UNIVERSAL COVERING SPACES AND FUNDAMENTAL GROUPS
IN ALGEBRAIC GEOMETRY AS SCHEMES

RAVI VAKIL AND KIRSTEN WICKELGREN

ABSTRACT. In topology, the notions of the fundamental group and the universal cover
are closely intertwined. By importing usual notions from topology into the algebraic and
arithmetic setting, we construct a fundamental group family from a universal cover, both
of which are schemes. A geometric fiber of the fundamental group family (as a topological
group) is canonically the étale fundamental group. The constructions apply to all con-
nected quasicompact schemes; we needn’t work over a field. Noetherian hypotheses don’t
need to be removed after the fact; they are not there from the start.
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1. INTRODUCTION

This paper takes certain natural topological constructions into the algebraic and arith-
metic setting. Primarily, we refer to the following: for a sufficiently nice topological space
X, the fundamental group 7t;°P(X, x) varies continuously as x varies. Thus, there is a fam-

ily of pointed fundamental groups, which we denote m'°?(X) — X , whose fibers are

canonically 71;°P(X,x). m;*P(X) is a group object among covering spaces. We call it the
fundamental group family. (It is also the isotropy group of the fundamental groupoid, as
well as the adjoint bundle of the universal cover X — X viewed as a principal Aut(X/X)-
bundle, but both of these are awkwardly long to be used as names.) This paper repeats
this process in the setting of algebraic geometry: for any connected quasicompact scheme
X, we construct a group scheme 71 (X) — X whose fibers are Grothendieck’s étale funda-
mental group (X, x).
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The motivation for gluing together the 7;(X,x) (which are individually topological
groups) into a group scheme requires some explanation. We wish to study the ques-
tion: what is a “loop up to homotopy” on a scheme? Grothendieck’s construction of the
étale fundamental group gives the beautiful perspective that loops up to homotopy are
what classify covering spaces. Although a map from the circle to a scheme and the equiv-
alence class of such a map up to homotopy are problematic to define, [SGA1] defines
the fundamental group by first defining a covering space to be a finite étale map, and
then defining 71; as the group classifying such covering spaces. As finite étale maps of
complex varieties are equivalent to finite topological covering spaces, this definition begs
the question: why have we restricted to finite covering spaces? There are at least two
answers to this question, neither of which is new: the first is that the covering spaces of
infinite degree may not be algebraic; it is the finite topological covering spaces of a com-
plex analytic space corresponding to a variety that themselves correspond to varieties.
The second is that Grothendieck’s étale 717 classifies more than finite covers. It classi-
fies inverse limits of finite étale covering spaces [SGA1, Exp. V.5, e.g., Prop. 5.2]. These
inverse limits are the profinite-étale covering spaces we discuss in this paper (see Defini-
tion 2.3). Grothendieck’s enlarged fundamental group [SGA 3, Exp. X.6] even classifies
some infinite covering spaces that are not profinite-étale.

In topology, a covering space is defined to be a map which is locally trivial in the sense
that it is locally of the form [ [ U — U. We have the heuristic picture that to form a locally
trivial space, you take a trivial space [ [ U — U and every time you go around a loop, you
decide how to glue the trivial space to itself. (This heuristic picture is formalized by the
theory of descent.) This leads to the notion that what the group of loops up to homotopy
should classify are the locally trivial spaces. It becomes natural to ask: to what extent are
finite étale or profinite-étale covering spaces locally trivial?! This is a substitute for the
question: to what extent is étale 7t; the group of “loops up to homotopy” of a scheme?

The answer for finite étale maps is straightforward and well-known. (Finite étale maps
are finite étale locally [ [ U — U for S a finite set.) For profinite-étale maps, we introduce
the notion of Yoneda triviality and compare it to the notion that a trivial map is a map
of the form [ U — U (see Definition 2.1 and Proposition 2.2). Although a profinite-étale
morphism is locally Yoneda trivial (Corollary 3.7), locally Yoneda trivial morphisms need
not be profinite-étale. Indeed, the property of being profinite-étale is not Zariski-local
on the base (see Warning 2.5(b)). Since the étale fundamental group, which classifies
profinite-étale spaces, is obviously useful, but there are other locally trivial spaces, this
suggests that there are different sorts of fundamental groups, each approximating “loops
up to homotopy,” by classifying some notion of a covering space, where a covering space
is some restricted class of locally trivial spaces.? (Also see §4.16.)

Returning to the motivation for constructing the fundamental group family, it is not
guaranteed that the object which classifies some particular notion of covering space is a
group; the étale fundamental group is a topological group; and work of Nori [N2] shows

!The same question should be asked for the covering spaces implicit in Grothendieck’s enlarged funda-
mental group; we do not do this in this paper.

“Note that the notion of a “locally trivial space” is composed of the notion of “locally” and the notion
of a “trivial space.” The idea of changing the notion of “locally” is thoroughly developed in the theory of
Grothendieck topologies. Here, we are also interested in different notions of “trivial.”
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that scheme structure can be necessary. (Nori’s fundamental group scheme is discussed
in more detail in §1.1.) However, a fiber of the fundamental group family of §4 should
classify covering spaces, and indeed does in the case we deal with in this paper, where
“covering space” means profinite-étale morphism (see Theorem 4.5).

More concretely, consider the following procedure: (1) define trivial covering space. (2)
Define covering space. (3) Find a large class of schemes which admit a simply connected
covering space, where a simply connected scheme is a scheme whose covering spaces are
all trivial. (4) Use (3) and the adjoint bundle construction described in §4 to produce a
fundamental group family. This fundamental group family should be a group scheme
over the base classifying the covering spaces of (2).

We carry out this procedure with “trivial covering space” defined to mean a Yoneda
trivial profinite-étale morphism, and “covering space” defined to mean a profinite-étale
morphism. Then, for any connected, quasicompact scheme, there is a universal covering
space (see Proposition 3.5), and the topological group underlying the fibers of the corre-
sponding fundamental group family are the pointed étale fundamental groups (see The-
orem 4.5). In particular, the topology on the étale fundamental group is the Zariski topol-
ogy on the fundamental group family. Motivation for this is the exercise that Spec Q ®¢ Q
(with the Zariski topology) is homeomorphic to Gal(Q/Q) (with the profinite topology).
We work through these ideas in a number of explicit examples.

1.1. Relation to earlier work. Over a field k and subject to additional hypotheses, fun-
damental group schemes have already been constructed using Tannaka duality. Work of
Nori [N1, N2] develops a fundamental group scheme which classifies principal G-bundles
for G a finite group scheme over k, under the hypothesis that the base scheme is con-
nected, reduced, and equipped with a rational point. The scheme structure is necessary
for this classification. Furthermore, Nori’s fundamental group scheme has an associated
universal cover [N2, p. 84]. We expect that Nori’s universal cover admits a fundamental
group family as in §4 whose fiber over the given k-rational point is Nori’s fundamental
group scheme. In particular, Nori’s universal cover should not be the universal cover of
Proposition 3.5. We suspect that it is the inverse limit of pointed principal G-bundles,
where G is a finite group scheme over k, and that the universal cover of Proposition 3.5 is
the maximal pro-étale quotient. We have not verified these claims.

Esnault and Hai [EH] define a variant of Nori’s fundamental group scheme for a smooth
scheme X over a characteristic 0 field k, where k is the field of constants of X. While our
constructions are more general,® the goals of Nori and Esnault-Hai are quite different. For
example, Esnault and Hai reconcile Nori’s viewpoint with Deligne’s Tannaka formulism
as developed in [D].

The idea of changing the notion of “covering space” to recover the classification of
covering spaces by a fundamental group has appeared earlier in topology. For example,
Biss uses a fundamental group equipped with a topology to classify “rigid covering bun-
dles” over some non semi-locally simply connected spaces (such as the Hawaiian earring)

3We assume only that the base scheme is connected and quasi-compact. We don’t need to work over a
field as we don’t use the theory of Tannaka categories.
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[Bil, Bi2], where the usual topological theory of covering spaces is not valid. Moreover,
“rigid covering bundles,” which are defined as Serre fibrations whose fibers have no non-
constant paths, are analagous to fiber bundles with totally disconnected fiber. In the con-
text of this paper, such a fiber bundle should be viewed as a locally trivial space, where
“trivial” is defined to mean U x F — U, where F is a totally disconnected topological
space.

It is well-known that Noetherian hypotheses can be removed from the theory of the
étale fundamental group, but it seems simplest to just not introduce them in the first
place, as we do here. Similarly, the existence of the universal cover of Proposition 3.5 is
well-known to experts, but we include a proof in the required generality for completeness.

The universal cover of a variety (in the sense of §3) is not in general a variety. It is
the algebraic analogue of a solenoid (see for example Dennis Sullivan’s [Su]), and perhaps
profinite-étale covering spaces of varieties deserve this name as well. Solenoids are ex-
amples of finite-dimensional proalgebraic varieties in the sense of Piatetski-Shapiro and
Shafarevich, see [PSS, §4]. (Caution: Prop. 2 of [PSS, §4] appears to be contradicted by
Warning 2.5(b).)

Conventions. As usual, fpqc means faithfully flat and quasicompact, and K* is the
separable closure of K. The phrase “profinite-étale” appears in the literature, but it is not
clear to us that there is a consistent definition, so to prevent confusion, we define it in
Definition 2.3. Warning: other definitions (such as the one implicit in [PSS]) are different
from ours, and would lead to a different universal cover and fundamental group scheme.

Acknowledgments. We thank Andrew Blumberg, Gunnar Carlsson, Ralph Cohen,
Brian Conrad, Torsten Ekedahl, Hélene Esnault, Jordan Ellenberg, Kathleen Gruher, Fritz
Grunewald, Jack Hall, Steve Kerckhoff, Max Lieblich, Robert Lipshitz, Curt McMullen,
Madhav Nori, Arthur Ogus, Martin Olsson, Brian Osserman, Joe Rabinoff, Stefan Schroer
and Chenyang Xu for many helpful comments. We thank Robert Treger for pointing out
[PSS] to us.

2. FROM TOPOLOGY TO ALGEBRAIC GEOMETRY, VIA A “RIGHT” NOTION OF COVERING
SPACE

2.1. Definition. A map of schemes f : Y — X is Yoneda trivial if f admits a set of sections S
such that for each connected scheme Z, the natural map

Maps(Z,X) x S — Maps(Z,Y)
is a bijection. S is called the distinguished set of sections of f.

The name “Yoneda trivial" comes from Yoneda’s lemma, which controls Y by the mor-
phisms to Y; Y is trivial over X in the sense that maps to Y from connected schemes are
controlled by maps to X.

Note that if X is connected, the distinguished sections must be the entire set of sections.
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A trivial topological covering space is a map of topological spaces of the form [[U —
U. We compare Yoneda trivial morphisms to morphisms of the form [ [ X — X.

2.2. Proposition. — Let X be a scheme. Then [ [ X — X is Yoneda trivial. If f : Y — X is Yoneda
trivial and Y is locally Noetherian (or if the underlying topological space of Y is a disjoint union of
connected components), then f is of the form | [¢ X — X for some set S.

Proof. The first statement is obvious. If Y is locally Noetherian, then Y is a disjoint union
of connected schemes: Y = [[ .. Y. with Y. connected. Since f is Yoneda trivial, the
inclusion Y, — Y factors through a distinguished section. It follows that f : Y. — Xis an
isomorphism. O

The distinguished sections S of a Yoneda trivial morphism f : Y — X can be given the
structure of a topological space: let T denote the forgetful functor from schemes to topo-
logical spaces. It follows easily from the definition that Yoneda trivial morphisms induce
isomorphisms on the residue fields of points, and therefore that the distinguished set of
sections is in bijection with any fiber of T(f) : T(Y) — T(X). In particular, S is a subset
of Maps(T(X), T(Y)), the continuous maps from T (X) to T(Y). Give Maps . (T(X), T(Y))
the topology of pointwise convergence and give S the subspace topology.

2.3. Definition. A morphism of schemes f : Y — X is profinite-étale if Y = Spec A, where
A is a colimit of finite étale sheaves of algebras. Thus f is an inverse limit of finite étale
morphisms.

2.4. Definition. A covering space is a profinite-étale morphism.

We sometimes say (redundantly) profinite-étale covering space. (This redundancy comes
from the point of view that there are other interesting notions of covering space.)

Profinite-étale covering spaces are clearly stable under pull-back and composition.

2.5. Warnings.
(a) Although a profinite-étale morphism is integral, flat, and formally unramified, the
converse need not hold. For example, let p be a prime, X = SpecF,(t), and

Y = SpecF,(t'/P7) = SpecFp(t)[x1,x2, .. J/ (X} —t,x} —xi_1:1=2,3,...).

Since Qvy/x is generated as a F,(t'/?™ )-vector space by {dx; : i = 1,2,...} and since the
relation fo — x4 implies that dx; is zero, it follows that QOy/x = 0. Also, Y — X s clearly
profinite and flat. Since the field extension F,(t'/?™)/F,(t) is purely inseparable, and
since any finite étale X-scheme is a finite disjoint union of spectra of finite separable ex-
tensions of IF,,(t), Y is not an inverse limit of finite étale X-schemes.

(b) Unlike covering spaces in topology, the property of being profinite-étale is not
Zariski-local on the target. Here is an example. Consider the arithmetic genus 1 com-
plex curve C obtained by gluing two P'’s together along two points, and name the nodes
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p and q (Figure 1). Consider the profinite-étale covering space Y — C — p given by
Spec Oc_pl...,x_1,%0, X1, ..1/(x} — 1) and the profinite-étale covering space Z — C — q
given by Spec Oc_gl...,Y_1,Y0,Y1,...1/(y7 — 1). Glue Y to Z (over C) by identifying x;
with y; on the “upper component”, and x; with y;;; on the “lower component”. Then
YU Z — C is not profinite-étale, as it does not factor through any nontrivial finite étale
morphisms.

P q

<X

FIGURE 1. An example showing that the notion of profinite-étale is not
Zariski-local

A map from a connected X-scheme to a profinite-étale covering space of X is determined
by the image of a geometric point:

2.6. Proposition. — Let (X,x) be a connected, geometrically-pointed scheme, and let g :
(Y,y) — (X,x) bea proﬁnite—éfale cozgering space of X. If f : (Z,z) — ()S,x) z;s a morphism
from a connected scheme Z and f, and f, are two lifts of f taking z to y, then f; =1,

Proof. By the universal property of the inverse limit, we reduce to the case where p is finite
étale. Since the diagonal of a finite étale morphism is an open and closed immersion, the
proposition follows. O

2.7. Example: profinite sets give Yoneda trivial profinite-étale covering spaces. 1f S is a profinite
set, define the trivial S-bundle over X by

§X = Spec (Mapscts(8> OX))

where Ox(U) is given the discrete topology for all open U C X. It is straightforward to
verify that Sy — X is a Yoneda trivial covering space with distinguished sections canon-
ically homeomorphic to S, and that if S = %iLnI S;, then S = @I Si. We will see that this
example describes all Yoneda trivial profinite-étale covering spaces (Proposition 2.9).

The topology on the distinguished sections of a Yoneda trivial profinite-étale covering
space is profinite:

2.8. Proposition. — Let f : Y — X be a Yoneda trivial profinite-étale covering space with distin-
quished set of sections S. Let p be any point of T(X). Let F,,(Z(f)) be the fiber of T(f) : T(Y) —
T(X) above p. The continuous map S — F,,(Z(f)) given by evaluation at p is a homeomorphism.
In particular, S is profinite.

Proof. Since f is profinite-étale, we may write f as lim f; where f; : Y; — X is a finite
étale covering space indexed by a set I. By [EGA IV3, §8 Prop. 8.2.9], the natural map
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T(Y) — m Z(Y;) is a homeomorphism. Since f; is finite, (% (f;)) is finite. Thus, F,(¥(f))
is profinite.

For any p’ € F,(%(f)), the extension of residue fields k(p) C k(p’) is trivial since the
map Speck(p’) — Y must factor through X by Yoneda triviality. It follows that we have a
unique lift of Speck(p) — X through f with image p’. By definition of Yoneda triviality,
we have that p’ is in the image of a unique element of S. Thus S — F,,((f)) is bijective.

Since S is given the topology of pointwise convergence, to show that the bijection
S — F,(%(f)) is a homeomorphism, it suffices to show that for any q in T(X), the map
Fo(Z(f)) = S = F4(Z(f)) is continuous.

The sections in S produce a set sections S; of f;. Since Y — Y; is profinite-étale, Y — Y; is
integral. Thus, F,(T(f)) — F,(Z(fi)) is surjective. It follows that for any p; € F,(T(fi)),
pi is in the image of one of the sections in S; and that k(p{) = k(p). Since Y; — X is
finite-étale and X is connected, it follows that Y; = ]_[Si X. The isomorphisms Y; = [ | s X
identify F,,(Z(f)), S, and F4(%(f)) with @ S; compatibly with the evaluation maps. [

Yoneda trivial profinite-étale covering spaces are trivial S-bundles, where S is the dis-
tinguished set of sections as a topological space. In fact, taking such a covering space to
its distinguished sections is an equivalence of categories:

2.9. Proposition. — Let X be a connected scheme and let f : Y — X be a Yoneda trivial profinite-
étale covering space. Let S denote the distinguished set of sections of f. Then there is a canonical
isomorphism of X-schemes Y = Sy. Furthermore, if f1 : Y1 — Xand f,: Y, — X are two Yoneda
trivial profinite-étale covering spaces with distinguished sets of sections Sy and S, respectively,
then the obvious map

Maps,(S1, S2) — Maps(Ys,Y2)
is a bijection.

Proof. Since every element of S is a map X — Y, we have a canonical map S x Oy — Ox.
By adjointess, we have Oy — Maps(S, Ox).

Since f is profinite-étale, there is an inverse system of finite étale X-schemes {Y; — X}ic1
such that Y = lim Y;. As in the proof of Proposition 2.8, for each i € I, S induces a (finite)
set of sections S; of Y; — X and, futhermore, Y; = [ | s, Xand § = @11 S;.

Since Y = %iLHIYi, the map Oy — li_r)nI Maps(S;, Ox) is an isomorphism. Note that
ILHh Maps(Si, Ox) = Mapscts(@1I Si,Ox). Thus we have a canonical isomorphism of X-
schemes Y = Sy.

Now consider f; and f,. Given g € Maps(Y7,Y>) and s; € Sy, we have a section g o s;
of f,, and therefore an element s, € S,. Thus g determines a map S; — S,. Since the
evaluation maps S; — F,(%(f;)) j = 1,2 and the map %(g) : F,(Z(f1)) — Fp(Z(f2)) fit
into the commutative diagram



Sy Sy

l l

Fp(Z(f1)) — Fp(Z(f2)),

the map S; — S, is continuous by Proposition 2.8. We therefore have Maps(Ys,Y2) —
Maps s(S1, S2).

It is obvious that Maps_,(S1,S2) — Maps(Y7,Y2) — Maps (S1,S2) is the identity. Be-
cause [ | s1:]] s, X —= Yiisan fpqc cover, it follows that
Maps(Y7,Y2) — Maps (S1,S2) — Maps(Ys,Y2)
is the identity. O

S1 651

Heuristically, an object is Galois if it has maximal symmetry. Since automorphisms
Aut(Y/X) of a covering space Y — X are sections of the pullback YxxY — Y, itis reasonable
to define a covering space to be Galois if the pullback is Yoneda trivial:

2.10. Definition. A profinite-étale covering space Y — X is defined to be Galois if Y x xY —
Y is Yoneda trivial.

For a Galois covering space Y — X with Y connected, Aut(Y/X) is a profinite group; the
topology on Aut(Y/X) comes from identifying Aut(Y/X) with the space of distinguished
sections of Y xx Y — Y and applying Proposition 2.8.

2.11. Example: Trivial profinite group schemes over X. 1f G is a profinite group with inverse 1
and multiplication m, define the trivial G-bundle as the X-scheme Gy of Example 2.7 with
the following group scheme structure. We describe a Hopf algebra structure over an open
set U; this construction will clearly glue to yield a sheaf of Hopf algebras. The coinverse
map sends

(1) G —= Ox(U)

cts

to the composition

G ——> G —— Ox(U).

cts

The coinverse f oiis indeed continuous, as it is the composition of two continuous maps.
The comultiplication map sends (1) to the composition

2) GxG7H—=G—=0x(U)

using the isomorphism
Maps, (G x G, Ox(U)) = Maps, (G, Ox(U)) ®oy 1) Maps(G, Ox(U))

where G x G has the product topology. The map (2) is continuous, as it is the composition
of two continuous maps. The coidentity map is the canonical map Maps (G, Ox) — Ox

cts
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given by evaluation at e. The fact that these maps satisfy the axioms of a Hopf algebra is
the fact that (G, e, i, m) satisfies the axiom of a group.

The trivial G-bundle on any X is clearly pulled back from the trivial G-bundle on Spec Z.

2.12. Example: 2, roots of unity, and Cartier duality. The following example is well-known.
It is included because it is an explicit example of the construction of §2.11.

The roots of unity form a Hopf algebra: let A be a ring and define
Alpoo] == Altay, ta, ta .1/ (b — 1,45 — ty, oty — oty .. ).

» 'nl

Give Alu, ] a Hopf algebra structure by i: t,, — t;', p: t, — t/t/.

Let A be a ring containing a primitive n'™ root of unity for any positive integer n. (In
particular char A = 0.) The t; correspond to continuous characters 7 — A*. For exam-
ple, t, corresponds to the continuous map sending even elements to 1 and odd elements
to —1 (i.e. n — (—=1)"). (Choosing such a correspondence is equivalent to choosing an
isomorphism between Z and . (A).) The hypothesis char A = 0 implies that A[j,] is
isomorphic to the subalgebra of continuous functions 2 — A generated by the continu-
ous characters. Because the characters span the functions Z/n — A, it follows that

ZSpeCA = Spec A[Hoo] .

Such an isomorphism should be interpreted as an isomorphism between 2 and its Cartier
dual.

Combining Proposition 2.9 and Example 2.11 shows that a connected Galois covering
space pulled back by itself is the trivial group scheme on the automorphisms:

2.13. Proposition. — Let f : Y — X be a Galois profinite-étale covering space with Y connected.
Then
3) Aut(Y/X)X xx Y2 .y

Y X

is a fiber square such that the map w is an action.

3. ALGEBRAIC UNIVERSAL COVERS

3.1. Definition. A connected scheme X is simply connected if all covering spaces are Yoneda
trivial. With covering space defined as in Definition 2.4, this is equivalent to the usual
definition that X is simply connected if a connected finite étale X-scheme is isomorphic to
X (via the structure map).



3.2. Definition. A covering space p : X — X of a connected scheme X is a universal cover if
X is connected and simply connected.

3.3. Proposition. — Let X be a connected scheme. Then a universal cover of X is unique up to
(not necessarily unique) isomorphism.

Proof. Let X1, X, be two universal covers of X. Since covering spaces are stable under
pull-back, X1 xx Xz — X is a profinite-étale covering space. Since X1 is simply connected,
X; xx X2 — X is Yoneda trivial. In part1cular X; xx X2 — X; admits a section, whence we
have a . map of X-schemes f : X; — X,. We see that f is an 1somorphlsm as follows: since
X; xx X5 — X5 is Yoneda trivial, the  map idx f: X; — X; xxX; factors through f: X7 = X,
by a distinguished section g xid of X1 %xX> — X5.In part1cular gf: X; — X is the 1dent1ty

Switching the roles of X; and X, we can find ' : X; — X, such that f’ g: X5 — X5 is the
identity. Thus f = f’gf = f/, and we have that f is an isomorphism with inverse g. O

3.4. Proposition. — Let X be a connected scheme equipped with a geometric point x. Suppose
s (X ,x) = (X, x) is an initial object among pointed covering spaces of X such that X is connected.
Then X is a simply connected Galois covering space.

Proof. We first show that X is simply connected. Let q : Y — X be a covering space of X and
let S be the set of sections of q. We will show that q is Yoneda trivial with distinguished

set of sections S. Let Z be a connected X-scheme. We need to show that S — Mapsg(Z, Y)
is bijective. Injectivity follows from Proposition 2.6. From Proposition 2.6 it also follows

that we may assume that Z — X is a geometric point of X. Let z be a geometric point
of X, and let Z be a lift of z to Y. Applying Proposition 2.6 again, we see that it suffices
to construct a map of X-schemes (X,z) — (Y,2). Since profinite-étale maps are closed

under composition, Y = Xis profinite-étale. Thus Y is an inverse limit of finite étale
X-schemes. Thus by Proposition 2.6, it suffices to show that for any pointed finite étale

(Y,y) — (X,pz), we have an X map (X,z) — (Y,y).NTake Y — X finite étale, and let d be
the degree of Y. Since p is initial, we have d maps X — Y over X. By Proposition 2.6, we
therefore have an X map (X, z) — (Y,y). Thus X is simply connected.

Since X is simply connected, X xx X — X is Yoneda trivial, and therefore X is a Galois

covering space. O
3.5. Proposition. — If X is connected and quasicompact, then a universal cover p : X — X
exists.

3.6. Remark on Noetherian conditions. If X is Noetherian, in general X will not be Noether-
ian. We will see (Theorem 4.5) that the geometric fibers of p are in natural bijection with
the étale fundamental group. Thus if X has infinite étale fundamental group, and a point
q with algebraically closed residue field, then p~'(q) is dimension 0 (as p is integral) with
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an infinite number of points, so X has a closed subscheme which is not Noetherian and is
thus not Noetherian itself. However, such a solenoid is not so pathological. For example,
by [EGA III;, Pt. 0, Lem 10.3.1.3], its local rings are Noetherian, as pointed out to us by
Stefan Schroer.

Proof of Proposition 3.5. Choose a geometric point x : Spec ) — X. By Proposition 3.4,
it suffices to show that the category of pointed covering spaces of (X, x) has a connected
initial object.

If (Yy,y~) are two geometrically-pointed connected finite étale (X, x)-schemes, we will
say that (Y2,y2) > (Yj,y;) if there is a morphism of pointed (X, x)-schemes (Y,,y,) —
(Y1,y1). The diagonal of a finite étale map is an open and closed immersion, so an X-
map from a connected scheme to a finite étale X-scheme is determined by the image of a
single geometric point. Thus the symbol > is a partial order on isomorphism classes of

connected pointed finite étale X-schemes.

The set I of isomorphism classes of connected finite étale X-schemes equipped with >
is directed: suppose (Y1,y1) and (Y3, y,) are two geometrically-pointed connected (X, x)-
schemes. Then (Y; xx Y2,w = y; X y;) is a geometrically-pointed finite étale (X, x)-
scheme. Even though we have made no Noetherian assumptions, we can make sense of
“the connected component Y’ of Y; XY, containing w”. If Z — Xis a finite étale cover, then
it has a well-defined degree, as X is connected. If Z is not connected, say Z = Z; [ Z,,
then as Z; — X is also finite étale (Z; is open in Z hence étale over X, and closed in Z,
hence finite), and has strictly smaller degree. Thus there is a smallest degree d such that
there exists an open and closed W — Y; xx Y, containing y; x y, of degree d over X, and
W is connected. Then (W, w) > (Y, yi).

By [EGA 1V3, §8 Prop. 8.2.3], inverse limits with affine transition maps exist in the cate-
gory of schemes, and the inverse limit is the affine map associated to the direct limit of the
sheaves of algebras. Define X := lim Y;, where we have chosen a representative pointed
connected finite étale X-scheme (Y;,yi) for each i € I. The geometric points {yi}ic1 give a
canonical geometric point X of X.

By [EGA IV, §8 Prop. 8.4.1(ii)], since X is quasicompact, X is connected. This is the
only place where the quasicompactness hypotheses is used.

(X, %) admits a map to any pointed finite étale (X, x)-scheme by construction. This map
is unique because X is connected. Passing to the inverse limit, we see that (X, %) is an
initial object in pointed profinite-étale X-schemes. O

3.7. Corollary. — Profinite-étale covering spaces of connected and quasicompact schemes are
profinite-étale locally Yoneda trivial.

The remainder of this section is devoted to examples and properties of universal covers.
It is not necessary for the construction of the fundamental group family of §4.
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3.8. Universal covers of group schemes. The following result and proof are the same as
for Lie groups.

3.9. Theorem. — Let X be a connected group variety over an algebraically closed field k. Suppose
chark = 0 or X is proper. Choose any preimage € € X above e € X. Then there exists a unique

group scheme structure on X such that € is the identity and p is a morphism of group schemes over
k.

The choice of € is not important: if €’ is another choice, then (X, &) = (X, e). If k is not
algebraically closed and char k = 0, then a similar statement holds, with a more awkward
wording. For example, the residue field of ¢ is the algebraic closure of that of e. To prove
Theorem 3.9, we use a lemma.

3.10. Lemma. — Suppose X and Y are connected finite type schemes over an algebraically closed

field k. Suppose chark = 0 or X is proper. Then X x Y is simply connected. Equivalently, a
product of universal covers is naturally a universal cover of the product.

Proof. This is equivalent to the following statement about the étale fundamental group.
Suppose X and Y are finite type over an algebraically closed field k, with k-valued points
x and y respectively. Suppose X is proper or char k = 0. Then the natural group homo-
morphism

T (X x Yy x x y) = miH(X,x) x 7§ (Y y)

is an isomorphism. The characteristic 0 case follows by reducing to k = C using the
Lefschetz principle, and comparing 7§* to the topological fundamental group. The X
proper case is [SGA1, Exp. X Cor. 1.7]. (B. Conrad explained this well-known argument
to us.) U

Proof of Theorem 3.9. We first note the following: suppose (W,w) — (Y,uy) is a geo-
metrically pointed covering space. If we have a map of geometrically pointed schemes
f:(Z,z) = (Y,y) from a simply connected scheme Z, then there is a unique lift of f to a
pointed morphism f:(Z,z) = (W,w), because W xy Z — Z is a Yoneda trivial covering
space.

Thus, there is a unique lift i : X — X lifting the inverse map i : X — X with i(é) = &.
By Lemma 3.10, X x X is simply connected. Thus, there is a unique lift . : X x X — X of
the multiplication map m : X x X — X with m(e, eé) = e. It is straight forward to check
that (X, &,1, ™) satisfy the axioms of a group scheme. For instance, associativity can be
verified as follows: we must show that X x X x X — X given by ((ab)c)(a(bc)) ' is the
same as the identity €. Since associativity holds for (X, e, 1, m), both of these maps lie
above e : X x X x X — X. Since both send € x € x ¢ to ¢, they are equal. O

3.11. Examples. The universal cover can be described explicitly in a number of cases. We
start with two well-known examples: if k is a field, then Speck® — Speck is a universal
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cover. If A is a local Noetherian ring and A" is a strict henselization, then Spec AS" —
Spec A is a universal cover.

3.12. G,, over a characteristic 0 field k. This construction is also well known. The
Riemann-Hurwitz formula implies that the finite étale covers of Spec k[t, t '] are obtained
by adjoining roots of t and by extending the base field k. Thus a universal cover is

P : Spec k[tY — Spec k[tZ].

The group scheme structure on the universal cover (Theorem 3.9) is described in terms of
the Hopf algebra structure on k[t?] givenby by i:t+— t'and m: t — t't”, which clearly
lifts the group scheme structure on G,,. Note that the universal cover is not Noetherian.

3.13. Abelian varieties. We now explicitly describe the universal cover of an abelian
variety over a field k. We begin with separably closed k for simplicity.

If X is a proper over separably closed k, by the main theorem of [Pa], the connected
(finite) Galois covers with abelian Galois group G correspond to inclusions x : G¥ < Pic X,
where GV is the dual group (noncanonically isomorphic to G). The cover corresponding
to X is Spec @ geqv E where L, is the invertible sheaf corresponding to x € Pic X.

If A is an abelian variety over k, then all Galois covers are abelian. (Recall: any finite
étale cover A’ — A is a morphism of group schemes once an origin 0’ € A" above 0 € A
is chosen, so the kernel is a subgroup of A’, and hence abelian. See [Mum, Thm. I1.4,
p- 72-73].) Thus

A = Spec EBX torsion E;]

where the sum is over over the torsion elements of Pic X.

By Theorem 3.9, A has a unique group scheme structure lifting that on A once a lift of
the identity is chosen. We now describe this explicitly. Leti: A - Aand m: A x A — A

be the inverse and multiplication maps for A. Then the inverse map i: A — A is given by

g . _ . -1
1! Spec Dy torsion £X1 - Spec D torsion l*LX

using the isomorphism i*£ = £ (for torsion sheaves, by the Theorem of the Square).
The multiplication map m : A x A = Aisviam*L = L KX L (from the Seesaw theorem).

If k is not separably closed, then we may apply the above construction to A xy k*, so
A — A xi k¥ — A gives a convenient factorization of the universal cover. In the spirit of
Pardini, we have the following ”complementary” factorization: informally, although £ !
may not be defined over k, ®y - torsmn[ﬁ‘ is defined over k for each n. We make this precise
by noting that any isogeny is dommated by [n (mult1phcat1on by n) for some n, and that
[n] is defined over k. Let N,, := pr3(ker[n])**! C A x A, where pr; is the projection to A
(see Figure 2). Note that if n;n, then we have a canonical open and closed immersion
Np, = Ny,. Let P — A X A be the Poincaré bundle. Then A = (Spec h4n>1P!Nn) R ks, In
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particular,
@) / A \
Spec hi)n,P|Nn A xi kS

S

is Cartesian.

P12

>

FIGURE 2. Factoring the universal cover of an abelian variety over k

This construction applies without change to proper k-schemes with abelian fundamen-
tal group. More generally, for any proper geometrically connected X/k, this construction
yields the maximal abelian cover.

3.14. Curves. Now consider universal covers of curves of genus > 0 over a field. (Curves
are assumed to be finite type.)

3.15. Failure of uniformization. Motivated by uniformization of Riemann surfaces, one
might hope that all complex (projective irreducible nonsingular) curves of genus greater
than 1 have isomorphic (algebraic) universal covers. However, a short argument shows
that two curves have the same universal cover if and only if they have an isomorphic
finite étale cover, and another short argument shows that a curve can share such a cover
with only a countable number of other curves. Less naively, one might ask the same
question over a countable field such as Q. One motivation is the conjecture of Bogomolov
and Tschinkel [BT], which states (in our language) that given two curves C, C’ of genus
greater than 1 defined over Q, there is a nonconstant map C — C’. However, Mochizuki
[Mo] (based on work of Margulis and Takeuchi) has shown that a curve of genus g > 1
over Q shares a universal cover with only finitely many other such curves (of genus g).

3.16. Cohomological dimension. One expects the universal cover to be simpler than the
curve itself. Here is an example: the cohomological dimension of the universal cover is
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less than 2, at least away from the characteristic of the base field (whereas for a proper
curve, the cohomological dimension is at least 2):

3.17. Proposition. — Let X be a smooth curve of genus > 0 over a field k of characteristic p,
and let X — X be the universal cover. For any integer 1 not divisible by p, the 1-cohomological
dimension of X is less than or equal to 1, i.e. for any \-torsion sheaf F on the étale site of X,
HYX, F) =0fori>1.

(One should not expect X to have cohomological dimension 0 as the cohomology of
sheaves supported on subschemes can register punctures in the subscheme. For instance,
it is a straight forward exercise to show that for genus 1 X over C, the cohomological
dimension of X is 1.)

We thank Brian Conrad for this proposition. We only sketch the proof: one shows that
l-torsion sheaves on X are a direct limit of sheaves pulled back from constructible 1-torsion
sheaves on a finite étale cover of X. One then reduces to showing that for j : U <— X an
open immersion and G a locally constant constructible 1-torsion sheaf of U, H(X, 9*j,G) =
0, where p denotes the map X — X. Since X is dimension 1, only the case i = 2 and X
proper needs to be considered. Recall that H2(X, 9*§:G) = h£>1 H2(Y,j,G) where Y ranges
over the finite étale covers of X, and j,G also denotes the restriction of j,G to Y. Applying
Poincaré duality allows us to view the maps in the direct limit as the duals of tranfer maps
in group cohomology H°(H, G,,,) — H°(n{' (U, uo), G, ), where H ranges over subgroups
of 7§'(U, uo) containing the kernel of 7§ (U, 1) — 7§(X, uo). One shows these transfer
maps are eventually 0.

We have as a corollary that the cohomology of a locally constant l-torsion sheaf F on X
can be computed with profinite group cohomology: H'(X, F) = HY(7n{!(X, x0), Fy,) for all
i. (To see this, one notes that H' of a constant sheaf on X vanishes. By Proposition 3.17,
it follows that the pullback of F to X has vanishing H' for all i > 0. One then applies the
Hochschild-Serre spectral sequence.)

3.18. Picard groups. The universal covers of elliptic curves and hyperbolic projective
curves over C have very large Picard groups, isomorphic to (R/Q)®? and countably many
copies of R/Q respectively.

3.19. Algebraic Teichmiiller space. If g > 2, then M,[n], the moduli of curves with
level n structure, is a scheme for n > 3, and Mg4[n] — My is finite étale (where M, is
the moduli stack of curves). Hence 7 := M is a scheme, which could be called algebraic
Teichmiiller space. The algebraic mapping class group scheme 1(M,) acts on it.

One might hope to apply some of the methods of Teichmiiller theory to algebraic Te-
ichmiiller space. Many ideas relating to “profinite Teichmdiiller theory” appear in [Bo].
On a more analytic note, many features of traditional Teichmiiller theory carry over, and
have been used by dynamicists and analysts, see for example [Mc]. The “analytification”
of algebraic Teichiiller space is a solenoid, and was studied for example by Markovic and
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Sari¢ in [MS]. McMullen pointed out to us that it also yields an interpretation of Ehren-
preis and Mazur’s conjecture, that given any two compact hyperbolic Riemann surfaces,
there are finite covers of the two surfaces that are arbitrarily close, where the meaning of
“arbitrarily close” is not clear [E, p. 390]. (Kahn and Markovic have recently proved this
conjecture using the Weil-Petersson metric, suitably normalized, [KM].) More precisely:
a Galois type of covering of a genus h curve, where the cover has genus g, gives a natural
correspondence

X—>Mg

|

M

where the vertical map is finite étale. One might hope that the metric can be chosen on
M for all g so that the pullbacks of the metrics from Mg and My, are the same; this
would induce a pseudometric on algebraic Teichmuller space. In practice, one just needs
the metric to be chosen on M, so that the correspondence induces a system of metrics
on ./T/th that converges; hence the normalization chosen in [KM]. The Ehrenpreis-Mazur
conjecture asserts that given any two points on My, there exist lifts of both to algebraic
Teichmuller space whose distance is zero.

4. THE ALGEBRAIC FUNDAMENTAL GROUP FAMILY

We now construct the fundamental group family 7;(X) and describe its properties.
More generally, suppose f : Y — X is a Galois profinite-étale covering space with Y con-
nected. We will define the adjoint bundle Adf : AdY — X to f, which is a group scheme
over X classifying profinite-étale covering spaces of X whose pullback to Y is Yoneda triv-
ial. We define m;(X) as Ad(X = X).

AdY is the quotient scheme (Y x Y)/Aut(Y/X), where Aut(Y/X) acts diagonally. The
quotient is constructed by descending Y xx Y — Y to an X-scheme, using the fact that
profinite-étale covering spaces are fpqc. This construction is as follows:

By Proposition 2.13, we have the fiber square (3). A descent datum on a Y-scheme Z is
equivalent to an action of Aut(Y/ X)>< on Z compatible with p in the sense that the diagram

() Aut(V/X), xxZ ——— 7
Aut(V/X) xx Y 2 v

commutes. (This is the analogue of the equivalence between descent data for finite étale
G Galois covering spaces and actions of the trivial group scheme associated to G. The
proof is identical; one notes that the diagram (5) is a fiber square and then proceeds in a
straightforward manner. See [BLR, p. 140].) For Z affine, a descent datum is automatically
effective (see for instance [BLR, p. 134, Thm. 4]).
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4.1. Definition. The adjoint bundle to f : Y — X is the X-scheme Adf : AdY — X deter-
mined by the affine Y scheme Y xx Y — Y and the action p x p.

AdY is a group scheme over X. The multiplication map is defined as follows: let A :
Y — Y xx Y be the diagonal map. By the same method used to construct AdY, we can
construct the X-scheme (Y x Y x Y)/ Aut(Y/X), where Aut(Y/X) acts diagonally. The map
idxAxid:YXYxY=YxYxY xYdescends to an isomorphism of X-schemes

(6) (Y XY xY)/Aut(Y/X) — Ad(Y) xx Ad(Y).
The projection of Y x Y x Y onto its first and third factors descends to a map
(7) (Y x Y xY)/Aut(Y/X) — Ad(Y).

The multiplication map is then the inverse of isomorphism (6) composed with map (7).

Heuristically, this composition law has the following description: The geometric points
of AdY are ordered pairs of geometric points of Y in the same fiber. Since Aut(Y/X) acts
simply transitively on the points of any fiber, such an ordered pair is equivalent to an
Aut(Y/X)-invariant permutation of the corresponding fiber of Y over X. The group law
on AdY comes from composition of permutations.

The identity map X — Ad(Y) is the X-map descended from the Y-map A. The inverse
map is induced by the map Y xx Y — Y xx Y which switches the two factors of Y. It is
straightforward to see that these maps give AdY the structure of a group scheme.

The construction of Ad(Y) implies the following:

4.2. Proposition. — Let Y be a connected profinite-étale Galois covering space of X. We have
a canonical isomorphism of Y-schemes Ad(Y) xx Y =Y xx Y. Projection Y xx Y — Y onto the
second factor of Y gives an action

(8) Ad(Y) xxY =Y.

4.3. Proposition. — Suppose Y1, Y, are connected profinite-étale Galois covering spaces of X. An
X-map Y1 — Y, gives rise to a morphism of group schemes Ad(Y1) — Ad(Y2). Furthermore, the
map Ad(Yq) — Ad(Y2) is independent of the choice of Y1 — Ya.

Proof. Choose amap g : Y1 — Y, over X. By Proposition 2.13, the Y;-map idx g : Y1 xxY; —

Y1 xx Yz is a Yi-map Aut(Y;/ X)Y] — Aut(Yy/ X)Yl. This map gives a continuous map of

topological spaces Aut(g) : Aut(Y;/X) — Aut(Y,/X) by Proposition 2.9.

It follows from the construction of the isomorphism of Proposition 2.13 (which is really
given in Proposition 2.9) that for any a € Aut(Y;/X) the diagram:

©) Y, : Y,

o
Aut(g)(a)

2 Y,

9
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commutes.

Since Y; — Y; is a profinite-étale covering space and in particular an fpqc cover, (9)
implies that Aut(g) is a continuous group homomorphism.

It follows that the map gx g : Y1 xY; — Y2xY, determines amap (Y;xY;)/ Aut(Y;/X) —
(Y2 xY3)/ Aut(Y,/X). It is straightforward to see this is a map of group schemes Ad(Y;) —
Ad(Y;).

Given two maps of X-schemes g1,92:Y; — Y2, wehaveamap g7 x g2: Y7 = Y2 Xx Ya.
Since Y, xx Y2 — Y, is Yoneda trivial with distinguished sections Aut(Y,/X), we have
a € Aut(Y,/X) such that a o g; = g,. It follows that g; and g, determine the same map

4.4. Corollary. — m;(X) is unique up to distinguished isomorphism, and in particular is inde-
pendent of choice of universal cover.

4.5. Theorem. — There is a canonical homeomorphism between the underlying topological
group of the fiber of 7;(X) — X over a geometric point xo : Spec QO — X and the étale (pointed)
fundamental group (X, Xo).

Proof. Let Y — X be a finite étale Galois covering space with Y connected. We have
a canonical action of X-schemes 71(X) xx Y — Y as follows: Choose a universal cover
p: X — Xand amap X — Y over X. By Proposition 4.3, we have a canonical map
m(X) = Ad(Y). Composing with the canonical action Ad(Y) xx Y — Y given by (8) gives
the action 7; (X) xx Y =Y.

Let T (X, xo) be the topological group underlying the fiber of 71;(X) — X above x,. Let
Fy, be the fiber functor over x,. The action 7 (X) xxY — Y shows that F, is a functor from
tinite, étale, connected, Galois covering spaces to continuous, finite, transitive, symmetric
T (X, xo)-sets. (A symmetric transitive G-set for a group G is defined to mean a G-set
isomorphic to the set of cosets of a normal subgroup. Equivalently, a symmetric transitive
G-set is a set with a transitive action of G such that for any two elements of the set, there
is a morphism of G-sets taking the first to the second.)

It suffices to show that F, is an equivalence of categories. By fpqc descent, pull-back
by p is an equivalence of categories p* from affine X-schemes to affine X-schemes with
descent data. Because X trivializes any finite, étale X-scheme, it is straightforward to see
that p* gives an equivalence of categories from finite, étale, covering spaces of X to trivial,
finite, étale covering spaces of X equipped with an action of Aut(X/X). Taking fibers, we
have that F,, is an equivalence from finite, étale, connected, Galois covering spaces to
continuous, finite, transitive, symmetric T, (X, xo)-sets. O

The remainder of this section is devoted to examples and properties of the fundamental
group family.
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4.6. Group schemes. We continue the discussion of §3.8 to obtain the algebraic version of
the fact that if X is a topological group with identity e, there is a canonical exact sequence

0—m(X,e) X X 0.

4.7. Theorem. — If X is a connected group variety over algebraically closed k such that X is a

group variety (e.g. if char k = 0 or X is proper, Thm. 3.9), then the kernel of the morphism X — X
is naturally isomorphic to 7 (X, e) (as group schemes).

Proof. Let G be the (scheme-theoretic) kernel of p : X — X. Restricting the X-action
1 (X) xx X o X

to e yields a k-action

(10) m(X,e) x G — G.

Evaluating (10) on € — G yields an isomorphism vy : m;(X,e) — G. We check that y
respects the group scheme structures on both sides. It suffices to check that the multipli-
cation maps are the same. Let m, x,¢) and mg be the multiplication maps for 7;(X, e) and
G respectively. The diagram

(X, e) x m(X e) T (X, e)
lidxy lv
m(X,e) x G ) G
[ i
GxG = G

commutes. (The upper square commutes because (10) is a group action. The lower square
commutes because monodromy commutes with morphisms of profinite-étale covering
spaces. In particular, right multiplication in X by any geometric point of G commutes
with the monodromy action 7t;(X) xx X — X.) This gives the result. O

4.8. Examples. We now describe the fundamental group family in a number of cases.

4.9. The absolute Galois group scheme. We give four descriptions of the absolute Galois
group scheme Gal(Q) := m;(Spec Q), or equivalently, we describe the corresponding Hopf
algebra. As Gal(Q) does not depend on the choice of the algebraic closure Q (Prop. 4.4),
we do not call it Gal(Q/Q). Notational Caution: Gal(Q) is not the trivial group scheme
corresponding to Gal(Q/Q), which would be denoted Gal(Q/Q) (Example 2.11).

1) By definition. The Hopf algebra consists of those elements of Q @ Q that are invariant
under the diagonal action of the Galois group Gal(Q/Q). The coidentity map sends a ® b
to ab. The coinverse map is given by the involution a ® b — b ® a. The comultiplication
map has the following description: id ® A ® id gives a map ®*Q — ®3Q which descends
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to an isomorphism @2((Qe Q)% (@)  (3Q)%!@®), where all actions of Gal(Q/Q) are
diagonal. The comultiplication map can therefore be viewed as a map (©*Q)¢@/® —
(®3Q)“lQ/Q) and this map is the inclusion onto the first and third factors.

2) As an algebra of continuous maps. The Hopf algebra consists of continuous maps f :
Gal(Q/Q) — Q such that

(11) Gal(Q/Q) —Q
Gal(Q/Q) — Q

commutes for all o € Gal(Q/Q), where the left vertical arrow is conjugation, and the right
vertical arrow is the Galois action. Note that these maps form an algebra. The coinverse

of f is given by the composition Gal(Q/Q) s Gal(Q/Q) . Q , where iis the inverse
in Gal(Q/Q). Comultiplication applied to f is given by the composition

Gal(Q/Q) x Gal(@/Q) ™~ Gal(@/Q) T,

using the isomorphism

Maps,(Gal(Q/Q) x Gal(Q/Q), Q) = Maps,,(Gal(Q/Q), Q) ® Maps,,(Gal(Q/Q, Q).

(A similar argument was used to construct the trivial profinite group scheme in Example
2.11. The similarity comes from the isomorphism of 7r; xx X with Aut(X/ X)X')

3) Via finite-dimensional representations. By interpreting (11) as “twisted class functions,”
we can describe the absolute Galois Hopf algebra in terms of the irreducible continuous
representations of Gal(Q/Q) over Q. More precisely, we give a basis of the Hopf algebra
where comultiplication and coinversion are block-diagonal, and this basis is described in
terms of Q-representations of Gal(Q/Q).

Given a finite group G and a representation V of G over a field k, the natural map
G — V ® V*induces a map

(V® V*)" — Maps(G, k),
where V* denotes the dual vector space. For simplicity, assume that k is a subfield of C.
When k is algebraically closed, Schur orthogonality gives that
Maps(G, k) = Sver(V e V)",
where [ is the set of isomorphism classes of irreducible representations of G. It follows
that
Maps,, (Gal(Q/Q), Q) = ®geq Bverg (V@ V7)*
where Q is the set of finite quotients of Gal(Q/Q), and for any G in Q, Ig is the set of
isomorphism classes of irreducible, faithful representations of G over Q.

_ Gal(Q/Q) acts on Maps,,(Gal(Q/Q), Q) via (of)(0’) = o(f(0'0’0)), where f : Gal(Q/Q) —

Q is a continuous function and o, o’ are in Gal(Q/Q). The set of fixed points is the
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Hopf algebra we wish to describe. The elements of this Hopf algebra could reason-
ably be called “twisted class functions”. Note that we have a Q-linear projection from
Maps,(Gal(Q/Q), Q) to our Hopf algebra given by averaging the finite orbit of a func-
tion.

Let G be a finite quotient of Gal(Q/Q). Gal(Q/Q) acts on the irreducible, faithful Q-
representations of G by tensor product, namely, o(V) = Q ®g V, where the map [O=N0)
in the tensor product is 0. The orbits of I under this action are in bijection with the
irreducible, faithful Q-representations of G. This bijection sends an irreducible, faithful
Q-representation V to the isomorphism class of Q-representation Wy such that

Sweoy W =Wy @ Q
where Oy is the (finite) orbit of V under the action of Gal(Q/Q).

For any irreducible, faithful @-representation Vof G, ®weo, (W ® W*)* is an invariant
subspace of Maps,(Gal(Q/Q), Q) under the action of Gal(Q/Q). It follows that our Hopf
algebra is isomorphic to

Dceq Dvelg (Bweo, (W ® W*)*)Gal(@ﬂ@)
where 1 is the set of orbits of I¢ under Gal(Q/Q).

The natural map Gweo, (WRW?*)* — Maps,(Gal(Q/Q), Q) factors through the natural
map (Wy@W5,®Q)* — Maps,.(Gal(Q/Q), Q). Note that there is a compatible Gal(Q/Q)-
action on (Wy ® Wy, ® Q)*. Note that the map (Wy @ W5, ® Q)* — Maps ., (Gal(Q/Q), Q)
is not injective. Let the image of (Wy ® Wy, ® Q)* in Maps,.(Q/Q), Q) be F(Wy).

Let I, @,0) be the set of isomorphism classes of continuous irreducible Q-representations
of Gal(Q/Q). Our Hopf algebra is isomorphic to

P }“(WV)GM(@/Q).

Gal(Q/Q)

The subspaces F(Wy)%(@Q) are invariant under comultiplication and coinversion be-
cause comultiplication and coinversion are induced from comultiplication and coinver-
sion on GL(Wy ® Q). The multiplication is not diagonal; it comes from tensor products of
representations and therefore involves the decomposition into irreducible representations
of the tensor product of two irreducible representations.

4) Points of the absolute Galois group scheme. Let K — L be a finite Galois extension of
fields with Galois group G. The points and group scheme structure of the adjoint bundle
Ad(L/K) := Ad(Spec L — Spec K) can be identified as follows: as in part 2) of this example,
the ring of functions of Ad(L/K) is the ring of functions f : G — L such that for all g, hin
G, f(hgh™') = hf(g). Thus, the points of Ad(L/K) are in bijection with conjugacy classes
of G. Specifically, let S be a set of representatives of the conjugacy classes of G. For any
element g of G, let C, be the centralizer of g. Then Ad(L/K) = [ ] .¢Spec LCe,

The group law on Ad(L/K) therefore corresponds to a map ]_[a)be sSpec(LS @ L) —
[ I.esSpec LS. Note that Spec(L® ® L) =[] s . Spec(L(gL")), where S,y is a set

of double coset representatives for (Cq, Cp) in G, ie. G = [[ s, , CagCp, and LS (gL)
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is the subfield of L generated by L and gL . (In particular, the points of Spec(L% @ L )
are in bijective correspondence with S p.) Noting that L (gL ) = LS99 ' we have
that the comultiplication on Ad is a map

(12) HLCC — H H L CaMCopg-1

ceS a,beS geSa v

Comultiplication is described as follows: LS — L““"“ovs~"is the 0 map if c is not con-

tained in the set R, = {g1ag;'g2bg; g1, 92 € G}. Otherwise, there exists g’ in G such
that g’cg’”' = agbg™". The map LS — L“"Swa~" is then the composite

!
LCC g—) ch’cg’*] = LCagbg*] ]_C“mcgbg

Note that R, is a union of conjugacy classes, and these conjugacy classes are in bijec-
tion with S, , just like the points of Spec(L @ L<).

This description is explicit; the reader could easily write down the comultiplication
map for the S; Galois extension Q — Q(2'/3, w), where w is a primitive third root of
unity.

We obtain the following description of Gal(Q) = m(Spec Q): replace the products
in (12) by the subset of the products consisting of continuous functions. The map (12)
restricts to the comultiplication map between these function spaces.

4.10. Question. Note that the points of 7;(Spec Q) correspond to conjugacy classes in
Gal(Q/Q), and their residue fields are the fixed fields of the centralizers. Gal(Q/Q) is an-
abelian, so every finite index subgroup has trivial center [NSW, 12.1.6], but we now have
interest in the stronger question: is it true that no two nontrivial elements of Gal(Q/Q)
commute? Equivalently, are the residue fields of 7;(Spec Q) at any point other than the
identity isomorphic to Q?

4.11. Finite fields F,. Parts 1), 2) and 4) of Example 4.9 apply to any field k, where Q is
replaced by k*. In the case of a finite field, the Galois group is abelian, so the compatibility
condition (11) translates to the requirement that a continuous map Gal(ﬁ/ Fq) — I[Tq have
image contained in F,. Hence, 7t;(Spec ) is the trivial profinite group scheme 2 over F,
(see Example 2.11).

4.12. G, over an algebraically closed field k of characteristic 0. Note that I'(G,, xg,,

Gnm) can be interpreted as the ring k[u1 ,uY] subject to ul = u} for n in Z (but not for
general n € Q). Thus 1;(G,) = (KUY @z k[uF)) A EE/KED - The automorphisms of
k[tY/k[tZ] involve sending t'/™ to Cnt]/ ", where (,, is an nth root of unity, and all the
(n are chosen compatibly. Hence the invariants may be identified with k[t?][p,] where
to = (w1/uz)/™. Thus we recognize the fundamental group scheme as 2 (Example 2.12).
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The action of 711(G,) on G,y is given by
K[t9] — K[tY @1y k2 e, L]/ (6 — 1,40 — tne1y)

» 'nl

with t/™ — t,,,t"/™. Notice that we get a natural exact sequence of group schemes over k

0——=2—>Gpn—=CGn—>0,
which is Theorem 4.7 in this setting.

In analogy with Galois theory, we have:

4.13. Proposition. — Suppose f: X =Y, g:Y — Z,and h = g o f are profinite-étale covering
spaces with X, Y, and Z connected.

(@) If his Galois, then f is Galois. There is a natural closed immersion of group schemes on'Y
Ad(X/Y) — g* Ad(X/Z).

(b) If furthermore g is Galois, then we have a natural surjection Ad(X/Z) — Ad(Y/Z) of
group schemes over Z. The kernel, which we denote Adz(X/Y), is a group scheme over Z

1 — Adz(X/Y) — Ad(X/Z) — Ad(Y/Z) — 1

and upon pulling this sequence back by g, we obtain an isomorphism g* Adz(X/Y) =
Ad(X/Y) commuting with the inclusion of (a):

9" Adz(X/Y)——g" Ad(X/Z)
Ad(X/Y)

(c) If furthermore Aut(X/Y) is abelian, then we have an action of Ad(Y/Z) on Adz(X/Y),
which when pulled back to X is the action

Aut(Y/Z)X X x Aut(X/Y)X — Aut(X/Y)X

arising from the short exact sequence with abelian kernel
1 — Aut(X/Y) — Aut(X/Z) — Aut(Y/Z) — 1.

(Recall that to any short exact sequence of groups 1 — A — B — C — 1 with A abelian,
Cacts on A by c(a) := bab ™! where b is any element of B mapping to c.)

We omit the proof.

4.14. G, over a field k of characteristic 0. We now extend the previous example to an
arbitrary field of characteristic 0. The universal cover of Spec k[t?] is Spec k[tY].
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Consider the diagram

Spec k[t?]

j )
Spec k[tY] O Spec k[t7]
j

d*Gal(k) ot profinite-étale
not Galois 9

Spec k[t?] O Speck

d
not profinite-éta Gal(k)

Speck

in which both squares are Cartesian. All but the two indicated morphisms are profinite-
étale. By base change from Speck — Speck, we see that each of the top-right-to-bottom-
left morphisms is Galois with adjoint bundle given by the pullback of Gal(k). (Note:
Spec k[t?] — Spec k[t?] is not Galois in general.) By Proposition 4.13(b), with f and g used
in the same sense, we have an exact sequence of group schemes on G,,, = Spec k[t%]:

(13) 1 —T— m(Gn) — d*Gal(k) —1.

Since T is abelian, we have an action of d*Gal(k) on T by Proposition 4.13(c). (By Propo-
sition 4.13(a), with f and g replaced by 1 and j respectively, the exact sequence (13) is split
when pulled back to Spec k[tY].)

This is independent of the choice of algebraic closure by Corollary 4.4. If we examine
this exact sequence over the geometric point € = Spec k mapping to the identity in G,
we obtain

(14) 1—2 ——m(Gm, &) — Gal(k/k) — 1
inducing a group scheme action
(15) Gal(k/k) x 2 — 2.

If k = Q, the underlying topological space of (14) (forgetting the scheme structure) is the
classical exact sequence (e.g. [Oo, p. 77])

00— Z - Tt(]at(]Pg@ - {O> OO}) 1) - G&l(@/@) —0

and the representation (15) is a schematic version of the cyclotomic representation p :

Gal(Q/Q) — Aut(2).
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4.15. Abelian varieties. The analogous argument holds for an abelian variety A over any
tield k. Using the diagram

A

j*d*%

Spec li lirﬂ?h\]

d*Gal(k tprofmlte -étale
not Galois
pec k®
not profml@

Spec k
we obtain an exact sequence of group schemes over A
1=T—-m(A)— d*(Gal(k)) — 1
inducing a canonical group scheme action
(16) d*Gal(k) x T — T.
Upon base change to the geometric point € = Spec k®, we obtain
1 =T —m(A €é) — Gal(k®/k) — 0

(where T’ = 729 if chark = 0, and the obvious variation in positive characteristic), and
the group action (16) becomes the classical Galois action on the Tate module.

More generally, for any geometrically connected k-variety with a k-point p, the same
argument gives a schematic version of [SGA1, p. 206, Exp. X.2, Cor. 2.2].

4.16. Algebraic K(mt,1)’s and elliptic curves. For simplicity, we restrict our attention
to schemes over a given number field k. Homomorphisms between étale fundamental
groups are also assumed to respect the structure map to Gal(k/k) up to inner automor-
phism. (The condition “up to inner automorphism” comes from ambiguity of the choice
of base point, which is not important for this example, but see [Sz1] for a careful treat-
ment.)

The question “what is a loop up to homotopy?” naturally leads to the question “which
spaces are determined by their loops up to homotopy?" When a “loop up to homotopy”
is considered to be an element of the étale fundamental group, a well-known answer to
the latter question was conjectured by Grothendieck: in [G1], Grothendieck conjectures
the existence of a subcategory of “anabelian” schemes, including hyperbolic curves over
k, Spec k, moduli spaces of curves, and total spaces of fibrations with base and fiber an-
abelian, which are determined by their étale fundamental groups. These conjectures can
be viewed as follows: algebraic maps are so rigid that homotopies do not deform one
into another. From this point of view, a K(7, 1) in algebraic geometry would be a variety
X such that Mor(Y, X) = Hom(m;(Y), ;(X)). (Again, more care should be taken with base
points, but this is not important here.) In other words, “anabelian schemes” are alge-
braic geometry’s K(7, 1)’s with respect to the étale fundamental group. (Some references
on the anabelian conjectures are [G1, G2, NSW, Po, Sz1].) For use in this example, note
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that the rational points on an anabelian scheme are conjectured to be in bijection with
Hom(Gal(k/k), 7§") (Grothendieck’s Section Conjecture). From the above list, we see that
Grothendieck conjectures that many familiar K(7t, 1)’s from topology are also K(7, 1)’s in
algebraic geometry, but that elliptic curves and abelian varieties are notably omitted from
this list. Since we are interested in what a loop up to homotopy should be, it is natural to
ask why the étale fundamental group fails to determine elliptic curves.

Jordan Ellenberg points out that one way to see that elliptic curves are not algebraic
K(7t, 1)’s in this anabelian sense is that local conditions must be imposed on an element
of Hom(Gal(k/k), 7t1) for the element to come from a rational point. Explicitly, let E be an
elliptic curve over k, and let S™"(E/k) and III(E/k) be the n-Selmer group and Shafaravich-
Tate group of E/k respectively. The exact sequence

0 — E(k)/nE(k) — S™(E/k) — II(E/K)[n] — 0

gives the exact sequence

0— @E(k)/nE(k) — pinS“(E/k) — @m(E/k) m] — 0.

n n

Thus if ITI(E/K) has no non-zero divisible elements,

(17) Jim E (k) /nE(k) = Jim S™(E/K).

Itis not hard to see that Hom(Gal(k/k), 7t;) = H'(Gal(k/k), lim E[n])and thatlim S™(E/k)
is naturally a subset of H'(Gal(k/k), @nE[n]). We think of %iLnnS“(E/k) as a subset of

Hom(Gal(k/k), 1) cut out by local conditions, as in the definition of the Selmer group.
Any rational point of E must be in this subset.

Furthermore, if II1(E/K) has no non-zero divisible elements, equation (17) can be inter-
preted as saying that the (profinite completion of the) rational points of E are the elements
of Hom(Gal(k/k), 7t1) satisfying certain local conditions.

We ask if it is really necessary to exclude elliptic curves from the algebraic K(7, 1)’s, or if
there is another sort of covering space, another sort of “loop up to homotopy,” producing
a fundamental group which does characterize elliptic curves. For instance, if III(E/K)
is finite, this example suggests that this new sort of fundamental group only needs to
produce local conditions, perhaps by considering some sort of localization of the elliptic
curve.
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