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The two-dimensional space `p is the set of points in the plane, with the distance between

two points (x, y) and (x′, y′) defined by (|x − x′|p + |y − y′|p)1/p, 1 ≤ p ≤ ∞. The distance

from (x, y) to the origin is then (|x|p + |y|p)1/p. The equation of the unit circle Cp, i.e., the

circle with its center at the origin and radius 1, is

(|x|p + |y|p)
1/p

= 1. (1)

Figure 1 shows Cp for p = 1, 3/2, 2, 3, and ∞. Equation (1) is unchanged when x is replaced

by −x, when y is replaced by −y, and when x and y are interchanged. Therefore Cp is

symmetric about the y-axis, about the x-axis, and about the line x = y.
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Figure 1. The unit circle Cp in the first quadrant, defined by (1), for p = 1, 3/2, 2, 3,∞.
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It is natural to define πp as the ratio of the circumference of Cp (in the p-metric) to two

times its radius (also in the p-metric), which is its “diameter,” 2. This definition has been

well studied, see for example [2], [1], and [3]. The circumference is the integral of the element

of arclength ds = (|dx|p + |dy|p)
1/p

around Cp. Thus

πp =
1

2

∫

Cp

(|dx|p + |dy|p)
1/p

=
1

2

∫

Cp

(

1 +

∣

∣

∣

∣

∣

dy

dx

∣

∣

∣

∣

∣

p)1/p

|dx| . (2)

Because of the symmetry of Cp, its circumference is equal to four times its arclength in the

first quadrant, or eight times its arclength in the first quadrant between the lines x = 0 and

x = y. When x = y, (1) shows that x = 2−1/p, so the integral in (2) is 8 times the integral

from 0 to 2−1/p. By calculating dy/dx from (1), we can rewrite (2) as

πp = 4

2−1/p
∫

0

(

1 +
∣

∣

∣x−p − 1
∣

∣

∣

1−p
)1/p

dx. (3)

For p = 1, (3) yields π1 = 4(21/p)(2−1/p) = 4. For p = ∞, the integrand is 1 and the upper

limit is 1, so π∞ = 4. At p = 2, π2 = π. If geometry had been developed using the `p

distance instead of the `2 distance, πp would have replaced π2, which is just the familiar π.

Figure 2 shows a graph of πp as a function of p, obtained by numerical integration of

(3). The graph suggests that as p increases from p = 1, πp decreases monotonically from its

maximum value π1 = 4 to its minimum value π2 = π, and then increases monotonically to

π∞ = 4. In fact this is the case, and was proved by Adler and Tanton in [1].

Thus for each p in 1 ≤ p ≤ 2, there is a q in 2 ≤ q ≤ ∞ such that

πp = πq. (4)
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Figure 2. The graph suggests that πp = πq for 1/p + 1/q = 1

To find q we recall that the Hölder inequality involves two exponents p and q related by

1

p
+

1

q
= 1. (5)

The numerical results shown in Figure 2 lead one to conjecture that (4) will hold when

(5) does. Indeed, Adler and Tanton earlier asked precisely this question as the concluding

remark to [1]. (We learned of Adler and Tanton’s work only after writing this note.)

In fact, when (5) holds, the domains bounded by Cp and Cq are polar (or dual) to one

another. (If K is a convex set in R2, then its polar is defined by {y ∈ R2 : x·y ≤ 1 ∀x ∈ K}.)

Then a result of Schäffer [4] (see also Thompson [5, p. 118, Cor. 4.3.9, and p. 202, Cor.

6.3.2]) shows that (4) holds. This argument from Minkowski geometry suggested to us that

there should be a direct elementary explanation.

We shall now give another proof that (4) holds when (5) does, by showing that then the

integral (3) for πp equals that for πq. We begin by writing the equation for the arc of Cp in

the first quadrant in terms of a parameter t ∈ [0,∞], setting x = f1(t) and y = f2(t). Then

3



the length Lp of that arc can be written as

Lp =
∫

∞

0

(

|f ′

1|
p
+ |f ′

2|
p
)1/p

dt. (6)

We choose the parameter t such that tq/p is the slope of the line from the origin to the point

(f1(t), f2(t)) on Cp, so that tq/p = f2(t)/f1(t). From this equation and (1) we find that

f1(t) = (tq + 1)−1/p , f2(t) =
(

t−q + 1
)

−1/p
. (7)

We parameterize Cq in the same way, setting x = g1(t) and y = g2(t), with

g1(t) = (tp + 1)−1/q , g2(t) =
(

t−p + 1
)

−1/q
. (8)

Now we define the function F (t) = −f1g2 + f2g1. At the ends of the two arcs, t = 0 and

t = ∞, we have f1 = g1 and f2 = g2. Therefore F (0) = 0 and F (∞) = 0, so

∞
∫

0

F ′(t)dt = 0.

This equation can be rewritten as follows, by differentiating the definition of F (t) to get

F ′(t) and then transposing:

∫

∞

0
(−f ′

1g2 + f ′

2g1) dt =
∫

∞

0
(−g′

1f2 + g′

2f1) dt. (9)

Of course, this is just integration by parts, but it is enlightening to interpret F (t) as es-

sentially a cross product. We now show that the integrand on the left side of (9) can be

rewritten as

−f ′

1g2 + f ′

2g1 =
(

|f ′

1|
p
+ |f ′

2|
p
)1/p

. (10)

To prove (10) we first transform the left side as follows:

−f ′

1g2 + f ′

2g1 = −

(

−
1

p

)

(tq + 1)−
p+1

p qtq−1(t−p + 1)−1/q

4



+

(

−
1

p

)

(t−q + 1)−
p+1

p (−q)t−(q+1)(tp + 1)−1/q

=
q

p
(tq + 1)−

p+1

p (tp + 1)−1/q(tq−1+p/q + tq(p+1)/p−(q+1))

=
q

p
(tq + 1)−

p+1

p (tp + 1)1/p−1t
1

p−1
−1(tp + 1)

=
q

p
(tq + 1)−

p+1

p (tp + 1)1/pt
1

p−1
−1. (11)

Then we transform the right side:

(

|f ′

1|
p
+ |f ′

2|
p
)1/p

=

[(

1

p
(tq + 1)−

p+1

p qtq−1

)p

+

(

1

p

(

t−q + 1
)

−
p+1

p qt−(q+1)

)p]1/p

=
q

p
(tq + 1)−

p+1

p

(

tp(q−1) + tq(p+1)−p(q+1)
)1/p

=
q

p
(tq + 1)−

p+1

p

(

tq + tq−p
)1/p

=
q

p
(tq + 1)−

p+1

p (tp + 1)1/p t
1

p−1
−1. (12)

The last forms of (11) and (12) are the same, which proves (10).

The integral from 0 to ∞ of the right side of (10) is just Lp, as (6) shows. Therefore the

integral of the left side, which is also the left side of (9), is also Lp. A symmetrical argument

shows that the right side of (9) is Lq, so (9) shows that Lp = Lq. This proves that (4) is true

when p and q are related by (5).

This argument is geometrically motivated, not just formal manipulation. Suppose q > p.

As t goes from 0 to 1, the point on Cp is “behind” the point on Cq. At t = 1 the p-point

passes the q-point. The cumulative lengths at “time” t are not the same. The difference is

twice the area of the triangle spanned by the origin, the p-point and the q-point (see the

cross product comment above). This difference vanishes at t = ∞, when the two points

coincide.
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Figure 3. At time t, the q-point and the p-point are at different angles from the x-axis.

The signed difference in cumulative lengths is the signed area of the region shown.
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