
MATH 245C (AN INTRODUCTION TO ALGEBRAIC
STACKS)

PARTIAL LECTURE NOTES SPRING 2022

RAVI VAKIL

CONTENTS

Part 1. Getting started 3

1. Introduction 3

2. Motivation 4

3. Your favorite “geometric spaces”, i.e., your category G 4

4. Revisiting sheaves 6

Part 2. Presheaves (the functor category) 7

5. The (category of) presheaves (on a category C) 7

6. Representable presheaves (on C), and Yoneda 9

7. Representable morphisms (of presheaves on C) 10

8. Geometry on the category of presheaves on G 12

9. Presheaves (on G) can be quite geometric without being representable 12

10. Fibered products = pullbacks 13

11. Group actions, group quotients 14

Part 3. Sheaves, especially locally representable sheaves 15

12. Mixing in the topology on your G 15

13. Examples (and non-examples) of sheaves (on G) 18

14. Locally representable sheaves LRepSh
G

19

15. If G consists of locally ringed spaces, or something like that, so does LRepSh
G

20

16. Examples of locally representable sheaves 20

17. Revisiting sheafification 21

18. Describing locally representable things, by gluing together representable
things 22

Date: March 28 - May 16, 2022. latexed May 17, 2022, last edited May 17, 2022.

1



19. Examples in familiar situations 24

20. The diagonal morphism makes an appearance 25

Part 4. Extending the notion of a topology on a set (topological space) to a
topology on a category 27

21. Interesting new topologies 27

22. Other topologies on the category of schemes 29

23. If you have different topologies on the same category, the “sheaves” may still
be the same 30

24. The Very Cool Theorem 24.3 (which needs a better name) 32

25. Revisiting the Very Cool Theorem 24.3 34

26. Sieves explain the Very Cool Theorem 24.3 in a very nice way 36

27. Applying the Very Cool Theorem 24.3 to our analytic setting 39

28. Taking our analytic success into the algebraic setting as much as we can 41

29. Using our Very Cool Theorem once more, to get the single algebra fact behind
descent 42

30. Topologies in the algebraic setting: Zariski, étale, smooth, fp+lpf, fp+qc,
fpqcK 46

31. Lots of things glue (“descend”) in the fpqcK topology 50

Part 5. Algebraic spaces 52

32. Defining algebraic spaces 52

33. Properties of algebraic spaces, morphisms thereof, and quasicoherent sheaves
thereon 54

34. Fancy facts about algebraic spaces we won’t really use 58

35. Example: moduli of asymmetric curves 59

Part 6. Stacks (2-sheaves), especially locally representable stacks 62

36. Stacks on a topological space 62

37. (2-)Yoneda’s Lemma 66

38. (2-)Fibered products 66

39. Representable morphisms of stacks, and locally representable stacks 69

Part 7. Algebraic stacks 71

40. Definition: orbifolds, DM stacks, algebraic stacks, complex algebraic stacks 71

41. G-bundles, and quotients by G 72

2



42. Algebraic (and Deligne-Mumford) stacks via presentations 76

43. The diagonal morphism for algebraic stacks, and the isotropy/inertia stack 77

Part 8. Showing lots of moduli spaces are algebraic stacks (or even DM stacks or
orbifolds or algebraic spaces) 82

44. Black boxes we will use repeatedly 82

45. Various interesting moduli spaces are algebraic stacks 84

46. Where to next? 88

47. The Picard stack 89

Part 1. Getting started

1. INTRODUCTION

1.1. Basic information about the course.

Spring 2022, Mondays, Wednesdays, Fridays 9:45-10:45 in 380-Y. Mon. March 28 through
Wed. June 1.

The spring’s topics course in algebraic geometry, “An introduction to algebraic stacks”,
will be an attempt at a direct and straightforward route to orbifolds, algebraic spaces,
Deligne-Mumford stacks, and Artin stacks. We will develop the topic from the beginning,
trying to motivate and rigorously define everything we do.

To follow this class, you’ll have to be prepared to ask questions, and reserve some time
outside of class for thinking, reading, and proving.

You don’t have to be enrolled to attend.

1.2. Email list. To keep you informed, I’ll have a low-volume email list for the class. You
don’t have to be enrolled to be on the email list. Indeed, if you might occasionally attend,
you may want to be on the email list. I’ll collect email addresses in the first class. After
that, just let me know if you want to be added or removed from the list.

1.3. Appendix: Facts invoked from last quarter.
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We’re using facts in algebraic geometry from the Rising Sea / Hartshorne/ etc. without
shame, including in particular the Cohomology and Base Change Theorem (for which I
advertise Eric Larson’s proof).

From last quarter, we are using the existence/representability of the Hilbert scheme,
Isom scheme, Mor scheme. There is a Mumford-esque statement about where two line
bundles on a proper family are fiberwise isomorphic, and what that means.

2. MOTIVATION

We started by discussing why people wanted to know about algebraic stacks, and what
they wanted to know. Ideas that came up included: orbifolds, quotient stacks, Deligne-
Mumford stacks, algebraic stacks, algebraic spaces.

One idea that will guide us repeatedly: we understand one notion of geometric space, and we
are trying to invent a more general notion, because we have some ideas of things want to be this
more general kind of space.

Things people wanted to hear about: why are M1,1 Deligne-Mumford stacks/orbifolds?
Mg? Why is m0 (the space of nodal genus 0 connected curves) a smooth algebraic stack?
Why is dimBGL(n) = −n2? Representability of Pic. Statement of Alper-Hall-Rydh.

I tried to make some philosophical points: hard vs. easy; properties not definitions; the
use of well-defined and clearly demarcated black boxes.

What makes algebraic stacks tricky is that there are a number of separate complications
that can be turned on, like toggles. What can make this simpler is turning them on one at
a time. I will try to do that.

3. YOUR FAVORITE “GEOMETRIC SPACES”, I.E., YOUR CATEGORY G

3.1. Non-Definition. You undoubtedly like to think about a type of geometric space (infor-
mally). Precise definition later.

Big list of examples:

• (Balls in Rn, or open subsets of Rn), and (continuous, or differentiable, or C∞) maps
• (Balls in Cn, or open subsets of Cn), and holomorphic maps
• continuous, differentiable, or C∞ real manifolds
• holomorphic complex manifolds
• (affine, or general) complex analytic varieties
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• (affine, or general) varieties over an algebraically closed field
• (affine, or general) complex analytic schemes
• (affine, or general) schemes
• algebraic spaces (eventually)
• (orbifolds and stacks will not be on this list!)

Pick your favorite one, and follow it through! Objects: geometric spaces. Definition:
Your geometric category.

3.A. EXERCISE. What is your geometric category?

We call it G .

3.2. Morphisms.

These should form a category: we know what the objects are, and what the maps are.

3.B. EXERCISE. What is the final object in your category? (Implicit in the exercise is that I
am guessing your category has a final object!) In most cases your final object deserves the
name of point.

3.3. “Reasonable” classes of morphisms. Classes of morphisms in G that you care about
tend to have 3 properties. (i) they compose; (ii) they are preserved by pullback; and (iii)
they are local in the target

3.4. Aside. Very likely your G has fibered products (pullbacks). I’m not sure if we need
this, or if we need something slightly less: that fibered products with open embeddings
exist. So for now: we’re not assuming that fibered products exist in G. I’ll try to include this as
an explicit hypothesis when we use it.

3.5. New kinds of spaces from old.

Recall from §2: One idea that will guide us repeatedly: we understand one notion of geometric
space, and we are trying to invent a more general notion, because we have some ideas of things
want to be this more general kind of space.

Your G likely are locally ringed spaces with some additional properties. A natural way
to get a new kind of spaces are to consider locally ringed spaces that locally look like
things in your G. In other words:
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G ⊂ LocG ⊂ LRing

This is one way in which we create schemes out of affine schemes, and manifolds (mi-
nus the Hausdorff and 2nd countable condition) from open subsets of balls (or even from
balls).

We will deliberately make a worse choice, in order to create something which general-
izes in the way that we want. In particular, we will not even need to know what “points”
are on our spaces, and this will be a good thing.

However, the things we create will often be locally ringed spaces, see §15.

4. REVISITING SHEAVES

First, let us revisit sheaves.

What makes a notion worthy of a name? It should be an abstraction of a number of
useful examples, and it should be useful to make this abstraction.

How do you define a mathematical notion to someone for the first time? Ideally, first
you show them a number of examples that they are familiar with, so they can see that
the notion is one they are already familiar with. They you draw out what these examples
have in commmon. Then you make this a definition.

How do you define a sheaf on a topological space to someone for the first time? (I’m
assuming you’re already happy with sheaves!) Take a familliar topological space. I’ll
describe the sheaf of continuous functions on it. To each open set, we have a ring of con-
tinuous functions. When one open set is contained in another, we have a restrction map
from the ring on the bigger space to the ring on the smaller space. We have now described
they players; they will satisfy some properties. If you have one open set containing an-
other containing a third then if you restrict then restrict, that’s the same as restricting.

We observe that we can identify continuous functions locally (saying this precisely, in
terms of a cover — two continuous functions on some union of open sets that happen to
be the same on each of each of these open sets must have been the same to begin with). W
can glue continuous functions together (if we have a bunch of open sets, and continuous
functions on each of them, and the contintuous function on each open set agrees with
that on each other open set on the overlap, then they all are restrictions of one continuous
function on the union.

We then observe that the collection of differentiable functions on open subsets have the
same structure; and ditto for smooth functions. We then abstract the definition of sheaf.
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The fact that the restriction of a restriction is the restriction is our first property. So
far, we have defined a presheaf. I’ll call this a(n element of) PSh for short. (This is our
private notation).

Then we have two axioms, the identity axiom and the gluability axiom. If a presheaf
satisfies the identity axiom (which I won’t repeat for you here), people sometimes say it
is a separated presheaf, but I don’t care; we’ll call it an (element of) PSh+ . If it further

satisfies the gluability axiom, it is a sheaf, although we’ll call it a PSh++ or a Sh .

First (but not final) reformulation of presheaves: we define the category of open sets
Top

X
of a topological space X (the objects are the open sets, and the morphisms are

the inclusions). Then a presheaf on X is the same information as a contravariant functor
Top

X
→ Sets. For this we just care about the category, and nothing further about the

topology; the identity and gluability axioms involve more about the topology

I didn’t say it in class, but morphisms of presheaves translate in this language to “nat-
ural transformations of functions”. So the category of presheaves on X is the same as
the category you get where the objects are “contravariant functors Top

X
→ Sets” and the

morphisms are natural transformations of functors. More generally, if T is any category,
we will define PShT , which we call the category of presheaves on T (but others call the
functor category for T ) to be the category where the objects are “contravariant functors
T → Sets” and the morphisms are natural transformations of functors.

Part 2. Presheaves (the functor category)

5. THE (CATEGORY OF) PRESHEAVES (ON A CATEGORY C)

5.1. Presheaves on C = functor category of C.

Suppose C is any category. (It needn’t have a topology or anything like that.) You
should think of your category G of spaces.

For each Y ∈ C, we have a contravariant functor hY : Copp → Sets. This is the functor

of maps to Y. (You may prefer to call it Maps→Y .) This is also called the functors of points
of Y.) (Why subscript Y even though it is contravariant? Answer: this is “covariant in Y”.
But maybe I’ll make it hY . See comment below on why I prefer it to be Presheaves.)

5.2. Remark: Baby Yoneda. Baby version of Yoneda: If you know maps to Y, you know
Y up to unique isomorphism, by universal property nonsense. Explain.
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Perhaps motivated by this:

5.3. Definition. A presheaf on C is a contravariant functor from C to Sets (i.e., a covariant
functor Copp → Sets). I might use the symbol PSh(C) to mean a presheaf on C.

5.4. Running examples.

• G(k, n)

• hY is in this bigger category.
• Families of curves up to isomorphism.
• Vector bundles up to isomorphism.
• Hilbert functor Hilb
• Ma

3 := Maut-free
3 (mentioned in previous section); family of curves up to automor-

phism.

5.5. The category of presheaves on C. Define the category PSh(C) of presheaves on C

to be the category of contravariant functors from Copp to Sets). Ask: What are morphisms
in this category? I.e., what are maps of presheaves? Alternative notation that I like less
(see below): Fun(C).

Answer: Morphisms are natural transformations of functors.

5.A. EXERCISE. Given a morphism Y → Z in C, we have an induced morphism of
presheaves (which might be called hY→Z) in PSh(C), hY → hZ.

To show that you have to be careful, I will confuse you. The following exercise seem-
ingly contradicts the previous ones.

5.B. EXERCISE. These hY are contravariant functors. So any morphism Y → Z induces
hZ → hY . This seems to contradict Exercise 5.A. What has gone wrong?

This is why we’re better off calling these presheaves rather than functors — because other-
wise we are confused when talking about a covariant functor from the original category
to the functor category (of contravariant functors from the original category to sets).

Here’s another example (say it in terms of functors): G(k, n)→ P(
n
k)−1.

In Exercise 5.A, we have proved:

5.6. Proposition. — We have a (covariant) functor Yo : C→ PSh(C) .

8



We call this functor the Yoneda functor Yo. More on this soon, in §6.

5.7. Definition. subpresheaf (or subfunctor)

5.8. Fibered products in the presheaf category.

5.C. EASY EXERCISE. Show that PShG has fibered products. (Explain!) (Reason: because
Sets has fibered products. Caution: you need to check that that the naive fibered product
is indeed a fibered product in PShG.) Notation: F×H G in PShG.

5.9. Definition. If F, S ∈ PSh(C), we define F(S) := Hom(S, F).

5.10. Subpresheaves. Define subpresheaf-on-G or a subfunctor-on-G (because we know
what a subset is). (Do we need this?)

Define subpresheaf. (Dispreferred notation : subfunctor.) Really, this is a quality of a
morphism of presheaves.

5.D. EXERCISE. Show that subpresheaves are monomorphisms in PSh.

Presumably not every monomorphism is a subpresheaf.

6. REPRESENTABLE PRESHEAVES (ON C), AND YONEDA

(To place later: We start by trying to extend geometric notions to objects in PShG, and
then also do the same to morphisms in PShG. Probably say: start with them actually being
things we understand. Then even if not, they might have line bundles; and morphisms
can look like them. Later: even locally look like them.)

We return to the Yoneda morphism Yo : C→ Psh)C.

6.A. EXERCISE (YONEDA’S LEMMA, IN SOME SENSE). Suppose z ∈ PSh(C), and Y ∈ C.
Describe a bijection between the morphisms Y → z in PSh(C) and the elements of z(Y).
Show that this bijection is natural, i.e. is functorial in both z and Y. (First: What does this
mean?)

So basically, whenever you see Y → z, you should immediately think z(Y); and vice
versa.

We have a number of immediate consequences.
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6.1. Translation (Yoneda’s lemma). — First, we have a natural correspondence between maps
Yo(X)→ Yo(Y) and Mor(X, Y). In other words, Yo is a fully faithful functor.

Important question: does fully faithful functor include injectivity on objects? No! Per-
haps 2-surjective would give “essential injectivity”?

(This formalizes the usual “universal property” abstract nonsense of Remark 5.2 on
baby yoneda.)

Based on this, we define representable presheaf (anything isomorphic to Yo(X) for
some X ∈ C; and we know that it is uniquely isomorphic), and denote this full subcategory
of PSh(C) by Rep(C) . (Normal people would call these representable functors, which
is short for representable contravariant functors from C to Sets.)

We get a bit more than traditional Yoneda: presheaves are determined by maps from repre-
sentable presheaves. But that’s kind of tautological.

We think of C as a (full) subcategory of PSh(C) (although really, it is equivalent to a
full subcategory). Rep(C) is the essential image of Yo. (This is in the appendix on category
theory.)

6.2. Examples (in whatever geometric category they like). products. Moduli spaces. O. O∗.

6.B. EASY EXERCISE (ASK IN CLASS). Assume C has fibered products. The fibered product
of representable functors is a representable functor.

So we start with our spaces, and we have a more general notion. We have moduli
spaces, which are in PSh(C), and we wonder if they are in (the (essential) image of) C.

We say this as: does the moduli space exist? Is the moduli functor representable?

7. REPRESENTABLE MORPHISMS (OF PRESHEAVES ON C)

We now know which objects in PShG we can think of very geometrically. We can do the
same with morphisms.

7.1. Definition. A morphism F→ G in PshG is representable if for all elements Y ∈ G, we
have that the fibered product Y ×G F is representable.

7.A. EXERCISE (IN Sch). We have a Hilbert functor (or presheaf) Hilb (see examples
above). Define the universal family (functor) U, and show that U→ H is representable.
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7.B. EXERCISE. Define Maut-free
3 as you’d expect. Show that the universal curve is

UMaut-free
3 →Maut-free

3 representable.

7.C. EXERCISE. Representable morphisms compose and pullback.

7.2. Properties of representable morphisms (of presheaves on G).

7.D. EXERCISE. Properties of morphisms on G that are preserved by pullback extend to
definitions for representable morphisms of functors.

Examples: in Schemes: Zariski open, affine, etale, etc.

Example: open subpresheaves (or subfunctors), closed subfunctors.

Observe: if such morphisms are preserved by composition in G, then they are preserved
by composition in Psh.

7.E. IDLE QUESTION. Is it true that PSh(C) → PSh(PSh(C)) is an equivalence of cate-
gories? In other words, is PSh(·) a “closure” operation? I doubt it.

7.3. Definition. Define open subpresheaf, closed subpresheaf, and give some examples.
Some how open subpresheaf, and closed subpresheaf, don’t sound right to me.

7.4. Review at the start of class 3.

Where we are: you have a category of geometric spaces you understand G, which in
particular has a class of morphisms, called “opens” or “open immersions” (perhaps we
mark such morphisms with an o, and describe the subcategory as Go ⊂ G).

Our plan is to start with G, and invent a new kind of space from it.

For example, we will invent manifolds, by starting with G as open subsets of Rn (with,
perhaps, smooth maps). We will later have to add in the second countable and Hausdorff
axioms by hand, but only when we are forced to.

We discussed Yoneda’s Lemma: G is a full subcategory of the “functor” category PShG,
which is a fancy painful way of saying something more concrete.

Perhaps to be careful, we should describe those “representable” presheaves (or “repre-
sentable functors”) as RepG, and write:

G
∼−→ Rep

G
⊂ PShG
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but it won’t be confusing (I hope!) to just write

G ⊂ PShG.

Now for a geometric space X ∈ G, we’ve discussed the “category of open sets of X”,
perhaps denoted Top

X
, and we can see that we have a natural “inclusion” Top

X
⊂ Go.

The two next sections make sense of geometry on presheaves — some geometry on all
presheaves, and more geometry on other non-representable presheaves.

8. GEOMETRY ON THE CATEGORY OF PRESHEAVES ON G

We discussed how sometimes there are line bundles or cohomology classes on elements
of PShG.

If we do not know a moduli functor is representable, we can still think about geometry.
I discussed how to make sense of some geometric notions on some of these objects of
PShG (some of these presheaves on G). My motivating example was the presheaf of “rank
2 vector bundles up to isomorphism”, where G are the complex manifolds, or complex
analytic spaces. Call this presheaf P. Then P has something which deserves the name
c1 ∈ H2(P,Z), c2 ∈ H4(P,Z), which are the Chern classes of the corresponding vector
bundle. We discussed what this means.

We similarly discussed the meaning of the Hodge bundle on Ma
g, which is a rank g

vector bundle on this presheaf.

There are some objects in PShG that have lots of geometry. If G are open subsets of Cn,
then any manifold M is in PShG (as the presheaf of maps to M). Indeed, the category of
complex manifolds is a subcategory of PShG, and we should be able to define it complexly
from this point of view, and this is what we will do!

8.A. EXERCISE. Think this through.

Warning: cohomology classes can be more complicated.

9. PRESHEAVES (ON G) CAN BE QUITE GEOMETRIC WITHOUT BEING REPRESENTABLE

Here’s another reason to look in PSh(C) — there may be bigger categories that we want
to think of in the same way.

To see this, consider this example: From open subsets of Cn to complex manifolds.
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Example: Do example from complex, extending balls to manifolds. We have the cate-
gory of balls, the category of presheaves, and the manifold category.

9.A. INTERESTING NONTRIVIAL EXERCISE. Show that the manifold category is in the
functor category of balls, as a full subcategory.

Hence we have a new definition of complex manifolds: a complex manifold is PShG on
G = affine complex manifolds, that satisfies some additional properties.

C ⊂ ManC ⊂ PSh(C)

Big question: What is missing? What is in the [some additional properties]? (Discuss
with them: Secret answer: locally look like balls.)

Notice: we understand line bundles on manifodls, if we are given line bundles on C

(you can almost believe). Relate this to an earlier section (link to be added later).

How would we “discover” manifolds, if we only knew about open subsets of Cn?

Or how can we discover these functors-on-G that are actually quite geometric?

We can fit this with moduli spaces together — maybe some moduli space is repre-
sentable. But if not, maybe we should be considering some bigger category.

((Foreshadowing: we want things we can think about geometrically, extending our
notion of space.))

We even get the right notion of line bundles on manifolds in this way — they are the
line bundles on the functors/presheaves!

10. FIBERED PRODUCTS = PULLBACKS

We haven’t yet required that G have fibered products, and I’m not sure if we want to
require it yet. For now, no.

We will want Go to have fibered products, but we’ll get to this later, when discussing
Grothendieck topologies next day.

10.1. Lemma. — PShG has fibered products (regardless of whether G does)

We discussed this; you should think through the proof. The reason is that Sets has
fibered products.
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10.2. Definition. A morphism a : F→ G is sais to be a representable morphism in PShG if
for X ∈ G, and all maps X → G (I really mean hX → G, but hopefully you are getting the
hang of identifying X with hX), the fibered product F×G X is representable (i.e., in G).

F×G X !!

""

X

""

F !! G

10.A. EXERCISE. Show that the notion of representable morphism is closed under fibered
product.

10.B. EXERCISE. If G is not closed under fibered product, show that not every morphism
in G is representable! So maybe this terminology isn’t great if G isn’t closed under fibered
product.

10.C. EXERCISE. If X → Z and Y → Z are morphisms in G, and they have a fibered
product in G, then their fibered product in PShG is the same as in G.

Any property of morphisms in G (e.g., open immersion) can then be made a property of
representable morphisms in general. We say F→ G in PShG is purple if it is representable,
and for all XrightarrowG from X ∈ G, we have X×G F→ X is purple.

So for example, Ma
g,1 →Ma

g is smooth of relative dimension 1.

11. GROUP ACTIONS, GROUP QUOTIENTS

I’ll put some of our discussion here on group actions and group quotients.

We know what a group object G is in G (e.g., a Lie group is a group object in case where
G are manifolds).

11.A. EXERCISE. Write out what this means! (I should do it myself, but haven’t gotten
around to it.) Let pt be a final object in G.

We know what a group action is in G, of G on X: A map G × X → X satisfying some
properties (write them out!).
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If we are in the category of topological spaces or manifolds, we know what it means
for a group action to be free: for each point p ∈ X, if gp = p then g = e. Translation:
G× X→ X× X should be an injection.

11.1. Definition: free group action in the algebraic category. How to make sense of the
“freeness” of a group action in the case of schemes (or, perhaps, varieties over fields that
are not algebraically closed)? Answer: an action of G on X is free if G×X→ X×X should
be an injection when evaluated on T -valued points: (G × X)(T) → (X × X)(t) should be
an injection, i.e., Hom(T,G × X) → Hom(T, X × X) should be an injection. Translation:
G× X→ X× X should be a “subpresheaf” = “subfunctor”.

Part 3. Sheaves, especially locally representable sheaves

12. MIXING IN THE TOPOLOGY ON YOUR G

Quick reminder at the start of class 4: Suppose F ∈ PShG, and X ∈ G. we think of maps
X→ F as the same as elements of the set F(X).

In your favorite geometric category G, you will note that for any of your spaces Y,
“maps to Y glue”, or more precisely, “maps to Y from open subsets of X form a sheaf”.
I translated what this meant into something concrete.

(Aside: although this happens to be true in your particular well-chosen category, we
will want to make this a requirement of our set-up. The fancy statement is that your
topology is “subcanonical”, but this word won’t help us, so I’ll try not to use it.)

Also, many of the moduli spaces that we had in mind, that were indeed “reasonable”
and were “presheaves on G, were also sheaves.

So if we want to invent new kinds of spaces, a natural place to look are sheaves on G.
These are the presheaves which are sheaves on every one of your geometric spaces X ∈ G.
They form a category, ShG. I want to abstract from this, so we can use this notion in more
general situations.

12.1. Abstracting: a topology on a category.

We want to see how the sheaf axioms translate into our language of geometric spaces,
and abstract them.

First, let’s see how the topology axioms translate, and see what we need in order to
discuss sheaves.
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Suppose we have a set X. Then a topology on the space is a collection of subsets, which
we call open subsets, satisfying a few axioms:

(i) ∅ and X are open
(ii) finite intersections of open are open

(iii) unions of opens are opens

Let’s see what we need for sheaves (or better, for the identity and gluability properties).

Some of our morphisms in G are called “opens” or “open immersions” (or “admissible
opens”, as Ben suggested by email after class 4). Perhaps we might write this as a subcat-
egory Go

X ⊂ Gx, which has the same objects as GX, but only some of the morphisms (the
“opens”).

(i) ∅ → X is in Go
X. X → X is in Go

X. Fairly clearly, we would like to say that all isomor-
phisms Y → X are in Go

X.

We also need an axiom that fibered products in G with any open are also open: “opens
pullback”. Translation: given any map X ↪→ Z in Go, and any map at all Y → Z, the pulled
back map X×Z Y → Z is also in Go:

X×Z Y
o !!

""

Y

""

X
o !! Z

(ii) the (finite) fibered products in Go
X exists, and is the same as the fibered product in G.

We call this intersection.

(iii) We seem to need the notion of unions of open sets (e.g., perhaps uions are pushouts
of some sort). But (insight!): we really need less than (iii) — we just need to know which
things are covers.

Example: convex open sets in Rn They don’t form a topology, but they for a base.

Example 2: Distinguished opens in an affine scheme.

Example 3: Affines in a separated scheme.

We have some axioms for covers.

(i) isomorphisms are covers
(ii) covers pullback

(iii) covers of covers are covers
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12.2. Definition. For the purposes of this course, we will call this data, satisfying these
conditions, a topology on the category G.

12.3. Linguistic note. This isn’t standard notation, but isn’t so terrible. The data of a
category with topology is called a site, although we won’t need this language. The data
of a topology on a category is more commonly known as a pretopology, but I don’t see any
advantage of this word, at least right now. You may have heard the phrases “big étale
site” or “small étale site on X”, and similar phrases. We don’t need this, but in case you
are curious: the “étale” in the name means that is the topology we are working with. So
the only question is what category we are working with. For “small” things, the category
is that of étale maps to X. For example, the small etale site on a scheme X is denoted Xét.
For “big” things, it is all maps. For example, the big smooth site will be denoted Schsm.

12.4. Sheaves on a category (with a topology).

We call this a topology on G, or a Grothendieck topology on G. A category with topology
is called a site (we won’t use this).

12.A. EXERCISE. Verify that this induces topologies on GX for all X, and these are “tradi-
tional” topologies. (Actually, they aren’t quite! But we want them to be...) So this really is
a generalization of the notion of a topology on X.

We can then define a sheaf on G. Also, in just same way, sheaves on G form a category
ShG. We thus have a full embedding ShG ↪→ PShG. (A category of sheaves on a site is
called a topos, but I don’t want to use this word.)

12.B. EXERCISE. Show that ShG has fibered products.

12.C. EXERCISE. hY : C→ Sets form a sheaf.

Words: “a space is a sheaf”. Translation “Maps→Y is a sheaf”. Better way to say it: an
element of G is a sheaf on G. (Unimportant remark: A topology is subcanonical if all the
objects are sheaves.)

We now have:

Go
X

""

!! Go

""

GX
!! G

∼ !! Rep
G

! " full !! ShG
! " full !! PreG = FunG

Everything here is a subcategory.
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12.D. EXERCISE. Mixing Yoneda and sheaves: Show that G→ ShG is a full embedding.

12.E. EXERCISE. Mark the arrows in that diagram above that are full embeddings.

(Mental tongue twister: say this five times fast: Sheaves on a category form a category.
Objects in your geometric category have a topology, which is a category. The objects are
these topological spaces with sheaves. The objects themselves are sheaves. Sheaves on
the category form a bigger category. This is way more confusing than it should be.)

12.5. Upshot. If a moduli space is representable, it had better be a sheaf-on-G (i.e., in
ShG)! Or if a functor-on-G (element of PShG) should be considered geometric, it had better
be a sheaf-on-G (in ShG)!

13. EXAMPLES (AND NON-EXAMPLES) OF SHEAVES (ON G)

13.1. Example: hY . is a representable sheaf. (Refer back to that earlier exercise.)

13.2. Example: every complex manifold forms a locally representable sheaf on the
category of open subsets of complex affine spaces.

13.3. Example: every scheme forms a sheaf on the category of affine schemes.

13.4. Example: O, O∗,Ω, ∧3Ω on the category of complex manifolds.

13.5. Example: The Grassmannian functor G(k, n).

(where we haven’t worried about representability)

We then have a map of sheaves G(k, n)→ Pn.

Ask: Hilbert functor of Pn, or indeed of anything.

13.6. Example: Maut−free
3 .

13.7. Non-example: vector bundles.

Here we could potentially get a functor-on-G, if we say “up to isomorphism”. Other-
wise, we don’t even have a functor-on-G in any obvious way!
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And even this functor sucks — it isn’t even a separated presheaf on G.

13.8. Non-example: M3.

Same caveat as with vector bundles!

14. LOCALLY REPRESENTABLE SHEAVES LRepSh
G

Perhaps G has fibered products; we’re staying agnostic about that.

Definitely we have the notion which morphisms in G are opens, which we might de-
scribe as: Go ⊂ G.

We know that maps to any element of G form a sheaf.

Examples: balls in Rn? Maybe. We discussed how Cech cohomology works particularly
well when you have a “good” cover. Complex analytic varieties and complex analytic
spaces.

We now have a new kind of space!

14.1. Definition. We define locally representable sheaves LRepSh
G
. I might want to call

them locally representables for short, to deliberately elide the word “sheaves”, so I can
think of them as “spaces”.

G ⊂ LRepSh
G
⊂ ShG ⊂ PSh+

G ⊂ PShG

What are these things? What have we built?

LRepSh
G

has fibered products.

If we started with open subsets of Rn, we have something more general than manifolds
— we have the definition minus the “second countable+Hausdorff condition”.

Define complex analytic spaces, complex manifolds, schemes (all without “Hausdorff,
second countable” conditions).

If we start with the category of affine schemes Aff , we will see later that we will get
some schemes, but perhaps not all of them. A great question: do we get the affine plane
with doubled origin? The “obvious” cover of it (by two copies of A2) isn’t by “repre-
sentable opens”.
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I am guessing that this will not be locally representable, but my attempt in class 5 to
show this didn’t work! But we still learned something.

15. IF G CONSISTS OF LOCALLY RINGED SPACES, OR SOMETHING LIKE THAT, SO DOES

LRepSh
G

15.1. Topological spaces.

Your objects of G are probably topological spaces. (Possible translation: you have in
mind a forgetful functor G→ Top.) Your “opens” probably give open subsets of topolog-
ical spaces: Go → Topo.

15.A. EXERCISE. Then your locally representable sheaves are also topological spaces: you
can extend G→ Top to LRepSh

G
→ Top.

15.2. Ringed spaces.

Are your elements of G a ringed space (or even a locally ringed space)? Probably, al-
though we haven’t required it. What are the functions on X ∈ G? They are the (allowed)
maps to R1 (if you are dealing with real manifolds), or C1, or more generally A1.

15.B. EXERCISE. Suppose A1 is a “ring object” in G. We call maps to A1 “functions”. Then
if you have a forgetful map G→ Top, you even have a map to ringed spaces.

15.C. EXERCISE. Explain how, if your G is a category of locally ringed spaces (ie has a
functor to LRepSp), this extends to LRepSh

G
.

16. EXAMPLES OF LOCALLY REPRESENTABLE SHEAVES

16.A. EXERCISE. If we start with G = open subsets of balls, we get things including
manifolds (and even manifolds-minus-Hausdorff-and-second-countability).

16.1. Question (rhetorical for now). Do we get anything else?

16.2. Starting with G = Aff, the category of affine schemes. If we start with G = Aff, it
isn’t completely clear what we get. (We’ll see soon... I’ll add a ref forward...)
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Excellent question that will motivate us: is the plane with the doubled origin in LRepSh
Aff

?
(Answer will be: “no”.)

So let’s try to see what we can build in this way.

17. REVISITING SHEAFIFICATION

We can sheafify a presheaf on a topology on a category — There is a sheafification
functor. We don’t necessarily have “points”, so we can’t describe it using “compatible
stalks”. Here is an alternate take, which is useful.

Identity axiom: the notion of “equals” glues. Translation: if you have two sections s

and s ′ over X ∈ G ′, and over every “open” in a given open cover of X, if s equals s ′ on
that open, then s = s ′ on X.

Gluability axiom: objects glue.

Define PSh+
G , the presheaves satisfying the identity axiom. (These are also called sepa-

rated presheaves, although we won’t use this.) This is a full subcategory of PshG.

So here is the functor PShG → PSh+
G .

It is left-adjoint to the forgetful functor PSh+
G → PShG, and you can readily check this.

You just enforce that “equals” glue! Any time you have two sections over some U that
are locally equal, you declare them to be the same! Any question? Do you see what the
functor is? Do you see why it has the universal property?

Next we define the functor PSh+
G → PSh++

G = ShG, which is adjoint to the forgetful
functor. You just enforce that “objects” glue. This means that you now have new objects.
What is an object? It is just a bunch of objects on an open cover, which agree on overlaps.
Equality if... So we have a colimit.

What are maps between such things?

17.1. Fun aside. What is a (−1)-sheaf? It is a property of open sets, that restricts to smaller
open sets, and is preserved by union.

17.A. EASY EXERCISE. Show that the sheafification is the composition of the two functors
mentioned above. (This is just adjoint nonsense.)
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18. DESCRIBING LOCALLY REPRESENTABLE THINGS, BY GLUING TOGETHER

REPRESENTABLE THINGS

18.1. Motivation: Gluing manifolds from balls, in the language of sheafification.

This next bit of exposition is messed up and disorganized, but contains what I said in
class.

Suppose we build a manifold M by gluing together some balls Ui. How do we un-
derstand the “presheaf” M in terms of the “presheaves” Ui? How do we build locally
representable sheaves?

What is a map to X?

To first approximation: maps to
∐

Ui modulo some equivalence relation. But this is
not a sheaf; it is not the right thing. But it is a PSh+, so to build M, we sheafify.

I’ll give this example, but then move on to discussing sheafification.

A map X to M is: you cut up X into opens Xi; you have maps Xi to Ui; and you glue
together.

Or you have maps Xj →
∐

Ui, and two maps are the same if they agree up to some
equivalence relation.

18.2. Remark. Compare this to the following situation. Suppose G acts on Y, say freely.
What are maps from X to Y/G? Answer: cut X into pieces, Xi; choose maps Xi → Y; but
on overlaps they should lie in G (they should be “equivalent”).

18.3. Sheafification take two.

Say you have a cover of a manifold by pieces. And you have overlaps. How do you
recover the original space?

Sheafify
∏

F(Ui)/
∏

F(Uij)!

18.A. EXERCISE. Show that
∏

F(Ui)/
∏

F(Uij) is a separated presheaf already.

This will grow up to be an exercise below.

So we just need to apply “+” once.
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How do we define a manifold M? We give a cover Ui, and figure out how to glue it
together:

Ui ×M Uj
o !!

o

""

Uj

o

""

Ui
o !!!! M

And we have this condition on the triple overlaps.

So to build something, we can take: Ui ∈ G (i runs through some index category).

We want Uij ∈ G (i, j ∈ I)

Uij
o !!

o

""

Uj

Ui

symmetric in i and j. Thse are “relations”.

We have a condition on triple overlaps. What is it?

Uijk
o !!

o

""

Ujk

o

""

Uij
o !! Uj

(Best to draw this as a cube balanced on a vertex, with the bottom vertex removed.)

How do we get M from this data? Here is the answer.

Define M− :=
(∐

i h
Ui
)
/R where R is the equivalence relation from Uij.

18.B. EXERCISE. Show that M− ∈ PSh+
G . Translation: M− “already” satisfies the identity

axiom. (Easy!)

Then define M := (M−)+.

18.C. EXERCISE. Show/describe:

(a) Ui →M is a representable open.
(b) These Ui →M form an open cover of M.
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(c) Show that the following is a fibered square:

Uij
!!

""

Uj

""

Ui
!! M

(All of these morphisms are “representable opens” from the above discussion.)

Thus we have successfully described an element of LRepSh
G
!

18.4. Corollary. — Any cover produces a description of this sort!

18.5. Definition. Let’s call this construction
(∐

Ui/
∐

Rij

)+
or
(∐

Ui/
∐

Rij

)sh
.

18.6. Theorem. — Conversely, any element M of LRepSh
G

arises in this way (as (
∐

Ui/
∐

Rij)
+)

Proof. M has a cover by representable opens Ui → M, and we create Rij = Ui ×M Uj —
basically this was our motivation for our construction the first place! !

Class 7 starts here. One lesson about plane with doubled
origin: the issue wasn’t whether it was a sheaf. It was
whether it was “locally representable”, ie, whether it had
a “cover”.

19. EXAMPLES IN FAMILIAR SITUATIONS

19.1. Open subsets of balls. If G = open subsets of balls (where maps are smooth, differ-
entiable, or whatever we have picked in advance), we get manifolds (of the corresponding
sort), minus the Hausdorff and second countable condition.

19.2. Affine schemes. If G = Aff (the category of affine schemes), we get schemes with
affine diagonal.

19.A. EXERCISE. Prove this.

So algebraic geometers get the Hausdorff condition for free! Also: This class is good for
Cech cohomology (refer back to desire for covering a compact manifold with contractable
open sets all of whose multiple intersections are empty or contractable).
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19.3. Schemes with affine diagonal. If G = schemes with affine diagonal, and we take as the
opens, the scheme-theoretic notion of open embeddings, we get all schemes. But to be clear: we
can’t just take “open embeddings which are affine morphisms” (which are the ones that
you might have naively guessed from §19.2). We needed some additional insight to know
that we wanted a bigger class of things to be called “opens”, which indeed restricts to the
previusly expected class of opens for maps of affine schemes to affine schemes. (Thanks
to Spencer Dembner for pointing this out. Ben Church had some ideas of why one should
have “predicted” this larger class, and in fact he may have the “best explanation”; I’ll
have to talk to him more.)

19.B. EXERCISE. Prove this.

19.4. Schemes. If G = Sch (and opens are “open embeddings” in the usual, Zariski,
sense), then you get nothing new.

19.5. Complex analytic spaces. Tentatively define complex analytic varieties and com-
plex analytic schemes by doing this construction with the appropriate atomic G (both are
ringed spaces, with sets things cut out in open subsets of Cn by holomorphic equations;
for the functions, take either the restrictions of holomorphic functions to these subsets, to
get varieties, or else quotient out by the ideal sheaf, to allow yourself nilpotents and get
schemes).

Either of these might be called complex analytic spaces (I think Griffiths and Harris used
this for the first, while Grothendieck used it for the second). So to be safe, we might use
the bold-faced phrases to disambiguate.

20. THE DIAGONAL MORPHISM MAKES AN APPEARANCE

Many of the examples above have a property that does not always hold. This also gives
us an excuse to revisit the important lesson that the “diagonal morphism” is key.

20.1. Important Lemma. — Suppose G has fibered products, and F ∈ PShG. Then all X→ F is
representable for all X ∈ G if and only if the diagonal morphism δ : F→ F× F is representable.

The representability of all of these morphisms is captured by the representability of this
one morphism. We say that such F has representable diagonal.

25



Proof. Suppose first that δ : F→ F× F is a representable morphism. We wish to show that
X×F Y is a representable object. But it is obtained by:

X×F Y !!

""

X× Y

""

F
δ !! F× F

Next, suppose X ×F Y is represnetable for all X → F, Y → F, X, Y ∈ G. We wish to show
that δ : F→ F× F is representable, i.e. for all U→ F× F, from

U×F×F F !!

""

U

""

F
δ !! F× F,

U×F×F F is representable.

But consider this diagram:

? !!

""

U

""

U×F U !!

""

U×U

""

F
δ !! F× F

!

Notice that we proved that U×F U = (U×U)×F×F F.

20.2. Remark. We can interpret U×F×F F as “Isom”! And (X×Y)×F×F F as Isom! I’ll explain
this at the board; it is harder to explain this in writing.

20.A. EXERCISE. Show that everything in PshAff has representable diagonal (i.e., affine
diagonal). Ditto for complex analytic varities and complex analytic schemes.

20.3. Question. What is the property of G that makes everything in LRepSh
G

have
representable diagoanal? You collectively told me after class 6. (Because for more general
G, this is not the case.) Have we thought about the case of manifolds, which does not have
fibered products?

Added here May 7 2022
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20.B. EXERCISE. Show that if G has fibered products, so does LRepSh
G
. (This is proved

in Proposition 39.4, so I’ll probably move that here.)

Part 4. Extending the notion of a topology on a set (topological space) to a topology on
a category

21. INTERESTING NEW TOPOLOGIES

This section is disorganized, but contains within it the exposition I gave in class 6.

Recall: Definition: topology on a category. Given a category C, a topology on C is a
collection of sets of arrows {Vi → U} for each U ⊂ C (called “coverings”) such that:

(i) Any isomorphism is a covering.
(ii) Coverings pull back: If {Vi → U} is a covering and W → U, then Vi ×U W exists for

each i, and {Vi ×U W →W} is a covering.
(iii) Coverings compose: If {Wij → Vi} are coverings, and {Vi → U} is a covering, then

{Wij → U} is a covering.

Example: Sheaf is a contravariant functor satisfying two additional axioms involving
the topology.

Zariski topology: open sets are “too big”. The implicit function theorem fails. Let’s fix
it.

Define the etale topology. Explain why the implicit function theorem holds.

The issue is that we need an inverse function for things where the Jacobian condition
says there should be one.

The simplest things we can do is to use covering spaces themselves as covers! But in
algebraic geometry, these aren’t subsets.

Discuss
√
t and 3

√
t− 2 near t = 1, in usual topology.

Where is it well-defined? On big open sets; there may not be a “biggest”. Where is their
sum defined? Certainly on their “intersection”.

Do etale open set example.

Consider (
√
t+ 3

√
t− 2)−

√
t.

27



Define Grothendieck topology. “Intersection” is fibered product. So U∩U is not U! But
this isn’t tragic;

√
t+

√
t. Etale topology is a Grothendieck topology.

Implicit function is clearly true.

X×Y X

""

!! X

et
""

X

∆

##

!! Y

Put differently, there are local sections!

Let’s do sheaves in this topology.

Let U→ X be an etale cover.

For convenience, we can take a single cover!

Even in the more usual topologies this is interesting.

F(X) !! F(U) !!!! F(U×U) .

Let’s try this out, with double cover of x-line branched over 0, with the 0 removed.

Example 1.

Then the cover is Spec(k[x, y]/(x− y2))x → Spec k[x]x.

U×k U = Spec k[x, y, z]/(x− y2, y− z2) = Spec k[x, y, z]/(x− y2, y− z)
∐

· · · .

When does a polynomial in y “descend” = “glue” to a polynomial in x? Answer: even
exponents only.

Side remark: we didn’t need to toss out 0 here! So etaleness isn’t what matters. (It will
be flatness.)

Example 2. SpecC→ SpecR.

Example 3. (finite) Galois extension.

Example 4. (finite) separable extension.

Fun things you can do with etale topology: smooth = locally An. (Sketch proof...)

Double covers := finite flat degree 2.

Isotrivial things become locally trivial. Pn-bundles in the etale topology.
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—

Define: Etale topology: etale open sets. (Analytic version too!) Intersection = fibered
product.

Examples: etale opens of X. The etale site on the category of schemes.

Examples:
√
1+ x. cube root of x− 1. Add them together.

—

21.1. Caution. By this point, we have discussed the fact that for sheaves on a topologized
category, we have to deal with self-intersections of opens, because they give us something
nontrivial!

22. OTHER TOPOLOGIES ON THE CATEGORY OF SCHEMES

These are less weird.

Warning: we will want our spaces to be sheaves in these topologies! We’ll worry about
this later.

22.1. Definition.

In the following, I’m being a bit sloppy; I want to make these definitions simultaneously
for real manifolds of various flavors (topological, smooth, analytic), and complex spaces
of various types (holomorphic manifolds, complex analytic varieties, complex analytic
schemes). So apply these separately to different G.

(0) We have decided to call the “classical” topology the analytic topology (abbreviated
“an”).

(1) put an open cover into one open set. things glue! In other words, a cover in this
topology is the disjoint union of covers in the classical topology. I won’t bother giving
this topology a name.

Explain how self-intersections now have everything; do a double cover.

(2) Classical: source-local. locally on the source an isomorphism! We have decded to
call this the analytic-étale topology (abbreviated an.et).

Example: R→ S1. picture, including relations.
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(4) Analytic-smooth. (“Smooth morphism” in algebraic geometry means “submersion”.
I really should say “submersion”, but I won’t be able to stop myself from saying “smooth”.
I apologize.) Covers are surjective submersions. We have decided to call this the analytic-
smooth topology (abbreviated an.sm).

22.A. EXERCISE. Check that each of these are indeed topologies on the appropriate G.

22.2. Definition. We don’t need these words, but a topology is finer than it if it has more
opens. The opposite is coarser.

By the way, I like this: https://www.math3ma.com/blog/comparing-topologies.

23. IF YOU HAVE DIFFERENT TOPOLOGIES ON THE SAME CATEGORY, THE “SHEAVES”
MAY STILL BE THE SAME

If we have several different topologies on G, they may still have the same sheaves. I
could jump right to the statement and proof, but I think some warm-up examples will
help motivate a super-useful theorem.

23.1. Examples.

if G are open subsets of Rn (with various notions of maps, e.g. smooth or continuous or
differentiable), or real manifolds:

Shan.sm
G ⊂ Shan.et

G ⊂ Shan
G ⊂ PShG

if G are holomorphic closed subsets or closed subschemes of open subsets of Cn, or
complex manifolds:

Shan.sm
G ⊂ Shan.et

G ⊂ Shan
G ⊂ PShG

I will refer to all such G as “analytic” examples.

23.A. EASY EXERCISE. Prove this. (Basically, the requirements for a presheaf to form a
sheaf in one topology are a subset of the requirements in a finer topology.)

23.2. Sheaves in these topologies (in this analytic setting) are the same.

We will see why these categories have the same sheaves. (In particular, our spaces are
sheaves in all of these topologies.)

(I may have discussed the case of moduli of curves here, but probably didn’t.)
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As a warm-up:

23.3. Theorem. — Sheaves in the analytic topology are same as in sheaves in analytic-étale
topology.

Reason: any cover in analytic-étale can be “refined” to cover in analytic, and vice versa.

The following Lemma is a general “warm-up” tool that will be the start of proving the
“warm-up” Theorem above.

23.4. Lemma. — Suppose F ∈ PShG. (Here G is any of category, not just these special geometric
analytic ones.) Given

∐
Vj

!!

+

identity $$!
!!

!!
!!

!

∐
Ui

%%""
""
""
""

X

Then the identity axiom for the cover V implies the identity axiom for the cover U.

In that diagram, we are requiring nothing about the map from the V ’s to the U’s — the
Vj’s aren’t required to cover the Ui’s in any sense.

Proof.
∏

F(Vj) &&
∏

F(Ui)
''

##
##
##
##
#

F(X)
#$

(($$$$$$$$$

!

23.5. Quick break to introduce sloppy but convenient notation. I’m just going to write {U}

for
∐

Ui. In class I wrote U (and stated that although our G might not have arbitrary dis-
joint unions — e.g. an uncountable disjoint union of manifolds isn’t a manifold, because
it doesn’t have the second countable property — it should be clear what I mean). But
perhaps {U} is a good compromise.

23.6. I then explained how, if {U} → X is an analytic étale cover, you could complete the
above diagram with an analytic cover {V}→ X.

Similarly, if {U}→ X is an analytic smooth cover, you could complete the above diagram
with an analytic cover {V}→ X, becuase {U} “locally” looksl ike the base × a ball in Rn (or
Cn), so (using Spencer’s trick) you just take that bit of the base times 0 ∈ Rn.
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23.7. Corollary. — The notion of “separated presheaves” is the same in the analytic, analytic-
étale, and analytic-smooth topologies.

This is going to set up something super fundamental...

24. THE VERY COOL THEOREM 24.3 (WHICH NEEDS A BETTER NAME)

To set up the rest of our argument, I posed a type of question which we can ask in
various circumstances.

24.1. Important Rhetorical Question. Given π : {U} → X in G, and F ∈ PShG, does F

satisfy the two sheaf conditions for {U}? In other words:

(†) (identity) Is F(X) → F({U}) injective? (More precisely, the morphism is F(X) →∏
i F(Ui), but I am trying to practice this new notation).

(‡) (gluability) Given s ∈ F({U}), such that π∗
1s = π∗

2s ∈ F({U} ×X {U}), can we write
s = π∗t for some t ∈ F(U)?

As usual, if the identity statement (†) is satisfied, the t in the gluability statement (‡) is
unique.

24.A. EXERCISE. Explain what I mean in the gluability statement (‡). For example,
F({U} ×X {U}) really means

∏
i,j F(Ui ×X Uj), where i and j are running over the index set

of {U}. And certainly we are not excluding i = j.

So for example, if the answer to Question 24.1 is “yes” for all covers {U} → X in your
topology, then F is a sheaf in your topology.

24.2. Theorem. — In the situation of Question 24.1, if π has a section σ, then the answer is
always yes.

24.B. EXERCISE (FOR THOSE FEELING LIKE IT). Do the same if F is a fibered category (in
which case F will satisfy the three gluing conditions for a stack).

Proof. Let σ : X→ {U} be the section. (Important: Do you see what X→ {U} means?)

{U}

π
""

X

σ

##
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Then the commutativity of

F({U})
σ∗

))%
%%

%%
%%

%%

F(X)

π∗
**&&&&&&&&&

id
!! F(X)

shows that π∗ must be injective.

Now for gluability (‡). Given s ∈ F({U}), with π∗
1s = π∗

2s, how do we find t such that
s = π∗t? There is only one obvious choice: we guess t = π∗s. These satisfy π∗

1s = π∗
2s =

π∗
12t, where π12 : {U}×X {U}→ X is the projection.

The following diagram is useful.

{U}×X {U}
π1

!!

π2
""

{U}

π
""

σ1&&

U
π !!

σ2

++

X

Here σ1 and σ2 are the sections of π1 and π2 respectively, pulled back from σ (let me know
if it isn’t clear what I mean). In particular, σ2 = (σ ◦ π, id), and σ1 = (id,σ ◦ π).

To show that this t = σ∗s works, we are required to show that s = π∗σ∗s.

Spencer then pointed out that σ ◦ π = π1 ◦ σ2, basically by the definition of σ2. Thus
π∗σ∗s = σ∗

2π
∗
1s. But from our hypothesis π∗

1s = π
∗
2s, we have that

π∗σ∗s = σ∗
2π

∗
1s = σ

∗
2π

∗
2s = (id{U})

∗s = s

as desired. Thanks Spencer! !

24.3. Very Cool Theorem. — Suppose F ∈ PShG is a sheaf in a topology T on G, and {V}→ X

is a cover in T (which I indicate by decorating the arrow with a “T”). Then given any commuting
diagram

{V}

T ,,'
''

''
''

'
!! {U}

--((
((
((
((

X

F satisfies the sheaf axioms for U→ X.

24.C. EXERICSE. Prove this helpful and essential equivalent formulation of the extremely
useful theorem: the hypotheses are the same as saying that {U} has a section T -locally.
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Proof. By the easy Lemma 23.4 before, we see that the identity axiom is satisfied (which
would also come out in the wash in this argument anyway). I will outline how gluability
should work.

The idea: If {U} → X had a section, we would win. It might not — but it does T -locally
(the neighborhood {V}→ U will work), and that will be all we need, because we can glue
sections of F along T -covers.

In more detail: consider the following diagram, where F satisfies the sheaf axioms for
the three arrows marked “T” or “∃section”.

{V}×X {U}
T !!

∃section
""

{U}

π

""

{V}
T

!!

## ..###########
X

Given s ∈ F(U) “with gluing data”, we get s ′ ∈ F({V}×X {U}) “with gluing data over {V}
and {U}”, so we get a section s ′′ ∈ F({V}), “with gluing data over X”, so we get a section
s ′′′ ∈ F(X).

I claim that π∗s ′′′ = s in F({U}) (completing the argument). How do I know that? Infor-
mally: we have two sections of F on {U} that agree T -locally. More precisely: when I pull
both back to {V} ×X {U}, I get the same things, with the same gluing data for {U}; and I
have the identity axiom for these. !

24.D. EXERCISE. Fill in the details. (It should actually be quite reasonable! Let me know
if it isn’t.)

25. REVISITING THE VERY COOL THEOREM 24.3

25.1. Step 1.

Suppose you are in your category G (which I am assuming is a very familiar one to
you), and you have a nice open cover of X by {Ui}. For convenience of this motivating
exposition, let’s assume the index set is ordered.

Now suppose you have a vector bundle on F on X, and you have two sections t1 and t2
of it on F. Then to see if they are the same, you need to check only that they are the same
after pulling back to the Ui. To understand “sameness” of sections, you just need to check
on a cover.
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Next, suppose you want to build a section t, and you have sections si on the Ui. What
do you need to be able to build t? Well, you need the si’s to agree on the pairwise overlaps,
Ui ∩ Uj. If that holds, then you can glue them together. And by the previous paragraph,
when you glue them together, they can be glued together in only one way. Summary: to
build a section, you need data on the cover, along with a condition on the overlaps (or,
if you want, the data of “equalities” on the pairwise overlaps). All we’ve done is restate
the sheaf conditions. Indeed, this works just fine F is any sheaf – the only reason I said
“vector bundle” is for psychological comfort.

Now, suppose you want to build a vector bundle (or, of course, a sheaf) on X, and you
have sheaves Fi on the Ui. What data do you need? As you know, you need the further
data of isomorphisms φij : Fi → Fj on the pairwise overlaps (you’ll realize I’m being
sloppy in notation). And you’ll need further data of equality on the triple overlaps. Then
you can build F. And furthermore, the F you build is unique up to unique isomorphism.
Why? Becuase if you build two different sheaves, F and F ′, then they come with iso-
morphisms on the Ui that agree on the pairwise overlaps. Translation: it is the previous
paragraph, applied to build a section of the sheaf Isom(F,F ′) on X. (Think about this!)

25.2. Step 2.

Now all of the above could describe the double covers as Uij = Ui ×X Uj, and the triple
covers as Uijk = Ui ×X Uj ×X Uk. And the first time you learn about such things, you
imagine that i < j < k. But when you are older you realize that you needn’t require
i < j < k; you could just take i, j, k distinct, and then you don’t have to worry about an
ordering on the index set (or even if there has to be one). Then when you are older still,
you realize that you needn’t even have i, j, and k distinct!

With this maturity, we now see that in our classical situations, we can build things on
X using things on a cover U → X, sometimes with a little more information. To check if
two sections of F on X are the same, we just check on the cover. To have a section on X,
we have our section on U, but we need further data on the pairwise intersection U ×X U.
To have a sheaf on X, we have a sheaf on U, but we need further data on the pairwise
intersection U×X U, and also on the triple intersection U×X U×X U.

You can imagine that to have a stack on X, you need a stack on {U}, along with further
data all the way up to quadruple intersections.

25.3. Step 3.

But sometimes given π : {U} → X, we can build things even when it isn’t a cover in
your classical setting. In fact, if there is a section σ : X→ {U}, then all of the above works.
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Remember why this isn’t hard: we build up to it one step at a time.

Sections of a sheaf are determined by their pullback to {U} via the fact that the compo-
sition F(X) → F({U}) → F(X) is the identity. (Fancy way of saying it: we “pull back” the
equality from {U} to X by σ.) That’s our identity axiom.

If you have s ∈ F({U}) satisfying the double-cover (cocycle) condition, how do you
know it comes from some t ∈ F(X), and uniquely? First we construct t; then we show
it works (the pullback is inded s); then we show it is unique (there is no other t). Con-
struction is easy: just pull back the section s by t. Showing that it works is easy: the
doublecover condition ensures that when you pull back t you get s. (This is Spencer’s
trick.) How do you know there is no other t? That’s just the previous paragraph!

Next, if you have a sheaf G on {U} satisfying the triple-cover (cocycle) condition, how
do you know it comes from some F on X, and uniquely (i.e. it is unique up to unique
isomorhpism, which is what “unique” means in this sense)? First, we construct F; then
we show it works (the pullback is indeed G); then we show it is unique up to unique
isomorphism (there is no other F ′). Construction is easy: just pull back G by σ. Showing
that it works is easy: the triple cover condition ensures that when you pull back F, you
get G, along with all the additional data. If you have another F ′ with the same pullbacks
G, how do you get a unique isomorphism F

∼−→ F ′? You apply the previous paragraph to
Isom(F,F ′), using the same cover!

(If you want, you can do the same thing with a stack on {U}; but I don’t think we need
it.)

26. SIEVES EXPLAIN THE VERY COOL THEOREM 24.3 IN A VERY NICE WAY

Thanks to Daniel Kim for explaining sieves to us, really well. I feel that they are very
well motivated at this point.

The sheaf condition for a presheaf F and a cover U→ X can be rewritten as:

F → lim

(
F(U)

φ
!!

ψ
!! F(U×X U)

)

is an isomorphism.

Let’s rewrite this in terms of maps maps in Psh.

The left side is simply HomPSh(hX,F), by Yoneda’s Lemma.
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For the right side:

lim
(
F(U) !!!! F(U×X U)

)
= lim

(
HomPSh(hU,F)

!!!! HomPSh(hU ×hX
hU,F)

)

= HomPSh

(
colim

(
hU hU ×hX

hU&&&&
)
,F
)

Thus we have rephrased the sheaf condition for a presheaf F and a cover U→ X as:

HomPSh(hX,F)→ HomPSh

(
colim

(
hU hU ×hX

hU&&&&
)
,F
)

is an isomorphism.

This map is induced by the map in Psh:

colim
(
hU hU ×hX

hU&&&&
)
→ hX

This begs the question: what is this creature colim
(
hU hU ×hX

hU&&&&
)

?

(For convenience of notation, define SU→X ∈ PSh to be colim
(
hU hU ×hX

hU&&&&
)

.
We will call this a sieve for U→ X, see Definition 26.4.)

Let’s find out, by evaluating SU→X on T ∈ G. SU→X evaluated on T is precisely the data
of a map T → U such that the two maps T → X induced by the two maps U → X are the
same map T → X. Translation:

26.1. Proposition. — SU→X are precisely the maps T → X that factor through T → U. In
particular, SU→X → hX is a subfunctor.

This perhaps motivates why SU→X is called a sieve: SU→X is a subfunctor of hX; of all the
maps to X (i.e., hX), we consider just the maps through U (we are “blocking” some of the
maps).

We have proved:

26.2. Proposition. — F ∈ Psh satisfies the sheaf conditino for U → X if and only if
HomPSh(hX,F)→ Hom(SU→X,F) is a bijection.

Equipped with this, we very easiy prove the things in the Very Cool Theorem 24.3.

Recall that the first part was this: If U→ X has a section, then every presheaf F automat-
ically satisfies the sheaf condition. This is because SU→X(T) = hX(T).

For the second part, given V → U → X, where F is a sheaf in topology T , and V is a
cover in topology T , then T satisfies the sheaf condition for U → X. The reason for this is
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that we have:

SV→X ⊂ SU→X ⊂ hX

We then have:

S++
V→X ⊂ S++

U→X ⊂ h++
X

26.3. Claim. — S++
V→X ⊂ h++

X is an equality

Proof. Both are sheaves. So to check this, we can check this by applying Hom to an
arbitrary sheaf G (basically, Yoneda’s Lemma). But then

Hom(S++
V→X,G) = Hom(SV→X,G) (univ. prop. of sheafification)

= Hom(hX,G) (G satisfies sheaf property for V → X)

= Hom(h++
X ,G) (univ. prop. of sheafification)

Thus

S++
V→X = S++

U→X = h++
X

from which

Hom(SU→X,F) = Hom(S++
U→X,F) = Hom(h++

X ,F) = Hom(hX,F)

as desired.

We can put these pieces together to introduce some terminology useful in other con-
texts.

26.4. Definitions. — A sieve over X is a subpresheaf of hX. Example: SU→X for any
U→ X; we call this a sieve for U→ X (as promised earlier. Given a topology T , a sieve is
called a covering sieve if it contains some cover.

We have thus proved the following.

26.5. Theorem. — F is a sheaf iff Hom(S,F) ← Hom(hX,F) s bijective for every covering
sieve.

26.6. Remark. Given a topology, the covers give covering sieves, which in turn determine
the sheaves. So what really matters for the notion of a sheaf is the notion of the covering
sieves, not the notion of the covers. For example, we have proved that the smooth and
etale topologies have the same covering sieves.
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27. APPLYING THE VERY COOL THEOREM 24.3 TO OUR ANALYTIC SETTING

As a corollary, we have a bunch of equalities in our analytic settings

Shan.sm
G ⊂ Shan.et

G ⊂ Shan
G ⊂ PShG

27.1. Corollary. — We have, in the analytic setting:

Shan.sm
G = Shan.et

G = Shan
G ⊂ PShG.

Similarly, in the algbraic setting:

Shan.sm
G = Shan.et

G =⊂ PShG.

Proof. We’ve seen how to get from an analytic-smooth cover (to an analytic-etale cover) to
an analytic cover. We’ve seen how to get from a smooth cover to an étale cover. !

27.2. Locally representables are the same in these topologies (analytic case).

But what about the locally representables? We quickly see in each case:

G ⊂ LRepShan

G
⊂ LRepShan.et

G
⊂ LRepShan.sm

G
⊂ ShG

(Translation: any analytic cover is itself already an analytic-étale cover. Any analytic-étale
cover is automatically an analytic-smooth cover.)

Each of these incusions are full subcategories.

Now I claim that each of these three “LRepSh’s” are the same as well in each instance.

27.3. Theorem. —

G ⊂ LRepShan

G
= LRepShan.et

G
= LRepShan.sm

G
⊂ ShG

To do this, I need to show you that in any of these settings, if you have an objects of
LRepShan.sm it is an object of LRepShan. (You don’t have to worry about morphisms.)
So suppose you have M ∈ LRepShan.sm, along with a bunch of representable morphisms
Ui → M from elements of G, which are smooth (i.e., submersions), that cover M. We
just need a bunch of other representable morphisms U ′

i → M that are open embeddings,
where U ′

i ∈ G.
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The next two statements have proofs of two quite different flavors, and this will lead to
some interesting things when we try to make them algebraic.

The main thing to note: these are the same constructions we used to show that categories
of sheaves are the same.

27.4. Proposition. — LRepShan.et

G
= LRepShan.sm

G

Proof. We have made this construction earlier! It suffices to prove the following. If M ∈
ShG, and U ∈ G and U→M is a smooth (submersive) representable morphism of relative
dimension n > 0, then I’ll give you a bunch of maps Vi → U, all in G, where Vi →
U are collectively surjective onto U, and Vi → M (a priori representable, as this is the
composition of two representables) is a submersion of relative dimension n− 1.

(Explain: in this way, we can start with a “smooth” cover, and do this repeatedly to get
a “smooth cover of relative dimension 0”, i.e. an étale cover.)

How might we do this? Slice? Given any point in p ∈ U, I’m going to take a small slice.
(Discuss.) !

27.5. Proposition. — LRepShan

G
= LRepShan.et

G

Proof. We have made this construction earlier! It suffices to prove the following. If M ∈
ShG, and U ∈ G and U→M is an étale representable morphism, and p ∈ U, then I’ll give
an open neighborhood V of p in U so that V →M is even “classical-open”.

Here is how. Let R = U ×M U. Then R ⊂ U × U. R → U is étale. We have a small
neighborhood of (p, p) ∈ R that is isomorphic to a small neighborhood of p in U. Then
because U × U has the product topology (!!!!!), are two small neighborhoods V ′, V ′′ ⊂ U

of p, where (V ′ × V ′′) ∩ R is a small neighborhood of U (on the diagonal, picture needed).
Then take V = V ′ ∩ V ′′. Then show that this works. !

In just the same way, we have:

27.6. Theorem. — In the algebraic setting: LRepShet

G
= LRepShsm

G
.

27.A. EXERCISE. Think this through. (We’ve basically done this in class — it is the same
argument as in the analytic setting!)

27.7. Taking stock.
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Let’s quickly see what this has bought us in the analytic setting. Here G might be over
R, in which the objects might be manifolds, or else open subsets of Rn, and the morphisms
might be continuous, differentiable, smooth, or real-analytic maps. Or over C, the objects
might be open subsets of Cn, or complex manifolds, or things cut out in open subsets
of Cn by holomorphic equations (either set-theoretically or “scheme-theoretically”), or
complex varieties, or complex schemes. In this setting we have

G ⊂ manifolds ⊂ LRepSh
G
⊂ ShG ⊂ PShG

Here with both LRepSh
G

and ShG I didn’t say which topology to take, as we’ve es-
tablished that each of our three topologies of choice (an, an.et, an.sm) all give the same
LRepSh’s and sheaves. I think of LRepSh

G
as “manifolds” (with scare quotes), because I

haven’t hadded in the “second countable” and “Hausdorff” conditions. Those two con-
ditions are about the size of the cover/atlas needed (second countable means countable
cover by real balls), and a property of the diagonal (Hausdorff means the diagonal is a
closed embedding); and we have good reasons for wanting these (as Eric pointed out).
We’ll see analagous hypotheses in the algebraic setting.

(In the complex analytic space setting, I shouldn’t say “manifold” in the above para-
graph; I should say “complex analytic space”, since our objects aren’t “smooth”.)

So what have we gained? In some sense, almost nothing — we haven’t discovered
any new kind of space. Perhaps we have noticed that we can check things on “smooth”
covers (we can work in the “topology of submersions”). That’s not too exciting, and is
just a rewording/reworking of things that geometers know well. But at least we are used
to thinking in terms of these exotic topologies that will serve us well soon, when we leave
“sheaves” and go to more general “stacks”. Plus they are helping us think cleanly in the
algebraic setting.

28. TAKING OUR ANALYTIC SUCCESS INTO THE ALGEBRAIC SETTING AS MUCH AS WE

CAN

The argument getting from an analytic-étale cover to an analytic cover didn’t work in
the algebraic setting — we have not shown that every sheaf in the Zariski topology is also
a sheaf in the étale topology. Similarly, we don’t konw that every locally representable
sheaf in the Zariski topology isn’t yet known to be locally representable in the étale topol-
ogy. Thus our current understanding is:
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G ! " !! LRepShZar

G

! " !! ShZar
G

! " !! PShG

LRepShet=sm

G

! " !! Shet=sm
G

%
&

**&&&&&&&&&'!

//

We don’t even see (yet!) whether G sits inside anything in the bottom row!

28.1. Side Question. What is an easy example of something that is a sheaf in the Zariski
topology that is not a sheaf in the étale topology? There should be some super-easy ex-
ample. I think we’ll see an example later, and if I remember, I will refer to it in the notes.

28.2. So what now? Remember that at the very start of thinking about topologies, we
wanted our geometric spaces G to be sheaf in our topologies — basically, for any object
X in G, we wanted “maps to X to glue”. (Ben pointed out that in this case we say the
topology is subcanonical, but we won’t use this phrase.) We knew this in the analytic case
because sheaves in the an.sm topology are the same as in the analytic topology, so it seems
a little much to hope for.

But there is a huge miracle: our objects in our algebraic setting will be sheaves not just
in the smooth topology, but even more! This is known as the Miracle of Descent, and
one of the great holidays in the algebraic geometry calendar commemorates the day that
Grothendieck received his vision of this miracle, and shared it with humankind.

There is a variant of this you may have seen before if you’ve done some number theory.
If you want to prove something over a field k, you might prove it over its algebraic closure
k, and show that this property “descends” to k. This looks very similar to what we’re
doing, and Spec k → Spec k looks like it could be called a “cover”, but it isn’t in general
smooth (let alone étale or Zariski). But it will fit into what we are building.

29. USING OUR VERY COOL THEOREM ONCE MORE, TO GET THE SINGLE ALGEBRA FACT

BEHIND DESCENT

The key single algebra fact is the following, which I could prove quickly. But I want
to explain why it is really yet another example of the Very Cool Theorem 24.3. So I will
deliberately do this in slow motion.
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29.1. Theorem. — Suppose φ : A→ B is a faithfully flat morphism of rings. Then the sequence
of A-modules

(1) 0 !! A
φ

!! B
φ⊗1−1⊗φ

!! B⊗A B

is exact. More generally, for any A-module M, the exact sequence remains exact upon tensoring
with M:

(2) 0 !! M !! M⊗A B !! M⊗A B⊗A B

is exact.

I’ll make some quick remarks before getting into the proof.

First, Here B might be replaced with a coproduct of many B’s. This adds more annoying
notation, and I ignore it for now.

Second, clearly (1), and hence (2), is a complex, so the issue is exactness.

Third, it is helpful to draw the situation in terms of a cofiber diagram of rings, or a fiber
diagram of schemes.

B⊗A B B
b&→1⊗b
&&

B

b&→b⊗1

//

A

φ

//

φ
&&

i.e., geometrically

SpecB×SpecA SpecB
π2 !!

π1
""

SpecB

π

""

SpecB
π

!! SpecA

which looks very like our very cool theorem 24.3.

Also very importantly: if SpecB→ SpecA is a smooth (or étale or Zariski) cover then it
is faithfully flat — this is precisely the situation we want to be in! We could have required
that π is smooth, but we will see that precisely what we need is that it is faithfully flat,
which is what will tell us precisely what general topology we may want to consider. (This
may cause us to utter an expletive, fpqcK!)

We really see (1) as an equializer diagram:

A !! B !!!! B⊗A B

We can readily mix in the A-module M to the above discussion:
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M⊗A B⊗A B

)))
)))

)))
))

M⊗A B&&

**
**
**
**
**

B⊗A B B&&

B

//

A

φ

//

φ
&&

M⊗A B

//

+++++++++++++

M

//

&&

,,,,,,,,,,

and
M !! M⊗A B !!!! M⊗A B⊗A B

Furthermore, we expect that if there is a map ρ : B→ A, so that the composition

A
φ

!! B
ρ

!! A

is the identity, the result should be quite easy.

So as a warm-up, we use this trick to prove just the injectivity part of Theorem 29.1,
under the assumption that such a ρ exists. (Then we’ll do it without such a ρ; then we’ll
prove the full statement of Theorem 29.1 with such a ρ; then we’ll prove the full statement
without such a ρ.)

29.2. Warm-up. — Suppose φ : A→ B is a ring morphism, and ρ : B→ A is a ring morphism,
such that ρ ◦ φ = idA. Then for any A-module M, M→M⊗A B given by m⊗ 1 is injective.

Proof. This follows (as before) from:

M⊗A B
M⊗Aρ

00-
--

--
--

--

M

M⊗Aφ
''.........

id
!! M

!

29.3. Next warm-up. — Suppose φ : A → B is a faithfully flat ring morphism. Then for any
A-module M, M→M⊗A B given by m⊗ 1 is injective.

Proof. We wish to prove that 0 → M → M ⊗A B is exact. By faithful flatness of A → B, it
suffices to prove that 0→M⊗A B→M⊗AB⊗A B is exact. But if we take M ′ = M⊗A B,
A ′ = B, B ′ ⊗A B, then we can rewrite this as:

0→M ′ →M ′ ⊗A ′B
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and this time, we have φ ′ → A ′ → B ′′ (given by B → B ⊗ AB with b *→ 1 ⊗ b) has
ρ ′ : B ⊗A B → B given by b ⊗ b ′ *→ bb ′ which is a one-side inverse to φ ′, so by Warm-
up 29.2 this is true. !

We are ready for the full case, in the case where there is “section” ρ ′ (I guess a “cosec-
tion”?).

29.4. Warm-up. — Suppose φ : A→ B is a ring morphism, and ρ : B→ A is a ring morphism,
such that ρ ◦ φ = idA. Then for any A-module M, (2) is exact.

Proof. We have proved the injectivity part in Warm-up 29.2. And we’ve observed it is a
complex. So we have the following question. Given s ∈ M⊗A B such that π∗

1s = π
∗
2s, is it

true that s = phi(t)? We guess as usual that t = ρ(s) will do the trick. We wish to show
that s = φ(ρ(s)). But φ(ρ(s)) = ρ ′

1(π
∗
2(s)) by the definition of ρ ′

1 (Spencer’s trick — I want
to write more here). Then ρ ′

1π
∗
2(s) = ρ

′
1π

∗
1(s) = (id∗)s = s as desired. !

29.5. Finishing the proof of Theorem 29.1.

You may want to try this yourself, given the steps above! Basically the argument is:

Proof of Thm. 29.1 !!

""

29.4

""

29.3 !! 29.2

!

29.6. For experts: a random fact from Danny Krashen. Danny Krashen says: “In stan-
dard descent, if one of the morphisms from an fpqc cover is a completion R → R̂, then
part of the descent data will involves an isomorphism of structures over R̂⊗R R̂, which is
a difficult ring to work with (for example, often non Noetherian). The result of Beauville-
Laszlo says in effect, you get an equivalence or categories even when ignoring these self
intersections.” My guess is the corresponding algebra result will not be too hard, so good
value for money.
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30. TOPOLOGIES IN THE ALGEBRAIC SETTING: ZARISKI, ÉTALE, SMOOTH, FP+LPF,
FP+QC, FPQCK

Here G will be any reasonable algebraic setting. For us now, it can be Aff or Sch. Later,
it can reasonably the the category of schemes with affine diagonal, or algebraic spaces,
or anything else — rather than memorizing what works, you should just see how little is
needed to make it work, and realize how widely it applies.

Here are some toplogies we’ve seen. We would like our objects to be sheaves in each of
these topologies. The boldfaced ones are ones you should remember. The italicized ones
are ones that sound impressive, and you might want to know about them.

30.1. Zariski topology. Covers of X are collections of maps {U} → X that are “jointly
surjective” (every point of X is in the image of some Ui → X), and where Ui → X is
Zariski-open.

30.2. Etale topology. Covers of X are collections of maps {U} → X that are “jointly
surjective” (every point of X is in the image of some Ui → X), and where Ui → X is étale.

30.3. Smooth topology. Covers of X are collections of maps {U} → X that are “jointly
surjective” (every point of X is in the image of some Ui → X), and where Ui → X is
smooth.

We’ve seen the above before. Notice that in each case, they are jointly surjective — but
there is even more! They are all “faithfully flat” (flat and jointly surjective), and this will
be (as you’ll see) the key thing. Speck → Spec k is also faithfully flat. In the original
french, faithfully flat is “fidèlement plant”, abbreviated “fp”, so when you see “fp”, that’s
what it means. (Hence I prefer to abbreviate finitelypresented as fpr, or to use the french
“pf”, presentation fini. Apologies for french spelling and accents pronunciation)

30.4. (ignore this for now) Faithfully flat and locally finitely presented. Covers of X are collec-
tions of maps {U} → X that are faithfully flat and locally finitely presented. If you prefer
(so it looks like the earlier definitions): Covers of X are collections of maps {U} → X that
are “jointly surjective” (every point of X is in the image of some Ui → X), and where
Ui → X is flat and locally finitely presented. A reasonable abbreviation is “fp+lpf”. Un-
fortunately people call it “fppf”, which makes you think that the “locally” isn’t in the
definition. (Spencer gave a possible reason why, which I won’t repeat here.) Good news
about it: it generalizes (is “finer than”) the Zariski, étale, and smooth topologies. Bad
news: Spec k → Speck isn’t such a cover. Also bad news: it hides what makes gluing
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work. So we’ll mostly ignore it, but now you know what Ben means when he says a
morphism is fppf (although I’m personally not sure if he means fp+pf or fp+lpf).

30.5. (ignore this for now) Faithfully flat and quasicompact. Covers of X are collections of
maps {U} → X that are faithfully flat and quasicompact. If you prefer (so it looks like
the earlier definitions): Covers of X are collections of maps {U} → X that are “jointly
surjective” (every point of X is in the image of some Ui → X), and where Ui → X is flat
and quasicompact, and there are finitely many Ui. A reasonable name for this is “fpqc”
for “fp+qc”. Unfortunately, I think people call the fpqcK topology (intorduced shortly)
fpqc sometimes too — for example, the Stacks Project does; I just get confused. Good
news: it includes Spec k→ Spec k. Bad news: in the Zariski, étale, and smooth topologies,
we didn’t have any quasicompactness assumptions. We could patch this but we don’t
need to.

FIGURE 1. An fpqcK cover

30.6. One topology to rule them all (Figure 1). We now come to a topology that is great
because it is finer than the ones we care about, and easy to work with (we’ll see that our
arguments are short and sweet). The only downside is the definition seems unmotivated.
But it is very well motivated to you now, when you see how well the arguments work and
how it easily generalizes the ones we care about. This is a variant of fp+qc due, I think,
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to Steve Kleiman. So I will call it the fpqc(K) or fpqcK topology, which I will pronounce
“fp-quack” topology, just because it pleases me. No one else will call this topology this.

(People often talk about the “flat” topology. I’ve neer bothreed checking what this
means. Probably that refers to this, but I don’t know if this is completely standard. Maybe
one of you will tell me!)

30.7. The fp-quack topology. Covers of X are collections of flat maps π : {U} → X

such that for any affine open subset SpecA ⊂ X, there is a quasicompact open subset
{Vi} ↪→ {Ui}→ X that is surjective (and of course, flat) onto SpecA.

30.A. EXERCISE. Check that this indeed gives a topology on the category of schemes, and
(hence) on the category of affine schemes.

Let’s unpack this definition a bit. Every fpqcK cover is certainly flat, surjective (hence
faithfully flat).

30.8. Easy fact. Every cover in the smooth topology is also an fpqcK cover.

This will use an easy fact: if π : Y → X is a smooth morphism, and U ⊂ Y is an open
subset, then π(U) is an open subset of X. Translation: smooth morphism are “open maps”
(in the topological sense). This is clear in the analytic setting (with a little bit of experience
with manifolds, I guess). In the algebraic setting, a more general fact is true.

30.9. Fact. — If π : Y → X is flat and locally finitely presented, and U ⊂ Y is an open subset,
then π(U) is an open subset of X.

That’s an algebra fact. I should give a reference. (Beginning of proof: reduce to the case
where Y and X are both affine, so then π is finitely presented. Then (main hard fact used,
I guess) show that it is pulled back from the Noetherian situation. Then prove it here.)

So we may as well prove a better result.

30.10. Theorem. — Every fp+lpf cover is fpqcK.

Proof. Suppose {Ui}→ X is fp+lpf. We need to check this over an arbitrary open SpecA ⊂
X, so we restrict there. We have thus reduced to the case {Vj}→ SpecA. It suffices to deal
with the case V :=

∐
Vj → SpecA. We build our desired quasicompact open subset as

follows. For each p ∈ SpecA, we do the following. The point p is in the image of V , so
pick a preimage q of p, and take an affine neighborhood Vp of q, in V . The image of Vp,
call it Up, is open in SpecA (using our fact), so SpecA = ∪Up. But SpecA is quasicompact,
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so we can find a finite set S of p so that SpecA = ∪p∈SUp. Then our quasicompact open in
V is ∪p∈SVp. !

Also, clearly fp+qc covers are fpqcK.

“fp+pf”, which makes you think that the “locally” isn’t in the definition. (Spencer gave
a possible reason why, which I won’t repeat here.) Good news about it: it generalizes (is
“finer than”) the Zariski, étale, and smooth topologies. Bad news: Spec k → Spec k isn’t
such a cover. Also bad news: it hides what makes gluing work. So we’ll mostly ignore
it, but now you know what Ben means when he says a morphism is fppf (although I’m
personally not sure if he means fp+pf or fp+lpf).

How I remember things: all are faithfully flat (i.e. flat and surjective). We need another
finiteness property. Locally finitely presented, or qc opens are images of qc opens.

30.11. Interesting example of a fpqcK cover. Spec Â → SpecA when A ↪→ Â maps Noether-
ian local ring to its completion, or a field to its algebraic or separable closure. Then Â×AÂ

is not Noetherian. When doing descent, we need to make sure algebraic geometry works
over not-necessarily (locally) Noetherian schemes.

(Example I might add later: Also, if Y is Noetherian, and G finite, Y/G need not be. But
we need Y to not be finite type over a field for this work.)

30.12. How we will use the fpqcK topology.

The reason the fpqcK topology will be the right definition is actually quite simple.

30.B. EASY EXERCISE. Suppose X is affine, and {U} → X is an fpqcK cover. Explain how
to find a finite number of affine schemes {V} such that we have a commutative diagram

{V}

,,'
''

''
''

'

! "
Zar open

!! {U}

fpqcK--((
((
((
((

X

where {V}→ X is surjective and flat (i.e., faithfully flat).

Even better: if V := {V}, we have a map of affine schemes V → X that is faithfully flat.
We have basically (or close enough) “refined” the fpqK cover over each affine so that it is
actually just a single (faithfully flat) map of one ring to another!
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31. LOTS OF THINGS GLUE (“DESCEND”) IN THE FPQCK TOPOLOGY

Lots of things glue in the fpqcK topology. Of course anything gluing under fpqcK cov-
ers automatically glues for any smooth covers (because smooth covers are fpqcK), which
is what we want.

There is a really big list of things which will glue in the fpqcK topology, but I’d like to
do things that are easy that we’ll use.

So we did the following.

31.1. Proposition. — Sections of quasicoherent sheaves glue in the fpqcK topology. Translation:
if π : {U}→ X is fpqcK, and F is a quasicoherent sheaf on X, and s ∈ F({U} “agrees with itself on
the double overlaps”, then s = π∗t for a unique t ∈ F(X).

31.A. EXERCISE. State this proposition more precisely

Proof. Here is the outline of how to break it up into steps, each individually easy.

Step 1: do it in the case when X is affine, and {U} is a single affine. That is just Amritsur’s
Lemma 29.1.

Step 2: do it when X is affine, and {U} is a finite number of affines.

Step 3. do it when X is affine.

Step 4. Do it in general. !

31.2. Corollary. — Functions (i.e., sections of OX) glue in the fpqcK topology.

Reason: OX is a quasicoherent sheaf.

31.3. Corollary. — Maps to A1 glue in the fpqcK topology.

Reason: these are the same as functions.

More generally:

31.4. Corollary. — For any ring R, maps to SpecR glue in the fpqcK topology.
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Reason: maps X → SpecR are in precise bijection wit maps R → Γ(X,OX), i.e., maps
from R to the ring of functions. In other words, this corresponds to a choice of a bunch of
functions (one for each element of R), subject to a bunch of conditions.

31.5. Theorem. — For any scheme Z, maps to Z glue in the fpqcK topology.

Sketch of the proof I gave: we are given an fpqcK cover {U} → X, and maps {U} → Z

agreeing on the pairwise overlaps. We want to see that this comes from a unique map
X→ Z.

Now choose an affine (Zariski-)open cover of Z, say {Zi}. Let {Ui} = Zi ×Z {U}.

Show how to get Xi which is “supposed to” map to Zi; then use fpqcK gluing to get the
map Xi → Zi; then explain why these glue together to give a map X→ Z (basically this is
gluing in the Zariski topology). !

31.6. More gluing.

31.B. EXERCISE. Show that maps of quasicoherent sheaves glue in the fpqcK topology.
Hint: Proposition 31.1 applied again.

31.7. Theorem. — Quasicoherent sheaves glue in the fpqcK topology.

Translation: if π : {U} → X is a fpqcK cover, and F is a quasicoherent sheaf on {U}, and
we have gluing information (i.e., isomorphisms φ12 : π∗

1F
∼−→ π∗

2F on {U} ×X {U}, that
agrees on the “triple overlaps”, then there is a quasicoherent sheaf G on X, along with
an isomorphism π∗G

∼→ F on {U}, inducing the isomorphism(s) φ12. Furthermore, G is
unique up to unique isomorphism.

31.C. EXERCISE. Prove this. (Hint: it is just Amritsur’s Lemma gussied up. The “further-
more” is basically Exercise 31.B.)

31.D. EXERCISE. Fill in the blanks to give the complete precise statement that “affine mor-
phisms glue in the fpqcK topology”: Suppose π : {U}→ X is an fpqcK cover, and {Y}→ {U}

is an affine morphism. Suppose you have further an isomorphism ψ12 : π∗
1{Y}

∼−→ π∗
2{Y}

on [blank] where [blank]. Show that there is an affine morphism Z → X along with an
isomorphism ψ : π∗Z

∼−→ {Y} over {U} such that [blank].

31.E. EXERCISE. Prove that affine morphisms glue in the fpqcK topology.
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31.F. EXERCISE. Show that closed embeddings glue in the fpqcK topology.

31.G. EXERCISE. Projective morphisms with the right definition (those proper π : Y → X

with a line bundle L on Y, with the natural isomorphism Y ∼= Proj ⊕n π∗(L⊗n)) glue in
the fpqcK topology.

31.H. EXERCISE. The condition of a morphism of schemes being affine glues in the fpqcK
topology. Translation: suppose ρ : Y → Z is a morphism of X-schemes. To check if ρ is
affine, it suffices to check on an fpqcK cover of X.

31.I. EXERCISE. The condition of a morphism being an open embedding glues in the
fpqcK topology.

31.8. Theorem. — Quasiaffine morphisms glue in the fpqcK topology.

(Remider: a quasiaffine morphism is a morphism π : Y → X that is quasicompact,
and admits an open embedding into Z → X that is affine over X. Equivalently (not im-
mediate, but not hard) a morphism π : Y → X is quasiaffine if it is quasicompact and
quasiseparated, and π : Y → Spec π∗OY is an open embedding. This latter is the one you
need.)

I want to make this an exercise. It isn’t an exercise yet, because I’ve not yet shown that
qcqs morphisms glue in the fpqK topology.

Part 5. Algebraic spaces

32. DEFINING ALGEBRAIC SPACES

Thus we now finally have

G ⊂ ShfpqcK ⊂ Shsm = Shet ⊂ ShZar ⊂ PShG

where we can take G = Aff or G = Sch. We’re not going to use ShfpqcK any more.

To avoid saying which G I am using, let me write this as:

Aff ⊂ Sch ⊂ Shsm=et ⊂ ShZar.

Notice that the categories of sheaves are the same whether we are thinking about affine
schemes or schemes. (So I will deliberately be vague about this in the future.) You might

52



imagine that we want some sort of name for this notion; but I don’t want to distract you
with more names.

But I should now be careful about what I mean about “representable morphisms” as I
am being coy about what G is. (Probably I’ll pick G to be Sch for now, if I had to choose.)

Morphisms in ShZar can be “affine” (representable if we had taken G = Aff), or schematic
(representable if we had taken G = Sch).

To be concrete, and to use terminology in a conventional way, let me define a morphism
to be strongly representable iff it is schematic.

Now we have locally representables (where G = Sch). (Would you prefer locally
schematic?)

Things that are locally schematic in the Zariski topology are just schemes — we get
nothing new. But there a priori might be new things that are locally representable in the
étale topology! (And these will be just the same things that are locally representable in
the smooth topology.

32.1. Definition. The category of algebraic spaces, which we might call AlgSp is the sub-

category of Shet=sm that are locally representable by schemes in the étale (or equivalently,
smooth) topology. In other words, we have a (schematic) étale (or even smooth) cover of
any algebraic space M from schemes {U}→M. I may as well replace {U} by their disjoint
union: U → M is smooth (even etale), and schematic. (We actually don’t yet know what
“smooth” or “etale” means if it weren’t schematic of course...)

We can similarly define AlgSp
k

of algebraic spaces over a field k (or indeed over any
scheme or indeed algebraic space S).

32.2. Important question. You should be asking at this point: why should we care about
algebraic spaces? You might ask: is there some algebraic space that I want to tell you
about right now that is clearly not a scheme? (My answer: no!)

Let me explain why you should care, using a metaphor. We will be able to geometry
with algebraic spaces almost as easily as we can with schemes, so there is very little cost.
And there will be a number of things we can construct that will be cheaply algebraic
spaces, that are not obviously schemes. I’d like to argue that as long as we can work
happily with algebraic spaces, we shouldn’t care much if they are schemes.

For comparison: you can define compact complex algebraic variety. Basically any you
can think of will be projective. And projective varieties are psychologically easier to deal
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with. But if nature hands you a compact (proper) complex algebraic variety, you shouldn’t
lose too much sleep trying to prove that it is projective (although you may later have
reasons to).

I gave another example about real manifolds, and how humanity used to think of them
as sitting in Rn, but there is really very little advantage in sticking them in Rn, other than
psychological, so you should give that up.

We will see soon (Proposition 39.4) that algebraic spaces have all (finite) fibered prod-
ucts. [Actually, we this is now basically Exercise 20.B.]

33. PROPERTIES OF ALGEBRAIC SPACES, MORPHISMS THEREOF, AND QUASICOHERENT

SHEAVES THEREON

33.1. Properties of objects. Any characteristic of schemes that is étale-local in nature
clearly extends to algebraic spaces. (Question for you: why didn’t I say “smooth-local”?)
In this way, we can define dimension, smooth over k, normal.

33.A. EXERCISE. Explain how why reducedness makes sense in the same way. (Transla-
tion: explain why you can check reducedness étale-locally.)

The meaning of “locally” is different than for schemes, as locally means in our new
topology (the étale topology), not the Zariski topology. So now we can define locally of
finite type, locally of finite presentation, and locally Noetherian.

33.B. EXERCISE. Define quasicompact in your own way. Show that this is the same as
showing that it has an étale cover by finitely many affine schemes.

Then with this definition of quasicompact, we can define Noetherian, finite type, finite
presentation.

33.2. Properties of morphisms of algebraic spaces.

Any property of morphisms of schemes immediately extends to schematic morphisms
of algebraic spaces. But we can also extend definitions further, because we have extended
notions for objects.

33.C. EXERCISE. Define what it means for a morphism π : X→ Y of algebraic spaces to be
quasicompact, finite type, étale, smooth of relative dimension n. Show all reasonable
versions of these definitions are the same.
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33.3. Separatedness. It looks like there might be a subtlety here, but there won’t be. We
want the definition to be “the diagonal morphism is a closed embedding”, or possibly
something about the diagonal morphism being closed. Perhaps we’re unsure because we
haven’t required the diagonal to be representable. I’ll just take as a definition that the
diagonal morphism is a (representable) closed embedding. Because the diagonal turns
out to be representable (see Theorem 34.3) this will never come back to bite us.

33.4. Question with an embedded lesson. Are algebraic spaces the “locally representa-
bles” in (a) Shet

Aff, (b) Shet
Sch, (c) Shsm

Aff, or (d) Shsm
Sch? Answer: it doesn’t matter! These are

all the same (really, equivalent) categories. (This may make you want to have a new word
— topos. But we won’t need it.)

33.5. Extending our notion of algebraic spaces.

added May 14

We have now extended our notion of étale morphism — we have étale morphisms of
algebraic spaces that are not schematic. This suggests a possible way of getting a more
general notion than algebraic spaces: (i) a sheaf (in the category of schemes, with the étale
topology), which admits an “étale algebraic-spatial cover”. (ii) a sheaf in the category
of algebraic spaces, with the étale topology, which admits and “étale algebraic-spatial
cover”.

We get nothing new in either case, but I have to think through whether we need some-
thing hard for this.

(This discussion will be continued at §33.11.)

33.6. The analytification functor. In the case of algebraic spaces locally of finite type
over C, I explained the analytification functor to complex analytic schemes. This restricts
to sending reduced complex algebraic spaces to complex analytic varieties; and smooth
complex algebraic spaces to complex manifolds.

The idea was this: we have a functor from the category of local models of one to local
models of the other: given a scheme of the form SpecC[x1, . . . , xn]/I, we have closed
analytic subscheme of Cn cut out by the holomorphic equations in I. (At the level of
topological spaces, this is even a continuous map!) So this functor extends to functors of
locally representables. Perhaps I’ll type more in here.
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33.7. Points of algebraic spaces. Algebraic spaces have points just as schemes do. What
is a point of an algebraic space X? It is a map Spec k → X, except that we consider two
points p→ X and q→ X the same if p×X q is nonempty.

33.D. EXERCISE. Show that this gives you the usual definition of points on a scheme, in
the case where X is a scheme.

A geometric point of an algebraic space X has the same definition as uusal: it is a
morphism SpecK→ X where K is an algebraically closed field.

33.8. Quasicoherent sheaves on an algebraic space.

A quasicoherent sheaf on an algebraic space X is defined in any number of equivalent
ways. One easy one: it is an OX-module, such that when pulled back to any scheme Y, it
is a quasicoherent sheaf on Y.

Or it is the data of, for every SpecA → X, of an A-module MA that is “functorial”:
given SpecB→ SpecA→ X, we have an isomorphism MA⊗B B

∼−→MB such that for any
SpecC→ SpecB→ SpecA→ X, ...

33.E. EXERCISE. Finish that sentence. (Hint: it is better to make the statement more
precise, by giving those maps some names.)

Then the definition of pullback of quasicoherent sheaves, and pushforward under qua-
sicompact separated morphisms, applies without change.

We can make sense of Cech cohomology of a quasicoherent sheaf on an algebraic space
X in the case where X is quasicompact with affine diagonal, just as usual.

33.F. EXERCISE. Show that the cohomology is independent of the topology (Zariski,
smooth, étale) you take in the cover (assuming uch a cover exists).

33.G. EXERCISE. Define finite type quasicoherent sheaf, finitely presented quasicoher-
ent sheaf, and coherent sheaf. (Hint: same as for schemes.)

33.9. Derived functor cohomology. Derived functor cohomology works as before, once
you know you have enough injectives. A little caution is needed — the usual cheap way
of producing enough injectives involves using stalks at points, and we haven’t discussed
stalks of étale sheaves at points (for good reason).
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33.10. Vector bundles. It is not yet clear that the notion of when a coherent sheaf is locally
free is independent of topology. More explicitly: if F is a coherent sheaf on a scheme X,
and there is an étale cover π : Y → X for which π∗F is a free sheaf of rank n, is there a
Zariski cover ψ : Y ′ → X for which ψ∗F is free of rank n? The answer is “yes”, but this is
not obvious. This is often called Hilbert 90, because it is in some sense a generalization of
Hilbert’s original Hilbert 90 theorem.

33.11. In the definition of algebraic space, a smooth cover suffices.

Added May 14

(This is in some sense an extension of the discussion at §33.5.)

We proved (some time while talking about stacks, before May 13, but after we were
talking about algebraic spaces) that a sheaf in the étale or smooth topology that has a
representable smooth cover by a scheme is an algebraic space.

add link later

This conceptually is nice: you could replace étale by smooth in the definition of algebraic
space and you would get the same thing. (An algebraic space is a sheaf in the smooth
topology, that has a schematic smooth cover by a scheme.)

I record here a useful result from the Stacks Project, that Ben told us about on May 14:
tag 04S6. I’m going to state a simpler version, whose proof should be a “subset” of that
of the stacks project.

33.12. Expected theorem (based on Stacks Project tag 04S6). — Suppose F is a sheaf in
the category of schemes (perhaps over a base scheme S), with the smooth topology. Suppose there
exists a map of sheaves π : X → F, where X is an algebraic space, and π is a “relative algebraic
space” (it is “algebraic spatial”), and smooth and surjective. Then F is an algebraic space.

The Stacks Project has a better result, where “smooth” is replaced by “fp(l)pf” through-
out. More precisely: in the definition of algebraic space, he works in the fp(l)pf topology.
And he shows that you get the same notion whether you work in the fp(l)pf topology, or
the étale topology. We’ve mostly shown that you get the same notion whether you work
in the smooth topology or the étale topology.

Update (May 14): this is a consequence of Theorem 33.12.
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34. FANCY FACTS ABOUT ALGEBRAIC SPACES WE WON’T REALLY USE

34.1. An algebraic space that is not a scheme. Ben Church says: “This gives an example
of a genus 1 relative curve over A1 that is not a scheme:

https://stacks.math.columbia.edu/tag/0D5D

However, this should not happen if it is a torsor for a relative elliptic curve.”

This example will be relevant when we discuss how the moduli stack of genus 1 curves
is algebraic — we need to say what the stack actually is!

I am hoping Ben will explain this to the class at some point, without simply invoking
the magical name of Raynaud.

34.2. The diagonal map of algebraic spaces is actually schematic. If X is an alge-
braic space, we have shown that its diagonal map X → X × X is “locally representable
by schemes”, i.e. “algebraic spatial”. (All morphisms of algebraic spaces are algebraic
spacial!)

But in fact you can show that it is schematic. Put differently, if Y → X and Z → X are
both morphisms to X from schemes, then Y ×X Z is always a scheme. (This equivalence
was Lemma 20.1.)

This is not easy, and so I will try not to use it! But I’ll state it formally here, and give the
start of the proof, as it is similar to arguments we’ve just seen. (For a full proof, see any
of the three standard references: the Stacks Project (tag 0265), or [Olsson], or [Alper].)

34.3. Accidental Theorem. — If X is an algebraic space (in the sense defined here), then the
diagonal morphism is schematic.

I am calling this “accidental” because it is accidental to our setting of schemes and the
etale topology, and isn’t a formal consequence of our robust set up of “A [blah] is a locally
representable [blah] in the [blah] topology over our geometric category G = [blah].”

The argument starts as follows. We use the diagrams in the proof of Proposition 39.4.
We know that Z, Z1, and Z2 are schemes, and we want to show that Z3 is a scheme (not
just an algebraic space). Notice that Z2 → Z1 is the base change of R→ U×U.

34.A. EXERCISE. Show that ρ : R → U × U is a monomorphism. (Hint: all diagonals are,
for sheaves.) Equivalently, the diagonal δρ of ρ is an isomorphism.
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This means that ρ is separated (which means that δρ is a closed embedding — but of
course it is an isomorphism), and the preimage of any point is either a point or the empty
set, so it has finite fibers. Also, R → U is the base change of U → M, which is etale or
smooth, hence locally finite type, so R→ U×U is locally of finite type.

Thus ρ : Z2 → Z1 is separated, locally finite type, with finite fibers. It turns out that this
is glues (in the fpqcK topology), so Z3 → Z is separated, locally finitely type, with finite
fibers, and schematic. That’s the hard fact!

It’s not overwhelmingly hard. (Method of proof: reduce to the case where ρ is qua-
sicompact. Then ρ is finite type, separated, with finite fibers, and is thus quasiaffine by
Zariski’s Main Theorem. Then affine things glue, and open subsets glue, so quasiaffine
things glue.) But it is way more complicated given how little we care. (A reference: [Ols-
son, 5.2.5]; I think it would also be in Knutson Sr., Raynaud-Gruson.)

Another reason you shouldn’t care: you’re already working in the étale or smooth topol-
ogy — why are you particularly hung up with the Zariski topology?

34.4. Some low-dimensional algebraic spaces are automatically schemes. If X is a
quasiseparated algebraic space, and we have an epimorphism SpecK→ X, then X is also
the spectrum of a field. (See [Olsson].)

One-dimensional finite-type algebraic spaces over a field are schemes.

I think proper smooth surface algebraic spaces are schemes.

34.5. Gluing (descent) of algebraic spaces. Rather obviously, algebraic spaces glue in
the smooth topology. I think it is true that they glue in the fppf topology, although there
may be a quasiseparated hypothesis. We won’t need this, so we won’t care.

35. EXAMPLE: MODULI OF ASYMMETRIC CURVES

Consider the following presheaf on G = Sch, which I’ll call Ma
g — the presheaf (soon to

be moduli space) of asymmetric genus g curves.

Over B ∈ Sch, it is a family C→ B of genus g curves (a proper family, smooth of relative
genus g, whose geometric fibers are smooth irreducible genus g curves), such that under
any pullback ρ : B ′ → B, ρ∗C→ B ′ has no nontrivial automorphisms. In other words, the
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only isomorphism i making the diagram

ρ∗C && i !!

$$!
!!

!!
!!

!
ρ∗C

%%//
//
//
//

B ′

commute is the identity.

Fact: this is the same as requiring the geometric fibers (the case where B ′ is the spec of
an algebraically closed field) to have no nontrivial automorphisms. Because this example
is intended to be motivational, I’m not going to prove this; please take it as a black box.

Now Ma
g ∈ PShG. But it is not just a presheaf —it is a sheaf in the fpqcK topology.

To see why this is true, I need to make some quick comments on gluing (descent).

A quasicoherent sheaf is not just a presheaf in the etale topology — it is a sheaf, thanks
to our earlier discussion.

That means an affine scheme is not just a presheaf in the etale topology — it is a sheaf.
(We’d discussed this before.) We could describe this as “affine morphisms glue/descend
under fpqcK covers”. This is because they are just (relative) spec of a quasicoherent sheaf
of algebras (a quasicoherent sheaf with multiplication and addition satisfying some prop-
erties).

In just the same way, projective schemes also glue/descend, once I say what I mean.
By projective scheme over another scheme, I mean the (relative) proj of a quasicoherent
sheaf of graded algebras. So the kind of geometric objects that glue/descend under this
criterion are morphisms X→ Y, along with a line bundle L on X that is “relatively ample”
over Y. (If you wish, for any affine SpecA → Y, under the pullback of the situation to
SpecA, L is ample.)

Now no smooth curve of genus 0 or 1 (or even 2) is asymmetric, so g > 2 in our situation.
And in this situation, we have an L which is relatively ample — it is the relative canonical
line bundleΩC/B. (In fact, for asymmetric curves, it is relatively very ample.)

35.1. Theorem. — Ma
g is an algebraic space.

Proof. Becasue we’ve already proved that it is a sheaf, we need only prove that it is locally
representable.

Now our functor/presheaf Ma
g sent B to families C → B of asymmetric curves over B

(of genus g etc.).
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Using an argument involving the Cohomology and Base Change Theorem, we showed
that this functor was the same as that sending B to

C

110
00

00
00

0
K !! P

Pg−1-bundle

2211
11
11
11

B

where K is a canonical bundle, which in turn is the same as

C

110
00

00
00

0

nondegenerate
!! P

Pg−1-bundle

2211
11
11
11

B

Instead we consider a different functor U ∈ PShG which sends B to

C

112
22

22
22

2

nondegenerate
!! Pg−1

%%//
//
//
//
/

B

where C→ B is as usual a family of asymmetric genus g curves.

Then we argued that (i) U→Ma
g is a PGL(g)-bundle (hence representable and smooth).

(We did this by considering Isom(P,Pg−1).)

(ii) U is a scheme, because it is an open subscheme of a Hilbert scheme. (We invoked
results form last quarter as a black box. We start with the existence of the Hilbert scheme;
we took the open subset where the fiber was smooth of dimension 1; then the open subest
wehre it has connected fibers; then the open subset where O(1) ∼= K on fibers; then the
open subset wehre it is not contained in a hyperplane)

!

As a bonus fact, we get the following.

35.2. Theorem. — The diagonal morphism δ : Ma
g →Ma

g ×Ma
g is schematic.

Proof. For convenience, I’ll type M := Ma
g.

By our earlier discussion [I’ll add the link later], given two maps X → M and Y → M

from schemes (corresponding to families of asymmetric curves CX → X and CY → Y, say),
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then

X×M Y !!

""

X× Y

""

M
δ !! M×M

.

But X×M Y = IsomX×Y(π∗
XCX,π

∗
YCY), which is a scheme by our work last quarter. !

35.A. EXERCISE (FOR THOSE COMFORTABLE WITH COHOMOLOGY AND BASE CHANGE).
Describe/define the “Hodge bundle” on Ma

g, showing that it is a rank g vector bundle.
(I’ll put some definition here soon.)

35.3. Reasonable question. Is Ma
g a scheme? In fact it is, but this is not clear. You can

prove this using geometric invariant theory. But do you have a good reason to care? (You
might, but you might not...)

Part 6. Stacks (2-sheaves), especially locally representable stacks

36. STACKS ON A TOPOLOGICAL SPACE

Moved here from near the start, because it logically fits

The notion of a “stack” by itself is generalization of a sheaf. In some sense, it is a 2-sheaf
(and a sheaf is a 1-sheaf). (I’ll try to have new definitions in bold, or boxed.)

36.1. Stacks: a first stab.

I’ll now give a first definition of a stack on a topological space X. It will generalize the
notion of a sheaf. As usual, I’ll make up my own terminology and notation to try to keep
things simpler.

We begin with the example that I’ll call the stack of rank 2 vector bundles on (open
subsets of) X. I’m assuming that you have some notion in your head of what a vector
bundle is (and I don’t mnind that your notion depends on what kind of “geometric space”
you like to work with).

For each open subset U ⊂ X consider the vector bundles on U. Notice: I’m not saying
“vector bundles up to isomorphism”. I mean “all the vector bundles”. What do I mean?
Well, what would you mean by this?
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Now if V ⊂ U is an open subset, then we can restrict any vector bundle on U to get a
vector bundle on V . (What do I mean by “restrict a vector bundle form U to V”?)

Moreover, if W ⊂ V is a smaller open subset, then if we restrict a vector bundle from
U to V , and then from V to W, that’s the “same thing” as restricting it from U to W all at
once. (What do I mean by “same thing”?)

(So far I’ve described something which might be called a “2-presheaf” or 2-PSh on X

(or Top
X
).)

So far this sounds a lot like a presheaf. But it’s not going to be a sheaf. It fails the
identity axiom: any vector bundle is locally trivial: given a rank 2 vector bundle V on U

(trivial or not), there is an open cover of U, say U = ∪Ui, where VUi
is a trivial bundle. But

the trivial rank 2 bundle on U (that I’d denote O⊕2
U ) also has this property, so we can have

two different (non-isomorphic) vector bundles that are nontheless isomorphic on every
open set in an open cover.

Nonetheless, we can still say something. We know how to glue vector bundles on an
open cover to get a vector bundle on the union; it is just a bit more subtler than gluing
continuous functions. If U = ∪Ui is an open cover of U, and we have rank 2 vector
bundles Vi on Ui, and we have specific isomorphisms φij : Vi|Ui∩Uj

∼−→ Vj|Ui∩Uj
(with

certainly φij = φ
−1
ji ) satisfying, on triple overlaps, φij ◦φjk = φik, then we can get a unique

(up to unique isomorphism) vector bundle V on U whose restrictions to the Ui “are” the
Vi. (More precisely, we have isomorphisms ψi : V|Ui

∼−→ Vi.)

So this will later give us an axiom for a stack (gluing of objects) which is akin to the
gluability axiom for sheaves. There will be another axiom that will be an analogue of the
identity axiom, which will ensure that the thing we get by gluing is unique (up to unique
isomorphism). This is the statement that for any two rank two vector bundles V and V ′

on an open set U ⊂ X, the presheaf Isom(V,V ′) on U is actually a sheaf.

Let me make this more precise. What is this presheaf? To each open set V ⊂ U, the
sectons of Isom(V,V ′) over V are the set of isomorphisms V|V

∼→ V ′
V . (Can you see why

there are natural restriction maps? Can you see why this gives a presheaf? Can you see,
in the case of vector bundles, why this indeed forms a sheaf?)

36.2. Another example that looks similar: G-bundles. Let G be a group. Recall that a G

bundle on a topological space X is a map Y → X with a G-action over X, such that there is
an open cover X = ∪Ui, and over Ui, Y|Ui

∼= G×Ui.

Now I will describe the stack of G-bundles on a topological space X. To each open
subset U ⊂ X, I associate the G-bundles on u. You can see how to restrict. You can
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see that to glue G-bundles on Ui to get a G-bundle on U = ∪Ui, you want to be given
isomorphisms on pairwise overlaps, satisfying a triple overlap condition.

And you can think through why given two G-bundles Y and Y ′ on U, IsomY,Y is a sheaf
on U.

The stack we have described is BG , and is called the classifying stack of G. We will
meet it soon.

36.3. Another example: families of Riemann surfaces of genus 3. Same thing, except
that we have families of genus 3 Riemann surfaces over X. (Perhaps in your case, X is a
complex manifold. Or an algebraic variety.) You should think through this example as
well.

36.4. Abstracting the definition of stack (and “stack in groupoids”) from these.

We start with the analogue of presheaf.

We are going to build a covariant functor from some category A to Top
X
. We picture

the information in each of these cases as follows. The functor will be “vertical”; Top
X

is
on the bottom. A horizontal line separates A from Top

X
.

The open subset ∅ ∈ Top
X

is on the bottom left, and the open subset X ∈ Top
X

is on the
bottom right, and all the arrows in Top

X
are pointing roughly rightward.

Above each object of U ∈ Top
X

(each open subset U ⊂ X), we have our objects we are
parametrizing.

For the arrows upstairs, we put in “pullbacks”. Spencer may want to add in other
morphisms too.

36.5. Definition. Given a base category G, a category fibered over G is a covariant functor
φ : F → G, such that “pullbacks exist”: given α : X → Y in G, and b ∈ F with φ(b) = Y,
then there exists α ′ : a→ b in F, withφ(α ′) = α (so in particularφ(a) = X), satisfying the
following universal property: for any other c ∈ F, along with β : c→ b, and γ : α(c)→ Y,
there exists a unique δ : c → a making the diagram commute (see figure, which I should
make).

If every morphism in F is a pullback, we say that F is a 2-presheaf on G (or a category
fibered in groupoids).
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FIGURE 2. A stack (or category fibered) (perhaps in groupoids) over G

36.A. EXERCISE. If a : F → G is a 2-presheaf, then for any X ∈ G, the fiber category
above X, denoted F(X) (defined the category whose objects are the objects of F mapping
to X, and whose morphisms are morphisms in F mapping to idX) is a groupoid. Hence
the name “category fibered in groupoids”, if you care.

Now to define a stack on a topological space, we restrict to the case where G is the
category of open subsets of your topological space Z, call it G = TopZ.

We require further that for any two elements a, b ∈ F mapping to the same U ∈ TopZ,
Isom(a, b) is a sheaf on U. So far this is a 2PSh++.

Finally, we require that “objects glue” given a bunch of objects over a bunch of open
sets, along with isomorphisms over all pairwise intersections, that are compatible over
triple intersections, then we there is an object over their union giving all of these data as
restriction.

36.B. EXERCISE. Describe how the following are all the same.

• a stack where all of the fiber categories are equivalent to sets
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• a stack where each object in the fiber categories has only the identity automor-
phism it is “asymmetric”)

• a sheaf

37. (2-)YONEDA’S LEMMA

If X ∈ G, in a topology where X is a sheaf, then hX is a stack (as it is a sheaf).

And if M is another stack, then Hom(hX,M) is identified with the fiber category M(X)

over X. (The fiber category was defined earlier.) This the (2-)Yoneda Lemma.

So any map from X to a stack M should be labeled with an object α of the fiber category
M(X):

X
α !! M

(Question: what is the meaning of the automorphisms of the object α ∈ M(X), in terms
of this map?)

We made the 2-Yoneda Lemma more precise. We have two categories: Hom(hX,M),
and M(X). We described functors from each to the other, which were easiest to describe
using pictures. We then saw how the two compositions were both isomorphic to the
respective identity morphisms. (One actually was the identity, I believe.)

38. (2-)FIBERED PRODUCTS

Given that the right notion of “same” for categories isn’t “isomorphism” but “equiva-
lence”, and two functors (with the same source and target) will never be the “same” but
they may be “isomorphic”, we are led to a slightly more sophisticated versino of fibered
product. I’ll first describe the 2-fibered product (or homotopy fibered product) of categories,
and then apply it to fibered categories.

Given a diagram of catgories

Y

""

X !! Z
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the 2-fibered product is a diagram
W Y

""

X !! Z

that ”2-commutes” (meaning: the two composite functors W→ Z aren’t the same, but are
isomorphic), and is universal with respect to this property.

38.A. EXERCISE. Show that the 2-fibered product X ×Y Z (if it exists) is unique up to
equivalence, and this equivalence is unique up to isomorphism, and this isomorphism
itself is unique.

38.1. Construction of the 2-fibered product. I then showed that the 2-fibered product
existed, by construction. Given functors F : X → Z and G : Y → Z, then consider the
category W whose objects are:

{(x ∈ X, y ∈ Y,φ : F(x)
∼−→ G(y)}

and whose morphisms (x, y,φ) → (x ′, y ′,φ ′) are the data of morphisms σ : x → x ′ in X,
and τ : y→ y ′ in Y, such that the following diagram commutes:

F(x)
φ

!!

F(σ)
""

G(y)

G(τ)
""

F(x ′)
φ ′

!! G(y ′)

We have “obvious” functors F ′ : W → Y and G ′ : W → X.

38.B. EXERCISE. Show that

W
F ′

!!

G ′

""

Y

G
""

X
F

!! Z

satisfies the universal property of the 2-fibered product.

38.C. EXERCISE. Show that the magic (Cartesian) diagram also works for 2-fibered prod-
ucts of categories: describe a 2-Cartesian diagram:

U×M V !!

""

U× V

""

M
δ !! M×M

where U,V,M are categories.
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38.2. The notion of 2-fibered product readily extends to categories fibered over G.

38.D. EXERCISE. Show that CFG has 2-fibered products.

38.E. EXERCISE. Show that the 2-fibered product in CFG induces 2-fibered products in
CFGG.

38.F. EXERCISE. supopse that M in CFGG, and X ∈ G. Suppose we have two maps
α : X→M and β : X→M, which are identified (by Yoneda) with objects of M(X), which
we also call α and β.

38.3. [To be added later. (a) I want to define the presheaf IsomX(α,β), on X. (b) I want to
ask the exercise that

IsomM(X)(α,β) !!

""

X

α,β
""

M
δ !! M×M

is a (2-)fibered diagram. (c) Ask why Aut(M(X)) is a presheaf of groups in this case. (d1)
Later, I want to ask the exercise that M is actually in CFG+

G if all such Isom presheaves
satisfy the identity axiom; and (d2) M is actually in CFG++

G if all such Isom presheaves are
actually sheaves. Hence in the case of stacks, (b) and (c) turn into : Isom is a sheaf, and
Aut is a sheaf of groups.

38.4. Mixing in the topology on G.

Fix now a topology on the category G.

38.G. EXERCISE. Show that the 2-fibered product in CFG induces 2-fibered products
on CF+

G , CF++
G , CF+++

G , CFG+
G , CFG++

G , CFG+++
G . (I showed this in class. Basically, it is a

one-liner, using the universal property of the functors +, ++, and +++.)

38.5. Linguistic note. For psychological and linguistic simplicity, people always just say
“fibered product” rather than “2-fibered product”, because it is clear what is being meant.
This helps avoid annoying situations such as: each scheme “is” a stack, and the fibered
product of schemes “is” the same as the 2-fibered product of the corresponding stacks.
Similarly, rather than saying we have functors between stacks (which are, of course, cate-
gories), we just call them “maps” or “morphisms”.
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38.H. EXERCISE (CF. EXERCISE 41.N). Suppose T is a scheme, and α : T → Mg is a map,
which by Yoneda’s Lemma corresponds to a family of genus g curves over T (defined
appropriately). (a) What is the fibered product T ×Mg Mg,1?

? !!

""

Mg,1

""

T
α !! Mg

(b) Explain why Mg,1 is called the universal curve over Mg.

39. REPRESENTABLE MORPHISMS OF STACKS, AND LOCALLY REPRESENTABLE STACKS

We define representable morphisms of stacks (to avoid confusion with other unfor-
tunate meanings of the phrase, we should probably say G-representable morphisms of
stacks), just as we did for sheaves.

39.1. Definition. A morphism π : M→ N of stacks on G is representable (by G) if for every
morphism from an object of G (interpreted of course as a stack, through 2-Yoneda) X→ N,
the (2-)fibered product X ×N M is also in G. (This definition doesn’t involve the topology
on G, so this just as well could be used to define representable morphisms of categories fibered
in groupoids.)

We can define properties of representable morphisms, just as we did for sheaves on G,
and in particular, we have the notion of a locally representable stack. We denote such
things as LRepSt

G
. Keep in mind that each one is a fibered category; maps between them

are functors; etc. So if you wanted, you could say they formed some sort of fully faithful
2-subcategory of StG. We don’t need to define this, because all that matters is that they
inherit all notions from StG.

39.2. Lots of categories and 2-categories. We thus have the following relations, where
everything is “contained” in anything below it or to its right:

G LRepSh
G

ShG := PSh++
G PSh+

G PShG

LRepSt
G

StGG := CFG+++
G CFG++

G CFG+
G CFGG

StG := CF+++
G CF++

G CF+
G CFG

39.3. Fibered products of locally representable stacks.
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At this point, we have shown that everything in §39.2 except in the first two columns
has (2-)fibered products.

Suppose now that G has fibered products.

39.4. Proposition. — LRepSh
G

have fibered products, and LRepSt
G

have 2-fibered products.

This is now in Exercise 20.B.

Proof. We prove both in the same way.

Suppose M ∈ LRepSh
G
. We wish to show that if K, L ∈ LRepSh

G
, and we have K→M,

and L→M, then K×M L ∈ LRepSh
G
.

39.A. EXERCISE. Show that it suffices to show that if X ∈ G and L ∈ LRepSh
G
, and we

have X→M and L→M, then X×M L ∈ LRepSh
G
. Hint: consider:

? !!

""

X

""

?

""

!! K

""

L !! M

39.B. EXERCISE. Similarly, show that it suffices to show that if X, Y ∈ G, and we have
X→M and Y →M, then X×M Y ∈ LRepSh

G
.

Then from the magic diagram

X×M Y !!

""

X× Y

""

M
δM !! M×M

we see that it suffices to show that if Z ∈ G, then M×M×M Z is locally representable.

Now R = U×MU is representable (as U→M was representable), so the magic diagram
gives us:

R
rep

!!

(rep) cover
""

U×U

(rep) cover
""

M
δM!! M×M
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We now base change by Z → M × M to get a “fiber cube”, whose bottom square is the
diagram above, and whose top square is:

Z2

rep
!!

(rep) cover
""

Z1

(rep) cover
""

Z3
!! Z

Now Z1 is representable (as Z1 → Z is the base change of the representable morphism U×
U→M×M. Then Z2 is representable (as Z2 → Z1 is the base change of the representable
morphism R → U × U). Then Z3 is locally representable (as it has a representable cover
by Z2 → Z3; this is a representable cover becasue it is the base change of the representable
cover R→M). !

As promised, we have proved that algebraic spaces have fibered products.

Part 7. Algebraic stacks

40. DEFINITION: ORBIFOLDS, DM STACKS, ALGEBRAIC STACKS, COMPLEX ALGEBRAIC

STACKS

40.1. Definition. A [blank] is a locally representable stack on the category G = [blank], with the
[blank] topology. Here are some ways of filling in the blanks.

• orbifold: manifolds, analytic-etale
• needs-a-name: complex analytic varieties, analytic-smooth
• Deligne-Mumford stack: schemes, étale
• algebraic stack: schemes, smooth

By Exercise 36.B, an algebraic stack that is equivalent to a sheaf “is” an algebraic space.

40.A. EXERCISE. Show that an algebraic stack M is an algebraic space if and only if every
object in M is “asymmetric” (has no nontrivial automorphisms). Translation: for every
X ∈ G, the fiber category M(X) is equivalent to a set.

40.2. Caution with orbifolds. Most people discussing orbifolds (in talks or papers) elide
or get confused about the fact that they they form a “2-category” (or that they “are” a
category), so pullbacks, morphisms, and fiber products are all slightly subtle.
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40.3. You might be used to seeing an additional condition in the definition of Deligne-
Mumford stacks and algebraic stacks, which is that the diagonal is supposed to be “repre-
sentable by algebraic spaces”. But this is now a consequence of Proposition 39.4. Reason:
the diagonal morphism in both cases are sheaves (in the etale and smooth topologies
respectively), which are locally representable, which are automatically algebraic spaces
(that was our definition).

(Aside: How did I pull this off? My definition required the cover to be representable!
And in all cases I can think of, it is representable, when you construct it. And in fact if
you take the usual definition, any cover in the usual sense is forced to be representable by
algebraic spaces...)

41. G-BUNDLES, AND QUOTIENTS BY G

41.1. Vague motivating discussion (skip this discussion if you find it unhelpful; it is
not logically necessary, at least yet).

Suppose G is a finite group. We have the notion of an action of G on a set, or even on a
“space” X ∈ G.

What do we mean by X/G? How should we define it? There are different possible
reasonable answers, so we should be careful!

41.2. Motivating example. For example, if X → Y is a G-bundle, then Y should certainly
deserve the name X/G, under any reasonable definition.

41.A. EXERCISE. Define G-bundle, or equivalently, G-torsor. (Your definition depends
on the topology you have put in G! Not every étale (Z/2)-bundle is a Zariski (Z/2)-bundle!
Rhetorical question: is every smooth (Z/2)-bundle an étale (Z/2)-bundle?

So the first example gives the best type of quotient: a map X → Y expressing X as a
G-bundle over Y, so that the G-action on X given in the problem agrees with the G-action
coming from the G-bundle structure. Rhetorical question: if such a quotient Y exists, is it
unique in a reasonable sense? (What does “in a reasonable sense” mean?)

We call this a geometric quotient.

41.3. Motivating example. Suppose G is the category of complex finite type schemes, and
X = A1

C = SpecC[x], and G = Z/2, with the non-identity element acting by sending
x *→ −x.
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Then Y should be SpecC[x2]. In this case, X → Y is not a G-bundle (in any topology —
why?).

This leads to a weaker notion of quotient, the categorical quotient.

41.4. Definition. Given a G-action on X (in G). We say π : X→ Y is a categorical quotient
of X by G if π is G-invariant, and π is universal for such maps — any other G-invariant
map ρ : X→ Z factors uniquely through Y:

X
π !!

ρ 110
00

00
00

0 Y

""

Z

By Yoneda’s Lemma, the categorical quotient is unique up to unique isomorphism.

41.B. RHETORICAL QUESTION. Show that if π : X → Y is a G-bundle, then π is a cate-
gorical quotient. (This is rhetorical because I haven’t thought it through before asking it.)
This answers the earlier question: the geometric quotient is indeed unique up to unique
isomorphism.

41.5. Weakest definitions of quotients.

We could take the sheaf hX, and quotient it by G. This is a presheaf, not necessarily a
sheaf. (It is at least a separated sheaf.) I guess we could call this the presheaf quotient, but
is really lame; the lamest possible quotient, but it has the advantage of always existing.

Second, we want something geometric, so at least it should be a sheaf. So this gives
us the second-lamest quotient: the sheafification of the presheaf: (hX/G)sh. Again, this
exists.

41.C. EXERCISE. If we are in a geometric situation (our objects are in a category, which
has a topology in which all objects are sheaves), then any categorical quotient is a sheaf
quotient.

41.D. EXERCISE. A geometric quotient (if it exists) is a sheaf quotient.

Thus we have answered rhetorical question 41.B in the geomtric setting in the affirma-
tive.

A fourth definition: here is a different presheaf. Maps to this quotient (i.e., sections of
this presheaf) from Z are G-bundles Z → Z, along with G-equivariant maps to X; up to
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isomorphisms of this diagram:

Y
G-equiv.

!!

G-bundle
""

X

Z

(If such diagrams have no automorphisms, then this is already a sheaf, I think...)

41.6. Group (objects) and their actions. Suppose G is a group object in G.

(If you don’t know what this means, just ask.)

Suppose X ∈ G, and we have a G-action on X, i.e. an “action” map a : G × X → X

satisfying some properties (again, just ask if you haven’t seent his before).

41.7. The case where G acts freely.

We define when a G-action is free. The right notion of G acting freely on X is if G×X→
X×X is a monomorphism. Translation: for any T ∈ G, Hom(T,G×X)→ Hom(T, X×X) is
an injection. Translation: for any T ∈ G, Hom(T,G)×Hom(T, X)→ Hom(T, X)×Hom(T, X)

is an injection. Translation: given any σ : T → X, the only map β : T → G such that σ is
the same as σ acted on by β is if β is the identity.

41.E. EXERCISE. Convince yourself of everything in the previous paragraph.

41.F. MORE PRECISE EXERCSE. Show that the notion of free action above agrees with the
usual notion of free action (which is the case where G = Sets).

In what follows, assume G acts freely on X.

Consider diagrams of the form

Z

G
""

G-equivariant
!! X

T

Show that such diagrams have no nontrivial automorphisms. More precisely, show that
there is no automorphism of Z preserving everything else in the diagram (the G-action,
and the map to X).

Define a presheaf on G, denoted X/G , as follows, by sending T to diagrams of this sort,
up to isomorphism.
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41.G. EXERCISE. Show that X/G is a sheaf (on G).

41.H. EXERCISE. Show that X→ X/G is a G-bundle.

Thus if G is smooth, then X → X/G shows that X/G is locally representable, so X/G is
an algebraic space.

41.I. USEFUL (BUT NOT STRICTLY NEEDED) BONUS EXERCISE. Show that hX/hG ∈ PSh+
G .

Show that (hX/hG)
+ ∼= hX/G. (Better: describe a map σ : hX/hG → hX/G coming from

hX → hG. Show that σ satisfies the universal property of the second “+” functor.)

41.8. What if G doesn’t act freely on X?.

Now let’s get rid of the “free action” assumption.

Consider diagrams of the form

(3) Z

G
""

G-equivariant
!! X

T

where Z is a G-bundle.

(The most interesting case is when the action is the “least free”: when X is a point. Then
this is just the same as diagrams of G-bundles.)

41.J. EXERCISE. Describe an isomorphism of two such diagrams. Explain then how the
collection of such diagrams forms a groupoid.

Define a category fibered in groupoids on G, denoted X/G (more commonly denoted

[X/G] to emphasize that it is a stack not a space/sheaf), as follows, by sending diagrams
of this sort to T . (What are the morphisms in the category X/G? Pullback diagrams!)

41.K. EXERCISE. Show that X/G is in a stack on G.

41.L. EXERCISE. Show that X→ X/G is a G-bundle.

41.9. Important consequences. Thus if G is smooth, then X → X/G shows that X/G
is locally representable, so X/G is an algebraic stack. If G is even discrete, then X/G is a
Deligne-Mumford stack.
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41.M. EXERCISE. Suppose we have a map α : T → [X/G], which by Yoneda is the same
as a diagram (3). What is the fibered product T ×[X/G] X?

X

""

T
α !! [X/G]

(You should immediately guess the answer!)

In the case where X is a point pt (if you are dealing with schemes over a field; for
schemes more generally it will be SpecZ; in both cases it is the final object), then [X/G] =

BG, which is the moduli space of G-bundles.

41.N. EXERCISE (CF. EXERCISE 38.H). Explain why pt → BG is called the universal
G-bundle (or universal G-torsor).

41.O. EXERCISE. Given a G-action on X, show that there are natural maps X/G→ BG. If
G is the category of schemes over C, what are the geometric fibers of this map?

41.P. EXERCISE. If G→ H is a group homomorphism, which way is there a map between
BG and BH? What are the fibers of this map? (Add whatever assumptions you need to
make this work.)

41.Q. USEFUL BONUS EXERCISE (CF. EXERCISE 41.I). Show that hX/hG ∈ CFG+
G . Show

that (hX/hG)
++ ∼= hX/G.

41.10. Interesting example. An elliptic curve in the analytic topology is C/Λ, where Λ
is a lattice. This (really, SpecC[x] modulo the group Λ which acts freely) will soon be an
algebraic space, which will be counterintuitive. A simpler variant of this is (SpecC[x])/Z,
where the action of Z is by: n ◦ x = x+ n.

42. ALGEBRAIC (AND DELIGNE-MUMFORD) STACKS VIA PRESENTATIONS

The next section will look very much like the previous one. Do you see fully why?

In one of our settings (e.g. algebraic stacks), given a cover U → M (e.g. smooth cover
of an algebraic stack by a scheme), define R = U ×M U, which is in G (e.g., is a scheme)
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because U→M is representable. We have a fiber diagram

R
s !!

t
""

U

""

U !! M

where R may be informally thought of as the space of relations among the points of U,
where s is the source of the relation, and t is the target of the relation. In other words, for
r ∈ R, s(r) is identifed with t(r) (speaking informally, so this can apply in a wide variety
of setings).

Then the magic (Cartesian) diagram

U×M U

""

!! U×U

""

M
δ !! M×M

may be rewritten as

(4) R
(s,t)

!!

rep. cover
""

U×U

rep. cover
""

M
δ !! M×M

42.A. EXERCISE. Explain the meaning of (hR/hU)st = M, and prove it (where the stackfi-
cation shoudl be sheafification if M is a sheaf). This is usually written [U/R] even though
this isn’t great (as it is in conflict with the notation [X/G]).

As a special case, we obtain a diagram from the section on G-quotients:

R
∼

X×G

pr1
""

a !! X

""

X !! [X/G]

43. THE DIAGONAL MORPHISM FOR ALGEBRAIC STACKS, AND THE ISOTROPY/INERTIA

STACK

If M is an algebraic sgtack, we have shown that δM is a loally representable relative
sheaf, i.e., a “relative algebraic space”.

43.A. EXERCISE. Explain what that means!
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Our Accidental Theorem 34.3 saysthat if M is an algebraic space, then in fact δM is a
relative scheme, but we don’t really care.

43.1. Proposition. — δM is locally of finite type.

Proof. R→ U is locally of finite type, hence R→ U×U is, which means that δ : M→M×M

is (from (4)). !

We now interpret autmorphisms of objects of M in terms of the diagonal. More pre-
cisely, consider an algebraic stack M, and a map X → M, which is the same information
as an object α of the fiber category M(X) (by 2-Yoneda). I will now make sense of the
automorphisms of the object M(X) in the fiber category.

43.B. EXERCISE. Interpret the (2-)fibrered product

(5) M

δ
""

X
(α,α)

!! M×M

as a sheaf on X, where the sections over an open ρ : U → X are the automorphisms of
ρ∗α ∈ M(U). Explain how it is a sheaf of groups.

It is almost a finite type group scheme over X — it is a finite type group “algebraic
space” over X (because δ : M→M×M is a “relative algebraic space”).

The automorphisms of α are just the global sections of this sheaf!

This construction works for any X, so we can “universalize” this construction by con-
sidering instead the (2-)fibrered product

IM

""

!! M

δ
""

M
(α,α)

!! M×M

Then for any specific α : X→M, we just pull this diagram back by α

IM

""

!! M

δ
""

X
α !! M

(α,α)
!! M×M

to get (5).
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43.2. Definition. This “double diagonal” is called the inertia stack IM →M , which by
the above discussion, is a locally-finite-type group algebraic space over M. I prefer to call
it the isotropy (inertia) stack.

43.3. Observation. The isotropy (intertia) stack IM → M is locally of finite type over M,
because it is obtained by base change from δM, which is locally of finite type by Proposi-
tion 43.1. HenceΩIM/M is a finite type quasicoherent sheaf on IM.

I gave a picture of the isotropy/inertia stack over M2, which had two components map-
ping isomorphically onto M2 (the identity and the hyperelliptic involution), as well as
some sporadic additional bits.

43.4. Accidental facts. A “group algebraic space” over a field is a scheme, but a “group
algebraic space” over a more general scheme need not be a scheme. See

https://mathoverflow.net/questions/8918/

for some discussion.

43.5. Proposition (generalized in Thm. 43.8). — If M is a Deligne-Mumford stack, then
IM →M is unramified.

Proof. This is obtained by base-change from δ : M → M ×M, so we need to show that δ
is unramified. But from the Cartesian diagram (4) it suffices to show that R → U × U is
unramified, which we showed earlier.

43.C. EXERCISE. Show how this translates to show that the automorphism group scheme
of every α ∈ M(Speck) for all fields k have no infinitesimal tangent vectors.

43.6. Proposition. — Suppose M is an algebraic stack, with unramified diagaonal. Then M is
Deligne-Mumford.

This will give a clean characterization of which algebraic stacks are Deligne-Mumford!
Precisely:

43.7. Proposition. — If an algebraic stack has unramified diagonal, i.e., if the objects have
unramified automorphism groups, then it is Deligne-Mumford. If the objects have only trivial
automorphism groups, then it is in fact an algebraic space.
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We have a smooth representable cover U → M, and we want an étale representable
cover U ′ →M.

This is a conequence of the following more precise statement.

Explained May 11. Added to these note May 14.

43.8. Theorem. — Suppose M is an algebraic stack. The following are equivalent.

(a) M has a representable étale cover by a scheme (ie., M is a Deligne-Mumford stack)
(b) ΩδM = 0. (Since δM : M → M ×M is automatically locally of finite type, this condition

is equivalent to saying that δM is unramified.)
(c) ΩI/M = 0. (Since I→M is automatically locally of finite type, this condition is equivalent

to saying that I→M is unramified.)

43.9. Remark. I discussed how (c) is the same as the fact that “objects” over algebraically
closed fields have non nontrivial infinitesimal automorphisms, as ΩI/M restricted to the
identity of the automorphism group scheme of that object is the Zariski tangent space of
the automorphism tangent space at the identity, which in turn can be interpreted as maps
of Spec of the dual numbers κ[x]/(x2) to the automorphism group scheme, which in turn
can be interpreted as infinitesimal automorphisms.

43.10. “The DM locus of an algebraic stack is Zariski-open”. Suppose M is an algebraic
stack. Then ΩIM/M is a finite type quasicoherent sheaf on IM. Let s : M → IM that is the
“identity” section of the group space IM/M. Then s∗ΩIM/M is a finite type quasicoherent
sheaf on M. Its support is Zariski-closed, so the complement of the support is Zariski-
open.

43.D. EXERCISE. Explain why this Zariski-open substack should be called the Deligne-
Mumford locus of M.

Proof of Theorem 43.8. I first showed that that (b) and (c) are equivalent. (b) implies (c)
because we have the following pullback diagram:

I !!

""

M

""

M !! M×M

To show (c) implies (b), suppose M → I is the “identity section” of the automorphism
group space I. Then show that the pullback ofΩI/M by this section is Ωδ

M/M2
.
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43.E. EXERCISE. Prove this.

We proved (a) implies (b) earlier, in Proposition 43.5.

It remains to show that (b)=(c) implies (a). Suppose we have a schematic smooth cover
π : U→M. Our goal is to find a schematic étale cover of M. We will find an étale map to
M factoring through each p ∈ U, which will thus cover M.

Suppose π(p) = q ∈ M.

Suppose π (which is smooth) has relative dimension m at p. I’ll give you a cover that
has relative dimension m− 1 at p.

Now δM is unramified at q by (b).

We have

R
smooth

rel dim m
!!

smooth rel dim m
""

U

smooth rel dim m
""

U
smooth

rel dim m
!! M

and

R
∴unram.!!

smooth rel dim 2m
""

U

smooth rel dim 2m
""

U
unram.!! M

From the relative cotangent sequence, we have the exactness of

ΩU×U/M
!! ΩR/M

!! ΩR/U×U
!! 0

π∗
1ΩU/M ⊕ π∗

1ΩU/M 0

And we also have

0 !! π∗
1ΩU/M

!! ΩR/M
!! loc. free rank n !! 0

Now take df ∈ (ΩU/M)p such that π2 ∗ df is not in the image of π∗
1ΩR/M.

So we can choose an f with f(p) = 0 whose derivation is this df.

Then f = 0 cuts out a locus that is smooth of relative dimension m− 1 at p (hence near
p). Reason:
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43.F. EXERCISE. Show that if X → Y is smooth of relative dimension m, and p ∈ U, and
f(p) = 0, and in the fiber containing p, V(f) is smooth, then V(f) is smooth of relative
dimension m − 1. (Hint: show V(f) is flat using a local criterion. Show the geometric
fibers are smooth of dimension m− 1 near p.)

!

43.G. EXERCISE. More generally, if you have an algebraic stack, and all of the isotropy
groups have tagent spaces with dimension at most m, show that you can find a cover that
is smooth of relative dimension m.

43.H. REALITY CHECK QUESTION. More generally, if M is a stack on a category with
topology, not in any algebraic situation, what can you say about I → M? Answer: it is a
group sheaf.

43.I. REALITY CHECK QUESTION. Fill in the blank. I → M is a [blank], iff M is a sheaf.
(What does that last “is” mean in the previous sentence?)

Part 8. Showing lots of moduli spaces are algebraic stacks (or even DM stacks or
orbifolds or algebraic spaces)

44. BLACK BOXES WE WILL USE REPEATEDLY

We will use a very small number of black boxes repeatedly. All of these were actually
proved last quarter in the “moduli spaces” course in the Noetherian setting, so you can
see proofs in the slides on the webpage (although I make no promises as to how compre-
hensible they are). A discussion on removing Noetherian hypotheses is in §44.6; even this
is mostly reasonable.

44.1. Uppersemicontinuity results.

We will use uppersemicontinuity of fiber dimension; uppersemicontinuity of cohomol-
ogy groups in flat families; uppersemicontinuty of ranks of finite type quasicoherent
sheaves.

44.2. Representability of various moduli spaces.

We will use the representability of the Hilb, Quot, Isom, and Mor functors in various
settings.
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44.3. Cohomology and base change theorem.

We will use the Cohomology and Base Change Theorem.

44.4. See-saw theorem.

We will use Theorem 44.5, which we first describe informally.

Suppose we have the following situation.

L

110
00

00
00

0

X

π
""

Y

where π is proper, flat, and has geometric fibers that are connected and reduced. Suppose
Y is locally Noetherian (but see §44.6 to exchange this for finitely presented hypotheses
on π). For some of the points of Y, the restrict of L to Y might be isomorphic to the trivial
bundle. From examples, you might convince yourself that this will form a locally closed
subset. If you want to show this, after some thought and discussion, you’ll realize that
the right statement to prove is the following.

44.5. Theorem. — Suppose we have the following situation.

L

110
00

00
00

0

X

π
""

Y

where Y is locally Noetherian, and π is proper, flat, and has geometric fibers that are connected and
reduced. The contravariant functor SchY → Sets given (on objects) by sending (Z→ Y) to

π∗
ZMZ

φZ

∼
!! LZ

33
33

33
33

L

11
11
11
11

MZ

!!
!!

!!
!!

XZ

πZ
""

!! X

π
""

Z !! Y

(where everything is defined as you think, by pullbacks) is a locally closed subsheaf (i.e., locally
closed subscheme) of Y.
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If furthermore the fibers of π are integral, then this functor is a closed subpresheaf (i.e., closed
subscheme) of Y.

Note that this construction “commutes with base change”. Also the Noetherian condi-
tions can be exchanged for local finite presentation conditions on π (see §44.6). So this
works just fine if Y is an algebraic stack on Sch, where we assume in addition that π is
schematic and finitely presented with geometric fibers that are connected and reduced,
then we can cover Y with affine open subschemes so that on each open the situation is
pulled back from

L ′ X ′ π ′
!! SpecA

where A is Noetherian, π ′ is proper, flat, with geometric fibers that are connected and
reduced.

I think I can explain easily how to do this with everything but flatness. If π is projec-
tive, then we can arrange for π ′ to be projective, and then use the flattening stratification
(proved last quarter). If π is proper, there is still a flattening stratification (stacks tag 05PS),
but I’ve not thought about the proof.

44.6. Removing Noetherian hypotheses.

Most of the statements above were proved in Noetherian situations, but once that is
done, they Noetherian conditions can be fairly cheaply removed, because the results then
apply to any situation base-changed (and hence “locally base-changed”) from the Noe-
therian situation, which means that they will hold for any situation locally base changed
from a Noetherian situation where the hypotheses hold. So to make this work, we need to
show that given a non-Noetherian situation with the desired hypotheses, we can locally
pull it back from a Noetherian situation with the desired hypotheses. For example, for
the Seesaw Theorem, we need to show something like the following.

If L is a line bundle on X, and π : X → Y is a finitely presented, proper, flat morphism.
Then there is a cover of Y by opens Y ′, so that the restriction L ′ on X ′ → Y ′ is pulled back
from a Noetherian situation L ′′ on X ′′ → Y ′′ (where of course we can take Y ′′ to be affine).

45. VARIOUS INTERESTING MODULI SPACES ARE ALGEBRAIC STACKS

To be precise, we are saying that various interesting moduli CFG’s form algebraic stacks.
But that is a mouthful!

45.1. Warm-up: the moduli of smooth curves of genus g > 1.

In class I showed that if g > 1, then Mg is an algebraic stack.
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Then more generally, I showed that the modlui space of dimension n proper smooth
varieties X with detΩX ample also forms an algebraic stack, locally of finite type.

Some discussion from May 13 on why there are not more
“general” versions of algebraic spaces are now back in the
“Fancy facts about algebraic spaces we won’t really use”
section 34.

In both cases, we see that these are locally finite type over SpecZ; and if we fix “numer-
ical data” (so we have a single Hilbert polynomial coming up in the construction), they
are even finite type over SpecZ.

We also see that IMg → Mg is an affine group scheme over Mg, and a closed subgroup
scheme of AutP(Ω∨

C) (a PGL(g)-bundle, which is an affine bundle, as pointed out by
Spencer).

Thus Mg has “affine diagonal”: δMg is an affine morphism. (And similarly for the
higher-dimensional analogue.)

Moreoever, the fact that curves of genus g > 1 have no infinitesimal automorphisms
(this requires showing that infinitesimal automorhpisms are given by H0(C, TC), which
we haven’t shown — then TC is a negative degree line bundle, which thus has no nonzero
sections) implies that the fibers of IMg → Mg has fibers with 0-dimensional Zariski tan-
gent spaces, thus the fibers are zero-dimensional affine schemes, hence curves of genus
g > 1 have finite automorphism groups. This is a hard fact! (Once you know that the
automorphism groups are finite, it is much easier to bound the size of the automorphism
group in characteristic 0 — but you need the finiteness to get the argument started.)

Spencer pointed out that this argument only used what we did last quarter (about au-
tomorphisms of projective varieties, not about moduli spaces).

45.A. EXERCISE. Suppose X is a smooth projective variety (of any dimension), with
detΩX ample, and H0(X, TX) = 0. Prove that X has finite automorphism group.

45.2. Moduli of very nice dimension at most 1 curves with marked points.

We now define a useful stack.

First, you should verify that the following is a category fibered in groupoids over Sch,
in the fpqcK topology. We denote this Vχ,n for “very nice curves, with euler characteristic
χ, and n marked points”.
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The objects over B are flat spatial morphisms π : C → B, of relative dimension at most
1, finitely presented, such that the fibers of π have Euler characteristic (of the structure
sheaf) χ; along with n sections σi : B → C of π (for i = 1, . . . , n), pairwise disjoint, all
landing in the “smooth relative dimension 1” locus, ... [we interrupt this definition for an
exercise]

45.B. NONTRIVIAL EXERCISE. Show that that the n sections s1 = σ1(B), . . . , sn = σn(B)

are each effective Cartier divisors on C, so L := OC(s1 + · · ·+ sn) is a line bundle on C.

[We continue the definition now] ... such that L on the fibers is very ample and has no
h1.

45.C. EXERCISE. Show that C → B is actually schematic (because it is relatively projec-
tive).

45.D. EXERCISE. Show that Vχ,n is a stack in the fpqcK topology.

45.3. Theorem. — Vχ,n is an algebraic stack, finite type over Z.

Proof. I described a smooth cover of it. Consider the Hilbert scheme in Pχ−1 of subschemes
with Hilbert polynomial p(m) = nm + χ (so, of curves with Euler characteristic χ, and
degree n).

45.E. EXERCISE. Show that the locus corresponding to those schemes meeting the hyper-
plane H := {x0 = 0} at n distinct geometric points forms an open subset U, and that in this
case the n points are all smooth points of the curve.

I explained how to label these n points, taking the n-fold fibered product of H∩C over
U, and removing the “big diagonal”, to obtain a scheme V .

45.F. EXERCISE. Show that V → Vχ,n is a G-bundle, where G is the group of automor-
phisms of Pχ(L)−1 fixing H as a set.

Thus Vχ,n = [V/G], completing the proof. !

45.4. First example: moduli of schemes of dimension 0. If n = 0, then in fact C must be relative
dimension 0. We have constructed the moduli space of schemes of relative dimension 0!
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45.5. Various moduli of curves.

45.6. Theorem. — The following locus are open in Vχ,n.

(a) The locus where C→ B is smooth of pure relative dimension 1.
(b) The locus where C → B is flat of pure relative dimension 1, and the fibers are at worst

nodal.
(c) The locus where C → B is smooth of pure relative dimension 1, and the fibers are geomet-

rically connected.
(d) The locus where C → B is flat of pure relative dimension 1, and the fibers are at worst

nodal, and geometrically connected.

Proof. (a) The locus where C→ B is smooth of relative dimension 1 is open (see The Rising
Sea for example), so its complement is closed, so the image of that complement is closed
in B, so the complemenet of that is open.

(b) Add in the requirement that h0(OF) = 1 for the fiber, and use uppersemicontinuity
of h0.

(c) Because the stack is already finite type over SpecZ, it suffices to show the following.

45.G. EXERCISE. Suppose you have a family over a discrete valuation ring, whose central
fiber is at worst nodal. Show that the general fiber is at worst nodal.

(d) Add in the requirement that h0(OF) = 1 for the fiber, and use uppersemicontinuity
of h0. !

We can use this to make all sorts of spaces.

45.H. EXERCISE. Show that the following is a category fibered in groupoids, denoted
Mg,n. To B, we have flat algebraic-spatial families of at worst nodal curves, along with n

sections, all to the smooth locus, and pairwise distinct. (We have no ample conditions.)

Then Mg,n is an algebraic stack: near any point corresponding to a nodal genus g, n-
pointed curve, add in lots more smooth points [What is you are over a finite field, and
there aren’t any other smooth points?], so that the union of all the points is very ample,
with no h1. Let N be the new number of marked points. Then we have a map from an
open subset of V1−g,N to Mg,n which is smooth, and hits the point in question.

The stack Mg,n is useful; it is often called the stack of n-pointed nodal genus g curves.
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The stack Mg,n is the Deligne-Mumford locus in Mg,n.

45.I. EXERCISE. If you’ve heard a different definition of Mg,n: show that the points of
Mg,n parametrize what you think they do.

If X is a projective variety, we define the moduli space of stable maps (of genus g

curves with n marked points) to X as follows. Over Mg,n, we have the “universal curve”
UMg,n →g,n. The Hom scheme of something projective to something projective is repre-
sentable, so Hom(UMg,n, X)→Mg,n is schematic and representable. Thus Hom(UMg,n, X).
The space of stable maps is the Deligne-Mumford locus Hom(UMg,n, X)DM.

45.J. EXERCISE. Show that this agrees with any other definition you have heard.

45.K. EXERCISE. The above construction only works if UMg,n →Mg,n is schematic; but a
priori it is only algebraic spatial! How do you fix this?

45.7. Hurwitz spaces. Various things go by the name “Hurwitz spaces”. They are
basically variants of finite covers of P1 by smooth curves, perhaps with marked points,
and perhaps with conditions on branching. All will be built out of Hom(UMg,n,P1)DM

and some of our standard tools.

45.L. EXERCISE. Show that the moduli space of degree 10 simply branched covers of P1,
by smooth genus 100 curves, is a Deligne-Mumford stack.

45.8. What next?.

We now can build lots of these spaces. What might you want to know about them?
Possibilities:

• dimension
• smoothness
• irreducibility
• separatedness (not yet defined for DM stacks; problematic for algebraic stacks)
• properness (not yet defined for DM stacks; problematic for algebraic stacks)
• coarse moduli space (not yet defined)

46. WHERE TO NEXT?

In the last couple of weeks, there are a few possible ways we can go.
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Possible goals:

• The Picard “stack” in reasonable generality. (We’ll start with this.)
• Mg,n is an irreducible smooth proper DM stack of relative dimension 3g − 3 + n

over Z.
• Existence of coarse moduli spaces (Keel-Mori, at least in some form)
• towards tags 04S6 and 06DC (Artin’s “flat is enough” theorems), or at least “smooth

is enough” https://www.math.columbia.edu/˜dejong/wordpress/?p=1584

47. THE PICARD STACK

As a warm-up, I discussed the representability of the Picard stack and the Picard group
of a smooth projective curve C over a field k, which had a chosen point p ∈ C. We noticed
that a good deal didn’t depend on p, and didn’t depend on C being a smooth curve.

I’ll try to type some in next, or possibly we’ll just go to the general case next.
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