
INTRO TO ALGEBRAIC GEOMETRY, PROBLEM SET 7

Due Thursday November 4 in class (no lates). Hand in seven of the following
questions. You’re strongly encouraged to collaborate (although write up solutions
separately), and you’re also strongly encouraged to ask me questions (if you’re stuck,
or if the question is vaguely worded, or if you want to try out an argument). Hand
in six of the following problems. Make sure you know how to do the non-scheme
problems you skip.

1. (a) Hartshorne Ex. I.5.1. Assume the characteristic is not 2. Locate the
singular points. Which is which in Figure 1 below? (a) x2 = x4 + y4; (b)
xy = x6 + y6; (c) x3 = y2 + x4 + y4; (d) x2y + xy2 = x4 + y4.
(b) Hartshorne Ex. I.5.2. Assume the characteristic is not 2. Locate the
singular points in A3. Which is which in Figure 2 below?
(c) Find the dimension of the Zariski-tangent space to the surfaces in (b) at
the origin.

2. Hartshorne Ex. I.5.3: Multiplicities. Let Y ⊂ A2 be the curve defined by the
equation f(x, y) = 0. Let P = (a, b) be a point of A2. Make a linear change
of coordinates so that P becomes the point (0, 0). Then write f as a sum
f = f0 + f1 + · · ·+ fd, where fi is a homogeneous polynomial of degree i in
x and y. Define the multiplicity of P on Y , denoted µP (Y ), to be the least r
such that fr 6= 0. (Note that P ∈ Y if and only if µP (Y ) > 0.) The linear
factors of fr are called the tangent directions at P .
(a) Show that µP (Y ) = 1 if and only if P is a nonsingular point of Y .
(b) Find the multiplicity of each of the singular points in problem 1 (a) above.

3. Intersection multiplicity. If Y , Z ⊂ A2 are two distinct curves, given by
equations f = 0, g = 0, and if P ∈ Y ∩ Z, define the intersection multiplicity
(Y · Z)P of Y and Z at P to be the length of the OP -module OP /(f, g), or
equivalently its dimension as a k-vector space. (It is also equivalent to replace
O(a,b) with the power series ring k[[x′, y′]], where x′ = x− a and y′ = y − b;
this makes calculations easier.)
(a) Calculate the intersection number of y2 = x5 and xy = 0 at the origin.
(Don’t bother justifying all steps; just show how you computed the number.)
(b) Show that (Y · Z)P is finite, and (Y · Z) ≥ µP (Y ) · µP (Z). Possibly cut
the first part of this, or give a hint.
(c) If P ∈ Y , show that for almost all lines L through P (i.e. all but a finite
number), (L · Y )P = µP (Y ).
(d) If Y is a curve of degree d in P2, and if L is a line in P2, L 6= Y , show
that (L · Y ) = d. Here we define (L · Y ) =

∑
P∈L∩Y (L · Y )P , where (L · Y )P

is defined using a suitable affine cover of P2. (Hint: see problem 6 of the
previous problem set.) Possibly cut this.
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4. Suppose the characteristic of k is 0. Suppose a hypersurface Y ⊂ Pn is
given by f(x0, . . . , xn) = 0. Show that the locus of points p ∈ Pn where
∂f/∂xi(p) = 0 for all i are precisely the singular points of Y . (In particular,
if ∂f/∂xi(p) = 0 for all i, then f(p) = 0, i.e. p ∈ Y ! To see why, calculate∑
i ∂f/∂xi; this algebraic trick is called Euler’s Lemma.)

5. Consider the subvariety V of A3 cut out by the equation z2 = xy. Explain
why dimV = 2. Let R = k[x, y, z]/(z2 − xy) be its coordinate ring. Find
(with proof) a subvariety W of codimension 1 whose coordinate ring is not
of the form R/(f) for any function f ∈ R. Show that W can be expressed as
V (f) for some f ∈ R. (f will cut out W with multiplicity 2.) Draw a picture
of the situation.

6. Suppose f : X → Y is a morphism of varieties, with f(p) = q. Show that
there are natural morphisms T (f)∗ : mq/m

2
q → mp/m

2
p (the induced map on

cotangent spaces) and T (f) : (mp/m
2
p)∗ → (mq/m

2
q)∗ (the induced map on

tangent spaces). (If you imagine what is happening on the level of tangent
spaces and cotangent spaces of smooth manifolds, this is quite reasonable.) If
φ is the vertical projection of the parabola x = y2 onto the x-axis, show that
the induced map of tangent spaces at the origin is the zero map.

7. Nonsingular schemes
(a) Show that both SpecZ and SpecZ[i] are nonsingular curves.
(b) Let m = (1+i) in Z[i]. Then under the map f : SpecZ[i]→ Z, f(m) = (2).
Check that the map on cotangent spaces (or equivalently, that the dual map
on tangent spaces) is the zero-map. For all other primes of Z[i], calculate the
map on cotangent spaces.

8. Fibred products of affine schemes. (This problem isn’t as long as it looks!)
(a) Fibred products of sets. Suppose X, Y , and Z are sets, and f : X → Z
and g : Y → Z are (set) maps. Define a fibred product of X and Y over Z
X ×Z Y as follows: it is a set W along with morphisms p1 : W → X and
p2 : W → Y , such that

W → Y
↓ ↓
X → Z

is a commutative diagram, and for any maps a : V → X, b : V → Y , such that
f ◦ a = g ◦ b (i.e. the two maps V → Z are the same), there is a unique map
c : V → W such that a = p1 ◦ c and b = p2 ◦ c, and vice versa. (Translation:
“maps V → X,Y that agree on Z correspond precisely to maps V →W .)

Prove that W ′ = {(x, y) ∈ X × Y |f(x) = g(y) ∈ Z} is a fibred product
of X and Y over Z (so the above definition is an abstract nonsense way of
saying something simple). Prove that if W is any fibred product, then there
is a natural bijection W = W ′. (Note that if Z is a one-element set, then
X ×Z Y can be naturally identified with the product X × Y .)
(b) Schemes. Fibred products in arbitrary categories can be defined in the
same way. Consider now the category of affine schemes (which is the same
as the category of rings, with the arrows reversed). If X = SpecR, and
Y = SpecS, Z = SpecT , and f and g are induced by f∗ : T → R and
g∗ : S → R, explain why W = SpecR ⊗T S is a fibred product of X and
Y over Z. (You’ll have to describe the morphisms p1 and p2.) Hence fibred
products exist in the category of affine schemes. (One can then show that
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fibred products exist in the category of schemes using the same argument as
our proof that products exist in the category of prevarieties; see Hartshorne
pp. 87–88.)
(c) Varieties. In the category of varieties, suppose the fibred product W =
X ×Z Y exists. If |Q| denotes the underlying set of a variety Q, show that
|W | = |X| ×| Z||Y |. (Translation: the points of the fibred product is/are the
fibred product of the points.)
(d) Fibred products of varieties don’t always exist. An affine scheme SpecR
corresponds to an affine variety over k if R is a finitely generated k algebra
that is a domain. Find an example of schemes X, Y , Z that correspond to
varieties, and morphisms between them, such that the fibred product X×Z Y
in the category of affine schemes doesn’t correspond to a variety. Hint: look
in positive characteristic; you can even take X, Y , and Z to be the affine
line. (This can easily be extended to prove that fibred products don’t always
exist in the category of affine varieties over k, or even in the category of
(pre)varieties over k.)
(e) A fun example, not for credit. Calculate SpecC⊗SpecR SpecC.
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