
RECURSIONS FOR CHARACTERISTIC NUMBERS OF GENUS ONE
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RAVI VAKIL

Abstract. Characteristic numbers of families of maps of nodal curves to P2 are de�ned as

intersection of natural divisor classes. (This de�nition agrees with the usual de�nition for

families of plane curves.) Simple recursions for characteristic numbers of genus one plane

curves of all degrees are computed.

1. Introduction

The main results of this paper are recursions calculating characteristic numbers of genus one
plane curves of any degree, and of genus one plane curves with �xed complex structure. En
route, we derive (known) recursions on characteristic numbers of rational curves.

In Sections 2 and 3, we describe a rigorous framework for discussing characteristic numbers
in general (as intersections of natural divisors on Kontsevich's moduli space of stable maps),
culminating in Theorem 3.15. This framework will be used in a companion article [V4] verifying
Zeuthen's calculation of the characteristic number of smooth plane quartics curves, a project
begun by P. Alu� ([A3]). It will also be used in another article [V5] extending formulas of
Hurwitz and others on coverings of the sphere. In Section 4, we review facts about maps of
low-genus curves to P2 , and in the rest of the article we apply this set-up to deduce recursions
solving the characteristic number problem for genus one plane curves.

Characteristic number problems motivated a great deal of algebraic geometry in the last
century. For a complete historical background and references, see [K1]. After the advent of the
intersection theory of Fulton and Macpherson, a modern study of the enumerative geometry
of cubics was undertaken successfully in the 1980's (see [A1] for history). The introduction
of Kontsevich's moduli space of stable maps earlier this decade has re-invigorated the �eld by
suggesting surprising recursions involving solutions to such enumerative problems, and has led
to great advances. This particular paper was inspired by [KaKi].

Numerous conversations with A.J. de Jong have tremendously improved the exposition and
argumentation in this paper. The author is also grateful to T. Graber, P. Belorousski, and R.
Pandharipande for useful discussions and advice, and to J. Harris for �rst introducing him to
these questions. He also thanks A. Postnikov for discussing the combinatorial background to
Section 5.11. A maple program implementing all algorithms described here is available upon
request.

2. Conventions and background results

2.1. We work over a �xed algebraically closed �eld k of characteristic 0. By scheme, we mean
scheme of �nite type over k. By variety, we mean a separated integral scheme. All morphisms
of schemes are assumed to be de�ned over k, and �bre products are over k unless otherwise
speci�ed.
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Suppose f : X ! Y is a morphism of varieties. We say f is unrami�ed at a point p if the
induced morphism of tangent spaces Tp;X ! f�Tf(p);Y is injective, and that f is unrami�ed

if it is unrami�ed at all points p 2 X. Let Sing(f) � X be the singular points of f , let
Sm(f) := X n Sing(f), and let ram(f) be the rami�ed points of f . Let Xreg be the regular
points of X.

If f : C ! X is a morphism of schemes and Y is a closed subscheme of X, then de�ne
f�1(Y ) as C �X Y ; f�1Y is a closed subscheme of C.

If f : X ! Y is a �nite morphism of equidimensional varieties, then the rami�cation (Weil)
divisor Rf is the sum over the height 1 associated primes p of 
f of the length at p (times the

Weil divisor p). If � : ~Y ! Y is the normalization, and p : X �Y
~Y ! X is the projection,

then it is simple to check that g : X �Y
~Y ! ~Y is also �nite, and p�Rg = Rf .

2.2. A family of nodal curves over a base scheme S (or a nodal curve over S) is a proper

at morphism � : C ! S whose geometric �bers are reduced and pure dimension 1, with at
worst ordinary double points as singularities. (There is no connectedness condition.) If X is a
scheme, then a family of maps of nodal curves to X over S (or a map of a nodal curve to X
over S) is a morphism � : C ! X �S of schemes over S, where � : C ! S is a family of nodal
curves over S. A nodal curve (with no base scheme speci�ed) is a nodal curve over Spec k, and
a map of a nodal curve to X is a map over Spec k. Similar de�nitions hold for families of nodal
curves (and maps) over Deligne-Mumford stacks (see [DM] for de�nitions). We will actually
need results in this generality, but for simplicity of exposition we will prove basic results only
over schemes. The arguments over Deligne-Mumford stacks are the same.

2.3. Lemma. | Suppose � : C ! S is a family of nodal curves over a normal variety S. Let

� : ~C ! C be the normalization map. Then ~� : ~C ! S is also a family of nodal curves. There

is an e�ective Cartier divisor ~N on ~C such that ! ~C=S = (��!C=S)(� ~N). The support of ~N is

supported precisely where � is not an isomorphism (with multiplicity 1 along each component),
and is contained in Sm(�).

Thus � : ~C ! C is a clutching morphism ([Kn] Section 3). The author was unable to �nd
this precise statement in the literature, but it is surely well-known. We will use the notation
~N to simultaneously denote the Cartier divisor and the corresponding underlying scheme. We
call the Weil divisor N := �( ~N)=2 the nodes of the family.

Proof. We �rst show that ~� is a family of nodal curves, and that ~N consists of smooth points
of ~�. Properness is immediate, and the remaining conditions need only be checked in a formal
neighborhood of closed points p of C. If p 2 Sm(�), then it is a normal point of C. If p is a node
of the �ber, then the complete local ring of X at p is B �= A[[u; v]]=(uv � h), where A is the
complete local ring of S at �(p) ([dJ] 2.23). Here m � A is the maximum ideal corresponding
to �(p), h 2 m, and (x; y;m) is the maximum ideal corresponding to p.

If h = 0, the normalization clearly has two points, smooth above S. If h 6= 0, the local ring
is normal. (Sketch of proof: It su�ces to show that A[u; v]=(uv � h) is normal, which can be
rewritten as A[x; y]=(x2 � (y2 + h)). But y2 + h is square-free, and if A0 is a normal domain
and h0 is square free, then A0[x]=(x2�h0) is normal by same proof as that of [Hart] Ex. II.6.4.)

All that remains is the statement about relative dualizing sheaves. Using the explicit formal-
local computations above, there is an exact sequence of sheaves

0! F ! ��
C=S ! 
 ~C=S ! 0
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on ~C where F is an invertible sheaf on ~N . Hence if det is the determinant functor de�ned in
[KnM] Chapter I,

det
 ~C=S = (det ��
C=S)
 (detF)�1 = (�� det
C=S)
 (detF)�1:

As det
X=S = !X=S for a family of nodal curves ([Kn] Section 1) and detF = O ~C(
~N) (as F is

an invertible sheaf on ~N and ~N is Cartier), the result follows.

2.4. We de�ne three di�erent conditions on families of maps of nodal curves � : C ! P2�S:

(*) Over a dense open subset of S, the curve C is smooth, and � factors C
�
! C 0

�0

! P2 � S

where �0 is unrami�ed and gives a birational map from C 0 to its image; � is a degree d�
map with only simple rami�cation (i.e. reduced rami�cation divisor); and the images of
the simple rami�cations are distinct in P2 . (Whenever this case is discussed, the notation
(�; d�; C

0; �0) will be used.)
(**) Over the normal locus (a dense open subset) of S, each component of the normalization

of C (which is a family of maps of nodal curves by Lemma 2.3) satis�es (*).
(***) No component of the total space C is collapsed by �.

So (*) implies (**) implies (***).

We say a line L is tangent to a map � : C ! P2 at a point p if p 2 ��1L and p is not a
reduced point of ��1L. We say L is simply tangent if L is tangent to � at p, p is a smooth point
of C and ��1L has multiplicity exactly 2 at p. Note that the rami�ed points of � form a closed
subset, and are tangent to a P1 of lines.

2.5. Remark. Suppose Y is a scheme of pure dimension d, � : X ! Y is a proper

at morphism of relative dimension r, and L1, : : : , Ls are invertible sheaves on X. Then
��(c1(L1) \ � � � \ c1(Ls)) is an element of As�r(Y ) (see [F] Ch. 17): to intersect with a class
in A�Y , pull back the class to A�X, intersect with c1(L1) \ � � � \ c1(Ls), and push forward. In
terms of bivariant intersection theory, pulling back and intersecting with a product of Chern
classes gives a class in As(X ! Y ), which we then pushforward to get a class in As�r(Y !

Y ) = As�r(Y ) (see [F] 17.2 (P2)). The same is true if � is a representable morphism of tacks
([Vi] Section 5).

2.6. Stable maps. A stable map is a map � from a connected nodal curve to P2 (see 2.2)
such that � has �nite automorphism group. The arithmetic genus of a stable map is de�ned
to be the arithmetic genus of the nodal curve C. If [C] 2 A1(C) is the fundamental class of
C, and [L] 2 A1(P

2) is the class associated to a line, then ��[C] = d[L] for some non-negative
integer d. We say d is the degree of the stable map.

A family of stable maps is a family of maps of nodal curves to P2 whose �bers over maximal
points are stable maps. Let Mg(P

2 ; d) be the stack whose category of sections of a scheme
S is the category of families of stable maps to P2 over S of degree d and arithmetic genus g.
For de�nitions and basic results, see [FP]. It is a �ne moduli stack of Deligne-Mumford type.

There is a \universal map" over Mg(P
2 ; d) that is a family of maps of nodal curves. There is

an open substack Mg(P
2 ; d) that is a �ne moduli stack of maps of smooth curves.

Fix integers d and g. Let � =
�
d�1
2

�
� g. The locus in PH0(P2 ;O(d)) corresponding to degree

d curves with exactly � simple nodes is an irreducible smooth locally closed subvariety of
codimension �, hence dimension 3d+g�1 ([H] main theorem). There is a unique component of

Mg(P
2 ; d) that is the closure of such maps (as an easy computation shows that the deformation
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space to any of these maps has dimension 3d + g � 1); call this component Mg(P
2 ; d)+. (If

g > 0 there are other components.) The universal map over Mg(P
2; d)+ satis�es (*).

In fact something slightly stronger is true (although we will not need it): ifM is an irreducible

closed substack of Mg(P
2 ; d)+ whose general member corresponds to a map mapping a curve

birationally onto its image, and dimM� 3d + g � 1, then M =Mg(P
2 ; d)+. This essentially

follows from methods of [CH] (see Prop. 2.2); a proof appears (in more generality) in [V1]
(Lemma 7.1).

We shall see that enumerative questions about plane curves can be usefully interpreted as
intersection-theory problems on Mg(P

2 ; d)+.

In general, if U ! M is a family of maps whose general curve is smooth, we will call the
locus inM where the corresponding curve is singular the boundary ofM, and denote it �. By
abuse of notation, we sometimes refer to ��� as the boundary as well.

3. Characteristic numbers of families of maps

3.1. Suppose � : C ! P2 � S is a family of maps of nodal curves over S, where S is a �nite
union of dimension d varieties. Let �P2 be the space of lines in P2 , and let I be the incidence
correspondence I = f(p; L) 2 P2 � �P2 jp 2 Lg: Let

Duniv := C �P2�S (I � S);

so we have the following diagram with two �ber squares:

Duniv
! C � �P2 ! C

# # #

I � S ! P2 � �P2 � S ! P2 � S

#

S � �P2 :

As I is a P1-bundle over P2 , Duniv is a P1 bundle over C. Hence Duniv has pure dimension d+2
and doesn't contain any components of C�P2 . Thus as I is a Cartier divisor on P2� �P2 , Duniv

is a Cartier divisor on C � �P2 .

3.2. Remark. For any subvariety Q of C, the divisor Duniv intersects Q� �P2 transversely:
Duniv intersects Q� �P2 properly, and the components of intersection appear with multiplicity 1.
(Reason: Duniv

�C��P2 (Q�
�P2) is a P1-bundle over Q, so it is reduced of dimension dimQ+1.)

3.3. The morphism � : Duniv
! S � �P2 is proper, as it factors into a sequence of proper

morphisms (see diagram above). Let � be the union of the dimension 1 components of �bers
of �, so � is a closed subset of Duniv ([EGA] III.4.4.10 as all �bers have dimension at most
1), and consists of the components of the curves in the family mapped to a line. This includes
the subset �p of components of curves mapped to a point (closed by [EGA] III.4.4.10 applied
to the morphism Duniv

! P2 � S), and the locally closed subset �L := � n �p of components
mapped surjectively to a line. As each component mapped to a line but not a point is mapped
to only one line in �P2 , dim�L � d+ 1: If the family satis�es (***) then dim�p � d+ 1 too.

Hence if the family satis�es (***) then the codimension of ��(�) in S � �P2 is at least 2 in

S � �P2 , so the morphism � is quasi�nite outside a set of codimension 2. As � is proper, � is
�nite away from this closed subset as well ([EGA] III.4.4.2). In this case, de�ne the rami�cation
(Weil) divisor Runiv to be the closure in Duniv of the rami�cation divisor of this �nite map. Let
!univ := !(C��P2)=(S��P2).
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3.4. Claim. | If the general curve in the family is smooth and every component of the

generic curve maps with positive degree (so the family satis�es (***)), then in Ad+1(D
univ),

[Runiv] = (Duniv + !univ)[Duniv]. (Here Duniv + !univ is a Cartier divisor on Cuniv which can

be intersected with the class [Duniv].)

Hence the branch divisor is in class ��((D
univ + !univ)jDuniv) (This result should also hold if

the family only satis�es (**), although we won't need this.)

Proof. It su�ces to prove the claim when S is normal; in general, one can pushforward the
analogous result on the family over the normalization of S (see 2.1). We may discard closed
subsets of Duniv of codimension at least 2, and we use this to make simplifying assumptions
about the family.

� � is �nite away from a codimension 2 subset of S� �P2 , so we may assume that � is a �nite
morphism.

� S � �P2 is regular in codimension 1, so we may assume that S � �P2 is regular.
� As C is regular in codimension 1, and Duniv is a P1-bundle over C, we may assume
that Duniv is regular. We may also assume Duniv is disjoint from the singularities of
C � �P2 ! S � �P2 .

The rami�cation divisor is the sum over the associated primes P of 
Duniv=(S��P2) of

(length(
Duniv=(S��P2))P )P:

If I is the ideal sheaf of Duniv on C � �P2 , then in the exact sequence

0! I=I2
! 
(C��P2)=(S��P2) 
ODuniv ! 
Duniv=(S��P2) ! 0

([Hart] Theorem II.8.17) the �rst two terms are locally free on Duniv of rank 1, and I=I2 �=
OC��P2(�D

univ)
ODuniv . Thus

c1(
Duniv=(S��P2)) = c1(
(C��P2)=(S��P2)(D
univ)
ODuniv):

But 
(C��P2)=(S��P2)
�= !univ on Creg

� �P2 by [Kn] Section 1, so the claim follows.

3.5. The support of Runiv.

Assume the family satis�es (*) (and hence the hypotheses of the previous Claim). Recall
that dimRuniv = d+1, and Runiv is contained in Duniv, a P1-bundle over C. A component R of
Runiv is of one of two forms. If R maps to ram(�), then as dim ram(�) � d (and equality holds
only for components surjecting onto S), R must be a P1-bundle over a component of Sing(�)
(and R surjects onto S). Loosely speaking, this is a locus where a rami�ed point of the general

curve maps to the universal line (corresponding to the point in �P2).

Otherwise, there is a morphism from the unrami�ed points of � to C � �P2 (sending each
point to its tangent line), and the image is an open subvariety of Runiv (of dimension d + 1).
Loosely speaking, a component R of Runiv mapping to this locus corresponds geometrically to
points of tangency from unrami�ed points of the general curve to the universal line. Again, R
surjects onto S.

3.6. Claim. | (a) If the family satis�es (*), then Runiv consists of the divisorial components

of the closures of the sets

(i) rami�cation points of � mapping to the universal line, and

(ii) unrami�ed points of maps tangent to the universal line,

with multiplicity 1.
5



(b) In (i), \rami�cation" may be replaced by \simple rami�cation". In (ii), \tangent" may

be replaced by \simply tangent".

(c) Furthermore, ��R
univ consists of the divisorial components of the closures of the sets

(i) maps where a simple rami�cation of � maps to the universal line, and

(ii) maps where the image is simply tangent to the universal line.

Divisors of the �rst type appear with multiplicity 1, and divisors of the second type appear with

multiplicity d�.

Proof. By 3.5, a) is true set-theoretically. By Sard's theorem, we can check the multiplicities
by looking over a general point of S (as each component surjects onto S, and the constructions
all commute with base change). (See [K2] p. 6 for a discussion of applications of this variant
of Sard's theorem to enumerative geometry.) Thus it su�ces to prove the result when S is a
closed point, so we have reduced to the case of a single map, and the study of the rami�cation
divisor of the morphism from a P1-bundle over C to P2 .

We �rst show the result for the unrami�ed map C 0 ! P2 (or equivalently, the case d� = 1).

Let (Duniv)0 � C � �P2 be the P1-bundle over C 0 (de�ned similarly to Duniv). It is simple
to show that if a : X ! Y is a �nite morphism of smooth varieties, p 2 X is a general point
on a component of the rami�cation divisor, and ��1(�(p)) is a local Artinian scheme of length

2 at p, then the component appears with multiplicity 1. In this case, if [L] 2 �P2 , then the
pullback of [L] to (Duniv)0 isomorphic to the pullback of L to C 0. A fundamental fact of duality
theory of curves is that the curve �0(C 0) (or any other reduced curve in P2) has a �nite number
of bitangents and 
exes, i.e. the map �0 has only a �nite number of tangencies that are not
simple tangencies (see [K3] for a comprehensive survey). Thus if [L] is a general point of the

(one-dimensional) branch divisor of (Duniv)0 ! �P2, then L is simply tangent to �(C 0) at exactly
one point (and transverse at the rest), so the rami�cation divisor (and branch divisor) indeed
appears with multiplicity 1. This proves the claim for the family C 0 ! P2 .

Phrased di�erently, the branch divisor of (Duniv)0 ! �P2 is the dual curve to �(C 0), with

multiplicity 1, and the rami�cation divisor is the set of (p; L) 2 C 0� �P2 where L is the tangent
line to �0 : C 0 ! P2 at p. From the �ber square

Duniv P
1-bundle
�!

C
# # �

(Duniv)0 P
1-bundle
�!

C 0;

the rami�cation divisor of the left vertical arrow is the pullback of the rami�cation of �, simple
by de�nition of (*). Thus the rami�cation of the map Duniv

! �P2 is as described in (a).

In the course of proving (a), we saw the behavior of the general points of the components of
Runiv and ��R

univ, so (b) and (c) are also clear.

3.7. Next assume that S is normal, and that the family satis�es (**). Let ~C be the normal-

ization of C (so ~C ! S is a family of nodal curves by Lemma 2.3). Let ~N (resp. N) be the

locus on ~C (resp. C) described in 2.3 (the \branches of the normalization", resp. the \nodes

of the family"). De�ne Duniv, !univ, Runiv as above, and ~Duniv, ~!univ, ~Runiv the analogous

constructions for the family ~C ! S. Let � be the normalization ~C � �P2 ! C � �P2 .

3.8. Claim. | In A�(C � �P2),

Duniv
� (Duniv + !univ) = ��( ~R

univ + ( ~N � �P2) � ~Duniv) = ��( ~R
univ) +Duniv

� (N � �P2):
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It should certainly be true that Runiv = ��( ~R
univ + ( ~N � �P2) � ~Duniv) as cycles, but we won't

need that here. It is useful to think of this claim geometrically (but sloppily) as: \the divisor
where a family is tangent to a line is the divisor where the normalization of the family is tangent
to the line, plus twice the divisor where a node of the family is mapped to the line".

Proof. On ~C � �P2 , ~Duniv = ��Duniv, so

~Runiv = ~Duniv
� ( ~Duniv + ~!univ) = ��Duniv

� (��Duniv + ��!univ)� ( ~N � �P2) � ~Duniv

by Lemma 2.3. Pushing forward by the (�nite degree 1) morphism � gives us the �rst equality.
The second equality follows from the pushpull formula:

~Duniv
� ( ~N � �P2) = (��Duniv) � ( ~N � �P2) = Duniv

� ��( ~N � �P2) = 2Duniv
� (N � �P2):

3.9. Remark. With the same hypotheses as above, if Q is any subvariety of S, then
��(R

univ) does not contain Q� �P2. (As no map is tangent to all lines in P2 , the result is clearly
true even if Q is a point.)

3.10. Incidence and tangency divisors on a family of maps. For the rest of this
section, let � : C ! P2 � S be a family of maps of nodal curves over some equidimensional
reduced base S, satisfying (**). For each line L in P2 let DL be the closed subscheme ��1L on
C. Let ! := !C=S, and D := ��OP2(1). We will occasionally use ! and D to also denote their
classes in the Chow group.

Let � := ��(D
2) and � := ��(D � (D + !)). (In the language of Harris-Morrison's \standard

conjecture for the Hilbert scheme" [HM] p. 64, these divisors are A and A + B.) The Weil
divisor � will be \the divisor of maps through a �xed general point", and the Weil divisor �
will be \the divisor of maps simply tangent to a �xed general line." By Remark 2.5, �; � 2 A1S

(in the operational Chow ring).

3.11. Lemma. | Fix subvarieties Q of C and Q0 of S. If [L] is general in �P2, then

(i) DL is a Cartier divisor on C in class D, and the morphism DL ! S is quasi-�nite in

codimension 1.

Thus we can de�ne a rami�cation divisor RL as in 3.3, and a branch divisor BL := ��RL.

(ii) DL intersects Q properly, with multiplicity 1 along each component of the intersection.

(iii) BL is the class ��(D � (D + !)). BL consists of divisorial components of the closure of

the locus of maps simply tangent to L, and maps with nodes of the family on L, with
multiplicities as described in Claims 3.6 and 3.8. BL does not contain Q0.

Proof. Use Kleiman-Bertini ([Hart] III.10.8) on Duniv
! �P2 �S (with group PGL(2)). Use 3.2

and 3.3 for (a), 3.2 for (b), and 3.4{3.9 for (c).

3.12. Lemma. | If p is general in P2, then the union of the maximal points of ��1(p) is in
class D2 in Ad�1(C).

Proof. As sets, ��1(p) is the intersection of DL and DM where L and M are general lines. By
Lemma 3.11, each component of DL appears with multiplicity 1. If fDi

Lgi are the components

of DL, then by Lemma 3.11 (applied with Q = Di
L), each component of

�
�jDi

L

�
�1

M appears

with multiplicity 1 on Di
L. Finally, DM does not contain any component of Di

L \D
j
L (also by

Lemma 3.11, taking Q to be any component of Di
L \D

j
L).
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3.13. Remark. Hence we can interpret � as follows. Fix a general point p 2 P2 , and for
each component of the generic curve C not mapped to a point, associate the locus where p lies
on the image of this component; this is a Weil divisor on S. Associate to this Weil divisor a
multiplicity equal to the degree of the map of the component of C onto its image. The formal
sum �p of these divisors (with these multiplicities) is in class �.

We can also interpret � geometrically. Fix a general line L � P2 . To each component of the
normalization of C (satisfying (*)) we associate the locus where the map C 0 ! P2 is tangent to
L; this is a Weil divisor on S. Assign a multiplicity of d� to this divisor. To each component
of the normalization of C satisfying (*) we also associate the locus where a rami�cation point
of � maps to L, with multiplicity 1. To each node of the family we associate the locus where
the node is mapped to L. This is a Weil divisor on S; assign a multiplicity of 2 to it. Then the
formal sum �L of these divisors (with these multiplicities) is in class �.

Moreover, if Q is any subvariety of S (distinct from S), Q is not contained in any component
of �p or �L on S (for p and L general). Consequently, if the general map in S does not satisfy
a closed condition (e.g. cuspidal, tacnodal, or with a node on a �xed line), then neither does
the general map in any component of �p or �L. In particular, each component in �p and �L
also satis�es (**).

3.14. We now come to the main result of this section. Suppose C ! P2 � S is a family of
maps satisfying (**), and S is a Deligne-Mumford stack. Let the components of C be called
fCig1�i�s, with �i and d�i as de�ned in 2.4. Let N1, ..., Nt be the components of the nodes of
the family (see 2.3). Fix a general points p1, : : : , pa and b general lines L1, : : : , Lb in P2 .

To each point pi associate a component Cw(i). Partition f1; : : : ; bg into three sets L1, L2, L3.
To each j 2 L1 associate a component Cx(j). To each j 2 L2 associate a component Cy(j). To
each j 2 L3 associate a component of the nodes of the family Nz(j). Consider the following
cycle on S, of codimension a + b, that is the closure of the subset of S(k) corresponding to
maps such that

(i) for each 1 � i � a, the image of Cw(i) passes through pi,
(ii) for each j 2 L1, the map restricted to Cx(i) is simply tangent to Lj,
(iii) for each j 2 L2, the image of a rami�cation of �y(j) passes through Lj,
(iv) for each j 2 L3, the image of Nz(j) lies on Lj.

(Note that this cycle is empty if more than two lines in L3 are associated to the same Nk.) To
this cycle, associate the multiplicityY

1�i�a

d�w(i)
�

Y
j2L1

d�x(j) � 2
#L(3):

Let Q be the cycle that is the sum over all choices above of the cycles described above, with
multiplicity.

3.15. Theorem. | In Ad�a�bS, [Q] = �a�b[S]. The components of Q described above are

all distinct.

For a speci�c example, see 4.6.

Proof. Use induction on a + b; the case a = b = 0 is clear. Assume the result for a �xed
a = a0, b = b0, so we have distinct cycles Qi with multiplicities mi given by the inductive
hypothesis, with

P
mi[Qi] = �a0�b0 [S]. Using Remark 3.13, it is straightforward to verify that

the Theorem holds for (a; b) = (a0+1; b0) (resp. (a0; b0+1)), by expressing �[Qi] (resp. �[Qi])
as
P

mij[Qij]. By Remark 3.13, Qij doesn't contain Qi \Qi0, so Qij 6= Qi0j0 for (i; j) 6= (i0; j0);
this shows inductively that the components of Q described above are distinct.
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Note that if the family satis�es (*), then we may ignore L3. If furthermore the general map
gives a birational isomorphism from the curve to its image, then we may also ignore L2.

3.16. Characteristic numbers of families of maps. If � : C ! P2 � S is a family of maps of
nodal curves to P2 over S, where S is an �nite union of varieties of dimension d, then we say that
�a�b[S] (a+ b = d) are the characteristic numbers of the family of maps. If the family satis�es
(**), then these numbers can be interpreted enumeratively using Theorem 3.15, as counting
maps (with multiplicity). This construction carries through even if S is a Deligne-Mumford
stack (and � : C ! S is a family of nodal curves over a Deligne-Mumford stack, see [DM] for
a de�nition).

The classical characteristic number problem for curves in P2 (studied by Chasles, Zeuthen,
Schubert, etc.) is: how many irreducible nodal degree d geometric genus g maps are there

through a general points, and tangent to b general lines (if a + b = 3d + g � 1)? (The clas-
sical phrasing was obviously di�erent!) By 2.6, and Theorem 3.15, this number is �a�b on

Mg(P
2 ; d)+.

3.17. Generalizations. The obvious generalizations to maps to Pn and with marked points
(which will not be needed here) are also true: the arguments are identical. The argument for
maps to P1 (needed in [V5], see also Section 5.11) requires no change: just consider maps to a
�xed line in P2 .

4. Genus 0 and 1 facts

In this section, we review known facts about stable maps to P2 .

4.1. Genus 0 (from [FP]). The Deligne-Mumford stackM0(P
2 ; d) is smooth of dimension

3d� 1 ([FP] Section 0.4). The boundary � is the union of divisors �0;j where �0;j generically
corresponds to a map of two genus 0 curves, joined at a node, one mapped with degree j and
the other with degree d� j.

4.2. Genus 1 (from [V2]). Let M1(P
2 ; d)� be the closure of points in M1(P

2 ; d) corre-

sponding to maps that do not contract a genus 1 union of components. Then M1(P
2; d)� is

irreducible of dimension 3d. The boundary � is the union of (1) divisors �0;j (j > 0) where
�0;j generically corresponds to a map of a genus 1 curve E and a genus 0 curve R joined at a
node, where R is mapped with degree j and E is mapped with degree d� j, (2) the divisor �0

of maps from rational (nodal) curves, and possibly 3 more ([V2] Lemma 3.14):

(3) points corresponding to cuspidal rational curves with a contracted elliptic tail,
(4) points corresponding to a contracted elliptic component attached to two rational compo-

nents, where the images of the rational components meet at a tacnode, and
(5) points corresponding to contracted elliptic components attached to three rational compo-

nents.

Let �ei be the union of divisors of type (3){(5) above.

4.3. Claim. | If � is an irreducible component of �ei and a + b = 3d � 1, then in

A0(M1(P
2 ; d)�), �a�b[�] = 0.

Proof. We prove the result if � is of type (3). Choose a general points and b general lines, and

let Q be the 1-dimensional cycle in M1(P
2 ; d)� described in 3.14, so [Q] = �a�b[M1(P

2 ; d)�].
Then Q is the set of points corresponding to maps through the a points and tangent to the b
lines. We will see that Q is disjoint from �, which will imply the claim.
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If U ! � is the restriction of the universal family to �, let i : U 0 ,! U be the component of
U that is the union of the noncontracted genus 0 curves. Then � � i is a stable map (of genus

0 curves to P2) over �, inducing a morphism f : � ! M0(P
2 ; d) whose general �ber (above

the image f(�)) is 1-dimensional, corresponding to the j-invariant of the elliptic tail. Thus
dim(f(�)) = dim(�) � 1 = a + b � 1. There are no maps in f(�) through the a points and
tangent to the b lines, for dimensional reasons. But it is easily checked that a map m 2 �
passes through a point (resp. is tangent to a line) if the map f(m) does, so Q \ � = ;.

The arguments for types (4) and (5) are similar, and will only be sketched. For type (4)
divisors, construct the auxiliary family U 0 by discarding the contacted genus 1 component and
gluing the two genus 0 components together along a node. For type (5), discard the contracted
genus 1 component and glue two of the three genus 0 components together along a node; this
may require a �nite cover.

For this reason, the components of �ei will not contribute enumeratively, so we call them
enumeratively irrelevant boundary divisors.

Now let U be the universal curve overM1(P
2 ; d)�, so � : U !M1(P

2 ; d)� is a family of (pre-

stable) genus 1 curves. Then M1(P
2 ; d)� n�ei is a smooth curve away from the geometrically

irrelevant divisors, and the total space ��(M1(P
2 ; d)� n �ei) is smooth (([V2] Lemma 3.13))

Away from the codimension 2 subset where boundary divisors intersect (call it S), � is a family
of \curves with at most one rational tail". Let R be the closure of U of the points on rational
tails. Then R is a Weil divisor supported over the boundary.

4.4. Claim. | Modulo enumeratively irrelevant divisors and torsion, !
U=M1(P2 ;d)�

=

[�0]=12 + [R] as Weil divisor classes.

Proof. It su�ces to prove the result above the open set M :=M1(P
2; d)� n (S [�ei). As (the

total space of) U is smooth above M, there is a contraction morphism

c : U �
M1(P2 ;d)�

M ! U
0

& .

M

contracting R.

A straightforward local calculation shows that the contraction is a blow-up of the image of
R along a smooth locus, so c�!U 0=M(R) = !U�

M1(P
2;d)�

M. The following lemma shows that

!U 0=M = [�0]=12 modulo torsion, so we are done.

4.5. Lemma. | Suppose f : U 0 ! M is a morphism of smooth Deligne-Mumford stacks,

and f is a relatively minimal elliptic �bration. Let �0 be the locus of nodal elliptics. Then

!U 0=M = [�0]=12 modulo torsion.

This lemma is implied by the statement h�1i1 = 1=24 on M1;1 ([HM] Ex. 2.58).

4.6. Remark. Suppose 	 is the locus �0 or �0;j in M1(P
2 ; d)�, or the locus �0;j in

M0(P
2 ; d). Fix a general points and b general lines, where a + b = dim	. Then by Theorem

3.15, the degree of �a�b[	] is equal to the number of maps where the map from the normalization
passes through the a points and is tangent to the b lines; plus twice the number where the node
maps to one of the b lines, and the curve passes through the a points and is tangent to the
remaining b � 1 lines; plus four times the number where the node maps to the intersection of
two of the b lines, and the curve passes through the a points and is tangent to the remaining
b� 2 lines.
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4.7. Maps to Pn. Almost all of the results of Sections 2{4 about maps of curves to P2 carry
over essentially without change to maps to Pn. There are only two additional comments worth
making. (1) For 1 < j � n, there are classes �j 2 Aj�1(S) corresponding to maps intersecting
codimension j linear spaces (so � = �2 when n = 2). All analogous transversality results to �
hold. (2) In the genus 1 case, there are (potentially) n + 1 enumeratively irrelevant boundary
divisors.

5. Genus 0 and 1 recursions

5.1. Let Rd(a; b) be the number of irreducible degree d rational curves through a �xed general
points and tangent to b �xed general lines if a + b = 3d � 1, and 0 otherwise. By 3.16, this is
�a�b on M0(P

2 ; d). Let Rd := Rd(3d � 1; 0) be the number with no tangency conditions. Let
NLd(a; b) be the number of irreducible degree d rational curves through a �xed general points
and tangent to b �xed general lines and with a node of the image on a �xed line if a+b = 3d�2,
and 0 otherwise. By [DH] (1.4) and (1.5),

NLd(a; b) = (d� 1)Rd(a+ 1; b)�Rd(a; b+ 1)=2 = ((d� 1)�� �=2)�a�b:(1)

Let NP (a; b) be the number of irreducible degree d rational curves through a �xed general
points and tangent to b �xed general lines and with a node of the image at a �xed point if
a + b = 3d� 3, and 0 otherwise. Let NPd := NPd(3d� 3; 0) be the number with no tangency
conditions.

5.2. If d � 2, let Ed(a; b) be the degree of �
a�b[M1(P

2 ; d)�] if a + b = 3d, and 0 otherwise.
By 3.16, if d > 2, Ed(a; b) is the number of irreducible degree d elliptic curves through a �xed
general points and tangent to b �xed general lines. Let Ed := Ed(3d; 0).

If d = 2, Ed(a; b) still has enumerative meaning. Fix a general points and b general lines.
Then Ed(a; b) is the number of double covers of a line in the plane by a genus 1 curve with
a marked points on the curve mapping to the a �xed points, and with rami�cations of the
double cover mapping to the b general lines, divided by the automorphism group of such a
map. (Recall that the degree of a dimension 0 cycle on a proper Deligne-Mumford stack over
k is the degree of the pushforward to Spec k, and may be fractional; see [Vi] Section 1.) Thus
E2(2; 4) = 2, E2(1; 5) = 10, E2(0; 6) = 45=2, and E2(a; b) = 0 otherwise.

5.3. Incidences only. Kontsevich's beautiful recursion ([KoM] Claim 5.2.1 or [RuT])
computes Rd inductively:

Rd =
X
i+j=d

i2j

�
j

�
3d� 4

3i� 2

�
� i

�
3d� 4

3i� 1

��
RiRj:(2)

One proof involves studying rational curves through 3d�2 �xed points, two of which are marked
p and q, and two marked points r and s on �xed general lines, and pulling back an equivalence
on PicM0;4. The same \cross-ratio" trick gives a recursion for NPd:

NPd =
X
i+j=d

(ij � 1)i

�
j

�
3d� 6

3i� 3

�
� i

�
3d� 6

3i� 2

��
RiRj

+
X
i+j=d

ij

�
2ij

�
3d� 6

3i� 4

�
� i2

�
3d� 6

3i� 3

�
� j2

�
3d� 6

3i� 5

��
NPiRj:(3)

This formula can also be interpreted as a consequence of WDVV on F1 ; see [KoM] Section 5.
Pandharipande gives another recursion for NPd in [P3] Section 3.4. The Eguchi-Hori-Xiong
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formula (proved by Pandharipande in [P5] and Dubrovin and Zhang in [DuZ] using Getzler's
relation) gives Ed:

Ed =
1

12

�
d

3

�
Rd +

X
i+j=d

ij(3i� 2)

9

�
3d� 1

3j

�
RiEj :(4)

Remarkably, there is still no purely geometric proof known of this result.

5.4. Swapping incidences for tangencies: genus 0.

From [P1] Lemma 2.3.1, in Pic(M0(P
2; d))
 Q ,

� =
d� 1

d
� +

[d=2]X
j=0

j(d� j)

d
�0;j:(5)

Intersect this relation with �a�b, where a + b = 3d � 2 (or equivalently, apply this rational
equivalence to the one-parameter family corresponding to degree d rational curves through a
general points and tangent to b general lines) to get:

Rd(a; b+ 1) =
d� 1

d
Rd(a+ 1; b)

+
X
i+j=d

ij

2d

" X
ai+aj=a
bi+bj=b

�
a

ai

��
b

bi

�
(ij)Ri(ai; bi)Rj(aj; bj)

+4b
X

ai+aj=a+1
bi+bj=b�1

�
a

ai

��
b� 1

bj

�
iRi(ai; bi)Rj(aj ; bj)

+4

�
b

2

� X
ai+aj=a+2
bi+bj=b�2

�
a

ai � 1

��
b� 2

bj

�
Ri(ai; bi)Rj(aj; bj)

#
:

In each sum, it is assumed that i; j > 0; ai, aj, bi, bj � 0; ai+ bi = 3i� 1; aj + bj = 3j� 1; and
that all of these are integers. The large bracket corresponds to maps from reducible curves.
The �rst sum in the large bracket corresponds to the case where no tangent lines pass through
the image of the node; the second sum corresponds to when one tangent line passes through the
image of the node; and the third to when two tangent lines pass through the image of the node
(see Remark 4.6). Note that in the second sum, 3i�1 of the a+ b conditions �x the component
corresponding to Ri (up to a �nite number of possibilities). The component corresponding to
Rj is then speci�ed by the remaining 3j � 2 conditions, plus the condition that it intersect the
other component on a �xed line.

This completes the computation of the characteristic numbers for rational plane curves.

5.5. Remark. Pandharipande earlier obtained (by topological recursion methods and
descendants) what can be seen to be the same recursion in the form of a di�erential equation
([P4]): if

R(x; y; z) =
X
a;b;d

Rd(a; b)
xa

a!

yb

b!
edz;

then

Ryz = �Rx +Rxz �
1

2
R2
zz + (Rzz + yRxz)

2:
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(Ernstr�om and Kennedy showed that the genus 0 characteristic numbers are encoded in a
deformed quantum cohomology ring, the contact cohomology ring, [EK1], ek2.)

5.6. Swapping incidences for tangencies: the family NP . A similar argument applied to the
one-parameter family corresponding to degree d rational curves with a node at a �xed point,
through a general points and tangent to b general lines (where a+ b = 3d�4) gives the formula
shown in Appendix A. The corresponding di�erential equation is:

NPyz = �NPx +NPxz �
1

2
R2
zzx + (Rzzx + yRzxx)

2

+2(Rzz + yRzx)(NPzz + yNPzx)�RzzNPzz:

5.7. Swapping incidences for tangencies: genus 1. As ! �=
Q
12
+ R (Claim 4.4), � � � =

��(D � !) = d
12
[�0] +

P
i i[�0;i], so as Weil divisors,

� = �+
d

12
[�0] +

X
i

i[�0;i]:(6)

Restricting this identity to the one-parameter family corresponding to degree d elliptic curves
through a general points and tangent to b general lines (where a+ b = 3d� 1) gives:

Ed(a; b+ 1) = Ed(a+ 1; b)

+
d

12

��
d� 1

2

�
Rd(a; b) + 2bNLd(a; b� 1) + 4

�
b

2

�
NPd(a; b� 2)

�

+
X
i+j=d

i

" X
ai+aj=a
bi+bj=b

�
a

ai

��
b

bi

�
(ij)Ri(ai; bi)Ej(aj; bj)

+2b

� X
ai+aj=a+1
bi+bj=b�1

�
a

aj

��
b� 1

bi

�
jRi(ai; bi)Ej(aj; bj)

+
X

ai+aj=a+1
bi+bj=b�1

�
a

ai

��
b� 1

bi

�
iRi(ai; bi)Ej(aj; bj)

�

+4

�
b

2

� X
ai+aj=a+2
bi+bj=b�2

�
a

ai � 1

��
b� 2

bi

�
Ri(ai; bi)Ej(aj; bj)

#
:

NLd(a; b � 1) can be found using (1). The large square bracket corresponds to maps of
reducible curves. The �rst sum corresponds to the case when no tangent line passes through
the image of the node, the next two sums correspond to when one tangent line passes through
the image of the node, and the last sum corresponds to when two tangent lines pass through
the image of the node.

The corresponding di�erential equation is:

Ey = Ex +	+ 2(Rzz +Rzx)(Ez + Ex)�RzzEz

where

	 =
1

12

�
1

2
(Rzzz � 3Rzz + 2Rz) + 2yNLz + 2y2NPz

�
:

This completes the computation of the characteristic numbers of elliptic plane curves.
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5.8. Characteristic numbers of elliptic curves with �xed j-invariant (j 6=1). LetMj be the

Weil divisor on M1(P
2 ; d)� corresponding to curves whose stable model has �xed j-invariant

j. Then Mj
�= M1 if j 6= 0; 1728, M0

�= M1=3, and M1728
�= M1=2 ([P2] Lemma 4). If

a+ b = 3d� 1, de�ne Jd(a; b) :=M1�
a�b. Then if d � 3, the characteristic numbers of curves

with �xed j-invariant j 6= 0; 1728;1 are given by Jd(a; b), and if j = 0 or j = 1728, the the
characteristic numbers are one third and one half Jd(a; b) respectively. But M1 parametrizes
maps from nodal rational curves, so we can calculate M1�

a�b using Remark 4.6:

Jd(a; b) =

�
d� 1

2

�
Rd(a; b) + 2bNLd(a; b� 1) + 4

�
b

2

�
NPd(a; b� 2):

5.9. Numbers.

Using the recursions given above, we �nd the following characteristic numbers for elliptic
curves. (The �rst number in each sequence is the number with only incidence conditions; the
last is the number with only tangency conditions.)

Conics: 0, 0, 0, 0, 2, 10, 45/2.

Cubics: 1, 4, 16, 64, 256, 976, 3424, 9766, 21004, 33616.

Quartics: 225, 1010, 4396, 18432, 73920, 280560, 994320, 3230956, 9409052, 23771160,
50569520, 89120080, 129996216.

Quintics: 87192, 411376, 1873388, 8197344, 34294992, 136396752, 512271756, 1802742368,
5889847264, 17668868832, 48034104112, 116575540736, 248984451648, 463227482784, 747546215472,
1048687299072.

The cubic numbers agree with those found by Alu� in [A1]. The quartic numbers agree with
the predictions of Zeuthen (see [S] p. 187).

Using the recursion of Subsection 5.8, we �nd the following characteristic numbers for elliptic
curves with �xed j-invariant (j 6= 0; 1728;1).

Conics: 0, 0, 0, 12, 48, 75.

Cubics: 12, 48, 192, 768, 2784, 8832, 21828, 39072, 50448.

Quartics: 1860, 8088, 33792, 134208, 497952, 1696320, 5193768, 13954512, 31849968, 60019872,
92165280, 115892448.

The cubic numbers agree with those found by Alu� in [A2] Theorem III(2). The incidence-
only numbers necessarily agree with the numbers found by Pandharipande in [P2], as the
formula is the same.

5.10. Characteristic numbers in Pn. The same method gives a program to recursively
compute characteristic numbers of elliptic curves in Pn that may be simpler than the algorithm
of [V3]: Use Kontsevich's cross-ratio method to count irreducible nodal rational curves through
various linear spaces and where the node is required to lie on a given linear space (analogous
to the derivation of (3)). Use (5) to compute all the characteristic numbers of each of these
families of rational curves. Use [V2] to compute the number of elliptic curves through various
linear spaces. Finally, use (6) to compute all characteristic numbers of curves in Pn . The same
calculations also allow one to compute characteristic numbers of elliptic curves in Pn with �xed
j-invariant.

5.11. Covers of P1. By restricting Pandharipande's relation (5) and relation (6) to degree
d covers of a line by a genus 0 and 1 curve respectively (so � restricts to 0), where all but 1
rami�cation are �xed, we obtain recursions for M g

d (g = 0; 1), the number of distinct covers of
14



P1 by irreducible genus g curves with 2d+ 2g � 2 �xed rami�cation points:

M0
d =

(2d� 3)

d

d�1X
j=1

�
2d� 4

2j � 2

�
M0

jM
0
d�jj

2(d� j)2

M1
d =

d

6

�
d

2

�
(2d� 1)M0

d +

d�2X
j=1

2j(2d� 1)

�
2d� 2

2j � 2

�
M0

jM
1
d�j(d� j)j:

The �rst equation was found earlier by Pandharipande and the second by Pandharipande and
Graber ([GP]); their proofs used an analysis of the divisors on Mg;n(P

1 ; d). The closed-form
expression M0

d = dd�3(2d � 2)!=d! follows by an easy combinatorial argument from the �rst
equation using Cayley's formula for the number of trees on n vertices. This formula was �rst
proved in [CrTa]. A more general formula was stated by Hurwitz and was �rst proved in [GoJ].

By applying the methods of Section 3 to substacks of Mg(P
1 ; d), one can recover Hurwitz'

general formula, generalize it to genus 1, and interpret it as a graph enumeration problem
([V5]).

Graber and Pandharipande have conjectured a similar formula for g = 2:

M2
d = d2

�
97

136
d�

20

17

�
M1

d +

d�1X
j=1

M0
jM

2
d�j

�
2d

2j � 2

�
j(d� j)

�
�
115

17
j + 8d

�

+

d�1X
j=1

M1
jM

1
d�j

�
2d

2j

�
j(d� j)

�
11697

34
j(d� j)�

3899

68
d2
�
:

It is still unclear why a genus 2 relation should exist (either combinatorially or algebro-
geometrically). The relation looks as though it is induced by a relation in the Picard group of
the moduli space, but no such relation exists.

5.12. Divisor theory on M1(P
2 ; d)�. In [P1], Pandharipande determined the divisor the-

ory on M0(P
n ; d) (including the top intersection products of divisors). The divisor theory of

M1(P
2 ; d)� is more complicated. In addition to the divisor � and the enumeratively meaningful

boundary divisors, there are three enumeratively irrelevant divisors (see 4.2). The Deligne-

Mumford stack M1(P
2 ; d)� is smooth away from these divisors. M1(P

2 ; d) is unibranch at the
enumeratively irrelevant divisor of type (5); Thaddeus has shown that it is singular there ([Th]).

There are several natural questions to ask about the geometry and topology ofM1(P
2 ; d)�. Is it

smooth at the other two enumeratively irrelevant divisors? Is the normalization of M1(P
2 ; d)�

smooth? If d = 3, how does it compare to Alu�'s space of complete cubics? What are the top
intersection products of these divisors? (The arguments here allow us to calculate �a�3d�a and

�a�3d�1�aD where D is any boundary divisor.) What about M1(P
n ; d)�?
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Appendix A. A recursive formula for NP (a; b)

NP (a; b+ 1) =
d� 1

d
NP (a+ 1; b)

+
X
i+j=d

ij

2d

" X
ai+aj=a+2
bi+bj=b

�
a

ai � 1

��
b

bi

�
(ij � 1)Ri(ai; bi)Rj(aj; bj)

+2
X

ai+aj=a
bi+bj=b

�
a

ai

��
b

bi

�
(ij)Ri(ai; bi)NPj(aj; bj)

+4b
X

ai+aj=a+3
bi+bj=b�1

�
a

ai � 1

��
b� 1

bi

�
iRi(ai; bi)Rj(aj; bj)

+4b
X

ai+aj=a+1
bi+bj=b�1

�
a

ai

��
b� 1

bi

�
iNPi(ai; bi)Rj(aj ; bj)

+4b
X

ai+aj=a+1
bi+bj=b�1

�
a

ai

��
b� 1

bi

�
iRi(ai; bi)NPj(aj ; bj)

+4

�
b

2

� X
ai+aj=a+4
bi+bj=b�2

�
a

ai � 2

��
b� 2

bi

�
Ri(ai; bi)Rj(aj; bj)

+8

�
b

2

� X
ai+aj=a+2
bi+bj=b�2

�
a

ai � 1

��
b� 2

bi

�
Ri(ai; bi)NPj(aj; bj)

#
:

In each sum in the large bracket, it is assumed that ai + bi = 3i � 1 if Ri(ai; bi) appears in
the sum, and ai + bi = 3i � 3 if NPi(ai; bi) appears. The same assumption is made when i is
replaced by j.

The large square bracket corresponds to maps from reducible curves. (To avoid confusion:
the \image of the node" refers to the image of the node of the source curve. The \�xed node"
refers to the node of the image that is required to be at a �xed point.) Zero, one, or two tangent
lines can pass through the image of the node of the source curve. The two branches through
the �xed node can belong to the same component, or one can belong to each. The table below
identi�es which possibilities correspond to which sum in the large bracket.

sum number of tangent number of
lines through image irreducible components
of node of source through �xed node

�rst 0 2
second 0 1
third 1 2
fourth and
�fth 1 1

sixth 2 2
seventh 2 1
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