π_p , the value of π in ℓ_p

Joseph B. Keller and Ravi Vakil

The two-dimensional space ℓ_p is the set of points in the plane, with the distance between two points (x, y) and (x', y') defined by $(|x - x'|^p + |y - y'|^p)^{1/p}$, $1 \le p \le \infty$. The distance from (x, y) to the origin is then $(|x|^p + |y|^p)^{1/p}$. The equation of the unit circle C_p , i.e., the circle with its center at the origin and radius 1, is

$$(|x|^{p} + |y|^{p})^{1/p} = 1.$$
(1)

Figure 1 shows C_p for p = 1, 3/2, 2, 3, and ∞ . Equation (1) is unchanged when x is replaced by -x, when y is replaced by -y, and when x and y are interchanged. Therefore C_p is symmetric about the y-axis, about the x-axis, and about the line x = y.

Figure 1. The unit circle C_p in the first quadrant, defined by (1), for $p = 1, 3/2, 2, 3, \infty$.

It is natural to define π_p as the ratio of the circumference of C_p (in the *p*-metric) to two times its radius (also in the *p*-metric), which is its "diameter," 2. This definition has been well studied, see for example [2], [1], and [3]. The circumference is the integral of the element of arclength $ds = (|dx|^p + |dy|^p)^{1/p}$ around C_p . Thus

$$\pi_p = \frac{1}{2} \int_{C_p} \left(|dx|^p + |dy|^p \right)^{1/p} = \frac{1}{2} \int_{C_p} \left(1 + \left| \frac{dy}{dx} \right|^p \right)^{1/p} |dx| \,. \tag{2}$$

Because of the symmetry of C_p , its circumference is equal to four times its arclength in the first quadrant, or eight times its arclength in the first quadrant between the lines x = 0 and x = y. When x = y, (1) shows that $x = 2^{-1/p}$, so the integral in (2) is 8 times the integral from 0 to $2^{-1/p}$. By calculating dy/dx from (1), we can rewrite (2) as

$$\pi_p = 4 \int_{0}^{2^{-1/p}} \left(1 + \left| x^{-p} - 1 \right|^{1-p} \right)^{1/p} dx.$$
(3)

For p = 1, (3) yields $\pi_1 = 4(2^{1/p})(2^{-1/p}) = 4$. For $p = \infty$, the integrand is 1 and the upper limit is 1, so $\pi_{\infty} = 4$. At p = 2, $\pi_2 = \pi$. If geometry had been developed using the ℓ_p distance instead of the ℓ_2 distance, π_p would have replaced π_2 , which is just the familiar π .

Figure 2 shows a graph of π_p as a function of p, obtained by numerical integration of (3). The graph suggests that as p increases from p = 1, π_p decreases monotonically from its maximum value $\pi_1 = 4$ to its minimum value $\pi_2 = \pi$, and then increases monotonically to $\pi_{\infty} = 4$. In fact this is the case, and was proved by Adler and Tanton in [1].

Thus for each p in $1 \le p \le 2$, there is a q in $2 \le q \le \infty$ such that

$$\pi_p = \pi_q. \tag{4}$$

Figure 2. The graph suggests that $\pi_p = \pi_q$ for 1/p + 1/q = 1

To find q we recall that the Hölder inequality involves two exponents p and q related by

$$\frac{1}{p} + \frac{1}{q} = 1.$$
 (5)

The numerical results shown in Figure 2 lead one to conjecture that (4) will hold when (5) does. Indeed, Adler and Tanton earlier asked precisely this question as the concluding remark to [1]. (We learned of Adler and Tanton's work only after writing this note.)

In fact, when (5) holds, the domains bounded by C_p and C_q are polar (or dual) to one another. (If K is a convex set in \mathbb{R}^2 , then its polar is defined by $\{y \in \mathbb{R}^2 : x \cdot y \leq 1 \ \forall x \in K\}$.) Then a result of Schäffer [4] (see also Thompson [5, p. 118, Cor. 4.3.9, and p. 202, Cor. 6.3.2]) shows that (4) holds. This argument from Minkowski geometry suggested to us that there should be a direct elementary explanation.

We shall now give another proof that (4) holds when (5) does, by showing that then the integral (3) for π_p equals that for π_q . We begin by writing the equation for the arc of C_p in the first quadrant in terms of a parameter $t \in [0, \infty]$, setting $x = f_1(t)$ and $y = f_2(t)$. Then

the length L_p of that arc can be written as

$$L_p = \int_0^\infty \left(|f_1'|^p + |f_2'|^p \right)^{1/p} dt.$$
 (6)

We choose the parameter t such that $t^{q/p}$ is the slope of the line from the origin to the point $(f_1(t), f_2(t))$ on C_p , so that $t^{q/p} = f_2(t)/f_1(t)$. From this equation and (1) we find that

$$f_1(t) = (t^q + 1)^{-1/p}, \quad f_2(t) = (t^{-q} + 1)^{-1/p}.$$
 (7)

We parameterize C_q in the same way, setting $x = g_1(t)$ and $y = g_2(t)$, with

$$g_1(t) = (t^p + 1)^{-1/q}, \quad g_2(t) = (t^{-p} + 1)^{-1/q}.$$
 (8)

Now we define the function $F(t) = -f_1g_2 + f_2g_1$. At the ends of the two arcs, t = 0 and $t = \infty$, we have $f_1 = g_1$ and $f_2 = g_2$. Therefore F(0) = 0 and $F(\infty) = 0$, so $\int_0^\infty F'(t)dt = 0$. This equation can be rewritten as follows, by differentiating the definition of F(t) to get F'(t) and then transposing:

$$\int_0^\infty (-f_1'g_2 + f_2'g_1) \, dt = \int_0^\infty (-g_1'f_2 + g_2'f_1) \, dt. \tag{9}$$

Of course, this is just integration by parts, but it is enlightening to interpret F(t) as essentially a cross product. We now show that the integrand on the left side of (9) can be rewritten as

$$-f_1'g_2 + f_2'g_1 = \left(\left|f_1'\right|^p + \left|f_2'\right|^p\right)^{1/p}.$$
(10)

To prove (10) we first transform the left side as follows:

$$-f_1'g_2 + f_2'g_1 = -\left(-\frac{1}{p}\right)(t^q + 1)^{-\frac{p+1}{p}}qt^{q-1}(t^{-p} + 1)^{-1/q}$$

$$+ \left(-\frac{1}{p}\right)(t^{-q}+1)^{-\frac{p+1}{p}}(-q)t^{-(q+1)}(t^{p}+1)^{-1/q}$$

$$= \frac{q}{p}(t^{q}+1)^{-\frac{p+1}{p}}(t^{p}+1)^{-1/q}(t^{q-1+p/q}+t^{q(p+1)/p-(q+1)})$$

$$= \frac{q}{p}(t^{q}+1)^{-\frac{p+1}{p}}(t^{p}+1)^{1/p-1}t^{\frac{1}{p-1}-1}(t^{p}+1)$$

$$= \frac{q}{p}(t^{q}+1)^{-\frac{p+1}{p}}(t^{p}+1)^{1/p}t^{\frac{1}{p-1}-1}.$$

$$(11)$$

Then we transform the right side:

$$\left(\left| f_{1}^{\prime} \right|^{p} + \left| f_{2}^{\prime} \right|^{p} \right)^{1/p} = \left[\left(\frac{1}{p} \left(t^{q} + 1 \right)^{-\frac{p+1}{p}} q t^{q-1} \right)^{p} + \left(\frac{1}{p} \left(t^{-q} + 1 \right)^{-\frac{p+1}{p}} q t^{-(q+1)} \right)^{p} \right]^{1/p}$$

$$= \frac{q}{p} \left(t^{q} + 1 \right)^{-\frac{p+1}{p}} \left(t^{p(q-1)} + t^{q(p+1)-p(q+1)} \right)^{1/p}$$

$$= \frac{q}{p} \left(t^{q} + 1 \right)^{-\frac{p+1}{p}} \left(t^{q} + t^{q-p} \right)^{1/p}$$

$$= \frac{q}{p} \left(t^{q} + 1 \right)^{-\frac{p+1}{p}} \left(t^{p} + 1 \right)^{1/p} t^{\frac{1}{p-1}-1}.$$

$$(12)$$

The last forms of (11) and (12) are the same, which proves (10).

The integral from 0 to ∞ of the right side of (10) is just L_p , as (6) shows. Therefore the integral of the left side, which is also the left side of (9), is also L_p . A symmetrical argument shows that the right side of (9) is L_q , so (9) shows that $L_p = L_q$. This proves that (4) is true when p and q are related by (5).

This argument is geometrically motivated, not just formal manipulation. Suppose q > p. As t goes from 0 to 1, the point on C_p is "behind" the point on C_q . At t = 1 the p-point passes the q-point. The cumulative lengths at "time" t are not the same. The difference is twice the area of the triangle spanned by the origin, the p-point and the q-point (see the cross product comment above). This difference vanishes at $t = \infty$, when the two points coincide.

Figure 3. At time t, the q-point and the p-point are at different angles from the x-axis. The signed difference in cumulative lengths is the signed area of the region shown.

ACKNOWLEDGMENTS. Jonathan C. Mattingly and Arnold D. Kim calculated π_p . Rafe Mazzeo and Zhongmin Shen brought to our attention the work of Schäffer. Gautam Iyer provided invaluable help with the figures. We thank them all. We also thank the referees for bringing to our attention many references we were not earlier aware of, and for comments which substantially improved the exposition of this article.

References

- [1] C. L. Adler and J. Tanton, π is the minimum value of Pi, *College Math. J.* **31** (2000) 102–106.
- [2] R. Euler and J. Sadek, The π s go full circle, Math. Mag. 72 (1999) 59–63.

- [3] R. Poodiack, Generalizing π, angle measure, and trigonometry (2004), available at http://www2.norwich.edu/rpodiac/pi.pdf.
- [4] J. J. Schäffer, The self-circumference of polar convex disks, Arch. Math. 24 (1973) 87–90.
- [5] A. C. Thompson, Minkowski Geometry, Cambridge University Press, Cambridge, 1996.

Addresses: Department of Mathematics, Stanford University, Stanford CA 94305, keller@math.stanford.edu, vakil@math.stanford.edu