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1 Introduction

In 1993, Conway formulated a remarkable conjecture regarding universal quadratic forms,
i.e., integer-coefficient, positive-definite quadratic forms representing all positive integers.
Based on theoretical evidence and computations performed by his students Miller, Schnee-
berger, and Simons, Conway conjectured that such a quadratic form represents all positive
integers if and only if it represents all positive integers up to 290. In fact, he conjectured
that for such a quadratic form to be universal, it is necessary and sufficient for the form to
represent a certain specified set of 29 integers, the largest of which is 290.
The purpose of the present article is to prove this conjecture.

Theorem 1 (“The 290-Theorem”) If a positive-definite quadratic form with integer co-
efficients represents the twenty-nine integers

1,2,3,5,6,7,10,13,14, 15,17, 19, 21, 22, 23, 26, W
29,30, 31, 34, 35, 37, 42, 58, 93, 110, 145, 203, and 290

then it represents all positive integers.

We call the integers listed in (1) the critical integers. To show that these integers are
indeed critical in the 290-Theorem, we prove:

Theorem 2 For each of the twenty-nine critical integers t, there exists a positive definite
quadratic form with integer coefficients which fails to represent t but represents every other
positive integer.

The following result shows that the number 290 plays a rather special role among the
critical numbers:

Theorem 3 If a positive-definite quadratic form with integer coefficients represents every
positive integer below 290, then it represents every integer above 290.

One of the historical motivations for proving a result in the spirit of Theorem 1 was to
determine all universal quadratic forms in four variables (four being the minimal number
of variables possible for a universal quadratic form). The first result in this direction is due
to Lagrange [17], who showed that every positive integer can be expressed as the sum of
four squares; i.e., the form a® + b 4+ ¢ 4+ d? is universal. Other universal forms were later
investigated by Waring [27], Jacobi [13], and Liouville [18], among others.



The first systematic investigation of universal quaternary forms was carried out by
Ramanujan [19], who determined all universal quaternary diagonal forms. (There are 54 of
them.) Ramanujan’s assertions were later given detailed proofs by Dickson, while various
other authors attempted to extend Ramanujan’s list to non-diagonal forms. In this regard,
Willerding exhibited 168 quaternary universal forms having integer-matrix. In [1], it was
shown that there are exactly 204 universal forms having integer-matrix. The 290-Theorem
at last allows us to completely solve the problem of determining all universal quaternary
forms. We prove:

Theorem 4 There are exactly 6436 universal quaternary forms.

The proofs of Theorems 1-4 require the confluence of several recent theoretical and
computational advances in the arithmetic of quadratic forms—along with a bit of good luck.
The theoretical advances include the escalation method (cf.§2-§4.1) as well as new effective
bounds on the Fourier coefficients of weight 2 theta functions (cf. §4.2). The computational
advances include efficient new ways to check representability of eligible numbers and rapidly
compute arbitrary local densities of a number by a quadratic form (cf. §4.3). The bit of
good luck includes an arithmetic trick (the “10-14 switch”—cf. §5.2) which allows us to
reduce the proofs of Theorems 1-4 almost entirely to the study of quadratic forms in four
variables.

We introduce the escalation method in §2, and compute the necessary small-dimensional
escalator lattices in §3 and §4.1. In §4.2-§4.4 we determine the integers represented by the
four-dimensional escalators, and we describe the new arithmetic, analytic, and computa-
tional techniques that lie behind these determinations. In §5 we study all higher-dimensional
escalators. Finally, in §6, we use this information to complete the proofs of Theorems 1-4.

2 Preliminaries

The proof of the 290-Theorem is perhaps best enunciated geometrically using the language
of lattices. As is well-known, there is a natural bijection between equivalence classes of
integer-coeflicient quadratic forms and lattices having integer norms; precisely, a quadratic
form f can be regarded as the norm form for a corresponding lattice L(f). Hence we shall
freely move between the language of forms and the language of lattices. For brevity, by a
“form” we shall always mean a positive-definite quadratic form Zlgig j<n Cij Tixj having
integer coefficients c;j, and by a “lattice” we shall always mean a lattice having integer
norms.

A form (or its corresponding lattice) is said to be universal if it represents every
positive integer. If a form f happens not to be universal, define the truant of f (or of its
corresponding lattice L(f)) to be the smallest positive integer not represented by f.

Important in the proof of the 290-Theorem is the notion of “escalator lattice.” An
escalation of a nonuniversal lattice L is defined to be any lattice which is generated by L
and a vector whose norm is equal to the truant of L. An escalator lattice is a lattice which
can be obtained as the result of a sequence of successive escalations of the zero-dimensional
lattice.



3 Small-dimensional escalators

The unique escalation of the zero-dimensional lattice is the lattice generated by a single
vector of norm 1. This lattice corresponds to the form 22 (or, in matrix form, [1]) which
fails to represent the number 2. Hence every escalation of [1] has inner product matrix of

the form
1 a
a 2 |°

By the Cauchy-Schwartz inequality, a? < 2, and since a must be an integer or half-integer,
we conclude that a = 0, £1/2 or £1. The choices a = £1/2 lead to isometric lattices, as
do the choices a = £1, so we obtain only three nonisometric two-dimensional escalators,
namely those lattices having Minkowski-reduced Gram matrices
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The truants of these three escalators are 3, 3, and 5 respectively. Escalating each of these
three two-dimensional escalators in the same manner, we find exactly 34 new nonisometric
escalator lattices, namely those having Minkowski-reduced Gram matrices
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It is easy to see that these 34 escalators are all nonuniversal, and their truants are given
respectively by

14, 7, 5, 10, 21,

14, 6, 10, 22, 6,

6, 13, 5, 10, 7,

17, 14, 10, 5,
6, 7, 10, 23, 10,
7, 29, 31, 14, 10,
7, 29, 10, 13, and 10.

4 The basic four-dimensional escalators

Escalating now each of the above 34 three-dimensional escalators, we obtain 6560 noni-
somorphic four-dimensional escalator lattices. We call these the basic four-dimensional
escalators. We note that other four-dimensional escalators can be obtained as the result
of a sequence of escalations of these basic escalators; however, since every four-dimensional
escalator contains a basic escalator—and since most of these basic four-dimensional escala-
tors are either universal or represent all but a sparse set of positive integers—it will suffice
for us to consider only the basic escalators in dimension four.

4.1 Arithmetic methods

For each basic four-dimensional escalator L4, we wish to determine exactly the set of positive
integers represented by L4. In many cases, this can be accomplished through arithmetic
methods as in [1]. Namely, in each such L4, we look for a 3-dimensional sublattice L3 which
is known to represent some large set of integers. Typically, we choose L3 to be unique in
its genus, in which case L3 represents all integers that it represents locally (i.e., over each
p-adic ring Z,,). With this knowledge of L3, we then show that the direct sum of L3 with its
orthogonal complement in L4 represents all sufficiently large integers n locally represented
by L4. A check of representability for small n reveals exactly those numbers represented by
Ly.

For example, let us consider the escalations L4 of the escalator lattice L3 corresponding
to Legendre’s three squares form x2 + y? + 22. This 3-dimensional lattice L3 is well-known
to be unique in its genus, and it represents all positive integers not of the form 4%(8%k + 7)
for some integer a. Suppose [m] is the Gram matrix of the orthogonal complement of L3 in
Ly. We wish to show that L3 @ [m] represents all sufficiently large integers.

To this end, suppose L, is not universal, and let u be the first integer not represented
by L4. Then, in particular, u is not represented by L3, so u must be of the form 4%(8k 4 7).
Moreover u must be squarefree (by minimality), so a = 0 and v = 7 (mod 8).

Now if m # 0, 3 or 7 (mod 8), then clearly u—m is not of the form 4*(8k+7). Similarly,
if m =3 or 7 (mod 8), then u — 4m cannot be of the form 4*(8k + 7). Thus if m # 0 (mod
8), and if u > 4m, then either u — m or u — 4m is represented by L3, so u is represented by
Ls @ [m] for all u > 4m. For all escalations Ly of L3 it is easy to see that the associated
m never exceeds 27, and one checks that eash such L4 represents all integers less than
4 x 27 = 108. It follows that any such escalator L4 is universal when its associated value



of m is not a multiple of 8. Fortunately, the values m = 8,16, and 24 do not arise, proving
the universality of all escalations of 22 + y? 4 22. (In particular, this includes a proof of
Lagrange’s four squares theorem.)

Of the 34 three-dimensional escalator lattices, 20 of them are unique in their genus; thus
they too represent all numbers they locally represent, and most of their escalations can be
handled similarly. In fact, all escalations of 17 of these 20 three-dimensional escalators can
be handled in this way, namely #’s 1-8, 10-12, 17, 19, 21, 22, 24, and 34 on the list of
ternary escalators in Section 3. This determines what numbers are represented by 1658 of
the 6560 basic four-dimensional escalators.

If we allow other values for L3, then many more basic four-dimensional escalators can be
handled, but not all of them. In fact, one can show that more than 2300 of the 6560 contain
no three-dimensional form of class number one! Although more sophisticated arithmetic
techniques can be applied to some of these, it quickly becomes clear that an alternative
method is necessary to effectively deal with the remaining four-dimensional escalators.

4.2 Analytic methods

In 1929 Tartakowsky [26] established the first analytic result about the numbers represented
by an integral quadratic form, proving that any form of dimension > 5 represents all suf-
ficiently large integers that it locally represents. A similar result due to Kloosterman [16]
holds for 4-dimensional forms, assuming possibly that the integer is not too divisible by
finitely many anisotropic primes.* In all of our basic 4-dimensional escalators, there are
no anisotropic primes, so in principle we can use this result to understand which numbers
are represented by each them. However to apply this idea in practice, one needs an effective
version which says how large is “sufficiently large”, and this bound needs to be reasonably
small.

General effective versions of the Tartakowsky-Kloosterman theorem have been obtained
by several authors, such as by Watson [29] and Hsia and Icaza [11] T (in dimension > 5) and
by Fomenko [7] and Schulze-Pillot [23] (in dimension 4). However, even the best of these
effective results have not been of much practical use. For example, the best of these bounds
for representing prime numbers p by the Kneser form 2 + 332 + 522 + 7Tw? of level N = 420
requires that one check the representability of all p < 3.73 x 103*. Even assuming N is
squarefree (which always gives a substantial improvement), we would still need to check all
p < 5.13 x 1012,

The difficulty with these previous approaches is that they treat all modular forms/theta
functions of a given level simultaneously, and use estimates for all forms of a given level.
Although they are the best known uniform estimates, their uniformity comes at the price
of accuracy for individual forms. By studying individual forms @, practical versions of
the Tartakowsky-Kloosterman theorem for ¢) can be achieved using the theory of modular
forms. We note that modular forms are secretly present in the works of Tartakowsky
and Kloosterman, and explicitly appear in Schulze-Pillot’s formulation, so it is natural

*In fact they prove more, namely that if m is locally represented then rg(m) — oo as m — oo, which as
a special case gives rg(m) > 0 if m is sufficiently large. For a more detailed exposition of the history, see
the survey papers [5], [9], [25], [20] and [12].

Thy arithmetic methods



to guess that a more detailed study of their properties would yield improved bounds for
representability. This direction was recently pursued by the second author in [8], where the
integers represented by the Kneser form z? + 3y? 4+ 522 + Tw? were explicitly determined.

Modular forms arise because for any positive definite integer-valued quadratic form @
in n variables, the Fourier series generating function

Oq(z) = Y rg(m) e

m>0

is a modular form of weight n/2 for some congruence subgroup I'o(N) C SL(2,Z). From
the general theory of such modular forms, we can decompose ©¢(z) naturally as a sum of
an Eisenstein series F(z) and a cusp form f(z), whose Fourier coefficients have different
growth rates as m — oo. In particular, the Eisenstein coefficients ap(m) are always non-
negative and grow more quickly than the cusp form coefficients af(m). By establishing an
effective lower bound for ag(m) and an effective upper bound for |a¢(m)| we may obtain
an effective version of the Tartakowsky-Kloosterman result.

4.2.1 The Eisenstein coefficients ag(m)

The Eisenstein coefficients a(m) have a very natural meaning in terms of the local behavior
of the quadratic form @, due to Siegel [22], which gives

ar(m) =[] 8.(m)

as a product of local densities 3,(m). Here each f,(m) measures the number of local
(integral) representations of m by @, at each completion v of Q. The real local density at
Boo(m) is easily computed as the volume of the real ellipsoid Q(z) = m, while the local
density at each prime p is given as

_ iy T E(Z/P"2)" | Q(F) = m (modp”)}
ﬁp(m) - rli{go pn(rfl)

which roughly counts the (normalized) number of representations of m by @ over the p-adic
integers Zy,.

Because of the local multiplicative nature of ag(m), an effective lower bound for ag(m)
follows from reasonable lower bounds for each of the local densities (3,(m), which reflect
an understanding of how the number of solutions of Q(z) = m (mod p") grows as r — 0.
For most primes p this solution counting is fairly straightforward, but if p | det(2Q) then
the answer may additionally involve solutions of several simpler auxilary quadratic forms,
whose densities must also be computed to obtain the desired lower bound. Combining these
local estimates in the case of a quaternary form () gives an effective bound

p—1

>C
ag(m) > Cgm P

pIN, plm
x(p)=—1
for all numbers m locally represented by . An exact formula for the constant Cg > 0
is described in Theorems 5.7(b) and 6.3 of [8], though computing it for any given form is



extremely complicated. It requires knowing all possible local densities 8,(m) at all primes!
When p | 2det(2Q) this is accomplished using the explicit reduction maps (with congruence
conditions) described in [8, §3], while for p = 2 we additionally must count points on certain
ellipsoids (with congruence conditions) over Z/8Z.

4.2.2 The cusp form coefficients as(m)

The nature of the cusp form f(z) appearing in the theta function ©¢g(z) and its precise
relationship with ) are more mysterious. To obtain an upper bound for the size of its
Fourier coefficients a¢(m), we appeal to the general theory of Hecke eigenforms and write

F(2) =7 fil2) for some ; € C
i=1

as a linear combination of Hecke eigenforms f;(z) normalized so that each of their first
Fourier coefficients a;(m) = 1. By applying the weight 2 Ramanujan bound to the normal-
ized eigenforms f;(z), we obtain the explicit upper bound

lag(m)] < Cy 2" r(m)y/m

where Cy = > ||, P(m) is the number of distinct prime divisors of m, and 7(m) is the
number of (positive) divisors of m.

To find the ~;’s, we write the new part f™V(z) of f(z) as a sum over Galois-conjugate
newforms f;(z). Since all af(m) € Q, v =~ whenever fy = f7 for some embedding
0 : Kj :=Q(a;(m)) — Q, and we have that

FR =YY" (5£(2)7 =D Trg, oy aj(m)).

J o:K;—Q m>0 j

By regarding both 7, and a;j(m) as vectors over Q in the basis given by powers of some
a; such that K; = Q(«y;), and finding the (rational) trace matrix for this basis, we can
exactly determine the ~;’s by simultaneously solving these rational linear equations for
sufficiently many m. By repeating this procedure to solve for the components of f — f™¢V
in Span{fj(dz)} for each possible d | N, we can completely decompose f into its Galois-
conjugate components. We then find C'y by summing the absolute values of all embeddings
~f over all possible d.

4.2.3 The explicit bound for representability

By combining the bounds for ag(m) and as(m), we know that any number m which is
locally represented by ) and satisfies

vm p—1

") i pim P+ 1

x(p)=-1

<M (2)

must be represented by @, where M = Cg/Cy. Since the right side of (2) is an increasing
function as m becomes more divisible, we see that there are only finitely many numbers



whose representability by @ is in question. In practice this bound may still be quite large,
but the multiplicative nature of this bound allows us to avoid checking all numbers for
which (2) fails.

In general the size of the Eisenstein bound C'g is small, with the overall difficulty of our
computation — governed by the size of M — coming from the presence of many “large” cusp
forms. This parallels the difficulties appearing in the arithmetic method, where such erratic
behavour of rg(m) makes it difficult to find embeddings of known regular forms, and often
indicates that ) has many classes in its genus.

As an example, of our 6560 quaternaries the largest bound comes from (Form #6414)
Q(Z) = 2% + 2% + 42% + 31w? + yz — yw + 3zw, which has level N = 3744 and x(-) = (1%).
For this form, we find that Cr = 36/125 and Cy ~ 2331.99 < 2332.99, giving the overall
bound M < 8100.65.

4.3 Computational methods

We say that an integer m is eligible for a quaternary quadratic form @ if m is locally
represented by ) but (2) does not hold. In the previous section we saw that there are
finitely many (though possibly a very large number of) eligible numbers, and our task
in this section is to quickly determine which of them are represented by . To do this
in practice for large sets of eligible numbers, several additional computational ideas are
needed.

4.3.1 Generating eligible numbers

For convenience, we let B(m) denote the left side of (2). Since B(m) is multiplicative, and
B(p) > 1 for all primes p > 7, all prime divisors p of an eligible number m must satisfy

M

B0 < 52 B@ BO B’

giving an explicit set of possible prime divisors for m. We call such primes p eligible
primes, although they may not themselves be eligible numbers! It is also useful at this
point to slightly reorder the eligible primes, so their “size” refers to the size of their B(p).

We then determine the maximum possible number of (distinct) prime divisors in any
eligible number m by taking the product of the smallest eligible primes p; and checking
how many primes are needed to ensure that p; - -- ps41 is not eligible. This gives us a very
efficient way of generating all eligible numbers as products of at most s eligible primes.

To generate a list of square-free eligible numbers t = p; - - - p, arising as products of
exactly r eligible primes, we start by taking the p; to be the smallest r eligible primes, and
increase p, until ¢ is no longer eligible. When this happens, we increment p,_1 to the next
eligible prime, and set p, to be the first eligible prime > p,._1. If this ¢ is eligible then we
keep increasing p, as before, but if not, then we increment p,_» and set p,_1 and p, equal
to the next two eligible primes > p,_o. Continuing in this way for each r < s, we produce
all square-free eligible numbers t.

In practice, we precompute the set of eligible primes p and store their associated values
B(p) for quick computations of the values B(m). Because it is time-consuming to compute
the exact value of B(p) for all eligible primes p, we only do this for all p < 10* and use



the approximation B(p) ~ g(l — %) < B(p) for p > 10*. To reduce memory require-

ments, we generate only a million eligible square-free numbers at a time, and check their
representability before proceeding to the next million numbers.

4.3.2 Checking eligible numbers

After generating a set of eligible numbers m, we must quickly check if each m is represented
by @. An obvious way of doing this is to compute the theta function of ( up to some
precision > m (i.e. the first m + 1 Fourier coefficients) by finding the lengths of all vectors
in some large ellipsoid, and then checking whether the coefficient rg(m) = 0 for each m.
However this is not very practical for two reasons. The first problem is that computing the
theta function in this way up to precision X takes time ~ X4m™(@)/2 = X2 which is rather
slow for large precisions. The second problem is that the precision we need may itself be
extremely large, so that even if we could quickly compute the theta function, it would be
too large to reasonably store.

We reduce the required theta function precision by finding a split local cover for each
quaternary (), by which we mean a sublattice of L on which the quadratic form @ splits as
Q' = dx? @ T for some d € N and some ternary form 7', with the additional property that
Q and Q' represent the same numbers locally. In fact, we will always choose a split local
cover for which d is minimal. We then look to see if each m is represented by @’ (hence
also by @), and then test the remaining (very small) set of possible exceptions of @’ for
representability by Q). For our 4-dimensional forms we do this by naively computing ©¢(z)
up to precision 10,000, which suffices for all possible exceptions that arise.

Given a split local cover @', we check if Q' represents m by finding the largest value
dazg < m and then check if m — dm% is represented by T'. If not, we decrement xg and repeat,
until we either find that m is represented by @’ or we exceed the precomputed precision
Y of the ternary theta function ©r(z). To ensure that m — dz? < Y, we require ternary
precision Y =~ 2dv/X. However since we may need several attempts to verify rgo/(m) > 0,
we compute O7(z) to precision ~ 10dv/X which allows at least 5 attempts for each eligible
number m.

To decrease the time needed to compute the ternary theta functions ©r(z) (which
naively is = Y3 for precision up to Y), we instead compute an approximate boolean
theta function, which keeps a single bit describing whether T'(§) = m has a solution
in an appropriately chosen small rectangular cylinder in the ellipsoid T'(%) < Y. By the
equidistribution results of Duke and Schulze-Pillot [6, Theorems 1 and 3], we expect that
the intersection of this cylinder with the ellipsoid T'(x) = m should have a roughly constant
number of integer points, and so there are ~ Y2 vectors we need to check.* By choosing
the short dimensions of the cylinder to be large enough, we are able to detect most of the
numbers represented by 7', though a few may be missed. However because we get several
attempts to verify the representability of each m, these few omissions are unimportant.

The combined use of a split local cover and an approximate boolean theta function to
check representability of all m < X by Q requires us to store v/X bits and takes O(X i)

*This assumes we are considering numbers which are primitively represented by the spinor genus of T,
meaning they have a priori bounded divisibility at the anisotropic primes, and avoid the certain numbers in
finitely many “spinor square classes”. This is discussed explicitly in [9, §5 and §7], [24, §4] and [8, §4].



time. This provides a substantial savings over the naive method, which would store X bits
and take O(X?) time!

4.3.3 Error checking and precision issues

As with any large computation, the possibility of error is a real issue. This is especially
true when using a computer, whose operation can only be viewed intermittently and whose
accuracy depends on the reliability of many layers of code beneath the view of all but the
most proficient computer scientist. We have taken many steps to ensure the accuracy of
our computations, the most important of which are described below.

Open source code in established languages — The code for this project was written
in Magma (for escalations and embeddings) and in C++ (for the analytic method), and
its source code can be freely downloaded from the authors’ websites. We hope that other
researchers may find this code useful in their own work, and through a desire to extend or
improve it, will notice and report any possible bugs or inefficiencies. Additionally, to reach
the widest possible audience, this code will be included in the SAGE software package which
has a very friendly Magma-like user interface and uses the Python scripting language.

Local density and lower bound accuracy checking — The local density computa-
tions used to find the Eisenstein constant C'g are quite involved when p | 2 det(2Q), hence
prone to subtle errors. Therefore for each form ) and all m < 100 we have verified Siegel’s
formula by computing the (infinite) product of local densities (in C++) and checking that
this agrees with F(z) computed as the weighted average of theta functions over all classes
in the genus of @ (in Magma).

The lower bound constant Cg is further checked for accuracy by comparing it with
the naive constant satisfied by the first 10,000 coefficients of E(z). In all cases, this naive
constant is > C as expected, and their difference is < 1073,

Roundoff error tolerance — All C++ integer computations with the potential to be
large have used the GMP arbitrary precision integer type mpz_class, and all local densities
and Eisenstein coefficients are computed exactly with the corresponding rational number
type mpg_class. The cuspidal constants Cy were computed exactly over Q in MAGMA
until the very last step, where the complex embeddings were found. Though the accuracy
of the embedding appears to be valid to at least 150 decimal places, to be on the safe side
we use instead the more permissive bound C'y + 1. When the degree of the coefficient fields
K are > 100, it is quite time-consuming to solve for the exact coefficients in K, and we
use the approximate cuspidal constants kindly provided to us by William Stein with an
accuracy of 3 decimal places.

4.3.4 The largest example

To see how these techniques work in practice, we give the details of the computation for
the locally universal form (Form #6414) Q(%) = 22 + 2y? + 422 + 31w? + yz — yw + 32w,
which has the largest overall bound M < 8100.65. This form has 36,795,947 eligible primes
and its squarefree eligible numbers m can have at most 14 prime factors. By looking at
the orthogonal complements of small vectors, and checking local conditions, we compute

10



(obviously) that Q' = 22 @ T where T = 2y? + 422 + 31w? + yz — yw + 3zw is a minimal
split local cover, and estimate the largest eligible m to be < 8.17 x 10'6 by solving for m in
(2). We then compute an approximate boolean theta function of T to precision 5.14 x 10°
by performing LLL-reduction on 7" (which in this case leaves T unchanged) and finding the
lengths of all vectors ¥ = (y, z,w) in the rectangular cylinder 0 < y,z < 800 and w > 0,
inside the ellipsoid T'(%) < 5.14 x 10°. This computation took approximately 200 minutes.

With this, we generate the 28 billion eligible squarefree numbers m (a million at a time)
and check that some m — 2 is represented by 7. This checking took a little under 1.5 days,
and verified that there are no square-free exceptions. Therefore () has no exceptions, and
represents all non-negative integers. '

It is interesting to see how this concrete example relates to the analytic bounds previ-
ously mentioned in §4.2. To compare these estimates, suppose we were only interested in
knowing which prime numbers p are represented by Form #6414. The bound in [23] would
require us to check all primes p < 5.43 x 10*°, compared to checking all p < 2.63 x 108 from

(2).

4.4 Summary

The above arithmetic, analytic, and computational methods thus allow us to determine
exactly which integers are represented by each of the basic four-dimensional escalators. It
turns out that these 6560 basic escalator lattices L may be naturally partitioned into three

types:
e Type I: L is universal.

e Type II: L is not universal but misses at most three positive integers, each of which
appears on the critical list.

e Type III: L is not locally universal, but is regular, and represents all integers not of
the form 4%(16k + 14).

We find that of the 6560 basic four-dimensional escalators, 6402 of them are of Type I, 153
are of Type II, and 5 are of Type III.

5 Higher escalators

By a higher escalator we mean any escalator resulting from a sequence of escalations of
some basic four-dimensional escalator. The set of all higher escalators has cardinality in
the millions, so treating each higher escalator individually would be a daunting task!
Fortunately, escalations of Type II forms may be disposed of easily (see §5.1), since
they each miss only finitely many integers. More miraculously, we may also handle the

tFor this form, there is an interesting trick of W. Jagy one can use to check that Q represents all positive
integers < X without checking all eligible numbers individually or storing a boolean ternary theta function
for T. This involves finding a split sublattice of the form 221z% & T’ for which d is odd and T’ locally
represents all (positive) odd integers. One then checks that 7" has no odd exceptions < 6 x 10° larger than
48563 by keeping track of the largest exception in the current ellipsoid. Using a simple implementation of
this idea, Jagy verified that Q has no exceptions 48767 < m < 10*® in about one month. See [14] for details.
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escalations of Type III forms in a uniform manner using a trick we call the “10-14 switch”
(see §5.2). This trick allows us to study only about 100 quaternary forms instead of millions
of higher-dimensional forms.

5.1 [Escalations of Type II forms

Among the 6560 basic four-dimensional escalators, those of Type I do not escalate and thus
do not need to be considered. As for the Type II forms, each misses at most three integers;
therefore, any basic escalator of Type II will become universal in at most three escalation
steps. In particular, any sequence of escalations of a Type II form will result again in a form
of Type I or (in at most three escalation steps) will be of Type I and cannot be escalated
further.

5.2 Escalations of Type III forms and the 10-14 switch

It remains to consider the escalations of the five basic Type III quaternary escalators, whose
Gram matrices are given explicitly by

1 0 -1/2 -3 10 -1/2 -2 10 -1/2 -2
0o 2 1 o o 2 1 -2 o 2 1 -2
121 5 1 || -12 1 5 3 |'| -2 1 5 1 |
3 0 1 10 2 2 3 10 2 2 1 10
10 -1/2 -1 10 -1/2 -1
o 2 1 0 o 2 1 0
1 1 5 3 |» and 12 1 5 2
1 0 3 10 1 0 2 10

Each of these forms has truant 14, and each happens to arise as an escalation of the three-

1 0 1/2
dimensional escalator L3 given by [ 0 2 1 ] which has truant 10.
12 1 5

The total number of escalations of these five basic four-dimensional escalators is found
to be 14221, each of which has dimension four or five (mostly dimension five). The key idea
that allows us to treat these forms uniformly is the observation that each of these escalators
is obtained by escalating Ljs first by a vector of norm 10, and then again by a vector of
length 14.

The latter two operations commute, however, which leads to the idea of the “10-14
switch”. Namely, let us consider first all possible lattices generated by L3 and a vector of
norm 14 (i.e., consider first the “escalations of L3 by 14” instead of by its truant 10). This
leads to 330 quaternary forms, which we call the auxiliary quaternaries. Any of the 14221
escalators referred to above must clearly contain one of these 330 auxiliary quaternaries.

Remarkably, one finds that 226 of these 330 auxiliary quaternary forms already occurred
among the 6555 basic four-dimensional escalators of Type I or II as given in Section 4.4,
and hence they need not be reconsidered. Thus only 104 of the 330 auxiliary quaternaries
are new. To these, we apply the techniques of Section 4.2.

In the end, we find that each of these 104 forms L is either of Type I, Type II, or
exhibits a slightly new behavior, namely that of

e Type IV: L represents all integers except perhaps for those of the form 10n? and 13n2.
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5.3 Summary

It follows from the above discussion that it is not possible to escalate the zero lattice more
than seven times.

Proposition 1 The zero lattice can be escalated at most seven times.
Corollary 1 There is no escalator of dimension greater than seven.

We are not aware of the existence of any seven-dimensional escalators. On the other
hand, one can easily construct millions of escalators that achieve dimension six; for example,
any escalation of the 5-dimensional escalator lattice (which has truant 290)

1 0o —1/2

0 2 —1/2 | ® [29] @ [145] (3)
-1/2 -1/2 4

is a (universal) six-dimensional escalator.

Thus the escalation story ends by the seventh step. Although we have seen that millions
of escalators exist, the Cauchy-Schwartz inequality implies that any lattice will have at most
finitely many escalations. Moreover, a look at the list of possible integers missed by the basic
quaternary escalators and by the auxiliary quaternaries shows that any escalator—in any
dimension—must have a truant contained in the set of 29 critical integers. We summarize
this discussion as follows.

Proposition 2 There are only finitely many escalator lattices, each of which is either uni-
versal, or has truant which is contained in the list of 29 critical integers.

6 Proofs of Theorems 1-4

We are now ready to prove Theorems 1-4.

Proof of Theorem 1: We claim that all information about universality of lattices is
contained in our study of escalator lattices. To make this precise, we make two observations:

(i) Any universal lattice L must contain a universal escalator,

(ii) The truant of a nonuniversal lattice L must be the truant of some nonuniversal esca-
lator.

To see (i), notice that if L is universal then we may construct within L an escalation
sequence {0} C L1 C Lo C ---. In at most seven steps, we obtain a universal escalator, by
Proposition 1. The same argument applies to (ii): construct a maximal escalation sequence
{0} C Ly C Ly C---C L (k <7) within L. Then evidently truant(L) =truant(Ly).

On the other hand we have classified all escalator lattices, and the only truants that
arise for escalator lattices are contained in the list of 29 critical integers by Proposition 2.
Theorem 1 follows. O

Proof of Theorem 2: We first show that for every critical integer ¢, there actually exists
an escalator lattice L such that truant(L) = t. The truant 1 occurs for the zero lattice, the

13



truant 2 for the unique one-dimensional escalator, while the truants 3 and 5 arise in the case
of the three two-dimensional escalators. The truants that arise for the 34 three-dimensional
escalators are b, 6, 7, 10, 13, 14, 17, 21, 22, 23, 29, 31, while the truants that arise for the
basic four-dimensional escalators are 10, 13, 14, 15, 19, 21, 23, 26, 30, 34, 35, 37, 42, 58,
93, 110, and 145.
In (3) we have already seen a 5-dimensional escalator with truant 290. Since
1 0o —1/2
Liys =] o 2 —1/2 | @ [29] 4)
-1/2 -1/2 4

is the only basic quaternary escalator missing the integer 203, we now use it to produce an
escalator with truant 203. First, we note that Lq45 has truant 145; we claim that Logz :=
L145 ®[58] has truant 203. This is because the only square multiples of 58 less than 203 are
0 and 58, and Li45 represents neither 203 nor 145, so Logs cannot represent 203. However
since L145 has truant 145, Logs represents {0, ..., 144}U{0+58,...,144+58} = {0,...,202}.
Thus Lops has truant 203, proving the claim.

Since Lgp3 must contain a vector ¢ of norm 145, the lattice Lf,, generated by Liss
and U in Lgp3 must be an escalator with truant 203. Moreover, since ¢ must take the form
(%, %,%,1), we actually have L},; = Lopz. Thus every critical integer ¢ occurs as the truant
of some escalator.

Finally, given any critical integer t, let L be an escalator with truant ¢, and consider
the lattice L @ [t + 1]%4 @ [2¢ + 1]. Then this lattice represents all positive integers except
for ¢, as desired. O

Proof of Theorem 3: We have seen that any escalator L having truant 290 must arise as
the result of a sequence of escalations of the escalator Ljs5 given in (4), which fails to rep-
resent just the three integers 145, 203, and 290. It is evident that any such L having truant
290 will represent every positive integer greater than 290, yielding the desired conclusion.
O

Proof of Theorem 4: We observe that a universal quaternary form must have successive
minima that are smaller than 1, 2, 5, and 31 respectively (the fastest growing minima for any
four-dimensional escalator). Searching through all Minkowski-reduced quaternary quadratic
forms having such successive minima, and systematically applying the 290-Theorem, yields
the desired result. O

Acknowledgments

The authors thank John Conway, William Jagy, Irving Kaplansky, and William Stein for
many helpful discussions and their continued interest in our work. We are especially grateful
to William Jagy for his many efforts to understand the basic quaternary escalator #6414,
and to William Stein for using his expertise in computing modular forms to find the cuspidal
constants C'y for all 6664 of our quaternary escalators.

The authors’ source code used to verify all computational statements made in this
article may be found at:

14



http://www.math.duke.edu/~jonhanke/290/Universal-290.html

Computations were carried out in C++, Python, Pari/GP, and Magma, and often used the
GNU Multiple Precision Arithmetic Library (GMP).

The first author was supported by a Clay Mathematics Institute Long-Term Prize

Fellowship. The second author was partially supported by NSA Award H98230-04-1-0076.

References

[1]

[10]

[11]

[12]

M. Bhargava, On the Conway-Schneeberger Fifteen Theorem. Quadratic forms and
their applications (Dublin, 1999), 27-37, Contemp. Math., 272, Amer. Math. Soc.,
Providence, RI, 2000.

J. H. Conway, Universal quadratic forms and the Fifteen Theorem. Quadratic forms
and their applications (Dublin, 1999), 23-26, Contemp. Math., 272, Amer. Math. Soc.,
Providence, RI, 2000. Proceedings.

J. H. Conway and N. A. Sloane, Sphere packings, lattices and groups. Third edition.
Grundlehren der Mathematischen Wissenschaften 290, Springer-Verlag, New York,
1999.

L. E. Dickson, Quaternary quadratic forms representing all integers. Amer. J. of Math.
49 (1927), 35-56.

W. Duke, Some old problems and new results about quadratic forms. Notices Amer.
Math. Soc. 44 (1997), no. 2, 190-196.

W. Duke and R. Schulze-Pillot, Representation of integers by positive ternary quadratic
forms and equidistribution of lattice points on ellipsoids. Invent. Math. 99 (1990), no.
1, 49-57.

O. M. Fomenko, Estimates of Petersson’s inner product with an application to the
theory of quaternary quadratic forms. (Russian) Dokl. Akad. Nauk SSSR 152 (1963),
559-562.

J. Hanke, Local densities and explicit bounds for representability by a quadratric form.
Duke Math. J. 124 (2004), no. 2, 351-388.

J. Hanke, Some recent results about (ternary) quadratic forms. Number theory, 147—
164, CRM Proc. Lecture Notes, 36, Amer. Math. Soc., Providence, RI, 2004.

J. Hanke, On a Local-Global Principle for Integral Quadratic Forms. (preprint).

J. Hsia and M. 1. Icaza, Effective version of Tartakowsky’s theorem. Acta Arith. 89
(1999), no. 3, 235-253.

H. Iwaniec, Spectral theory of automorphic forms and recent developments in analytic
number theory. Proceedings of the International Congress of Mathematicians, Vol. 1, 2
(Berkeley, Calif., 1986), 444-456, Amer. Math Soc, Providence, RI, 1987.

15



[13]
[14]
[15]

[16]

[17]

[18]
[19]

[20]

[21]

22]

[23]

[24]

[25]

[26]

H. Jacobi, Jour. fir Math. 21 (1840), 13-32.
W. Jagy, personal communication.

W. Jagy, 1. Kaplansky, and A. Schiemann, There are 913 regular ternary forms. Math-
ematika 44 (1997), no. 2, 332-341.

H. D. Kloosterman, On the representation of numbers in the form az? 4 by? + cz? + dt>.
Acta Math. 49 (1926), 407-464.

J. L. Lagrange, Nouveau Mém. Acad. Roy. Sci. Berlin (1772) 123; Oewvres. vol. 3 1869,
pp. 189-201.

J. Liouville, Jour. de Math. (2) 1 (1856), 230.

S. Ramanujan, On the expression of a number in the form az? + by? 4 cz% + du?. Proc.
Camb. Phil. Soc. 19 (1916), 11-21.

P. Sarnak, Kloosterman, quadratic forms and modular forms. Nieuw Arch. Wiskd (5)
1 (2000), no. 4, 385-389.

W. A. Schneeberger, Arithmetic and Geometry of Integral Lattices, Ph.D. Thesis,
Princeton University, 1995.

C. L. Siegel, Uber die Analytische Theorie der quadratischen Formen. Ann. of Math.
36 (1935), 527-606; Gestammelte Abhandlungen, band I, 1966, pp. 326-405.

R. Schulze-Pillot, On explicit versions of Tartakovski’s theorem. Arch. Math. (Basel)
77 (2001), no. 2, 129-137.

R. Schulze-Pillot, Exceptional integers for genera of integral ternary positive definite
quadratic forms. Duke Math. J. 102 (2000), no. 2, 351-357.

R. Schulze-Pillot, Representation by integral quadratic forms—a survey. Algebraic and
arithmetic theory of quadratic forms, 303-321, Contemp. Math., 344, Amer. Math.
Soc., Providence, RI, 2004.

W. Tartakowsky, Die Gesamthieit der Zahlen, die durch eine positive quadratische
Form F(x1,z2,...,xs) (s > 4) darstellbar sind. 1, II. Bull. Ac. Sc. Leningrad (7) 2
(1929); 111-122, 165-196.

E. Waring, Meditationes algebraicae. Cambridge, ed. 3, 1782, 349.

G. L. Watson, One-class genera of positive ternary quadratic forms-I11. Mathematika
22, no. 43, 1-11.

G. L. Watson, Quadratic Diophantine equations. Philos. Trans. Roy. Soc. London Ser.
A 253 1960/1961 227-254.

M. E. Willerding, Determination of all classes of positive quaternary quadratic forms
which represent all (positive) integers, Ph.D. Thesis, St. Louis University, 1948.

16



