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In case I forget to tell you on Thursday: I’ll be out of town next Tuesday (Nov.
7), so Jason Starr will kindly be giving a guest lecture. He will likely tell you about
applying Schlessinger’s criteria to the Quot functor.

1. Where we are

C, Ĉ. k[V ]. A×C B. k[V ⊕W ] = k[V ]×k k[W ].

Lemma. Suppose F is a functor (covariant, on C) such that

F (k[V ]×k k[W ]) ∼→ F (k[W ])× F (k[W ])

for finite-dimensional vector spaces V and W over k. Then F (k[V ]) and in particu-
lar tF = F (k[ε]), has a canonical vector space structure, such that F (k[V ]) ∼= tF⊗V .

Patched proof. k[V ] is a “vector space object” in Ĉ, via

Hom(A, k[V ]) ∼= Derk(A, V ).

For the last statement: Note that Hom(k[ε]/ε2, k[V ]) is naturally identified with
V . For any element of Hom(k[ε]/ε2, k[V ]) we get a map tF = F (k[ε]/ε2)→ F (k[V ]),
hence tF × V → F (k[V ]). In fact this is ⊗. The desired result is true if V
is one-dimensional; then use induction, as V is finite-dimensional, and k[V ] =
×dimV
k k[ε]/(ε2). (I said something wrong in class.)

Date: Tuesday, October 31, 2000.
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2. Schlessinger’s criterion for existence of universal deformations

and hulls (miniversal deformations)

Recall: In C, define a small extension to be a surjection A′′ → A, so A = A′′/I,
and mA′′I = 0, and I is one-dimensional.

For the purposes of this course only, define a fairly small extension to be a
surjection A′′ → A, so A = A′′/I, and mA′′I = 0, without requiring that I is
one-dimensional. Then for any A in C, you can filter A into a series of fairly small
extensions (by powers of the maximal ideal). Then you can filter A into a series of
small extensions.

Fix our functor F : C → Sets.

Let A′ → A and A′′ → A be morphisms in C, and consider the map

F (A′ ×A A′′)→ F (A′)×F (A) F (A′′).(1)

I explained last time that if F is a prorepresentable functor, by R ∈ C say, then
this map is always a bijection — this is because × is a categorical product!

Schlessinger’s Theorem. [Put on one board permanently!]

It has two parts, and I’ll say it slowly, with translations and remarks.

(1) F has a hull iff F has properties H1–H3:

H1. (You can glue.) (1) is a surjection whenever A′′ → A is a small extension.
Equivalently whenever A′′ → A is any surjection.

H2. (Uniqueness of gluing on k[ε]/ε2.) (1) is a bijection when A = k, A′′ = k[ε]/ε2.
Equivalently, A′′ = k[V ]. Then by previous lemma, tF is a k-vector space.

H3. (finite-dimensional tangent space) dimk(tF ) <∞.

(2) F is pro-representable if and only if F has the additional property

H4. (bijection for gluing a small extension to itself)

F (A′ ×A A′)→ F (A′)×F (A) F (A′).(2)

is a bijection for any small extension A′ → A.

Recall from last time. Suppose F satisfies H1–H3.

Consider any fairly small extension p : A′ → A, i.e. 0 → I → A′ → A → 0, so
mA′I = 0. We have an isomorphism

A′ ×A′/I A′
∼→ A′ ×k k[I]

induced by the map (x, y) 7→ (x, x0 + y − x) (e.g. A′ = k[u]/u3 = k[v]/v3, A =
k[u]/u2).
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Now given a small extension p : A′ → I, By H2, we get

F (A′ ×A A′) = F (A′ ×k k[I]) ∼→ F (A′)×F (k) F (k[I]) = F (A′)× (tF ⊗ I).

Hence we get
F (A′)× (tF ⊗ I)→ F (A′)×F (A) F (A′).

For each η ∈ F (A), this determines a group action of tf ⊗ I on F (p)−1(η), i.e.
those F (A′)’s lifting F (A), assuming the set is nonempty. The fact that this is a
surjection (H1) means that the action is transitive. H4 is precisely the condition
that this set is a principal homogeneous space under tF ⊗ I. (Say more here.)

So explicitly, what this is telling us is explicitly is that if F already has a hull,
then its obstruction to be representable is the existence of an automorphism of
an object y in some F (A), that cannot be extended to an automorphism of some
object y′ ∈ F (A′) for some A′.

3. Proof of Schlessinger, take 2

• Immediate: If F is prorepresentable, then H1–H4 are all satisfied, as (1) is
always a bijection, and tF is finite-dimensional.

• Hull and H4 imply prorepresentable (shown last time).

• Next: Then I’ll show that hull implies H1–H3.

• Finally: H1–H3 imply hull.

Hull implies H1–H3.

Recall the definition of a hull or miniversal deformation space (e.g. def space of
a node). (R, r ∈ F (R))→ F , formally smooth.

Translation: for each surjection B → A in C, Hom(R,B) → Hom(R,A) ×F (A)

F (B) is surjective.

Translation:
(B, b ∈ F (B))

?↗ ↓
(R, r ∈ F (R)) → (A, a ∈ F (A))

(Note phantom left corner.)

H3: tR ∼= tF proves H3.

H1: Want:
F (A′ ×A A′′)→ F (A′)×F (A) F (A′′).

is a surjection whenever A′′ → A is a small extension (or indeed any surjection).
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Suppose we have p′ : (A′, η′ ∈ F (A′)) → (A, η) and p′′ : (A′′, η′′) → (A, η) are
morphisms of couples or deformations, and p′′ is a surjection. (Put in diagram, A′

to left, A′′ above).
(A′ ×A A′′, ?) → (A′′, a′′)

↓ p′′ ↓
(A′, a′)

p′→ (A, a)

Since hR → F is surjective, there is u′ : (R, r)→ (A′, η′). By smoothness of hR
over F , we get u′′ : (R, r)→ (A′′, η′′). We get R maps to A′ ×A A′′; use covariant
F to get η there. So H1 is satisfied!

H2 (restate). Suppose now that (A, η) = (k, pt) and A′′ = k[ε]/ε2. We want
there to be only one such (A′ ×A A′′, η). Suppose there are two, η1 and η2. Then
make that diagram, add in (R, r). Choose u′ as before. Then there is only one u′′

possible, thanks to tR = tF . Then there is only one lift R→ A′ ×A A′′, and that’s
it.

Diagram (mostly for my own benefit), of maps from (R, r) to various parts of
the diagram.

second, lift by smoothness of hR → F → finally, unique by tR = tF
↓ ↓

pick u first →

Finally, H1–H3 implies hull. This is the trickiest part of the proof. Most of
it has the same level of complexity, but there’s a trick at the end.

Assume H1–H3. We will build a hull. By H2, tF is a vector space, and by H3, it
is finite-dimensional. Let T1, . . . , Tr be a dual basis for tF . Let S = k[[T1, . . . , Tr]],
with maximal ideal n. Our goal is to get R = S/J , with r ∈ F (R), that is a hull.

R2 = S/n2. (Think: S/(J, n2).) = k[ε]/ε2 ×k · · · ×k k[ε]/ε2.

By H2, there is some r2 ∈ F (R2) inducing a bijection between tR2 (which is
Hom(R2, k[ε])) and tF . (Say this differently! Use the lemma; get canonical family
over this ring.)

Now we build up R inductively.

Suppose we have (Rq, rq), where Rq = S/Jq. We want Jq+1 in S, minimal
among S = (ideals J in S satisfying (a) nJq ⊂ J ⊂ Jq, and (b) rq lifts to SJ).
Those satisfying J correspond to subspaces of Jq/nJq. (Picture?)

So we need to show that there is a minimal element. So we need to see that S
is stable under pairwise intersection. Say J,K ∈ S. Enlarge J so that J +K = Jq,
without changing their intersection. Then

S/J ×S/Jq S/K ∼= S/(J ∩K)

If you want an example: Jq = (x, y)2. J = (x2, xy, y3), K = (x3, xy, y2).
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By H1, F (S/J ∩K)→ F (S/J)×F (S/Jq) F (S/K) surjects, so that’s okay.

So now let J = ∩q>1Jq, and R = S/J . Let r be the inverse limit of the rq. (As
Jq form a base for the topology, as nq ⊂ Jq, can set r = lim← rq ∈ F (R).) This will
be our hull; we’ll check that next day.
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