLE 2. This example is of a Schubert problem with multiple
solutions. Let u = (1,3,2,5,4,6), v = (3,5,1,2,4,6), w = (3,1,6,5,4,2).
If P is the unique permutation array in [6]* determined by Algorithm 5.1
for u, v, w then the EL-algorithm produces the following list of permutation

arrays P, ..., Ps in [6]® corresponding to P:
4 4
5
2 4 2 5 4 2
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6
6 6 6[5
6[5 6[5[4
6| [4 6|5]4 6]5|4|(3
6 [5 6 [5[4]2 615[4[3][2
6[5 [4] [2 65 [4]|2]1 6(5(4]3]|2]|1
We take the following triple of fixed flags:
El = (1,z,...,2°%)
E2 = (2%,...,2,1)
E = (1+2z)0+2z)4,...,1)

The third flag is clearly not chosen generally but leads to two solutions
to this Schubert problem which is the generic number of solutions. We
prefer to work with explicit but simple numbers here to demonstrate the

computation without making the formulas too complicated.
The vector table associated to Py is easily determined by Pascal’s
formula:

[0,0,0,0,1,0]

[0,0,0,1,0,0]

[0,0,0,1,1,0]

i

i
[0,0,1,0,0,0]
[0,0,1,1,0,0]

[0,0,1,2,1,0]

[0,1,1,0,0,0]
[0,1,2,1,0,0]

[0,1,38,3,1,0]

[1,0,0,0,0,0] 7
[1,1,0,0,0,0]
[1,2,1,0,0,0]
[1,3,3,1,0,0]

[1,4,6,4,1,0]

[0,0,0,0,0,1] [0,0,0,0,1,1] [0,0,0,1,2,1] [0,0,1,3,3,1] [0,1,4,6,4,1] [1,5,10,

10, 5, 1]

The vector table associated to Ps has one degree of freedom. The
vector in position (3,5) is freely chosen to be z + cz?. Then for all other
points in Ps; \ Ps we can solve a rank 2 equation which determines the
corresponding vector in terms of ¢. Therefore, V5 becomes

i i i i i i
0 i i i i 1, 22te=1) 16,0, 0,0]
—13410c —104T7c
0 0 0 0 [0,1,¢,0,0,0] [1, 5EHi8e, —04Te
0,0, 0]
il i i 0,0, 1, 0,1, =gfLe, (1,6 =gfde, 32470,
—6 6(c—1) 2(—7+4¢)
=00 e 000 “=s15c 00
i o4 0 001, =5, fo,1, 3243), [1,4,6,4,1,0]
—2—c 3(—342¢ —8+5¢
=z 0 8(=H3a), ey Y
25 2% 425 [0,0,1, =%, 10,1,4,6,4,1] 11,5, 10, 10, 5, 1]
—3c 2(1—c
c—4° c—4 ]
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Every vector in V4 appears in Vj, but now some of them are subject
to new rank conditions:

0 I I 0 0 0
i 0 0 0 i (1, 22=1 5.0,0,0

1 i i il 1 il

—6 6(—5+3¢ 3(—1247 ¢
i i i 0,0,1, =5,0,0] 01, 8pE8e) 83T e),
2(=744¢)
—=835c 00l
] o4 ] 0,01, =%, -2£ i I
| 25 2%*42% [ jo,0,1, =&, 282, =2¢42) | [1,444d,6+4d,4+6d,1+4d,d]

DR R iy )

In particular, the top 3 vectors should span a two-dimensional subspace.
This happens if the following matrix has rank 2:

1 o=l 0 0 00
1 6(—5+3c) 3(—12+4T7c) 2(=T+4c) 00
—8+5¢ —8+5¢ —8+5¢
0 0 1 £ 00

or equivalently if the following nontrivial minors of the matrix are zero

4(10c+c* —20) —8(10¢c+¢* —20) —8(10c+ ¢* — 20)
3c(—8+5¢c) (-8+5c)(c—4)c’ (-8+5¢c)(c—4)’

—8(c—1) (10c+ ¢* — 20)
3(-8+5¢)(c—4)c

All rank 3 minors will be zero if ¢ + 10c — 20 = 0, or ¢ = —5 £ 3/5.
Plugging each solution for c¢ into the vectors gives the two solutions Vfl
and I/;SZ. For example, using ¢ = —5 + 3/5 and solving a single rank 2
equation involving d gives:

’- i 1 1 i il i

245
0 0 0 0 0 11,10 ZEV20,0,0,0

i 1 1 i il i

2 20495 474215
i i i [0,0,1, =2y, 0,0) 0 235V 114575

9445
2 11+5\/5’0’0]

4 2 1+v5
i @ 1 [0,0,1, 2, - 322 0l 0 i

25 24 4 B 2 _ 5435 —2(2+V5) 545 _
+ i [0,0,1,(3+ﬁ), 31vs ' arvs ) 0 [ 77.2VE -5+ 3VE,

L -5+ 2vs, 22

The remaining vectors in V;>, V;° 1,V3S1 will be a subset of V;>' so no
further equations need to be solved, and similarly for VfZ.
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7. Monodromy and Galois groups. The monodromy group of a
problem in enumerative geometry captures information reflecting three as-
pects of algebraic geometry: geometry, algebra, and arithmetic. Informally,
it is the symmetry group of the set of solutions. Three more precise inter-
pretations are given below. Historically, these groups were studied since
the nineteenth century [Jordan, 1870, Dickson et al., 1916, Weber, 1941];
modern interest probably dates from a letter from Serre to Kleiman in the
seventies (see the historical discussion in the survey article [Kleiman, 1987,
p. 325]). Their modern foundations were laid by Harris [Harris, 1979);
among other things, he showed that the monodromy group of a problem is
equivalent to the Galois group of the equations defining it.

These groups are difficult to compute in general, and indeed they are
known for relatively few enumerative problems. In this section, we use the
computation of explicit algebraic solutions to Schubert problems (along
with a criterion from [Vakil, 2006b]) to give a method to compute many
such groups explicitly (when they are “full”, or as large as possible), and
to give an experimental method to compute groups in other cases.

It is most interesting to exhibit cases where the Galois/monodromy
group is unexpectedly small. Indeed, Harris writes of his calculations:

the results represent an affirmation of one understanding

of the geometry underlying each of these problems, in the

following sense: in every case dealt with here, the actual

structure on the set of solutions of the enumerative prob-

lem as determined by the Galois group of the problems, is

readily described in terms of standard algebrao-geometric

constructions. In particular, in every case in which cur-

rent theory had failed to discern any intrinsic structure on

the set of solutions — it is proved here — there is in fact

none. [Harris, 1979, p. 687-8]
We exhibit an example of a Schubert problem whose Galois/monodromy
group experimentally appears to be smaller than expected — it is the di-
hedral group Dy C Sy. This is the first example in which current theory
fails to discern intrinsic structure. Examples of “small” Galois groups were
given in [Vakil, 2006b, Sect. 5]; but there an explanation had already been
given by Derksen. Here, however, we have a mystery: We do not under-
stand geometrically why the group is Ds. (However, see the end of this
section for a conjectural answer.)

We now describe the three interpretations of the Galois/monodromy
group for a Schubert problem. The definition for a general problem in
enumerative geometry is the obvious generalization; see [Harris, 1979] for a
precise definition, and for the equivalence of (4) and (B). See [Vakil, 2006b,
Sect. 2.9] for more discussion.

(A) Geometry. Begin with m general flags; suppose there are N solu-
tions to the Schubert problem (i.e. there are N flags meeting our m given
flags in the specified manner). Move the m flags around in such a way
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that no two of the solutions ever come together, returning the m flags to
their starting positions, and follow the N solutions. The N solutions are
returned to their initial positions as a set, but the individual N solutions
may be permuted. What are the possible permutations? (See the applet
http://lamar.colostate.edu/~jachter/mono.html for an illustration of
this concept.)

(B) Algebra. The m flags are parameterized by FI7'. Define the
“solution space” to be the subvariety of FI,, x FI" mapping to FI}, corre-
sponding to those flags satisfying the given Schubert conditions. There is
one irreducible component X of the solution space mapping dominantly to
FI™; the morphism has generic degree N. The Galois/monodromy group
is the Galois group of the Galois closure of the corresponding extension of
function fields. The irreducibility of X implies that the Galois group G is
a transitive subgroup of Sy .

(C) Arithmetic. If the m flags are defined over Q, then the smallest
field of definition of a solution must have Galois group that is a subgroup of
the Galois/monodromy group G. Moreover, for a randomly chosen set of m
flags, the field of definition will have Galois group precisely G with positive
probability (depending on the particular problem). The equivalence of this
version with the previous two follows from (B) by the Hilbert irreducibility
theorem, as FII" is rational ([Lang, 1983, Sect. 9.2], see also [Serre, 1989,
Sect. 1.5] and [Cohen, 1981]). We are grateful to M. Nakamaye for discus-
sions on this topic.

Given any enumerative problem with N solutions, we see that the
Galois/ monodromy group is a subgroup of Sy; it is well-defined up to
conjugacy in Sy . As the solution set should be expected to be as symmetric
as possible, one should expect it to be as large as possible; it should be Sy
unless the set of solutions has some additional geometric structure.

For example, in [Harris, 1979], Harris computed several Galois/ mon-
odromy groups, and in each case they were the full symmetric group, unless
there was a previously known geometric reason why the group was smaller.
The incidence relations of the 27 lines on a smooth cubic surface prevent
the corresponding group from being two-transitive. There exist two of the
27 lines that intersect, and there exist another two that do not. These
incidence relations can be used to show that the Galois/monodromy group
must be contained in the reflection group W (Eg) C Sa7, e.g. [Manin, 1974,
Sects. 25, 26] or [Hartshorne, 1977, Prob. V.4.11]; Harris shows that equal-
ity holds [Harris, 1979, III.3].

Other examples can be computed based on permutation arrays.

COROLLARY 7.1. The explicit equations defining a Schubert problem
in Theorem 5.2 can be used to determine the Galois/monodromy group for
the problem as well.

As a toy example, we see that the monodromy group for Example 2
is Sa, as there are two solutions to the Schubert problem, and the only
transitive subgroup of Sz is S itself. Algebraically, this corresponds to the
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fact that the roots of the irreducible quadratic ¢? + 10c — 20 in example 2
generate a Galois extension of Q with Galois group Ss.

Unfortunately, the calculations of monodromy groups for flag varieties
becomes computationally infeasible as n — 10 where the number of so-
lutions becomes larger. Therefore, we have considered related problems
of computing Schubert problems for the Grassmannian manifolds G(k, n).
Here, G(k,n) is the set of k-dimensional planes in C". Schubert vari-
eties are defined analogously by rank conditions with respect to a fixed
flag. These varieties are indexed by partitions A = (A1,..., ;) where
AL > -+ > Ag > 0. The permutation arrays work equally well for keep-
ing track of the rank conditions for intersecting Schubert varieties in the
Grassmannian if we replace the condition that a permutation array must
have rank n by requiring rank k.

In the case of the Grassmannian, combinatorial criteria were given
for the Galois/monodromy group of a Schubert problem to be Ay or Sy
in [Vakil, 2006b]. Intersections on the Grassmannian manifold may be
interpreted as a special case of intersections on the flag manifold, so our
computational techniques apply. We sketch the criteria here, and refer the
reader to [Vakil, 2006b] for explicit descriptions and demonstrations.

CRITERION 7.1. Schubert Induction. Given a Schubert problem
in the Grassmannian manifold, o choice of geometric degenerations yields
a directed rooted tree. The edges are directed away from the root. Each
verter has out-degree between 0 and 2. The portion of the tree connected to
an outward-edge of a vertex is called a branch of that vertex. Let N be the
number of leaves in the tree.

(i) Suppose each vertex with out-degree two satisfies either (a) there
are a different number of leaves on the two branches, or (b) there
is one leaf on each branch. Then the Galois/monodromy group of
the Schubert problem is An or Sy.

(i) Suppose each verter with out-degree two has a branch with one leaf.
Then the Galois/monodromy group of the Schubert problem is Sn.

(#ii) Suppose that each vertex with out-degree two satisfies (a) or (b)
above, or (c) there are m # 6 leaves on each branch, and it is known
that the corresponding Galois/monodromy group is two-transitive.
Then the Galois/monodromy group is An or Sn.

Part (i) is [Vakil, 2006b, Thm. 5.2], (ii) follows from the proof of
[Vakil, 2006b, Thm. 5.2], and (iii) is [Vakil, 2006b, Thm. 5.10]. Criterion (i)
seems to apply “almost always”. Criterion (ii) applies rarely. Criterion (iii)
requires additional information and is useful only in ad hoc circumstances.

The method discussed in this paper of explicitly (algebraically) solving
Schubert problems gives two new means of computing Galois groups. The
first, in combination with the Schubert induction rule, is a straightforward
means of proving that a Galois group is the full symmetric group. The
second gives strong experimental evidence (but no proof!) that a Galois
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group is smaller than expected.

CRITERION 7.2. Criterion for Galois/monodromy group to be
full. If m flags defined over Q are exhibited such that the solutions are
described in terms of the roots of an irreducible degree N polynomial p(z),
and this polynomial has a discriminant that is not a square, then by the
arithmetic interpretation (C) above, the Galois/monodromy group is not
contained in Ap.

Hence in combination with the Schubert induction criterion (i), this
gives a criterion for a Galois/monodromy group to be the full symmetric
group Sy.

(In principle one could omit the Schubert induction criterion: if one
could exhibit a single Schubert problem defined over Q whose Galois group
was Sy, then the Galois/monodromy group would have to be Sy as well.
However, showing that a given degree N polynomial has Galois group Sy
is difficult; our discriminant criterion is immediate to apply.)

The smallest Schubert problem where Criterion 7.1(i) applies but Cri-
terion 7.1(ii) does not is the intersection of six copies of the Schubert va-
riety indexed by the partition (1) in G(2,5) (and the dual problem in
G(3,5)). Geometrically, it asks how many lines in P* meet six planes.
When the planes are chosen generally, there are five solutions (i.e. five
lines). By satisfying the first criterion we know the Galois/monodromy
group is “at least alternating” i.e. either Ay or Sy, but we don’t know
that the group is Sy. We randomly chose six planes defined over Q. Maple
found the five solutions, which were in terms of the solutions of the quin-
tic 10125 — 5542* + 8872% — 53622 + 194z — 32. This quintic has non-
square discriminant, so we conclude that the Galois/monodromy group is
Ss. As other examples, the Schubert problem (2)2(1)* in G(2,6) has full
Galois/monodromy group Sg, the Schubert problem (2)(1)% in G(2,6) has
full Galois/monodromy group Sy, and the Schubert problem (2,2)(1)° in
G(3,6) has full Galois/monodromy group Sg. We applied this to many
Schubert problems and found no examples satisfying Criterion 7.1(i) or
(iii) that did not have full Galois group Sn.

As an example of the limits of this method, solving the Schubert prob-
lem (1)% in G(2,6) is not computationally feasible (it has 14 solutions), so
this is the smallest Schubert problem whose Galois/monodromy group is
unknown (although Criterion 7.1(i) applies, so the group is A4 or Si4).

CRITERION 7.3. Probabilistic evidence for smaller Galois or
monodromy groups. If for a fixed Schubert problem, a large number of
“random” choices of flags in Q" always yield Galois groups contained in a
proper subgroup G C Sy, and the group G is achieved for some choice of
Schubert conditions, this gives strong evidence that the Galois/monodromy
group is G.

This is of course not a proof — we could be very unlucky in our
“random” choices of conditions — but it leaves little doubt.

As an example, consider the Schubert problem (2,1,1)(3,1)(2,2)? in
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G(4,8). There are four solutions to this Schubert problem. When random
(rational) choices of the four conditions are taken, Maple always (experi-
mentally!) yields a solution in terms of \/a + by/c where a, b, and c are
rational. The Galois group of any such algebraic number is contained in
D,: it is contained in Sy as v/a + by/c has at most 4 Galois conjugates,
and the Galois closure may be obtained by a tower of quadratic extensions
over Q. Thus the Galois group is a 2-subgroup of Sy and hence contained
in a 2-Sylow subgroup Dj.

We found a specific choice of Schubert conditions for which the Galois
group of the Galois closure K of Q(y/a + by/c) over Q was Dy. (The
numbers a, b, and ¢ are large and hence not included here; the Galois
group computation is routine.) Thus we have rigorously shown that the
Galois group is at least Dy, hence Dy or S4. We have strong experimental
evidence that the group is Dy.

Challenge: Prove that the Galois group of this Schubert problem is Dj.

We conjecture that the geometry behind this example is as follows.
Given four general conditions, the four solutions may be labeled V4, ...,
Vi so that either (i) dim(V;NV;) = 0ifi = j (mod 2) and dim(V;NV;) =2
otherwise, or (i) dim(V; NV;) =2 if i = j (mod 2) and dim(V; NV;) =0
otherwise. If (i) or (ii) holds then necessarily G # Sy, implying G = D,.

This example (along with the examples of [Vakil, 2006b, Sect. 5.12])
naturally leads to the following question. Suppose Vi, ..., Vy are the solu-
tions to a Schubert problem (with generally chosen conditions). Construct

a rank table
{ i ( el m) } ‘
i Ic{1,...,n}

In each known example, the Galois/monodromy group is precisely the
group of permutations of {1,...,n} preserving the rank table.

Question: Is this always true?

Remark. Schubert problems for the Grassmannian varieties were among the
first examples where the Galois/monodromy groups may be smaller than
expected. The first example is due to H. Derksen; the “hidden geometry”
behind the smaller Galois group is clearer from the point of view of quiver
theory. Derksen’s example, and other infinite families of examples, are
given in [Vakil, 2006b, Sect. 5.13-5.15].
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