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CHAPTER 1

Introduction

I can illustrate the .... approach with the ... image of a nut to be opened. The first
analogy that came to my mind is of immersing the nut in some softening liquid, and why
not simply water? From time to time you rub so the liquid penetrates better, and otherwise
you let time pass. The shell becomes more flexible through weeks and months — when the
time is ripe, hand pressure is enough, the shell opens like a perfectly ripened avocado!

A different image came to me a few weeks ago. The unknown thing to be known
appeared to me as some stretch of earth or hard marl, resisting penetration ... the sea
advances insensibly in silence, nothing seems to happen, nothing moves, the water is so
far off you hardly hear it ... yet finally it surrounds the resistant substance.

— Grothendieck, Récoltes et Semailles p. 552-3, translation by Colin McLarty

1.1 Goals

These are an updated version of notes accompanying a hard year-long class
taught at Stanford in 2009-2010. I am currently editing them and adding a few
more sections, and I hope a reasonably complete (if somewhat rough) version over
the 2010-11 academic year at the site http://math216.wordpress.com/.

In any class, choices must be made as to what the course is about, and who it
is for — there is a finite amount of time, and any addition of material or explana-
tion or philosophy requires a corresponding subtraction. So these notes are highly
inappropriate for most people and most classes. Here are my goals. (I do not claim
that these goals are achieved; but they motivate the choices made.)

These notes currently have a very particular audience in mind: Stanford Ph.D.
students, postdocs and faculty in a variety of fields, who may want to use alge-
braic geometry in a sophisticated way. This includes algebraic and arithmetic ge-
ometers, but also topologists, number theorists, symplectic geometers, and others.

The notes deal purely with the algebraic side of the subject, and completely
neglect analytic aspects.

They assume little prior background (see §1.2), and indeed most students have
little prior background. Readers with less background will necessarily have to
work harder. It would be great if the reader had seen varieties before, but many
students haven’t, and the course does not assume it — and similarly for category
theory, homological algebra, more advanced commutative algebra, differential ge-
ometry, . . . . Surprisingly often, what we need can be developed quickly from
scratch. The cost is that the course is much denser; the benefit is that more people
can follow it; they don’t reach a point where they get thrown. (On the other hand,
people who already have some familiarity with algebraic geometry, but want to

9



10 Math 216: Foundations of Algebraic Geometry

understand the foundations more completely should not be bored, and will focus
on more subtle issues.)

The notes seek to cover everything that one should see in a first course in the
subject, including theorems, proofs, and examples.

They seek to be complete, and not leave important results as black boxes
pulled from other references.

There are lots of exercises. I have found that unless I have some problems I
can think through, ideas don’t get fixed in my mind. Some are trivial — that’s
okay, and even desirable. As few necessary ones as possible should be hard, but
the reader should have the background to deal with them — they are not just an
excuse to push material out of the text.

There are optional (starred !) sections of topics worth knowing on a second
or third (but not first) reading. You should not read double-starred sections (!!)
unless you really really want to, but you should be aware of their existence.

The notes are intended to be readable, although certainly not easy reading.
In short, after a year of hard work, students should have a broad familiarity

with the foundations of the subject, and be ready to attend seminars, and learn
more advanced material. They should not just have a vague intuitive understand-
ing of the ideas of the subject; they should know interesting examples, know why
they are interesting, and be able to prove interesting facts about them.

I have greatly enjoyed thinking through these notes, and teaching the corre-
sponding classes, in a way I did not expect. I have had the chance to think through
the structure of algebraic geometry from scratch, not blindly accepting the choices
made by others. (Why do we need this notion? Aha, this forces us to consider this
other notion earlier, and now I see why this third notion is so relevant...) I have
repeatedly realized that ideas developed in Paris in the 1960’s are simpler than I
initially believed, once they are suitably digested.

1.1.1. Implications. We will work with as much generality as we need for most
readers, and no more. In particular, we try to have hypotheses that are as general
as possible without making proofs harder. The right hypotheses can make a proof
easier, not harder, because one can remember how they get used. As an inflamma-
tory example, the notion of quasiseparated comes up early and often. The cost is
that one extra word has to be remembered, on top of an overwhelming number
of other words. But once that is done, it is not hard to remember that essentially
every scheme anyone cares about is quasiseparated. Furthermore, whenever the
hypotheses “quasicompact and quasiseparated” turn up, the reader will likely im-
mediately see a key idea of the proof.

Similarly, there is no need to work over an algebraically closed field, or even a
field. Geometers needn’t be afraid of arithmetic examples or of algebraic examples;
a central insight of algebraic geometry is that the same formalism applies without
change.

1.1.2. Costs. Choosing these priorities requires that others be shortchanged, and
it is best to be up front about these. Because of our goal is to be comprehensive,
and to understand everything one should know after a first course, it will neces-
sarily take longer to get to interesting sample applications. You may be misled
into thinking that one has to work this hard to get to these applications — it is not
true!
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1.2 Background and conventions

All rings are assumed to be commutative unless explicitly stated otherwise.
All rings are assumed to contain a unit, denoted 1. Maps of rings must send 1 to
1. We don’t require that 0 != 1; in other words, the “0-ring” (with one element) is
a ring. (There is a ring map from any ring to the 0-ring; the 0-ring only maps to
itself. The 0-ring is the final object in the category of rings.) We accept the axiom
of choice. In particular, any proper ideal in a ring is contained in a maximal ideal.
(The axiom of choice also arises in the argument that the category of A-modules
has enough injectives, see Exercise 23.2.E.)

The reader should be familiar with some basic notions in commutative ring
theory, in particular the notion of ideals (including prime and maximal ideals)
and localization. For example, the reader should be able to show that if S is a
multiplicative set of a ring A (which we assume to contain 1), then the primes of
S−1A are in natural bijection with those primes of A not meeting S (§4.2.6). Tensor
products and exact sequences of A-modules will be important. We will use the
notation (A,m) or (A,m, k) for local rings — A is the ring, m its maximal ideal,
and k = A/m its residue field. We will use (in Proposition 14.7.1) the structure
theorem for finitely generated modules over a principal ideal domain A: any such
module can be written as the direct sum of principal modules A/(a).

1.2.1. Caution about on foundational issues. We will not concern ourselves with
subtle foundational issues (set-theoretic issues involving universes, etc.). It is true
that some people should be careful about these issues. (If you are one of these
rare people, a good start is [KS, §1.1].)

1.2.2. Further background. It may be helpful to have books on other subjects
handy that you can dip into for specific facts, rather than reading them in ad-
vance. In commutative algebra, Eisenbud [E] is good for this. Other popular
choices are Atiyah-Macdonald [AM] and Matsumura [M-CRT]. For homological
algebra, Weibel [W] is simultaneously detailed and readable.

Background from other parts of mathematics (topology, geometry, complex
analysis) will of course be helpful for developing intuition.

Finally, it may help to keep the following quote in mind.

Algebraic geometry seems to have acquired the reputation of being esoteric, exclusive,
and very abstract, with adherents who are secretly plotting to take over all the rest of
mathematics. In one respect this last point is accurate.

— David Mumford
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CHAPTER 2

Some category theory

That which does not kill me, makes me stronger. — Nietzsche

2.1 Motivation

Before we get to any interesting geometry, we need to develop a language
to discuss things cleanly and effectively. This is best done in the language of
categories. There is not much to know about categories to get started; it is just
a very useful language. Like all mathematical languages, category theory comes
with an embedded logic, which allows us to abstract intuitions in settings we know
well to far more general situations.

Our motivation is as follows. We will be creating some new mathematical
objects (such as schemes, and certain kinds of sheaves), and we expect them to
act like objects we have seen before. We could try to nail down precisely what
we mean by “act like”, and what minimal set of things we have to check in order
to verify that they act the way we expect. Fortunately, we don’t have to — other
people have done this before us, by defining key notions, such as abelian categories,
which behave like modules over a ring.

Our general approach will be as follows. I will try to tell what you need to
know, and no more. (This I promise: if I use the word “topoi”, you can shoot me.) I
will begin by telling you things you already know, and describing what is essential
about the examples, in a way that we can abstract a more general definition. We
will then see this definition in less familiar settings, and get comfortable with using
it to solve problems and prove theorems.

For example, we will define the notion of product of schemes. We could just
give a definition of product, but then you should want to know why this precise
definition deserves the name of “product”. As a motivation, we revisit the notion
of product in a situation we know well: (the category of) sets. One way to define
the product of sets U and V is as the set of ordered pairs {(u, v) : u ∈ U, v ∈ V}.
But someone from a different mathematical culture might reasonably define it as
the set of symbols {

u
v : u ∈ U, v ∈ V}. These notions are “obviously the same”.

Better: there is “an obvious bijection between the two”.
This can be made precise by giving a better definition of product, in terms of a

universal property. Given two sets M and N, a product is a set P, along with maps
µ : P → M and ν : P → N, such that for any set P ′ with maps µ ′ : P ′ → M and

15



16 Math 216: Foundations of Algebraic Geometry

ν ′ : P ′ → N, these maps must factor uniquely through P:

(2.1.0.1) P ′

∃!

!!

ν ′

""!!!!!!!!!!!!!!!

µ ′

##"
"
"
"
"
"
"
"
"
"
"
"
"
"

P ν
$$

µ

%%

N

M

(The symbol ∃means “there exists”, and the symbol ! here means “unique”.) Thus
a product is a diagram

P
ν $$

µ

%%

N

M

and not just a set P, although the maps µ and ν are often left implicit.
This definition agrees with the traditional definition, with one twist: there

isn’t just a single product; but any two products come with a unique isomorphism
between them. In other words, the product is unique up to unique isomorphism.
Here is why: if you have a product

P1
ν1 $$

µ1

%%

N

M

and I have a product

P2
ν2 $$

µ2

%%

N

M

then by the universal property of my product (letting (P2, µ2,ν2) play the role of
(P, µ,ν), and (P1, µ1,ν1) play the role of (P ′, µ ′,ν ′) in (2.1.0.1)), there is a unique
map f : P1 → P2 making the appropriate diagram commute (i.e. µ1 = µ2 ◦ f and
ν1 = ν2 ◦ f). Similarly by the universal property of your product, there is a unique
map g : P2 → P1 making the appropriate diagram commute. Now consider the
universal property of my product, this time letting (P2, µ2,ν2) play the role of both
(P, µ,ν) and (P ′, µ ′,ν ′) in (2.1.0.1). There is a unique map h : P2 → P2 such that

P2

h

!!#
#

#
#

#
#

#
ν2

&&!!!!!!!!!!!!!!!

µ2

##"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

P2 ν2

$$

µ2

%%

N

M

commutes. However, I can name two such maps: the identity map idP2
, and g ◦ f.

Thus g ◦ f = idP2
. Similarly, f ◦ g = idP1

. Thus the maps f and g arising from
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the universal property are bijections. In short, there is a unique bijection between
P1 and P2 preserving the “product structure” (the maps to M and N). This gives
us the right to name any such product M × N, since any two such products are
uniquely identified.

This definition has the advantage that it works in many circumstances, and
once we define categories, we will soon see that the above argument applies ver-
batim in any category to show that products, if they exist, are unique up to unique
isomorphism. Even if you haven’t seen the definition of category before, you can
verify that this agrees with your notion of product in some category that you have
seen before (such as the category of vector spaces, where the maps are taken to be
linear maps; or the category of smooth manifolds, where the maps are taken to be
smooth maps).

This is handy even in cases that you understand. For example, one way of
defining the product of two manifolds M and N is to cut them both up into charts,
then take products of charts, then glue them together. But if I cut up the manifolds
in one way, and you cut them up in another, how do we know our resulting mani-
folds are the “same”? We could wave our hands, or make an annoying argument
about refining covers, but instead, we should just show that they are “categorical
products” and hence canonically the “same” (i.e. isomorphic). We will formalize
this argument in §2.3.

Another set of notions we will abstract are categories that “behave like mod-
ules”. We will want to define kernels and cokernels for new notions, and we
should make sure that these notions behave the way we expect them to. This
leads us to the definition of abelian categories, first defined by Grothendieck in his
Tôhoku paper [Gr].

In this chapter, we’ll give an informal introduction to these and related notions,
in the hope of giving just enough familiarity to comfortably use them in practice.

2.2 Categories and functors

We begin with an informal definition of categories and functors.

2.2.1. Categories.
A category consists of a collection of objects, and for each pair of objects, a set

of maps, or morphisms (or arrows or maps), between them. The collection of ob-
jects of a category C are often denoted obj(C), but we will usually denote the collec-
tion also by C. If A,B ∈ C, then the morphisms from A to B are denoted Mor(A,B).
A morphism is often written f : A → B, and A is said to be the source of f, and
B the target of f. (Of course, Mor(A,B) is taken to be disjoint from Mor(A ′, B ′)
unless A = A ′ and B = B ′.)

Morphisms compose as expected: there is a composition Mor(A,B)×Mor(B,C) →
Mor(A,C), and if f ∈ Mor(A,B) and g ∈ Mor(B,C), then their composition is de-
noted g ◦ f. Composition is associative: if f ∈ Mor(A,B), g ∈ Mor(B,C), and
h ∈Mor(C,D), then h ◦ (g ◦ f) = (h ◦ g) ◦ f. For each object A ∈ C, there is always
an identity morphism idA : A → A, such that when you (left- or right-)compose
a morphism with the identity, you get the same morphism. More precisely, if
f : A → B is a morphism, then f ◦ idA = f = idB ◦f. (If you wish, you may check
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that “identity morphisms are unique”: there is only on morphism deserving the
name idA.)

If we have a category, then we have a notion of isomorphism between two
objects (a morphism f : A → B such that there exists some — necessarily unique —
morphism g : B → A, where f◦g and g◦f are the identity on B and A respectively),
and a notion of automorphism of an object (an isomorphism of the object with
itself).

2.2.2. Example. The prototypical example to keep in mind is the category of sets,
denoted Sets. The objects are sets, and the morphisms are maps of sets. (Because
Russell’s paradox shows that there is no set of all sets, we did not say earlier that
there is a set of all objects. But as stated in §1.2, we are deliberately omitting all
set-theoretic issues.)

2.2.3. Example. Another good example is the category Veck of vector spaces over
a given field k. The objects are k-vector spaces, and the morphisms are linear
transformations. (What are the isomorphisms?)

2.2.A. UNIMPORTANT EXERCISE. A category in which each morphism is an iso-
morphism is called a groupoid. (This notion is not important in these notes. The
point of this exercise is to give you some practice with categories, by relating them
to an object you know well.)
(a) A perverse definition of a group is: a groupoid with one object. Make sense of
this.
(b) Describe a groupoid that is not a group.

2.2.B. EXERCISE. If A is an object in a category C, show that the invertible ele-
ments of Mor(A,A) form a group (called the automorphism group of A, denoted
Aut(A)). What are the automorphism groups of the objects in Examples 2.2.2
and 2.2.3? Show that two isomorphic objects have isomorphic automorphism
groups. (For readers with a topological background: if X is a topological space,
then the fundamental groupoid is the category where the objects are points of x,
and the morphisms x → y are paths from x to y, up to homotopy. Then the auto-
morphism group of x0 is the (pointed) fundamental group π1(X, x0). In the case
where X is connected, and π1(X) is not abelian, this illustrates the fact that for
a connected groupoid — whose definition you can guess — the automorphism
groups of the objects are all isomorphic, but not canonically isomorphic.)

2.2.4. Example: abelian groups. The abelian groups, along with group homomor-
phisms, form a category Ab.

2.2.5. Important example: modules over a ring. If A is a ring, then the A-modules form
a category ModA. (This category has additional structure; it will be the prototypi-
cal example of an abelian category, see §2.6.) Taking A = k, we obtain Example 2.2.3;
taking A = Z, we obtain Example 2.2.4.

2.2.6. Example: rings. There is a category Rings, where the objects are rings, and the
morphisms are morphisms of rings (which send 1 to 1 by our conventions, §1.2).

2.2.7. Example: topological spaces. The topological spaces, along with continuous
maps, form a category Top. The isomorphisms are homeomorphisms.
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In all of the above examples, the objects of the categories were in obvious ways
sets with additional structure. This needn’t be the case, as the next example shows.

2.2.8. Example: partially ordered sets. A partially ordered set, or poset, is a set S
along with a binary relation ≥ on S satisfying:

(i) x ≥ x (reflexivity),
(ii) x ≥ y and y ≥ z imply x ≥ z (transitivity), and

(iii) if x ≥ y and y ≥ x then x = y.

A partially ordered set (S,≥) can be interpreted as a category whose objects are
the elements of S, and with a single morphism from x to y if and only if x ≥ y (and
no morphism otherwise).

A trivial example is (S,≥) where x ≥ y if and only if x = y. Another example
is

(2.2.8.1) •

%%
• $$ •

Here there are three objects. The identity morphisms are omitted for convenience,
and the two non-identity morphisms are depicted. A third example is

(2.2.8.2) •

%%

$$ •

%%
• $$ •

Here the “obvious” morphisms are again omitted: the identity morphisms, and
the morphism from the upper left to the lower right. Similarly,

· · · $$ • $$ • $$ •

depicts a partially ordered set, where again, only the “generating morphisms” are
depicted.

2.2.9. Example: the category of subsets of a set, and the category of open sets in a topo-
logical space. If X is a set, then the subsets form a partially ordered set, where the
order is given by inclusion. Similarly, if X is a topological space, then the open sets
form a partially ordered set, where the order is given by inclusion.

2.2.10. Example. A subcategory A of a category B has as its objects some of the
objects of B, and some of the morphisms, such that the morphisms of A include
the identity morphisms of the objects of A, and are closed under composition. (For
example, (2.2.8.1) is in an obvious way a subcategory of (2.2.8.2).)

2.2.11. Functors.
A covariant functor F from a category A to a category B, denoted F : A → B,

is the following data. It is a map of objects F : obj(A) → obj(B), and for each A1,
A2 ∈ A, and morphism m : A1 → A2, a morphism F(m) : F(A1) → F(A2) in B. We
require that F preserves identity morphisms (for A ∈ A, F(idA) = idF(A)), and that
F preserves composition (F(m1 ◦m2) = F(m1) ◦ F(m2)). (You may wish to verify
that covariant functors send isomorphisms to isomorphisms.)
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If F : A → B and G : B → C are covariant functors, then we define a functor
G ◦ F : A → C in the obvious way. Composition of functors is associative in an
evident sense.

2.2.12. Example: a forgetful functor. Consider the functor from the category of
vector spaces (over a field k) Veck to Sets, that associates to each vector space its
underlying set. The functor sends a linear transformation to its underlying map of
sets. This is an example of a forgetful functor, where some additional structure is
forgotten. Another example of a forgetful functor is ModA → Ab from A-modules
to abelian groups, remembering only the abelian group structure of the A-module.

2.2.13. Topological examples. Examples of covariant functors include the funda-
mental group functor π1, which sends a topological space X with choice of a point
x0 ∈ X to a group π1(X, x0) (what are the objects and morphisms of the source cat-
egory?), and the ith homology functor Top → Ab, which sends a topological space
X to its ith homology group Hi(X, Z). The covariance corresponds to the fact that
a (continuous) morphism of pointed topological spaces f : X → Y with f(x0) = y0

induces a map of fundamental groups π1(X, x0) → π1(Y, y0), and similarly for
homology groups.

2.2.14. Example. Suppose A is an object in a category C. Then there is a functor hA :
C → Sets sending B ∈ C to Mor(A,B), and sending f : B1 → B2 to Mor(A,B1) →
Mor(A,B2) described by

[g : A → B1] '→ [f ◦ g : A → B1 → B2].

This seemingly silly functor ends up surprisingly being an important concept, and
will come up repeatedly for us. (Warning only for experts: this is strictly speaking
a lie: why should Mor(A,B) be a set? But as stated in Caution 1.2.1, we will
deliberately ignore these foundational issues, and we will in general pass them
by without comment. Feel free to patch the problem on your time, perhaps by
working in a small category, defined in §2.4.1. But don’t be distracted from our
larger goal.)

2.2.15. Full and faithful functors. A covariant functor F : A → B is faithful if for
all A,A ′ ∈ A, the map MorA(A,A ′) → MorB(F(A), F(A ′)) is injective, and full if
it is surjective. A functor that is full and faithful is fully faithful. A subcategory
i : A → B is a full subcategory if i is full. Thus a subcategory A ′ of A is full if and
only if for all A,B ∈ obj(A ′), MorA ′(A,B) = MorA(A,B).

2.2.16. Definition. A contravariant functor is defined in the same way as a covari-
ant functor, except the arrows switch directions: in the above language, F(A1 →
A2) is now an arrow from F(A2) to F(A1). (Thus F(m2 ◦m1) = F(m1) ◦ F(m2),
not F(m2) ◦ F(m1).)

It is wise to always state whether a functor is covariant or contravariant. If it
is not stated, the functor is often assumed to be covariant.

(Sometimes people describe a contravariant functor C → D as a covariant func-
tor Copp → D, where Copp is the same category as C except that the arrows go in
the opposite direction. Here Copp is said to be the opposite category to C.)
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2.2.17. Linear algebra example. If Veck is the category of k-vector spaces (introduced
in Example 2.2.12), then taking duals gives a contravariant functor ·∨ : Veck →
Veck. Indeed, to each linear transformation f : V → W, we have a dual transforma-
tion f∨ : W∨ → V∨, and (f ◦ g)∨ = g∨ ◦ f∨.

2.2.18. Topological example (cf. Example 2.2.13). The the ith cohomology functor
Hi(·, Z) : Top → Ab is a contravariant functor.

2.2.19. Example. There is a contravariant functor Top → Rings taking a topological
space X to the real-valued continuous functions on X. A morphism of topological
spaces X → Y (a continuous map) induces the pullback map from functions on Y
to maps on X.

2.2.20. Example (cf. Example 2.2.14). Suppose A is an object of a category C. Then
there is a contravariant functor hA : C → Sets sending B ∈ C to Mor(B,A), and
sending the morphism f : B1 → B2 to the morphism Mor(B2, A) → Mor(B1, A)
via

[g : B2 → A] '→ [g ◦ f : B1 → B2 → A].

This example initially looks weird and different, but Examples 2.2.17 and 2.2.19
may be interpreted as special cases; do you see how? What is A in each case?

2.2.21. ! Natural transformations (and natural isomorphisms) of functors, and
equivalences of categories.

(This notion won’t come up in an essential away until at least Chapter 7, so
you shouldn’t read this section until then.) Suppose F and G are two functors from
A to B. A natural transformation of functors F → G is the data of a morphism
ma : F(a) → G(a) for each a ∈ A such that for each f : a → a ′ in A, the diagram

F(a)
F(f) $$

ma

%%

F(a ′)

ma ′

%%
G(a)

G(f)
$$ G(a ′)

commutes. A natural isomorphism of functors is a natural transformation such
that each ma is an isomorphism. The data of functors F : A → B and F ′ : B → A
such that F ◦ F ′ is naturally isomorphic to the identity functor IB on B and F ′ ◦ F
is naturally isomorphic to IA is said to be an equivalence of categories. “Equiv-
alence of categories” is an equivalence relation on categories. The right meaning
of when two categories are “essentially the same” is not isomorphism (a functor
giving bijections of objects and morphisms) but an equivalence. Exercises 2.2.C
and 2.2.D might give you some vague sense of this. Later exercises (for exam-
ple, that “rings” and “affine schemes” are essentially the same, once arrows are
reversed, Exercise 7.3.D) may help too.

Two examples might make this strange concept more comprehensible. The
double dual of a finite-dimensional vector space V is not V , but we learn early to
say that it is canonically isomorphic to V . We can make that precise as follows. Let
f.d.Veck be the category of finite-dimensional vector spaces over k. Note that this
category contains oodles of vector spaces of each dimension.
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2.2.C. EXERCISE. Let ·∨∨ : f.d.Veck → f.d.Veck be the double dual functor from
the category of finite-dimensional vector spaces over k to itself. Show that ·∨∨

is naturally isomorphic to the identity functor on f.d.Veck. (Without the finite-
dimensional hypothesis, we only get a natural transformation of functors from
id to ·∨∨.)

Let V be the category whose objects are kn for each n (there is one vector space
for each n), and whose morphisms are linear transformations. This latter space can
be thought of as vector spaces with bases, and the morphisms are honest matrices.
There is an obvious functor V → f.d.Veck, as each kn is a finite-dimensional vector
space.

2.2.D. EXERCISE. Show that V → f.d.Veck gives an equivalence of categories,
by describing an “inverse” functor. (Recall that we are being cavalier about set-
theoretic assumption, see Caution 1.2.1, so feel free to simultaneously choose bases
for each vector space in f.d.Veck. To make this precise, you will need to use Godel-
Bernays set theory or else replace f.d.Veck with a very similar small category, but
we won’t worry about this.)

2.2.22. !! Aside for experts. Your argument for Exercise 2.2.D will show that (mod-
ulo set-theoretic issues) this definition of equivalence of categories is the same as
another one commonly given: a covariant functor F : A → B is an equivalence of
categories if it is fully faithful and every object of B is isomorphic to an object of
the form F(a) (F is essentially surjective). One can show that such a functor has a
quasiinverse, i.e., that there is a functor G : B → A, which is also an equivalence,
and for which there exist natural isomorphisms G(F(A)) ∼= A and F(G(B)) ∼= B.

2.3 Universal properties determine an object up to unique
isomorphism

Given some category that we come up with, we often will have ways of pro-
ducing new objects from old. In good circumstances, such a definition can be
made using the notion of a universal property. Informally, we wish that there were
an object with some property. We first show that if it exists, then it is essentially
unique, or more precisely, is unique up to unique isomorphism. Then we go about
constructing an example of such an object to show existence.

Explicit constructions are sometimes easier to work with than universal prop-
erties, but with a little practice, universal properties are useful in proving things
quickly and slickly. Indeed, when learning the subject, people often find explicit
construction more appealing, and use them more often in proofs, but as they be-
come more experienced, find universal property arguments more elegant and in-
sightful.

2.3.1. Products were defined by universal property. We have seen one important
example of a universal property argument already in §2.1: products. You should
go back and verify that our discussion there gives a notion of product in any cate-
gory, and shows that products, if they exist, are unique up to unique isomorphism.
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2.3.2. Initial, final, and zero objects. Here are some simple but useful concepts
that will give you practice with universal property arguments. An object of a
category C is an initial object if it has precisely one map to every object. It is a
final object if it has precisely one map from every object. It is a zero object if it is
both an initial object and a final object.

2.3.A. EXERCISE. Show that any two initial objects are uniquely isomorphic. Show
that any two final objects are uniquely isomorphic.

In other words, if an initial object exists, it is unique up to unique isomorphism,
and similarly for final objects. This (partially) justifies the phrase “the initial object”
rather than “an initial object”, and similarly for “the final object” and “the zero
object”.

2.3.B. EXERCISE. What are the initial and final objects in Sets, Rings, and Top (if
they exist)? How about in the two examples of §2.2.9?

2.3.3. Localization of rings and modules. Another important example of a defi-
nition by universal property is the notion of localization of a ring. We first review a
constructive definition, and then reinterpret the notion in terms of universal prop-
erty. A multiplicative subset S of a ring A is a subset closed under multiplica-
tion containing 1. We define a ring S−1A. The elements of S−1A are of the form
a/s where a ∈ A and s ∈ S, and define (a1/s1) × (a2/s2) = (a1a2)/(s1s2), and
(a1/s1) + (a2/s2) = (s2a1 + s1a2)/(s1s2). We say that a1/s1 = a2/s2 if for some
s ∈ S, s(s2a1 − s1a2) = 0. (This implies that S−1A is the 0-ring if 0 ∈ S.) We have
a canonical map A → S−1A given by a '→ a/1.

There are two particularly important flavors of multiplicative subsets. The
first is {1, f, f2, . . . }, where f ∈ A. This localization is denoted Af. The second is
A − p, where p is a prime ideal. This localization S−1A is denoted Ap. (Notational
warning: If p is a prime ideal, then Ap means you’re allowed to divide by elements
not in p. However, if f ∈ A, Af means you’re allowed to divide by f. This can be
confusing. For example, if (f) is a prime ideal, then Af != A(f).)

2.3.C. EXERCISE. Verify that A → S−1A satisfies the following universal property:
S−1A is initial among A-algebras B where every element of S is sent to a unit in
B. (Recall: the data of “an A-algebra B” and “a ring map A → B” the same.)
Translation: any map A → B where every element of S is sent to a unit must factor
uniquely through A → S−1A.

Warning: sometimes localization is first introduced in the special case where
A is an integral domain. In that case, A ↪→ S−1A, but this isn’t always true, as
shown by the following result.

2.3.D. EXERCISE. Show that A → S−1A is injective if and only if S contains no
zero-divisors. (A zero-divisor of a ring A is an element a such that there is a non-
zero element b with ab = 0. The other elements of A are called non-zero-divisors.
For example, a unit is never a zero-divisor. Counter-intuitively, 0 is a zero-divisor
in a ring A if and only if A is not the 0-ring.)

In fact, it is cleaner to define A → S−1A by this universal property, and to
show that it exists, and to use the universal property to check various properties
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S−1A has. Let’s get some practice with this by defining localizations of modules
by universal property. Suppose M is an A-module. We define the A-module map
φ : M → S−1M as being initial among A-module maps M → N such that elements
of S are invertible in N (s × · : N → N is an isomorphism for all s ∈ S). More
precisely, any such map α : M → N factors uniquely through φ:

M
φ $$

α
''$$

$$
$$

$$
$ S−1M

∃!

%%
N

Translation: M → S−1M is universal (initial) among A-module maps from M to
modules that are actually S−1A-modules.

Notice: (i) this determines φ : M → S−1M up to unique isomorphism (you
should think through what this means); (ii) we are defining not only S−1M, but
also the map φ at the same time; and (iii) essentially by definition the A-module
structure on S−1M extends to an S−1A-module structure.

2.3.E. EXERCISE. Show that φ : M → S−1M exists, by constructing something
satisfying the universal property. Hint: define elements of S−1M to be of the form
m/s where m ∈ M and s ∈ S, and m1/s1 = m2/s2 if and only if for some s ∈ S,
s(s2m1−s1m2) = 0. Define the additive structure by (m1/s1)+(m2/s2) = (s2m1+
s1m2)/(s1s2), and the S−1A-module structure (and hence the A-module structure)
is given by (a1/s1) ◦ (m2/s2) = (a1m2)/(s1s2).

2.3.F. EXERCISE. Show that localization commutes with finite products. In other
words, if M1, . . . , Mn are A-modules, describe an isomorphism S−1(M1 × · · · ×
Mn) → S−1M1 × · · · × S−1Mn. Show that localization does not necessarily com-
mute with infinite products. (Hint: (1, 1/2, 1/3, 1/4, . . . ) ∈ Q×Q× · · · .)

2.3.4. Tensor products. Another important example of a universal property con-
struction is the notion of a tensor product of A-modules

⊗A : obj(ModA)× obj(ModA) $$ obj(ModA)

(M,N) % $$ M⊗A N

The subscript A is often suppressed when it is clear from context. The tensor prod-
uct is often defined as follows. Suppose you have two A-modules M and N. Then
elements of the tensor product M⊗AN are finite A-linear combinations of symbols
m ⊗ n (m ∈ M, n ∈ N), subject to relations (m1 + m2) ⊗ n = m1 ⊗ n + m2 ⊗ n,
m ⊗ (n1 + n2) = m ⊗ n1 + m ⊗ n2, a(m ⊗ n) = (am) ⊗ n = m ⊗ (an) (where
a ∈ A, m1,m2 ∈ M, n1, n2 ∈ N). More formally, M ⊗A N is the free A-module
generated by M×N, quotiented by the submodule generated by (m1 +m2)⊗n−
m1 ⊗ n − m2 ⊗ n, m⊗ (n1 + n2) − m⊗ n1 − m⊗ n2, a(m⊗ n) − (am)⊗ n, and
a(m⊗ n) − m⊗ (an) for a ∈ A, m,m1,m2 ∈M, n,n1, n2 ∈ N.

If A is a field k, we recover the tensor product of vector spaces.
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2.3.G. EXERCISE (IF YOU HAVEN’T SEEN TENSOR PRODUCTS BEFORE). Calculate
Z/(10) ⊗Z Z/(12). (This exercise is intended to give some hands-on practice with
tensor products.)

2.3.H. IMPORTANT EXERCISE: RIGHT-EXACTNESS OF · ⊗A N. Show that · ⊗A N
gives a covariant functor ModA → ModA. Show that ·⊗AN is a right-exact functor,
i.e. if

M ′ → M → M ′′ → 0

is an exact sequence of A-modules (which means f : M → M ′′ is surjective, and
M ′ surjects onto the kernel of f; see §2.6), then the induced sequence

M ′ ⊗A N → M⊗A N → M ′′ ⊗A N → 0

is also exact. This exercise is repeated in Exercise 2.6.F, but you may get a lot out of
doing it now. (You will be reminded of the definition of right-exactness in §2.6.4.)

The constructive definition ⊗ is a weird definition, and really the “wrong”
definition. To motivate a better one: notice that there is a natural A-bilinear map
M × N → M ⊗A N. (If M,N, P ∈ ModA, a map f : M × N → P is A-bilinear if
f(m1 + m2, n) = f(m1, n) + f(m2, n), f(m,n1 + n2) = f(m,n1) + f(m,n2), and
f(am,n) = f(m,an) = af(m,n).) Any A-bilinear map M×N → C factors through
the tensor product uniquely: M×N → M⊗A N → C. (Think this through!)

We can take this as the definition of the tensor product as follows. It is an A-
module T along with an A-bilinear map t : M × N → T , such that given any
A-bilinear map t ′ : M × N → T ′, there is a unique A-linear map f : T → T ′ such
that t ′ = f ◦ t.

M×N
t $$

t ′

''&&
&&

&&
&&

& T

∃!f((
T ′

2.3.I. EXERCISE. Show that (T, t : M×N → T) is unique up to unique isomorphism.
Hint: first figure out what “unique up to unique isomorphism” means for such
pairs. Then follow the analogous argument for the product.

In short: given M and N, there is an A-bilinear map t : M × N → M ⊗A N,
unique up to unique isomorphism, defined by the following universal property:
for any A-bilinear map t ′ : M ×N → T ′ there is a unique A-linear map f : M ⊗A

N → T ′ such that t ′ = f ◦ t.
As with all universal property arguments, this argument shows uniqueness

assuming existence. To show existence, we need an explicit construction.

2.3.J. EXERCISE. Show that the construction of §2.3.4 satisfies the universal prop-
erty of tensor product.

The two exercises below are some useful facts about tensor products with
which you should be familiar.

2.3.K. IMPORTANT EXERCISE. (a) If M is an A-module and A → B is a morphism
of rings, show that B ⊗A M naturally has the structure of a B-module. Show that
this describes a functor ModA → ModB.
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(b) If further A → C is a morphism of rings, show that B⊗A C has the structure of
a ring. Hint: multiplication will be given by (b1 ⊗ c1)(b2 ⊗ c2) = (b1b2)⊗ (c1c2).
(Exercise 2.3.T will interpret this construction as a coproduct.)

2.3.L. IMPORTANT EXERCISE. If S is a multiplicative subset of A and M is an A-
module, describe a natural isomorphism (S−1A)⊗AM ∼= S−1M (as S−1A-modules
and as A-modules).

2.3.5. Important Example: Fibered products. (This notion will be essential later.)
Suppose we have morphisms f : X → Z and g : Y → Z (in any category). Then
the fibered product is an object X ×Z Y along with morphisms πX : X ×Z Y → X
and πY : X ×Z Y → Y, where the two compositions f ◦ πX, g ◦ πY : X ×Z Y → Z
agree, such that given any object W with maps to X and Y (whose compositions to
Z agree), these maps factor through some unique W → X×Z Y:

W
∃!

''

))'
'

'
'

'
'

'
'

'
'

'
'

'
'

'
'

**(((((((((((((((((((

X×Z Y

πX

%%

πY

$$ Y

g

%%
X

f $$ Z

(Warning: the definition of the fibered product depends on f and g, even though
they are omitted from the notation X×Z Y.)

By the usual universal property argument, if it exists, it is unique up to unique
isomorphism. (You should think this through until it is clear to you.) Thus the use
of the phrase “the fibered product” (rather than “a fibered product”) is reasonable,
and we should reasonably be allowed to give it the name X×Z Y. We know what
maps to it are: they are precisely maps to X and maps to Y that agree as maps to Z.

Depending on your religion, the diagram

X×Z Y

πX

%%

πY

$$ Y

g

%%
X

f $$ Z

is called a fibered/pullback/Cartesian diagram/square (six possibilities).
The right way to interpret the notion of fibered product is first to think about

what it means in the category of sets.

2.3.M. EXERCISE. Show that in Sets,

X×Z Y = {(x ∈ X, y ∈ Y) : f(x) = g(y)}.

More precisely, show that the right side, equipped with its evident maps to X and
Y, satisfies the universal property of the fibered product. (This will help you build
intuition for fibered products.)

2.3.N. EXERCISE. If X is a topological space, show that fibered products always
exist in the category of open sets of X, by describing what a fibered product is.
(Hint: it has a one-word description.)
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2.3.O. EXERCISE. If Z is the final object in a category C, and X, Y ∈ C, show that
“X ×Z Y = X × Y”: “the” fibered product over Z is uniquely isomorphic to “the”
product. (This is an exercise about unwinding the definition.)

2.3.P. USEFUL EXERCISE: TOWERS OF FIBER DIAGRAMS ARE FIBER DIAGRAMS. If
the two squares in the following commutative diagram are fiber diagrams, show
that the “outside rectangle” (involving U, V , Y, and Z) is also a fiber diagram.

U $$

%%

V

%%
W $$

%%

X

%%
Y $$ Z

2.3.Q. EXERCISE. Given X → Y → Z, show that there is a natural morphism
X ×Y X → X ×Z X, assuming that both fibered products exist. (This is trivial once
you figure out what it is saying. The point of this exercise is to see why it is trivial.)

2.3.R. USEFUL EXERCISE: THE MAGIC DIAGRAM. Suppose we are given mor-
phisms X1, X2 → Y and Y → Z. Describe the natural morphism X1 ×Y X2 →
X1 ×Z X2. Show that the following diagram is a fibered square.

X1 ×Y X2
$$

%%

X1 ×Z X2

%%
Y $$ Y ×Z Y

This diagram is surprisingly incredibly useful — so useful that we will call it the
magic diagram.

2.3.6. Coproducts. Define coproduct in a category by reversing all the arrows in
the definition of product. Define fibered coproduct in a category by reversing all
the arrows in the definition of fibered product.

2.3.S. EXERCISE. Show that coproduct for Sets is disjoint union. (This is why we
use the notation

∐
for disjoint union.)

2.3.T. EXERCISE. Suppose A → B,C are two ring morphisms, so in particular
B and C are A-modules. Recall (Exercise 2.3.K) that B ⊗A C has a ring structure.
Show that there is a natural morphism B → B⊗AC given by b '→ b⊗1. (This is not
necessarily an inclusion, see Exercise 2.3.G.) Similarly, there is a natural morphism
C → B⊗A C. Show that this gives a fibered coproduct on rings, i.e. that

B⊗A C C++

B

,,

A++

,,

satisfies the universal property of fibered coproduct.
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2.3.7. Monomorphisms and epimorphisms.

2.3.8. Definition. A morphism f : X → Y is a monomorphism if any two mor-
phisms g1, g2 : Z → X such that f ◦ g1 = f ◦ g2 must satisfy g1 = g2. In other
words, for any other object Z, the natural map Hom(Z,X) → Hom(Z, Y) is an in-
jection. This a generalization of an injection of sets. In other words, there is at most
one way of filling in the dotted arrow so that the following diagram commutes.

Z

≤1

%% --)
)

)
)

)
)

)

X
f

$$ Y.

Intuitively, it is the categorical version of an injective map, and indeed this notion
generalizes the familiar notion of injective maps of sets. (The reason we don’t use
the word “injective” is that in some contexts, “injective” will have an intuitive
meaning which may not agree with “monomorphism”. This is also the case with
“epimorphism” vs. “surjective”.)

2.3.U. EXERCISE. Show that the composition of two monomorphisms is a monomor-
phism.

2.3.V. EXERCISE. Prove that a morphism X → Y is a monomorphism if and only
if the induced morphism X → X ×Y X is an isomorphism. We may then take
this as the definition of monomorphism. (Monomorphisms aren’t central to future
discussions, although they will come up again. This exercise is just good practice.)

2.3.W. EXERCISE. Suppose Y → Z is a monomorphism, and X1, X2 → Y are two
morphisms. Show that X1×Y X2 and X1×Z X2 are canonically isomorphic. We will
use this later when talking about fibered products. (Hint: for any object V , give a
natural bijection between maps from V to the first and maps from V to the second.
It is also possible to use the magic diagram, Exercise 2.3.R.)

The notion of an epimorphism is “dual” to the definition of monomorphism,
where all the arrows are reversed. This concept will not be central for us, although
it turns up in the definition of an abelian category. Intuitively, it is the categorical
version of a surjective map.

2.3.9. Representable functors and Yoneda’s lemma. Much of our discussion
about universal properties can be cleanly expressed in terms of representable func-
tors, under the rubric of “Yoneda’s Lemma”. Yoneda’s lemma is an easy fact stated
in a complicated way. Informally speaking, you can essentially recover an object
in a category by knowing the maps into it. For example, we have seen that the
data of maps to X × Y are naturally (canonically) the data of maps to X and to Y.
Indeed, we now taken this as the definition of X× Y.

Recall Example 2.2.20. Suppose A is an object of category C. For any object
C ∈ C, we have a set of morphisms Mor(C,A). If we have a morphism f : B → C,
we get a map of sets

(2.3.9.1) Mor(C,A) → Mor(B,A),
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by composition: given a map from C to A, we get a map from B to A by precom-
posing with f : B → C. Hence this gives a contravariant functor hA : C → Sets.
Yoneda’s Lemma states that the functor hA determines A up to unique isomor-
phism. More precisely:

2.3.X. IMPORTANT EXERCISE THAT EVERYONE SHOULD DO ONCE IN THEIR LIFE

(YONEDA’S LEMMA). Given two objects A and A ′ in a category C, and bijections

(2.3.9.2) iC : Mor(C,A) → Mor(C,A ′)

that commute with the maps (2.3.9.1). Prove iC is induced from a unique isomor-
phism A → A ′. (Hint: This sounds hard, but it really is not. This statement is so
general that there are really only a couple of things that you could possibly try. For
example, if you’re hoping to find an isomorphism A → A ′, where will you find it?
Well, you are looking for an element Mor(A,A ′). So just plug in C = A to (2.3.9.2),
and see where the identity goes. You will quickly find the desired morphism; show
that it is an isomorphism, then show that it is unique.)

There is an analogous statement with the arrows reversed, where instead of
maps into A, you think of maps from A. The role of the contravariant functor hA

of Example 2.2.20 is played by the covariant functor hA of Example 2.2.14. Because
the proof is the same (with the arrows reversed), you needn’t think it through.

Yoneda’s lemma properly refers to a more general statement. Although it
looks more complicated, it is no harder to prove.

2.3.Y. ! EXERCISE.
(a) Suppose A and B are objects in a category C. Give a bijection between the nat-
ural transformations hA → hB of covariant functors C → Sets (see Example 2.2.14
for the definition) and the morphisms B → A.
(b) State and prove the corresponding fact for contravariant functors hA (see Exer-
cise 2.2.20). Remark: A contravariant functor F from C to Sets is said to be repre-
sentable if there is a natural isomorphism

ξ : F
∼ $$ hA .

Thus the representing object A is determined up to unique isomorphism by the
pair (F, ξ). There is a similar definition for covariant functors. (We will revisit this
in §7.6, and this problem will appear again as Exercise 7.6.B.)
(c) Yoneda’s lemma. Suppose F is a covariant functor C → Sets, and A ∈ C. Give
a bijection between the natural transformations hA → F and F(A). State the corre-
sponding fact for contravariant functors.

In fancy terms, Yoneda’s lemma states the following. Given a category C, we
can produce a new category, called the functor category of C, where the objects are
contravariant functors C → Sets, and the morphisms are natural transformations
of such functors. We have a functor (which we can usefully call h) from C to its
functor category, which sends A to hA. Yoneda’s Lemma states that this is a fully
faithful functor, called the Yoneda embedding. (Fully faithful functors were defined
in §2.2.15.)

2.4 Limits and colimits
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Limits and colimits provide two important examples defined by universal
properties. They generalize a number of familiar constructions. I’ll give the defi-
nition first, and then show you why it is familiar. For example, fractions will be
motivating examples of colimits (Exercise 2.4.B(a)), and the p-adic numbers (Ex-
ample 2.4.3) will be motivating examples of limits.

2.4.1. Limits. We say that a category is a small category if the objects and the
morphisms are sets. (This is a technical condition intended only for experts.) Sup-
pose I is any small category, and C is any category. Then a functor F : I → C (i.e.
with an object Ai ∈ C for each element i ∈ I, and appropriate commuting mor-
phisms dictated by I) is said to be a diagram indexed by I. We call I an index
category. Our index categories will be partially ordered sets (Example 2.2.8), in
which in particular there is at most one morphism between any two objects. (But
other examples are sometimes useful.) For example, if ! is the category

•

%%

$$ •

%%
• $$ •

and A is a category, then a functor ! → A is precisely the data of a commuting
square in A.

Then the limit is an object lim←−I
Ai of C along with morphisms fj : lim←−I

Ai →
Aj such that if m : j → k is a morphism in I, then

lim←−I
Ai

fj

%%

fk

''$$
$$

$$
$$

$

Aj
F(m) $$ Ak

commutes, and this object and maps to each Ai are universal (final) with respect to
this property. More precisely, given any other object W along with maps gi : W →
Ai commuting with the F(m) (if m : i → j is a morphism in I, then gj = F(m) ◦gj),
then there is a unique map g : W → lim←−I

Ai so that gi = fi ◦ g for all i. (In some
cases, the limit is sometimes called the inverse limit or projective limit. We won’t
use this language.) By the usual universal property argument, if the limit exists, it
is unique up to unique isomorphism.

2.4.2. Examples: products. For example, if I is the partially ordered set

•

%%
• $$ •

we obtain the fibered product.
If I is

• •
we obtain the product.

If I is a set (i.e. the only morphisms are the identity maps), then the limit is
called the product of the Ai, and is denoted

∏
i Ai. The special case where I has

two elements is the example of the previous paragraph.
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If I has an initial object e, then Ae is the limit, and in particular the limit
always exists.

2.4.3. Example: the p-adic numbers. The p-adic numbers, Zp, are often described
informally (and somewhat unnaturally) as being of the form Zp = ? + ?p + ?p2 +
?p3 + · · · . They are an example of a limit in the category of rings:

Zp

..**
**

**
**

**+++++++++++++++++

//,,,,,,,,,,,,,,,,,,,,,,,,,,,

· · · $$ Z/p3 $$ Z/p2 $$ Z/p

Limits do not always exist for any index category I. However, you can often
easily check that limits exist if the objects of your category can be interpreted as
sets with additional structure, and arbitrary products exist (respecting the set-like
structure).

2.4.A. IMPORTANT EXERCISE. Show that in the category Sets,

{

(ai)i∈I ∈
∏

i

Ai : F(m)(ai) = aj for all m ∈MorI(i, j) ∈Mor(I)

}

,

along with the obvious projection maps to each Ai, is the limit lim←−I
Ai.

This clearly also works in the category ModA of A-modules, and its specializa-
tions such as Veck and Ab.

From this point of view, 2 + 3p + 2p2 + · · · ∈ Zp can be understood as the
sequence (2, 2 + 3p, 2 + 3p + 2p2, . . . ).

2.4.4. Colimits. More immediately relevant for us will be the dual (arrow-
reversed version) of the notion of limit (or inverse limit). We just flip all the arrows
in that definition, and get the notion of a colimit. Again, if it exists, it is unique up
to unique isomorphism. (In some cases, the colimit is sometimes called the direct
limit, inductive limit, or injective limit. We won’t use this language. I prefer us-
ing limit/colimit in analogy with kernel/cokernel and product/coproduct. This
is more than analogy, as kernels and products may be interpreted as limits, and
similarly with cokernels and coproducts. Also, I remember that kernels “map to”,
and cokernels are “mapped to”, which reminds me that a limit maps to all the ob-
jects in the big commutative diagram indexed by I; and a colimit has a map from
all the objects.)

Even though we have just flipped the arrows, colimits behave quite differently
from limits.

2.4.5. Example. The group 5−∞ Z of rational numbers whose denominators are
powers of 5 is a colimit lim−→ 5−iZ. More precisely, 5−∞ Z is the colimit of

Z $$ 5−1Z $$ 5−2Z $$ · · ·

The colimit over an index set I is called the coproduct, denoted
∐

i Ai, and is
the dual (arrow-reversed) notion to the product.
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2.4.B. EXERCISE. (a) Interpret the statement “Q = lim−→
1
nZ”. (b) Interpret the

union of the some subsets of a given set as a colimit. (Dually, the intersection can
be interpreted as a limit.) The objects of the category in question are the subsets of
the given set.

Colimits don’t always exist, but there are two useful large classes of examples
for which they do.

2.4.6. Definition. A nonempty partially ordered set (S,≥) is filtered (or is said to
be a filtered set) if for each x, y ∈ S, there is a z such that x ≥ z and y ≥ z. More
generally, a category I is filtered if:

(i) for each x, y ∈ I, there is a z ∈ I and arrows x → z and y → z, and
(ii) for every two arrows u, v : x → y, there is an arrow w : y → z such that

w ◦ u = w ◦ v.

(Other terminologies are also commonly used, such as “directed partially ordered
set” and “filtered index category”, respectively.)

2.4.C. EXERCISE. Suppose I is filtered. (We will be almost exclusively using the
case where I is a filtered set.) Show that any diagram in Sets indexed by I has the
following as a colimit:

{

a ∈
∐

i∈I

Ai

}

/ (ai ∈ Ai) ∼ (f(ai) ∈ Aj) for every f : Ai → Aj in the diagram.

This idea applies to many categories whose objects can be interpreted as sets
with additional structure (such as abelian groups, A-modules, groups, etc.). For
example, in Example 2.4.5, each element of the colimit is an element of something
upstairs, but you can’t say in advance what it is an element of. For example, 17/125
is an element of the 5−3Z (or 5−4Z, or later ones), but not 5−2Z. More generally,
in the category of A-modules ModA, each element a of the colimit lim−→ Ai can be
interpreted as an element of some a ∈ Ai. The element a ∈ lim−→Ai is 0 if there is
some m : i → j such that F(m)(a) = 0 (i.e. if it becomes 0 “later in the diagram”).
Furthermore, two elements interpreted as ai ∈ Ai and aj ∈ Aj are the same if
there are some arrows m : i → k and n : j → k such that F(m)(ai) = F(n)(aj), i.e.
if they become the same “later in the diagram”. To add two elements interpreted
as ai ∈ Ai and aj ∈ Aj, we choose arrows m : i → k and n : j → k, and then
interpret their sum as F(m)(ai) + F(n)(aj).

2.4.D. EXERCISE. Verify that the A-module described above is indeed the colimit.

2.4.E. USEFUL EXERCISE (LOCALIZATION AS COLIMIT). Generalize Exercise 2.4.B(a)
to interpret localization of a ring as a colimit over a filtered set: suppose S is a mul-
tiplicative set of A, and interpret S−1A = lim−→

1
sA where the limit is over s ∈ S.

A variant of this construction works without the filtered condition, if you have
another means of “connecting elements in different objects of your diagram”. For
example:

2.4.F. EXERCISE: COLIMITS OF A-MODULES WITHOUT THE FILTERED CONDITION.
Suppose you are given a diagram of A-modules indexed by I: F : I → ModA,
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where we let Ai := F(i). Show that the colimit is ⊕i∈IAi modulo the relations
aj − F(m)(ai) for every m : i → j in I (i.e. for every arrow in the diagram).

The following exercise shows that you have to be careful to remember which
category you are working in.

2.4.G. UNIMPORTANT EXERCISE. Consider the filtered set of abelian groups
p−nZp/Zp. Show that this system has colimit Qp/Zp in the category of abelian
groups, and the colimit 0 in the category of finite abelian groups. Here Qp is the
fraction field of Zp, which can be interpreted as ∪p−nZp.

2.4.7. Summary. One useful thing to informally keep in mind is the following. In
a category where the objects are “set-like”, an element of a limit can be thought of
as an element in each object in the diagram, that are “compatible” (Exercise 2.4.A).
And an element of a colimit can be thought of (“has a representative that is”) an ele-
ment of a single object in the diagram (Exercise 2.4.C). Even though the definitions
of limit and colimit are the same, just with arrows reversed, these interpretations
are quite different.

2.5 Adjoints

We next come to an very useful construction closely related to universal prop-
erties. Just as a universal property “essentially” (up to unique isomorphism) de-
termines an object in a category (assuming such an object exists), “adjoints” es-
sentially determine a functor (again, assuming it exists). Two covariant functors
F : A → B and G : B → A are adjoint if there is a natural bijection for all A ∈ A
and B ∈ B

(2.5.0.1) τAB : MorB(F(A), B) → MorA(A,G(B)).

We say that (F,G) form an adjoint pair, and that F is left-adjoint to G (and G is
right-adjoint to F). By “natural” we mean the following. For all f : A → A ′ in A,
we require

(2.5.0.2) MorB(F(A ′), B)
Ff∗

$$

τA ′B

%%

MorB(F(A), B)

τAB

%%
MorA(A ′, G(B))

f∗
$$ MorA(A,G(B))

to commute, and for all g : B → B ′ in B we want a similar commutative diagram to
commute. (Here f∗ is the map induced by f : A → A ′, and Ff∗ is the map induced
by Ff : F(A) → F(A ′).)

2.5.A. EXERCISE. Write down what this diagram should be. (Hint: do it by
extending diagram (2.5.0.2) above.)

2.5.B. EXERCISE. Show that the map τAB (2.5.0.1) is given as follows. For each A
there is a map ηA : A → GF(A) so that for any g : F(A) → B, the corresponding



34 Math 216: Foundations of Algebraic Geometry

f : A → G(B) is given by the composition

A
ηA $$ GF(A)

Gg $$ G(B).

Similarly, there is a map εB : FG(B) → B for each B so that for any f : A → G(B),
the corresponding map g : F(A) → B is given by the composition

F(A)
Ff $$ FG(B)

εB $$ B.

Here is an example of an adjoint pair.

2.5.C. EXERCISE. Suppose M, N, and P are A-modules. Describe a bijection
HomA(M ⊗A N,P) ↔ HomA(M, HomA(N,P)). (Hint: try to use the universal
property.)

2.5.D. EXERCISE. Show that ·⊗A N and HomA(N, ·) are adjoint functors.

2.5.1. ! Fancier remarks we won’t use. You can check that the left adjoint deter-
mines the right adjoint up to unique natural isomorphism, and vice versa, by a
universal property argument. The maps ηA and εB of Exercise 2.5.B are called
the unit and counit of the adjunction. This leads to a different characterization of
adjunction. Suppose functors F : A → B and G : B → A are given, along with
natural transformations ε : FG → id and η : id → GF with the property that
Gε ◦ ηG = idG (for each B ∈ B, the composition of ηG(B) : G(B) → GFG(B) and
G(εB) : GFG(B) → G(B) is the identity) and ηF ◦ Fε = idF. Then you can check
that F is left adjoint to G. These facts aren’t hard to check, so if you want to use
them, you should verify everything for yourself.

2.5.2. Examples from other fields. For those familiar with representation theory:
Frobenius reciprocity may be understood in terms of adjoints. Suppose V is a
finite-dimensional representation of a finite group G, and W is a representation of

a subgroup H < G. Then induction and restriction are an adjoint pair (IndG
H, ResG

H)
between the category of G-modules and the category of H-modules.

Topologists’ favorite adjoint pair may be the suspension functor and the loop
space functor.

2.5.3. Example: groupification. Here is another motivating example: getting
an abelian group from an abelian semigroup. An abelian semigroup is just like
an abelian group, except you don’t require an inverse. One example is the non-
negative integers 0, 1, 2, . . . under addition. Another is the positive integers un-
der multiplication 1, 2, . . . . From an abelian semigroup, you can create an abelian
group. Here is a formalization of that notion. If S is a semigroup, then its groupi-
fication is a map of semigroups π : S → G such that G is a group, and any other
map of semigroups from S to a group G ′ factors uniquely through G.

S $$

π

!!-
--

--
--

- G

∃!

%%
G ′
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2.5.E. EXERCISE. Construct groupification H from the category of abelian semi-
groups to the category of abelian groups. (One possibility of a construction: given
an abelian semigroup S, the elements of its groupification H(S) are (a, b), which
you may think of as a − b, with the equivalence that (a, b) ∼ (c, d) if a + d + e =
b + c + e for some e ∈ S. Describe addition in this group, and show that it satisfies
the properties of an abelian group. Describe the semigroup map S → H(S).) Let F
be the forgetful morphism from the category of abelian groups Ab to the category
of abelian semigroups. Show that H is left-adjoint to F.

(Here is the general idea for experts: We have a full subcategory of a category.
We want to “project” from the category to the subcategory. We have

Morcategory(S,H) = Morsubcategory(G,H)

automatically; thus we are describing the left adjoint to the forgetful functor. How
the argument worked: we constructed something which was in the smaller cate-
gory, which automatically satisfies the universal property.)

2.5.F. EXERCISE. Show that if a semigroup is already a group then the identity
morphism is the groupification (“the semigroup is groupified by itself”), by the
universal property. (Perhaps better: the identity morphism is a groupification —
but we don’t want tie ourselves up in knots over categorical semantics.)

2.5.G. EXERCISE. The purpose of this exercise is to give you some practice with
“adjoints of forgetful functors”, the means by which we get groups from semi-
groups, and sheaves from presheaves. Suppose A is a ring, and S is a multiplica-
tive subset. Then S−1A-modules are a fully faithful subcategory of the category
of A-modules (meaning: the objects of the first category are a subset of the objects
of the second; and the morphisms between any two objects of the second that are
secretly objects of the first are just the morphisms from the first). Then M → S−1M
can be interpreted as an adjoint to the forgetful functor S−1M → M. Figure out
the correct statement (e.g. which is the left adjoint?), and prove that it holds.

(Here is the larger story. Every S−1A-module is an A-module, and this is an
injective map, so we have a covariant forgetful functor F : ModS−1A → ModA. In
fact this is a fully faithful functor: it is injective on objects, and the morphisms
between any two S−1A-modules as A-modules are just the same when they are con-
sidered as S−1A-modules. Then there is a functor G : ModA → ModS−1A, which
might reasonably be called “localization with respect to S”, which is left-adjoint
to the forgetful functor. Translation: If M is an A-module, and N is an S−1A-
module, then Mor(GM,N) (morphisms as S−1A-modules, which are the same as
morphisms as A-modules) are in natural bijection with Mor(M,FN) (morphisms
as A-modules).)

Here is a table of adjoints that will come up for us.
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situation category category left-adjoint right-adjoint
A B F : A → B G : B → A

A-modules (Ex. 2.5.D) ·⊗A N HomA(N, ·)
ring maps ·⊗A B forgetful
A → B ModA ModB (extension (restriction

of scalars) of scalars)
(pre)sheaves on a presheaves sheaves on X
topological space on X sheafification forgetful
X (Ex. 3.4.K)
(semi)groups (§2.5.3) semigroups groups groupification forgetful
sheaves, sheaves on Y sheaves on X f−1 f∗
f : X → Y (Ex. 3.6.B)
sheaves of abelian
groups or O-modules, sheaves on U sheaves on Y f! f−1

open immersions
f : U ↪→ Y (Ex. 3.6.H)
quasicoherent sheaves, quasicoherent quasicoherent f∗ f∗
f : X → Y (Prop. 17.3.5) sheaves on Y sheaves on X

Other examples will also come up, such as the adjoint pair (∼, Γ•) between
graded modules over a graded ring, and quasicoherent sheaves on the correspond-
ing projective scheme (§16.4).

2.5.4. Useful comment for experts. One last comment only for people who have seen
adjoints before: If (F,G) is an adjoint pair of functors, then F commutes with col-
imits, and G commutes with limits. Also, limits commute with limits and colimits
commute with colimits. We will prove these facts (and a little more) in §2.6.10.

2.6 Kernels, cokernels, and exact sequences: A brief introduction
to abelian categories

Since learning linear algebra, you have been familiar with the notions and be-
haviors of kernels, cokernels, etc. Later in your life you saw them in the category of
abelian groups, and later still in the category of A-modules. Each of these notions
generalizes the previous one.

We will soon define some new categories (certain sheaves) that will have familiar-
looking behavior, reminiscent of that of modules over a ring. The notions of ker-
nels, cokernels, images, and more will make sense, and they will behave “the way
we expect” from our experience with modules. This can be made precise through
the notion of an abelian category. Abelian categories are the right general setting
in which one can do “homological algebra”, in which notions of kernel, cokernel,
and so on are used, and one can work with complexes and exact sequences.

We will see enough to motivate the definitions that we will see in general:
monomorphism (and subobject), epimorphism, kernel, cokernel, and image. But
in these notes we will avoid having to show that they behave “the way we expect”
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in a general abelian category because the examples we will see are directly inter-
pretable in terms of modules over rings. In particular, it is not worth memorizing
the definition of abelian category.

Two central examples of an abelian category are the category Ab of abelian
groups, and the category ModA of A-modules. The first is a special case of the
second (just take A = Z). As we give the definitions, you should verify that ModA

is an abelian category.
We first define the notion of additive category. We will use it only as a stepping

stone to the notion of an abelian category.

2.6.1. Definition. A category C is said to be additive if it satisfies the following
properties.

Ad1. For each A,B ∈ C, Mor(A,B) is an abelian group, such that composition
of morphisms distributes over addition. (You should think about what
this means — it translates to two distinct statements).

Ad2. C has a zero object, denoted 0. (This is an object that is simultaneously an
initial object and a final object, Definition 2.3.2.)

Ad3. It has products of two objects (a product A × B for any pair of objects),
and hence by induction, products of any finite number of objects.

In an additive category, the morphisms are often called homomorphisms, and
Mor is denoted by Hom. In fact, this notation Hom is a good indication that you’re
working in an additive category. A functor between additive categories preserving
the additive structure of Hom, is called an additive functor.

2.6.2. Remarks. It is a consequence of the definition of additive category that finite
direct products are also finite direct sums (coproducts) — the details don’t matter
to us. The symbol ⊕ is used for this notion. Also, it is quick to show that additive
functors send zero objects to zero objects (show that a is a 0-object if and only if
ida = 0a; additive functors preserve both id and 0), and preserves products.

One motivation for the name 0-object is that the 0-morphism in the abelian
group Hom(A,B) is the composition A → 0 → B.

Real (or complex) Banach spaces are an example of an additive category. The
category of free A-modules is another. The category of A-modules ModA is also an
example, but it has even more structure, which we now formalize as an example
of an abelian category.

2.6.3. Definition. Let C be an additive category. A kernel of a morphism
f : B → C is a map i : A → B such that f ◦ i = 0, and that is universal with respect
to this property. Diagramatically:

Z

--)
)

)
)

)
)

)

0

&&..............

∃!

%%
A

i $$

0

00B
f $$ C

(Note that the kernel is not just an object; it is a morphism of an object to B.) Hence
it is unique up to unique isomorphism by universal property nonsense. A coker-
nel is defined dually by reversing the arrows — do this yourself. The kernel of
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f : B → C is the limit (§2.4) of the diagram

0

%%
B

f $$ C

and similarly the cokernel is a colimit.
If i : A → B is a monomorphism, then we say that A is a subobject of B, where

the map i is implicit. Dually, there is the notion of quotient object, defined dually
to subobject.

An abelian category is an additive category satisfying three additional prop-
erties.

(1) Every map has a kernel and cokernel.
(2) Every monomorphism is the kernel of its cokernel.
(3) Every epimorphism is the cokernel of its kernel.

It is a non-obvious (and imprecisely stated) fact that every property you want
to be true about kernels, cokernels, etc. follows from these three. (Warning: in
part of the literature, additional hypotheses are imposed as part of the definition.)

The image of a morphism f : A → B is defined as im(f) = ker(coker f). It is
the unique factorization

A
epi.

$$ im(f)
mono. $$ B

It is the cokernel of the kernel, and the kernel of the cokernel. The reader may
want to verify this as an exercise. It is unique up to unique isomorphism. The
cokernel of a monomorphism is called the quotient.

We will leave the foundations of abelian categories untouched. The key thing
to remember is that if you understand kernels, cokernels, images and so on in
the category of modules over a ring ModA, you can manipulate objects in any
abelian category. This is made precise by Freyd-Mitchell Embedding Theorem.
(The Freyd-Mitchell Embedding Theorem: If A is an abelian category such that
Hom(a, a ′) is a set for all a, a ′ ∈ A, then there is a ring A and an exact, fully
faithful functor from A into ModA, which embeds A as a full subcategory. A proof
is sketched in [W, §1.6], and references to a complete proof are given there. The
moral is that to prove something about a diagram in some abelian category, we
may pretend that it is a diagram of modules over some ring, and we may then
“diagram-chase” elements. Moreover, any fact about kernels, cokernels, and so on
that holds in ModA holds in any abelian category.) However, the abelian categories
we will come across will obviously be related to modules, and our intuition will
clearly carry over, so we needn’t invoke a theorem whose proof we haven’t read.
For example, we’ll show that sheaves of abelian groups on a topological space
X form an abelian category (§3.5), and the interpretation in terms of “compatible
germs” will connect notions of kernels, cokernels etc. of sheaves of abelian groups
to the corresponding notions of abelian groups.

2.6.4. Complexes, exactness, and homology.
We say a sequence

(2.6.4.1) A
f $$ B

g $$ C
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is a complex if g ◦ f = 0, and is exact if ker g = im f. An exact sequence with
five terms, the first and last of which are 0, is a short exact sequence. Note that

A
f $$ B $$ C $$ 0 being exact is equivalent to describing C as a cokernel

of f (with a similar statement for 0 $$ A $$ B
g $$ C ).

If you would like practice in playing with these notions before thinking about
homology, you can prove the Snake Lemma (stated in Example 2.7.5, with a stronger
version in Exercise 2.7.B), or the Five Lemma (stated in Example 2.7.6, with a
stronger version in Exercise 2.7.C).

If (2.6.4.1) is a complex, then its homology (often denoted H) is ker g / im f. We
say that the ker g are the cycles, and im f are the boundaries (so homology is “cy-
cles mod boundaries”). If the complex is indexed in decreasing order, the indices
are often written as subscripts, and Hi is the homology at Ai+1 → Ai → Ai−1. If
the complex is indexed in increasing order, the indices are often written as super-
scripts, and the homology Hi at Ai−1 → Ai → Ai+1 is often called cohomology.

An exact sequence

(2.6.4.2) A• : · · · $$ Ai−1
fi−1

$$ Ai
fi

$$ Ai+1
fi+1

$$ · · ·

can be “factored” into short exact sequences

0 $$ ker fi $$ Ai $$ ker fi+1 $$ 0

which is helpful in proving facts about long exact sequences by reducing them to
facts about short exact sequences.

More generally, if (2.6.4.2) is assumed only to be a complex, then it can be
“factored” into short exact sequences.

(2.6.4.3) 0 $$ ker fi $$ Ai $$ im fi $$ 0

0 $$ im fi−1 $$ ker fi $$ Hi(A•) $$ 0

2.6.A. EXERCISE. Describe exact sequences

(2.6.4.4) 0 $$ im fi $$ Ai+1 $$ coker fi $$ 0

0 $$ Hi(A•) $$ coker fi−1 $$ im fi $$ 0

(These are somehow dual to (2.6.4.3). In fact in some mirror universe this might
have been given as the standard definition of homology.)

2.6.B. EXERCISE. Suppose

0
d0

$$ A1
d1

$$ · · · dn−1
$$ An dn

$$$$ 0

is a complex of finite-dimensional k-vector spaces (often called A• for short). Show
that

∑
(−1)i dim Ai =

∑
(−1)ihi(A•). (Recall that hi(A•) = dim ker(di)/ im(di−1).)

In particular, if A• is exact, then
∑

(−1)i dim Ai = 0. (If you haven’t dealt much
with cohomology, this will give you some practice.)



40 Math 216: Foundations of Algebraic Geometry

2.6.C. IMPORTANT EXERCISE. Suppose C is an abelian category. Define the cate-
gory ComC as follows. The objects are infinite complexes

A• : · · · $$ Ai−1
fi−1

$$ Ai
fi

$$ Ai+1
fi+1

$$ · · ·

in C, and the morphisms A• → B• are commuting diagrams

(2.6.4.5) A• :

%%

· · · $$ Ai−1

%%

fi−1
$$ Ai

fi
$$

%%

Ai+1
fi+1

$$

%%

· · ·

B• : · · · $$ Bi−1
gi−1

$$ Bi
gi

$$ Bi+1
gi+1

$$ · · ·

Show that ComC is an abelian category. (Feel free to deal with the special case
ModA.)

2.6.D. IMPORTANT EXERCISE. Show that (2.6.4.5) induces a map of homology
H(Ai) → H(Bi). (Again, feel free to deal with the special case ModA.)

We will later define when two maps of complexes are homotopic (§23.1), and
show that homotopic maps induce isomorphisms on cohomology (Exercise 23.1.A),
but we won’t need that any time soon.

2.6.5. Theorem (Long exact sequence). — A short exact sequence of complexes

0• :

%%

· · · $$ 0 $$

%%

0 $$

%%

0 $$

%%

· · ·

A• :

%%

· · · $$ Ai−1

%%

fi−1
$$ Ai

fi
$$

%%

Ai+1
fi+1

$$

%%

· · ·

B• :

%%

· · · $$ Bi−1

%%

gi−1

$$ Bi
gi

$$

%%

Bi+1
gi+1

$$

%%

· · ·

C• :

%%

· · · $$ Ci−1
hi−1

$$

%%

Ci
hi

$$

%%

Ci+1
hi+1

$$

%%

· · ·

0• : · · · $$ 0 $$ 0 $$ 0 $$ · · ·

induces a long exact sequence in cohomology

. . . $$ Hi−1(C•) $$

Hi(A•) $$ Hi(B•) $$ Hi(C•) $$

Hi+1(A•) $$ · · ·

(This requires a definition of the connecting homomorphism Hi−1(C•) → Hi(A•),
which is natural in an appropriate sense.) For a concise proof in the case of com-
plexes of modules, and a discussion of how to show this in general, see [W, §1.3]. It
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will also come out of our discussion of spectral sequences as well (again, in the cat-
egory of modules over a ring), see Exercise 2.7.E, but this is a somewhat perverse
way of proving it.

2.6.6. Exactness of functors. If F : A → B is a covariant additive functor from one
abelian category to another, we say that F is right-exact if the exactness of

A ′ $$ A $$ A ′′ $$ 0,

in A implies that

F(A ′) $$ F(A) $$ F(A ′′) $$ 0

is also exact. Dually, we say that F is left-exact if the exactness of

0 $$ A ′ $$ A $$ A ′′ implies

0 $$ F(A ′) $$ F(A) $$ F(A ′′) is exact.

A contravariant functor is left-exact if the exactness of

A ′ $$ A $$ A ′′ $$ 0 implies

0 $$ F(A ′′) $$ F(A) $$ F(A ′) is exact.

The reader should be able to deduce what it means for a contravariant functor to
be right-exact.

A covariant or contravariant functor is exact if it is both left-exact and right-
exact.

2.6.E. EXERCISE. Suppose F is an exact functor. Show that applying F to an exact
sequence preserves exactness. For example, if F is covariant, and A ′ → A → A ′′

is exact, then FA ′ → FA → FA ′′ is exact. (This will be generalized in Exer-
cise 2.6.H(c).)

2.6.F. EXERCISE. Suppose A is a ring, S ⊂ A is a multiplicative subset, and M is
an A-module.
(a) Show that localization of A-modules ModA → ModS−1A is an exact covariant
functor.
(b) Show that · ⊗M is a right-exact covariant functor ModA → ModA. (This is a
repeat of Exercise 2.3.H.)
(c) Show that Hom(M, ·) is a left-exact covariant functor ModA → ModA.
(d) Show that Hom(·,M) is a left-exact contravariant functor ModA → ModA.

2.6.G. EXERCISE. Suppose M is a finitely presented A-module: M has a finite
number of generators, and with these generators it has a finite number of relations;
or usefully equivalently, fits in an exact sequence

(2.6.6.1) A⊕q → A⊕p → M → 0

Use (2.6.6.1) and the left-exactness of Hom to describe an isomorphism

S−1 HomA(M,N) ∼= HomS−1A(S−1M,S−1N).
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(You might be able to interpret this in light of a variant of Exercise 2.6.H below, for
left-exact contravariant functors rather than right-exact covariant functors.)

2.6.7. ! Two useful facts in homological algebra.
We now come to two (sets of) facts I wish I had learned as a child, as they

would have saved me lots of grief. They encapsulate what is best and worst of
abstract nonsense. The statements are so general as to be nonintuitive. The proofs
are very short. They generalize some specific behavior it is easy to prove in an
ad hoc basis. Once they are second nature to you, many subtle facts will be come
obvious to you as special cases. And you will see that they will get used (implicitly
or explicitly) repeatedly.

2.6.8. ! Interaction of homology and (right/left-)exact functors.
You might wait to prove this until you learn about cohomology in Chapter 20,

when it will first be used in a serious way.

2.6.H. IMPORTANT EXERCISE (THE FHHF THEOREM). This result can take you far,
and perhaps for that reason it has sometimes been called the fernbahnhof (Fern-
baHnHoF) theorem. Suppose F : A → B is a covariant functor of abelian categories.
Suppose C• is a complex in A.

(a) (F right-exact yields FH• $$ H•F ) If F is right-exact, describe a natu-
ral morphism FH• → H•F. (More precisely, for each i, the left side is F
applied to the cohomology at piece i of C•, while the right side is the
cohomology at piece i of FC•.)

(b) (F left-exact yields FH• H•F++ ) If F is right-exact, describe a natural
morphism FH• → H•F. (More precisely, for each i, the left side is F ap-
plied to the cohomology at piece i of C•, while the right side is the coho-
mology at piece i of FC•.)

(c) (F exact yields FH• ++ $$ H• F) If F is exact, show that the morphisms of
(a) and (b) are inverses and thus isomorphisms.

Hint for (a): use Cp dp
$$ Cp+1 $$ coker dp $$ 0 to give an isomorphism

F coker dp ∼= coker Fdp. Then use the first line of (2.6.4.4) to give a surjection

F im dp $$ $$ im Fdp . Then use the second line of (2.6.4.4) to give the desired

map FHpC• $$ HpFC• . While you are at it, you may as well describe a map

for the fourth member of the quartet {ker, coker, im, H, }: F ker dp $$ ker Fdp .

2.6.9. If this makes your head spin, you may prefer to think of it in the following
specific case, where both A and B are the category of A-modules, and F is ·⊗N for
some fixed N-module. Your argument in this case will translate without change
to yield a solution to Exercise 2.6.H(a) and (c) in general. If ⊗N is exact, then N is
called a flat A-module. (The notion of flatness will turn out to be very important,
and is discussed in detail in Chapter 24.)

For example, localization is exact, so S−1A is a flat A-algebra for all multiplica-
tive sets S. Thus taking cohomology of a complex of A-modules commutes with
localization — something you could verify directly.

2.6.10. ! Interaction of adjoints, (co)limits, and (left- and right-) exactness.
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A surprising number of arguments boil down the statement:
Limits commute with limits and right-adjoints. In particular, because kernels are

limits, both right-adjoints and limits are left exact.
as well as its dual:
Colimits commute with colimits and left-adjoints. In particular, because cokernels are

colimits, both left-adjoints and colimits are left exact.
These statements were promised in §2.5.4. The latter has a useful extension:
In an abelian category, colimits over filtered index categories are exact.
(“Filtered” was defined in §2.4.6.) If you want to use these statements (for

example, later in these notes), you will have to prove them. Let’s now make them
precise.

2.6.I. EXERCISE (KERNELS COMMUTE WITH LIMITS). Suppose C is an abelian
category, and a : I → C and b : I → C are two diagrams in C indexed by I. For
convenience, let Ai = a(i) and Bi = b(i) be the objects in those two diagrams. Let
hi : Ai → Bi be maps commuting with the maps in the diagram. (Translation: h
is a natural transformation of functors a → b, see §2.2.21.) Then the ker hi form
another diagram in I indexed by I. Describe a natural isomorphism lim←−ker hi

∼=
ker(lim←−Ai → lim←−Bi).

2.6.J. EXERCISE. Make sense of the statement that “limits commute with limits” in
a general category, and prove it. (Hint: recall that kernels are limits. The previous
exercise should be a corollary of this one.)

2.6.11. Proposition (right-adjoints commute with limits). — Suppose (F : C →
D, G : D → C) is a pair of adjoint functors. If A = lim←−Ai is a limit in D of a diagram
indexed by I, then GA = lim←−GAi (with the corresponding maps GA → GAi) is a limit
in C.

Proof. We must show that GA → GAi satisfies the universal property of limits.
Suppose we have maps W → GAi commuting with the maps of I. We wish to
show that there exists a unique W → GA extending the W → GAi. By adjointness
of F and G, we can restate this as: Suppose we have maps FW → Ai commuting
with the maps of I. We wish to show that there exists a unique FW → A extending
the FW → Ai. But this is precisely the universal property of the limit. !

Of course, the dual statements to Exercise 2.6.J and Proposition 2.6.11 hold by
the dual arguments.

If F and G are additive functors between abelian categories, and (F,G) is an
adjoint pair, then (as kernels are limits and cokernels are colimits) G is left-exact
and F is right-exact.

2.6.K. EXERCISE. Show that in an abelian category, colimits over filtered index
categories are exact. Right-exactness follows from the above discussion, so the
issue is left-exactness. (Possible hint: After you show that localization is exact,
Exercise 2.6.F(a), or sheafification is exact, Exercise 3.5.D, in a hands on way, you
will be easily able to prove this. Conversely, this exercise will quickly imply those
two.)
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2.6.L. EXERCISE. Show that filtered colimits commute with homology. Hint: use
the FHHF Theorem (Exercise 2.6.H), and the previous Exercise.

In light of Exercise 2.6.L, you may want to think about how limits (and colim-
its) commute with homology in general, and which way maps go; The statement of
the FHHF Theorem should suggest the answer. (Are limits analogous to left-exact
functors, or right-exact functors?) We won’t directly use this insight.

2.6.12. ! Dreaming of derived functors. When you see a left-exact functor, you
should always dream that you are seeing the end of a long exact sequence. If

0 → M ′ → M → M ′′ → 0

is an exact sequence in abelian category A, and F : A → B is a left-exact functor,
then

0 → FM ′ → FM → FM ′′

is exact, and you should always dream that it should continue in some natural
way. For example, the next term should depend only on M ′, call it R1FM ′, and if it
is zero, then FM → FM ′′ is an epimorphism. This remark holds true for left-exact
and contravariant functors too. In good cases, such a continuation exists, and is
incredibly useful. We will discuss this in Chapter 23.

2.7 ! Spectral sequences

Spectral sequences are a powerful book-keeping tool for proving things in-
volving complicated commutative diagrams. They were introduced by Leray in
the 1940’s at the same time as he introduced sheaves. They have a reputation for
being abstruse and difficult. It has been suggested that the name ‘spectral’ was
given because, like spectres, spectral sequences are terrifying, evil, and danger-
ous. I have heard no one disagree with this interpretation, which is perhaps not
surprising since I just made it up.

Nonetheless, the goal of this section is to tell you enough that you can use
spectral sequences without hesitation or fear, and why you shouldn’t be frightened
when they come up in a seminar. What is perhaps different in this presentation
is that we will use spectral sequence to prove things that you may have already
seen, and that you can prove easily in other ways. This will allow you to get
some hands-on experience for how to use them. We will also see them only in the
special case of double complexes (which is the version by far the most often used
in algebraic geometry), and not in the general form usually presented (filtered
complexes, exact couples, etc.). See [W, Ch. 5] for more detailed information if
you wish.

You should not read this section when you are reading the rest of Chapter 2.
Instead, you should read it just before you need it for the first time. When you
finally do read this section, you must do the exercises.

For concreteness, we work in the category Veck of vector spaces over a field
k. However, everything we say will apply in any abelian category, such as the
category ModA of A-modules.

2.7.1. Double complexes.
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A double complex is a collection of vector spaces Ep,q (p, q ∈ Z), and “right-
ward” morphisms dp,q

→ : Ep,q → Ep,q+1 and “upward” morphisms dp,q
↑ : Ep,q →

Ep+1,q. In the superscript, the first entry denotes the row number, and the second
entry denotes the column number, in keeping with the convention for matrices,
but opposite to how the (x, y)-plane is labeled. The subscript is meant to suggest
the direction of the arrows. We will always write these as d→ and d↑ and ignore
the superscripts. We require that d→ and d↑ satisfying (a) d2

→ = 0, (b) d2
↑ = 0,

and one more condition: (c) either d→d↑ = d↑d→ (all the squares commute) or
d→d↑ + d↑d→ = 0 (they all anticommute). Both come up in nature, and you can
switch from one to the other by replacing dp,q

↑ with (−1)qdp,q
↑ . So I will assume

that all the squares anticommute, but that you know how to turn the commuting
case into this one. (You will see that there is no difference in the recipe, basically
because the image and kernel of a homomorphism f equal the image and kernel
respectively of −f.)

Ep+1,q
dp+1,q

→ $$ Ep+1,q+1

anticommutes

Ep,q

dp,q

↑

,,

dp,q
→ $$ Ep,q+1

dp,q+1

↑

,,

There are variations on this definition, where for example the vertical arrows
go downwards, or some different subset of the Ep,q are required to be zero, but I
will leave these straightforward variations to you.

From the double complex we construct a corresponding (single) complex E•

with Ek = ⊕iE
i,k−i, with d = d→ + d↑ . In other words, when there is a single

superscript k, we mean a sum of the kth antidiagonal of the double complex. The
single complex is sometimes called the total complex. Note that d2 = (d→ +d↑)

2 =
d2

→ + (d→d↑ + d↑d→ ) + d2
↑ = 0, so E• is indeed a complex.

The cohomology of the single complex is sometimes called the hypercoho-
mology of the double complex. We will instead use the phrase “cohomology of
the double complex”.

Our initial goal will be to find the cohomology of the double complex. You
will see later that we secretly also have other goals.

A spectral sequence is a recipe for computing some information about the
cohomology of the double complex. I won’t yet give the full recipe. Surprisingly,
this fragmentary bit of information is sufficent to prove lots of things.

2.7.2. Approximate Definition. A spectral sequence with rightward orientation
is a sequence of tables or pages →Ep,q

0 , →Ep,q
1 , →Ep,q

2 , . . . (p, q ∈ Z), where →Ep,q
0 =

Ep,q, along with a differential

→dp,q
r : →Ep,q

r → →Ep+r,q−r+1
r

with →dp,q
r ◦ →dp,q

r = 0, and with an isomorphism of the cohomology of →dr at

→Ep,q
r (i.e. ker →dp,q

r / im →dp−r,q+r−1
r ) with →Ep,q

r+1.
The orientation indicates that our 0th differential is the rightward one: d0 =

d→ . The left subscript “→” is usually omitted.
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The order of the morphisms is best understood visually:

(2.7.2.1) •

•

•

•
d0

$$

d1

,,
d2

11/
/
/
/
/
/
/
/
/
/
/
/
/
/

d3

22'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

•

(the morphisms each apply to different pages). Notice that the map always is
“degree 1” in the grading of the single complex E•.

The actual definition describes what E•,•
r and d•,•

r really are, in terms of E•,•.
We will describe d0, d1, and d2 below, and you should for now take on faith that
this sequence continues in some natural way.

Note that Ep,q
r is always a subquotient of the corresponding term on the 0th

page Ep,q
0 = Ep,q. In particular, if Ep,q = 0, then Ep,q

r = 0 for all r, so Ep,q
r = 0

unless p, q ∈ Z≥0.
Suppose now that E•,• is a first quadrant double complex, i.e. Ep,q = 0 for p <

0 or q < 0. Then for any fixed p, q, once r is sufficiently large, Ep,q
r+1 is computed

from (E•,•
r , dr) using the complex

0

Ep,q
r

dp,q
r

330
0
0
0
0
0
0
0
0
0
0
0
0

0

dp+r,q−r−1
r

330
0
0
0
0
0
0
0
0
0
0
0
0

and thus we have canonical isomorphisms

Ep,q
r

∼= Ep,q
r+1

∼= Ep,q
r+2

∼= · · ·

We denote this module Ep,q
∞ . The same idea works in other circumstances, for

example if the double complex is only nonzero in a finite number of rows — Ep,q =
0 unless p0 < p < pq. This will come up for example in the long exact sequence
and mapping cone discussion (Exercises 2.7.E and 2.7.F below).

We now describe the first few pages of the spectral sequence explicitly. As
stated above, the differential d0 on E•,•

0 = E•,• is defined to be d→ . The rows are
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complexes:
• $$ • $$ •

The 0th page E0: • $$ • $$ •

• $$ • $$ •
and so E1 is just the table of cohomologies of the rows. You should check that

there are now vertical maps dp,q
1 : Ep,q

1 → Ep+1,q
1 of the row cohomology groups,

induced by d↑ , and that these make the columns into complexes. (This is essen-
tially the fact that a map of complexes induces a map on homology.) We have
“used up the horizontal morphisms”, but “the vertical differentials live on”.

• • •

The 1st page E1: •

,,

•

,,

•

,,

•

,,

•

,,

•

,,

We take cohomology of d1 on E1, giving us a new table, Ep,q
2 . It turns out that

there are natural morphisms from each entry to the entry two above and one to the
left, and that the composition of these two is 0. (It is a very worthwhile exercise
to work out how this natural morphism d2 should be defined. Your argument
may be reminiscent of the connecting homomorphism in the Snake Lemma 2.7.5
or in the long exact sequence in cohomology arising from a short exact sequence
of complexes, Exercise 2.6.C. This is no coincidence.)

• • •

The 2nd page E2: • • •

• •

111
1
1
1
1
1
1
1
1
1
1
1
1
1
1

•

111
1
1
1
1
1
1
1
1
1
1
1
1
1
1

This is the beginning of a pattern.
Then it is a theorem that there is a filtration of Hk(E•) by Ep,q

∞ where p+q = k.
(We can’t yet state it as an official Theorem because we haven’t precisely defined
the pages and differentials in the spectral sequence.) More precisely, there is a
filtration

(2.7.2.2) E0,k
∞

! "E
1,k−1
∞ $$ ?

! "E
2,k−2
∞ $$ · · · ! " E0,k

$$ Hk(E•)

where the quotients are displayed above each inclusion. (I always forget which
way the quotients are supposed to go, i.e. whether Ek,0 or E0,k is the subobject.
One way of remembering it is by having some idea of how the result is proved.)

We say that the spectral sequence →E•,•
• converges to H•(E•). We often say

that →E•,•
2 (or any other page) abuts to H•(E•).
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Although the filtration gives only partial information about H•(E•), some-
times one can find H•(E•) precisely. One example is if all Ei,k−i

∞ are zero, or if
all but one of them are zero (e.g. if Ei,k−i

r has precisely one non-zero row or col-
umn, in which case one says that the spectral sequence collapses at the rth step,
although we will not use this term). Another example is in the category of vector
spaces over a field, in which case we can find the dimension of Hk(E•). Also, in
lucky circumstances, E2 (or some other small page) already equals E∞ .

2.7.A. EXERCISE: INFORMATION FROM THE SECOND PAGE. Show that H0(E•) =
E0,0

∞ = E0,0
2 and

0 $$ E0,1
2

$$ H1(E•) $$ E1,0
2

d1,0
2 $$ E0,2

2
$$ H2(E•).

2.7.3. The other orientation.
You may have observed that we could as well have done everything in the

opposite direction, i.e. reversing the roles of horizontal and vertical morphisms.
Then the sequences of arrows giving the spectral sequence would look like this
(compare to (2.7.2.1)).

(2.7.3.1) •

•

,,

$$

&&..............

4422222222222222222222222 •

•

•

This spectral sequence is denoted ↑E
•,•
• (“with the upwards orientation”). Then

we would again get pieces of a filtration of H•(E•) (where we have to be a bit
careful with the order with which ↑E

p,q
∞ corresponds to the subquotients — it in

the opposite order to that of (2.7.2.2) for →Ep,q
∞ ). Warning: in general there is no

isomorphism between →Ep,q
∞ and ↑E

p,q
∞ .

In fact, this observation that we can start with either the horizontal or vertical
maps was our secret goal all along. Both algorithms compute information about
the same thing (H•(E•)), and usually we don’t care about the final answer — we
often care about the answer we get in one way, and we get at it by doing the
spectral sequence in the other way.

2.7.4. Examples.
We are now ready to see how this is useful. The moral of these examples is

the following. In the past, you may have proved various facts involving various
sorts of diagrams, by chasing elements around. Now, you will just plug them into
a spectral sequence, and let the spectral sequence machinery do your chasing for
you.



September 10, 2010. 49

2.7.5. Example: Proving the Snake Lemma. Consider the diagram

0 $$ D $$ E $$ F $$ 0

0 $$ A $$

α

,,

B $$

β

,,

C

γ

,,

$$ 0

where the rows are exact in the middle (at B, C, D, G, H, I) and the squares com-
mute. (Normally the Snake Lemma is described with the vertical arrows pointing
downwards, but I want to fit this into my spectral sequence conventions.) We wish
to show that there is an exact sequence

(2.7.5.1) 0 → kerα→ kerβ→ kerγ→ cokerα→ cokerβ→ cokerγ→ 0.

We plug this into our spectral sequence machinery. We first compute the co-
homology using the rightwards orientation, i.e. using the order (2.7.2.1). Then be-
cause the rows are exact, Ep,q

1 = 0, so the spectral sequence has already converged:
Ep,q

∞ = 0.
We next compute this “0” in another way, by computing the spectral sequence

using the upwards orientation. Then ↑E
•,•
1 (with its differentials) is:

0 $$ cokerα $$ cokerβ $$ cokerγ $$ 0

0 $$ kerα $$ kerβ $$ kerγ $$ 0.

Then ↑E
•,•
2 is of the form:

0

&&33333333333333 0

&&..............

0

&&.............. ??

&&33333333333333 ?

&&.............. ? 0

0 ? ?

&&.............. ??

&&33333333333333 0

0 0

We see that after ↑E2, all the terms will stabilize except for the double-question-
marks — all maps to and from the single question marks are to and from 0-entries.
And after ↑E3, even these two double-quesion-mark terms will stabilize. But in
the end our complex must be the 0 complex. This means that in ↑E2, all the entries
must be zero, except for the two double-question-marks, and these two must be
isomorphic. This means that 0 → kerα→ kerβ→ kerγ and cokerα→ cokerβ→
cokerγ → 0 are both exact (that comes from the vanishing of the single-question-
marks), and

coker(kerβ→ kerγ) ∼= ker(cokerα→ cokerβ)

is an isomorphism (that comes from the equality of the double-question-marks).
Taken together, we have proved the exactness of (2.7.5.1), and hence the Snake
Lemma! (Notice: in the end we didn’t really care about the double complex. We
just used it as a prop to prove the snake lemma.)
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Spectral sequences make it easy to see how to generalize results further. For
example, if A → B is no longer assumed to be injective, how would the conclusion
change?

2.7.B. UNIMPORTANT EXERCISE (GRAFTING EXACT SEQUENCES, A WEAKER VER-
SION OF THE SNAKE LEMMA). Extend the snake lemma as follows. Suppose we
have a commuting diagram

0 $$ X ′ $$ Y ′ $$ Z ′ $$ A ′ $$ · · ·

· · · $$ W $$

,,

X $$

a

,,

Y $$

b

,,

Z $$

c

,,

0.

,,

where the top and bottom rows are exact. Show that the top and bottom rows can
be ”grafted together” to an exact sequence

· · · $$ W $$ ker a $$ ker b $$ ker c

$$ coker a $$ coker b $$ coker c $$ A ′ $$ · · · .

2.7.6. Example: the Five Lemma. Suppose

(2.7.6.1) F $$ G $$ H $$ I $$ J

A $$

α

,,

B $$

β

,,

C

γ

,,

$$ D $$

δ

,,

E

ε

,,

where the rows are exact and the squares commute.
Suppose α, β, δ, ε are isomorphisms. We will show that γ is an isomorphism.
We first compute the cohomology of the total complex using the rightwards

orientation (2.7.2.1). We choose this because we see that we will get lots of zeros.
Then →E•,•

1 looks like this:

? 0 0 0 ?

?

,,

0

,,

0

,,

0

,,

?

,,

Then →E2 looks similar, and the sequence will converge by E2, as we will never get
any arrows between two non-zero entries in a table thereafter. We can’t conclude
that the cohomology of the total complex vanishes, but we can note that it van-
ishes in all but four degrees — and most important, it vanishes in the two degrees
corresponding to the entries C and H (the source and target of γ).

We next compute this using the upwards orientation (2.7.3.1). Then ↑E1 looks
like this:

0 $$ 0 $$ ? $$ 0 $$ 0

0 $$ 0 $$ ? $$ 0 $$ 0
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and the spectral sequence converges at this step. We wish to show that those two
question marks are zero. But they are precisely the cohomology groups of the total
complex that we just showed were zero — so we’re done!

The best way to become comfortable with this sort of argument is to try it
out yourself several times, and realize that it really is easy. So you should do the
following exercises!

2.7.C. EXERCISE: THE SUBTLE FIVE LEMMA. By looking at the spectral sequence
proof of the Five Lemma above, prove a subtler version of the Five Lemma, where
one of the isomorphisms can instead just be required to be an injection, and an-
other can instead just be required to be a surjection. (I am deliberately not telling
you which ones, so you can see how the spectral sequence is telling you how to
improve the result.)

2.7.D. EXERCISE. If β and δ (in (2.7.6.1)) are injective, and α is surjective, show
that γ is injective. Give the dual statement (whose proof is of course essentially
the same).

2.7.E. EXERCISE. Use spectral sequences to show that a short exact sequence of
complexes gives a long exact sequence in cohomology (Exercise 2.6.C).

2.7.F. EXERCISE (THE MAPPING CONE). Suppose µ : A• → B• is a morphism of
complexes. Suppose C• is the single complex associated to the double complex
A• → B•. (C• is called the mapping cone of µ.) Show that there is a long exact
sequence of complexes:

· · · → Hi−1(C•) → Hi(A•) → Hi(B•) → Hi(C•) → Hi+1(A•) → · · · .

(There is a slight notational ambiguity here; depending on how you index your
double complex, your long exact sequence might look slightly different.) In partic-
ular, we will use the fact that µ induces an isomorphism on cohomology if and only
if the mapping cone is exact. (We won’t use it until the proof of Theorem 20.2.4.)

The Grothendieck (or composition of functor) spectral sequence (Exercise 23.3.D)
will be an important example of a spectral sequence that specializes in a number
of useful ways.

You are now ready to go out into the world and use spectral sequences to your
heart’s content!

2.7.7. !! Complete definition of the spectral sequence, and proof.
You should most definitely not read this section any time soon after reading

the introduction to spectral sequences above. Instead, flip quickly through it to
convince yourself that nothing fancy is involved.

We consider the rightwards orientation. The upwards orientation is of course
a trivial variation of this.

2.7.8. Goals. We wish to describe the pages and differentials of the spectral se-
quence explicitly, and prove that they behave the way we said they did. More
precisely, we wish to:

(a) describe Ep,q
r ,

(b) verify that Hk(E•) is filtered by Ep,k−p
∞ as in (2.7.2.2),

(c) describe dr and verify that d2
r = 0, and
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(d) verify that Ep,q
r+1 is given by cohomology using dr.

Before tacking these goals, you can impress your friends by giving this short
description of the pages and differentials of the spectral sequence. We say that
an element of E•,• is a (p, q)-strip if it is an element of ⊕l≥0Ep+l,q−l (see Fig. 2.1).
Its non-zero entries lie on a semi-infinite antidiagonal starting with position (p, q).
We say that the (p, q)-entry (the projection to Ep,q) is the leading term of the (p, q)-

strip. Let Sp,q ⊂ E•,• be the submodule of all the (p, q)-strips. Clearly Sp,q ⊂
Ep+q, and S0,k = Ek.

. . . 0 0 0 0

0 ∗p+2,q−2 0 0 0

0 0 ∗p+1,q−1 0 0

0 0 0 ∗p,q 0

0 0 0 0 0p−1,q+1

FIGURE 2.1. A (p, q)-strip (in Sp,q ⊂ Ep+q). Clearly S0,k = Ek.

Note that the differential d = d↑ +d→ sends a (p, q)-strip x to a (p, q+ 1)-strip
dx. If dx is furthermore a (p + r, q + r + 1)-strip (r ∈ Z≥0), we say that x is an

r-closed (p, q)-strip. We denote the set of such Sp,q
r (so for example Sp,q

0 = Sp,q,

and S0,k
0 = Ek). An element of Sp,q

r may be depicted as:

. . .
$$ ?

∗p+2,q−2

,,

$$ 0

∗p+1,q−1

,,

$$ 0

∗p,q $$

,,

0

2.7.9. Preliminary definition of Ep,q
r . We are now ready to give a first definition of

Ep,q
r , which by construction should be a subquotient of Ep,q = Ep,q

0 . We describe
it as such by describing two submodules Yp,q

r ⊂ Xp,q
r ⊂ Ep,q, and defining Ep,q

r =
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Xp,q
r /Yp,q

r . Let Xp,q
r be those elements of Ep,q that are the leading terms of r-closed

(p, q)-strips. Note that by definition, d sends (r − 1)-closed Sp−(r−1),q+(r−1)−1-
strips to (p, q)-strips. Let Yp,q

r be the leading ((p, q))-terms of the differential d of
(r−1)-closed (p−(r−1), q+(r−1)−1)-strips (where the differential is considered
as a (p, q)-strip).

We next give the definition of the differential dr of such an element x ∈ Xp,q
r .

We take any r-closed (p, q)-strip with leading term x. Its differential d is a (p +
r, q−r+1)-strip, and we take its leading term. The choice of the r-closed (p, q)-strip
means that this is not a well-defined element of Ep,q. But it is well-defined modulo
the (r − 1)-closed (p + 1, r + 1)-strips, and hence gives a map Ep,q

r → Ep+r,q−r+1
r .

This definition is fairly short, but not much fun to work with, so we will forget
it, and instead dive into a snakes’ nest of subscripts and superscripts.

We begin with making some quick but important observations about (p, q)-
strips.

2.7.G. EXERCISE. Verify the following.

(a) Sp,q = Sp+1,q−1 ⊕ Ep,q.
(b) (Any closed (p, q)-strip is r-closed for all r.) Any element x of Sp,q = Sp,q

0

that is a cycle (i.e. dx = 0) is automatically in Sp,q
r for all r. For example,

this holds when x is a boundary (i.e. of the form dy).
(c) Show that for fixed p, q,

Sp,q
0 ⊃ Sp,q

1 ⊃ · · · ⊃ Sp,q
r ⊃ · · ·

stabilizes for r / 0 (i.e. Sp,q
r = Sp,q

r+1 = · · · ). Denote the stabilized mod-
ule Sp,q

∞ . Show Sp,q
∞ is the set of closed (p, q)-strips (those (p, q)-strips

annihilated by d, i.e. the cycles). In particular, S0,k
r is the set of cycles in

Ek.

2.7.10. Defining Ep,q
r .

Define Xp,q
r := Sp,q

r /Sp+1,q−1
r−1 and Y := dS

p−(r−1),q+(r−1)−1
r−1 /Sp+1,q−1

r−1 .
Then Yp,q

r ⊂ Xp,q
r by Exercise 2.7.G(b). We define

(2.7.10.1) Ep,q
r =

Xp,q
r

Yp,q
r

=
Sp,q

r

dS
p−(r−1),q+(r−1)−1
r−1 + Sp+1,q−1

r−1

We have completed Goal 2.7.8(a).
You are welcome to verify that these definitions of Xp,q

r and Yp,q
r and hence

Ep,q
r agree with the earlier ones of §2.7.9 (and in particular Xp,q

r and Yp,q
r are both

submodules of Ep,q), but we won’t need this fact.

2.7.H. EXERCISE: Ep,k−p
∞ GIVES SUBQUOTIENTS OF Hk(E•). By Exercise 2.7.G(c),

Ep,q
r stabilizes as r → ∞. For r / 0, interpret Sp,q

r /dS
p−(r−1),q+(r−1)−1
r−1 as the

cycles in Sp,q
∞ ⊂ Ep+q modulo those boundary elements of dEp+q−1 contained in

Sp,q
∞ . Finally, show that Hk(E•) is indeed filtered as described in (2.7.2.2).

We have completed Goal 2.7.8(b).

2.7.11. Definition of dr.
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We shall see that the map dr : Ep,q
r → Ep+r,q−r+1 is just induced by our

differential d. Notice that d sends r-closed (p, q)-strips Sp,q
r to (p + r, q − r + 1)-

strips Sp+r,q−r+1, by the definition “r-closed”. By Exercise 2.7.G(b), the image lies

in Sp+r,q−r+1
r .

2.7.I. EXERCISE. Verify that d sends

dS
p−(r−1),q+(r−1)−1
r−1 +Sp+1,q−1

r−1 → dS
(p+r)−(r−1),(q−r+1)+(r−1)−1
r−1 +S

(p+r)+1,(q−r+1)−1
r−1 .

(The first term on the left goes to 0 from d2 = 0, and the second term on the left
goes to the first term on the right.)

Thus we may define

dr : Ep,q
r =

Sp,q
r

dS
p−(r−1),q+(r−1)−1
r−1 + Sp+1,q−1

r−1

→

Sp+r,q−r+1
r

dSp+1,q−1
r−1 + Sp+r+1,q−r

r−1

= Ep+r,q−r+1
r

and clearly d2
r = 0 (as we may interpret it as taking an element of Sp,q

r and apply-
ing d twice).

We have accomplished Goal 2.7.8(c).

2.7.12. Verifying that the cohomology of dr at Ep,q
r is Ep,q

r+1. We are left with the
unpleasant job of verifying that the cohomology of

(2.7.12.1)
Sp−r,q+r−1

r

dSp−2r+1,q−3
r−1 +Sp−r+1,q+r−2

r−1

dr $$ Sp,q
r

dSp−r+1,q+r−2
r−1 +Sp+1,q−1

r−1

dr $$ Sp+r,q−r+1
r

dSp+1,q−1
r−1 +Sp+r+1,q−r

r−1

is naturally identified with

Sp,q
r+1

dSp−r,q+r−1
r + Sp+1,q−1

r

and this will conclude our final Goal 2.7.8(d).
We begin by understanding the kernel of the right map of (2.7.12.1). Suppose

a ∈ Sp,q
r is mapped to 0. This means that da = db + c, where b ∈ Sp+1,q−1

r−1 .

If u = a − b, then u ∈ Sp,q, while du = c ∈ Sp+r+1,q−r
r−1 ⊂ Sp+r+1,q−r, from

which u is r-closed, i.e. u ∈ Sp,q
r+1. Hence a = b + u + x where dx = 0, from

which a − x = b + c ∈ Sp+1,q−1
r−1 + Sp,q

r+1. However, x ∈ Sp,q, so x ∈ Sp,q
r+1 by

Exercise 2.7.G(b). Thus a ∈ Sp+1,q−1
r−1 +Sp,q

r+1. Conversely, any a ∈ Sp+1,q−1
r−1 +Sp,q

r+1

satisfies

da ∈ dSp+r,q−r+1
r−1 + dSp,q

r+1 ⊂ dSp+r,q−r+1
r−1 + Sp+r+1,q−r

r−1
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(using dSp,q
r+1 ⊂ Sp+r+1,q−r

0 and Exercise 2.7.G(b)) so any such a is indeed in the
kernel of

Sp,q
r →

Sp+r,q−r+1
r

dSp+1,q−1
r−1 + Sp+r+1,q−r

r−1

.

Hence the kernel of the right map of (2.7.12.1) is

ker =
Sp+1,q−1

r−1 + Sp,q
r+1

dSp−r+1,q+r−2
r−1 + Sp+1,q−1

r−1

.

Next, the image of the left map of (2.7.12.1) is immediately

im =
dSp−r,q+r−1

r + dSp−r+1,q+r−2
r−1 + Sp+1,q−1

r−1

dSp−r+1,q+r−2
r−1 + Sp+1,q−1

r−1

=
dSp−r,q+r−1

r + Sp+1,q−1
r−1

dSp−r+1,q+r−2
r−1 + Sp+1,q−1

r−1

(as Sp−r,q−r+1
r contains Sp−r+1,q+r−1

r−1 ).
Thus the cohomology of (2.7.12.1) is

ker / im =
Sp+1,q−1

r−1 + Sp,q
r+1

dSp−r,q+r−1
r + Sp+1,q−1

r−1

=
Sp,q

r+1

Sp,q
r+1 ∩ (dSp−r,q+r−1

r + Sp+1,q−1
r−1 )

where the equality on the right uses the fact that dSp−r,q+r+1
r ⊂ Sp,q

r+1 and an
isomorphism theorem. We thus must show

Sp,q
r+1 ∩ (dSp−r,q+r−1

r + Sp+1,q−1
r−1 ) = dSp−r,q+r−1

r + Sp+1,q−1
r .

However,

Sp,q
r+1 ∩ (dSp−r,q+r−1

r + Sp+1,q−1
r−1 ) = dSp−r,q+r−1

r + Sp,q
r+1 ∩ Sp+1,q−1

r−1

and Sp,q
r+1 ∩ Sp+1,q−1

r−1 consists of (p, q)-strips whose differential vanishes up to row

p + r, from which Sp,q
r+1 ∩ Sp+1,q−1

r−1 = Sp,q
r as desired.

This completes the explanation of how spectral sequences work for a first-
quadrant double complex. The argument applies without significant change to
more general situations, including filtered complexes.





CHAPTER 3

Sheaves

It is perhaps suprising that geometric spaces are often best understood in
terms of (nice) functions on them. For example, a differentiable manifold that
is a subset of Rn can be studied in terms of its differentiable functions. Because
“geometric spaces” can have few (everywhere-defined) functions, a more precise
version of this insight is that the structure of the space can be well understood by
considering all functions on all open subsets of the space. This information is en-
coded in something called a sheaf. Sheaves were introduced by Leray in the 1940’s,
and Serre introduced them to algebraic geometry. (The reason for the name is will
be somewhat explained in Remark 3.4.3.) We will define sheaves and describe use-
ful facts about them. We will begin with a motivating example to convince you
that the notion is not so foreign.

One reason sheaves are slippery to work with is that they keep track of a huge
amount of information, and there are some subtle local-to-global issues. There are
also three different ways of getting a hold of them.

• in terms of open sets (the definition §3.2) — intuitive but in some ways
the least helpful

• in terms of stalks (see §3.4.1)
• in terms of a base of a topology (§3.7).

Knowing which to use requires experience, so it is essential to do a number of
exercises on different aspects of sheaves in order to truly understand the concept.

3.1 Motivating example: The sheaf of differentiable functions.

Consider differentiable functions on the topological space X = Rn (or more
generally on a smooth manifold X). The sheaf of differentiable functions on X is
the data of all differentiable functions on all open subsets on X. We will see how
to manage this data, and observe some of its properties. On each open set U ⊂ X,
we have a ring of differentiable functions. We denote this ring of functions O(U).

Given a differentiable function on an open set, you can restrict it to a smaller
open set, obtaining a differentiable function there. In other words, if U ⊂ V is an
inclusion of open sets, we have a “restriction map” resV,U : O(V) → O(U).

Take a differentiable function on a big open set, and restrict it to a medium
open set, and then restrict that to a small open set. The result is the same as if you
restrict the differentiable function on the big open set directly to the small open set.

57
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In other words, if U ↪→ V ↪→ W, then the following diagram commutes:

O(W)
resW,V $$

resW,U ''44
44

44
44

4
O(V)

resV,U5555
55

55
55

5

O(U)

Next take two differentiable functions f1 and f2 on a big open set U, and an
open cover of U by some {Ui}. Suppose that f1 and f2 agree on each of these Ui.
Then they must have been the same function to begin with. In other words, if
{Ui}i∈I is a cover of U, and f1, f2 ∈ O(U), and resU,Ui

f1 = resU,Ui
f2, then f1 = f2.

Thus we can identify functions on an open set by looking at them on a covering by
small open sets.

Finally, given the same U and cover {Ui}, take a differentiable function on
each of the Ui — a function f1 on U1, a function f2 on U2, and so on — and they
agree on the pairwise overlaps. Then they can be “glued together” to make one
differentiable function on all of U. In other words, given fi ∈ O(Ui) for all i, such
that resUi,Ui∩Uj

fi = resUj,Ui∩Uj
fj for all i and j, then there is some f ∈ O(U)

such that resU,Ui
f = fi for all i.

The entire example above would have worked just as well with continuous
function, or smooth functions, or just plain functions. Thus all of these classes
of “nice” functions share some common properties. We will soon formalize these
properties in the notion of a sheaf.

3.1.1. The germ of a differentiable function. Before we do, we first give another
definition, that of the germ of a differentiable function at a point p ∈ X. Intuitively,
it is a “shred” of a differentiable function at p. Germs are objects of the form
{(f, open U) : p ∈ U, f ∈ O(U)} modulo the relation that (f,U) ∼ (g, V) if there is
some open set W ⊂ U,V containing p where f|W = g|W (i.e., resU,W f = resV,W g).
In other words, two functions that are the same in a neighborhood of p (but may
differ elsewhere) have the same germ. We call this set of germs the stalk at p, and
denote it Op. Notice that the stalk is a ring: you can add two germs, and get
another germ: if you have a function f defined on U, and a function g defined on
V , then f + g is defined on U ∩ V . Moreover, f + g is well-defined: if f ′ has the
same germ as f, meaning that there is some open set W containing p on which
they agree, and g ′ has the same germ as g, meaning they agree on some open W ′

containing p, then f ′ + g ′ is the same function as f + g on U ∩ V ∩W ∩W ′.
Notice also that if p ∈ U, you get a map O(U) → Op. Experts may already see

that we are talking about germs as colimits.
We can see that Op is a local ring as follows. Consider those germs vanishing

at p, which we denote mp ⊂ Op. They certainly form an ideal: mp is closed under
addition, and when you multiply something vanishing at p by any other function,
the result also vanishes at p. We check that this ideal is maximal by showing that
the quotient map is a field:

(3.1.1.1) 0 $$ m := ideal of germs vanishing at p $$ Op
f)→f(p)$$ R $$ 0

3.1.A. EXERCISE. Show that this is the only maximal ideal of Op. (Hint: show that
every element of Op \ m is invertible.)
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Note that we can interpret the value of a function at a point, or the value of
a germ at a point, as an element of the local ring modulo the maximal ideal. (We
will see that this doesn’t work for more general sheaves, but does work for things
behaving like sheaves of functions. This will be formalized in the notion of a local-
ringed space, which we will see, briefly, in §7.3.

3.1.2. Aside. Notice that m/m2 is a module over Op/m ∼= R, i.e. it is a real vector
space. It turns out to be naturally (whatever that means) the cotangent space to
the manifold at p. This insight will prove handy later, when we define tangent and
cotangent spaces of schemes.

3.1.B. EXERCISE FOR THOSE WITH DIFFERENTIAL GEOMETRIC BACKGROUND. Prove
this.

3.2 Definition of sheaf and presheaf

We now formalize these notions, by defining presheaves and sheaves. Presheaves
are simpler to define, and notions such as kernel and cokernel are straightforward.
Sheaves are more complicated to define, and some notions such as cokernel re-
quire more thought. But sheaves are more useful because they are in some vague
sense more geometric; you can get information about a sheaf locally.

3.2.1. Definition of sheaf and presheaf on a topological space X.
To be concrete, we will define sheaves of sets. However, in the definition the

category Sets can be replaced by any category, and other important examples are
abelian groups Ab, k-vector spaces Veck, rings Rings, modules over a ring ModA,
and more. (You may have to think more when dealing with a category of objects
that aren’t “sets with additional structure”, but there aren’t any new complications.
In any case, this won’t be relevant for us.) Sheaves (and presheaves) are often
written in calligraphic font. The fact that F is a sheaf on a topological space X is
often written as

F

X

3.2.2. Definition: Presheaf. A presheaf F on a topological space X is the follow-
ing data.

• To each open set U ⊂ X, we have a set F(U) (e.g. the set of differentiable
functions in our motivating example). (Notational warning: Several notations are
in use, for various good reasons: F(U) = Γ(U,F) = H0(U,F). We will use them
all.) The elements of F(U) are called sections of F over U.

• For each inclusion U ↪→ V of open sets, we have a restriction map resV,U :
F(V) → F(U) (just as we did for differentiable functions).

The data is required to satisfy the following two conditions.
• The map resU,U is the identity: resU,U = idF(U).
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• If U ↪→ V ↪→ W are inclusions of open sets, then the restriction maps com-
mute, i.e.

F(W)
resW,V $$

resW,U ''44
44

44
44

4
F(V)

resV,U5555
55

55
55

5

F(U)

commutes.

3.2.A. EXERCISE FOR CATEGORY-LOVERS: “A PRESHEAF IS THE SAME AS A CON-
TRAVARIANT FUNCTOR”. Given any topological space X, we have a “category
of open sets” (Example 2.2.9), where the objects are the open sets and the mor-
phisms are inclusions. Verify that the data of a presheaf is precisely the data of a
contravariant functor from the category of open sets of X to the category of sets.
(This interpretation is surprisingly useful.)

3.2.3. Definition: Stalks and germs. We define the stalk of a sheaf at a point in
two equivalent ways. One will be hands-on, and the other will be as a colimit.

3.2.4. Define the stalk of a presheaf F at a point p to be the set of germs of F at p,
denoted Fp, as in the example of §3.1.1. Germs correspond to sections over some
open set containing p, and two of these sections are considered the same if they
agree on some smaller open set. More precisely: the stalk is

{(f, open U) : p ∈ U, f ∈ O(U)}

modulo the relation that (f,U) ∼ (g, V) if there is some open set W ⊂ U,V where
resU,W f = resV,W g.

3.2.5. A useful (and better) equivalent definition of a stalk is as a colimit of all
F(U) over all open sets U containing p:

Fp = lim−→F(U).

The index category is a directed set (given any two such open sets, there is a third
such set contained in both), so these two definitions are the same by Exercise 2.4.C.
Hence we can define stalks for sheaves of sets, groups, rings, and other things for
which colimits exist for directed sets.

If p ∈ U, and f ∈ F(U), then the image of f in Fp is called the germ of f at p.
(Warning: unlike the example of §germofdifffun, in general, the value of a section
at a point doesn’t make sense.)

3.2.6. Definition: Sheaf. A presheaf is a sheaf if it satisfies two more axioms.
Notice that these axioms use the additional information of when some open sets
cover another.

Identity axiom. If {Ui}i∈I is an open cover of U, and f1, f2 ∈ F(U), and
resU,Ui

f1 = resU,Ui
f2, then f1 = f2.

(A presheaf satisfying the identity axiom is called a separated presheaf, but
we will not use that notation in any essential way.)

Gluability axiom. If {Ui}i∈I is a open cover of U, then given fi ∈ F(Ui) for all
i, such that resUi,Ui∩Uj

fi = resUj,Ui∩Uj
fj for all i, j, then there is some f ∈ F(U)

such that resU,Ui
f = fi for all i.
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In mathematics, definitions often come paired: “at most one” and “at least
one”. In this case, identity means there is at most one way to glue, and gluability
means that there is at least one way to glue.

(For experts, and scholars of the empty set only: an additional axiom some-
times included is that F(∅) is a one-element set, and in general, for a sheaf with
values in a category, F(∅) is required to be the final object in the category. This
actually follows from the above definitions, assuming that the empty product is
appropriately defined as the final object.)

Example. If U and V are disjoint, then F(U ∪ V) = F(U)× F(V). Here we use
the fact that F(∅) is the final object.

The stalk of a sheaf at a point is just its stalk as a presheaf — the same defini-
tion applies — and similarly for the germs of a section of a sheaf.

3.2.B. UNIMPORTANT EXERCISE: PRESHEAVES THAT ARE NOT SHEAVES. Show
that the following are presheaves on C (with the usual topology), but not sheaves:
(a) bounded functions, (b) holomorphic functions admitting a holomorphic square
root.

Both of the presheaves in the previous Exercise satisfy the identity axiom. A
“natural” example failing even the identity axiom will be given in Remark 3.7.2.

We now make a couple of points intended only for category-lovers.

3.2.7. Interpretation in terms of the equalizer exact sequence. The two axioms for a
presheaf to be a sheaf can be interpreted as “exactness” of the “equalizer exact se-

quence”: · $$ F(U) $$
∏

F(Ui)
$$ $$
∏

F(Ui ∩Uj). Identity is exactness

at F(U), and gluability is exactness at
∏

F(Ui). I won’t make this precise, or even
explain what the double right arrow means. But you may be able to figure it out
from the context.

3.2.C. EXERCISE. The gluability axiom may be interpreted as saying thatF(∪i∈IUi)
is a certain limit. What is that limit?

We now give a number of examples of sheaves.

3.2.D. EXERCISE. (a) Verify that the examples of §3.1 are indeed sheaves (of differ-
entiable functions, or continuous functions, or smooth functions, or functions on
a manifold or Rn).
(b) Show that real-valued continuous functions on (open sets of) a topological
space X form a sheaf.

3.2.8. Important Example: Restriction of a sheaf. Suppose F is a sheaf on X, and U ⊂
is an open set. Define the restriction of F to U, denoted F |U, to be the collection
F |U(V) = F(V) for all V ⊂ U. Clearly this is a sheaf on U.

3.2.9. Important Example: skyscraper sheaf. Suppose X is a topological space, with
p ∈ X, and S is a set. Then Sp defined by

Sp(U) =

{
S if p ∈ U, and

{e} if p /∈ U
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forms a sheaf. Here {e} is any one-element set. (Check this if it isn’t clear to you.)
This is called a skyscraper sheaf, because the informal picture of it looks like a
skyscraper at p. There is an analogous definition for sheaves of abelian groups,
except Sp(U) = {0} if p ∈ U; and for sheaves with values in a category more
generally, Sp(U) should be a final object. (Warning: the notation Sp is imperfect,
as the subscript of a point also denotes the stalk.)

3.2.E. IMPORTANT EXERCISE: CONSTANT PRESHEAF AND LOCALLY CONSTANT

SHEAF. (a) Let X be a topological space, and S a set. Define F(U) = S for all open
sets U. Show that this forms a presheaf (with restriction maps the identity), and
satisfies the identity axiom. We denote this presheaf Spre. Show that this needn’t
form a sheaf. This is called the constant presheaf with values in S.
(b) Now let F(U) be the maps to S that are locally constant, i.e. for any point x in
U, there is a neighborhood of x where the function is constant. Show that this is
a sheaf. (A better description is this: endow S with the discrete topology, and let
F(U) be the continuous maps U → S.) We will call this the locally constant sheaf.
This is usually called the constant sheaf. We denote this sheaf S.

3.2.F. EXERCISE (“MORPHISMS GLUE”). Suppose Y is a topological space. Show
that “continuous maps to Y” form a sheaf of sets on X. More precisely, to each open
set U of X, we associate the set of continuous maps to Y. Show that this forms a
sheaf. (Example 3.2.D(b), with Y = R, and Exercise 3.2.E(b), with Y = S with the
discrete topology, are both special cases.)

3.2.G. EXERCISE. This is a fancier example of the previous exercise.
(a) (sheaf of sections of a map) Suppose we are given a continuous map f : Y → X.
Show that “sections of f” form a sheaf. More precisely, to each open set U of X,
associate the set of continuous maps s to Y such that f ◦ s = id|U. Show that this
forms a sheaf. (For those who have heard of vector bundles, these are a good
example.) This is motivation for the phrase “section of a sheaf”.
(b) (This exercise is for those who know what a topological group is. If you don’t
know what a topological group is, you might be able to guess.) Suppose that Y
is a topological group. Show that continuous maps to Y form a sheaf of groups.
(Example 3.2.D(b), with Y = R, is a special case.)

3.2.10. ! The espace étalé of a (pre)sheaf. Depending on your background, you
may prefer the following perspective on sheaves, which we will not discuss fur-
ther. Suppose F is a presheaf (e.g. a sheaf) on a topological space X. Construct a
topological space Y along with a continuous map to X as follows: as a set, Y is the
disjoint union of all the stalks of X. This also describes a natural set map Y → X.
We topologize Y as follows. Each section s of F over an open set U determines a
section of Y → X over U, sending s to each of its germs for each x ∈ U. The topol-
ogy on Y is the weakest topology such that these sections are continuous. This is
called the espace étalé of F . Then the reader may wish to show that (a) if F is
a sheaf, then the sheaf of sections of Y → X (see the previous exercise 3.2.G(a))
can be naturally identified with the sheaf F itself. (b) Moreover, if F is a presheaf,
the sheaf of sections of Y → X is the sheafification of F , to be defined in Defini-
tion 3.4.5 (see Remark 3.4.7). Example 3.2.E may be interpreted as an example of
this construction.
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3.2.H. IMPORTANT EXERCISE: THE PUSHFORWARD SHEAF OR DIRECT IMAGE SHEAF.
Suppose f : X → Y is a continuous map, and F is a sheaf on X. Then define f∗F
by f∗F(V) = F(f−1(V)), where V is an open subset of Y. Show that f∗F is a sheaf.
This is called a direct image sheaf or pushforward sheaf. More precisely, f∗F is
called the pushforward of F by f.

The skyscraper sheaf (Example 3.2.9) can be interpreted as the pushforward
of the constant sheaf S on a one-point space p, under the morphism f : {p} → X.

Once we realize that sheaves form a category, we will see that the pushforward
is a functor from sheaves on X to sheaves on Y (Exercise 3.3.A).

3.2.I. EXERCISE (PUSHFORWARD INDUCES MAPS OF STALKS). Suppose f : X → Y is
a continuous map, and F is a sheaf of sets (or rings or A-modules) on X. If f(x) = y,
describe the natural morphism of stalks (f∗F)y → Fx. (You can use the explicit
definition of stalk using representatives, §3.2.4, or the universal property, §3.2.5.
If you prefer one way, you should try the other.) Once we define the category of
sheaves of sets on a topological space in §3.3.1, you will see that your construction
will make the following diagram commute:

SetsX
f∗ $$

%%

SetsY

%%
Sets $$ Sets

3.2.11. Important Example: Ringed spaces, and OX-modules. Suppose OX is a
sheaf of rings on a topological space X (i.e. a sheaf on X with values in the category
of Rings). Then (X,OX) is called a ringed space. The sheaf of rings is often denoted
by OX, pronounced “oh-of-X”. This sheaf is called the structure sheaf of the ringed
space. We now define the notion of an OX-module. The notion is analogous to
one we’ve seen before: just as we have modules over a ring, we have OX-modules
over the structure sheaf (of rings) OX.

There is only one possible definition that could go with this name. An OX-
module is a sheaf of abelian groups F with the following additional structure. For
each U, F(U) is an OX(U)-module. Furthermore, this structure should behave
well with respect to restriction maps: if U ⊂ V , then

(3.2.11.1) OX(V)× F(V)
action $$

resV,U × resV,U

%%

F(V)

resV,U

%%
OX(U)× F(U)

action $$ F(U)

commutes. (You should convince yourself that I haven’t forgotten anything.)
Recall that the notion of A-module generalizes the notion of abelian group,

because an abelian group is the same thing as a Z-module. Similarly, the notion
of OX-module generalizes the notion of sheaf of abelian groups, because the latter
is the same thing as a Z-module, where Z is the locally constant sheaf with values
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in Z. Hence when we are proving things about OX-modules, we are also proving
things about sheaves of abelian groups.

3.2.12. For those who know about vector bundles. The motivating example of OX-
modules is the sheaf of sections of a vector bundle. If X is a differentiable manifold,
and π : V → X is a vector bundle over X, then the sheaf of differentiable sections
φ : X → V is an OX-module. Indeed, given a section s of π over an open subset
U ⊂ X, and a function f on U, we can multiply s by f to get a new section fs of
π over U. Moreover, if V is a smaller subset, then we could multiply f by s and
then restrict to V , or we could restrict both f and s to V and then multiply, and we
would get the same answer. That is precisely the commutativity of (3.2.11.1).

3.3 Morphisms of presheaves and sheaves

3.3.1. Whenever one defines a new mathematical object, category theory teaches to
try to understand maps between them. We now define morphisms of presheaves,
and similarly for sheaves. In other words, we will descibe the category of presheaves
(of sets, abelian groups, etc.) and the category of sheaves.

A morphism of presheaves of sets (or indeed of sheaves with values in any
category) on X, f : F → G, is the data of maps f(U) : F(U) → G(U) for all U
behaving well with respect to restriction: if U ↪→ V then

F(V)

resV,U

%%

f(V) $$ G(V)

resV,U

%%
F(U)

f(U) $$ G(U)

commutes. (Notice: the underlying space of both F and G is X.)
Morphisms of sheaves are defined identically: the morphisms from a sheaf F

to a sheaf G are precisely the morphisms from F to G as presheaves. (Translation:
The category of sheaves on X is a full subcategory of the category of presheaves
on X.)

An example of a morphism of sheaves is the map from the sheaf of differen-
tiable functions on R to the sheaf of continuous functions. This is a “forgetful
map”: we are forgetting that these functions are differentiable, and remembering
only that they are continuous.

We may as well set some notation: let SetsX, AbX, etc. denote the category of
sheaves of sets, abelian groups, etc. on a topological space X. Let ModOX

denote
the category of OX-modules on a ringed space (X,OX). Let Sets

pre
X , etc. denote the

category of presheaves of sets, etc. on X.

3.3.2. Side-remark for category-lovers. If you interpret a presheaf on X as a con-
travariant functor (from the category of open sets), a morphism of presheaves on
X is a natural transformation of functors (§2.2.21).

3.3.A. EXERCISE. Suppose f : X → Y is a continuous map of topological spaces
(i.e. a morphism in the category of topological spaces). Show that pushforward
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gives a functor SetsX → SetsY . Here Sets can be replaced by many other categories.
(Watch out for some possible confusion: a presheaf is a functor, and presheaves
form a category. It may be best to forget that presheaves form a functor for now.)

3.3.B. IMPORTANT EXERCISE AND DEFINITION: “SHEAF Hom”. Suppose F and
G are two sheaves of sets on X. (In fact, it will suffice that F is a presheaf.) Let
Hom(F ,G) be the collection of data

Hom(F ,G)(U) := Hom(F |U,G|U).

(Recall the notation F |U, the restriction of the sheaf to the open set U, Exam-
ple 3.2.8.) Show that this is a sheaf of sets on X. This is called the “sheaf Hom”.
Show that if G is a sheaf of abelian groups, then Hom(F ,G) is a sheaf of abelian
groups. Implicit in this fact is that Hom(F ,G) is an abelian group. (This exercise
is somewhat tedious, but in the end very rewarding.) The same construction will
“obviously” work for sheaves with values in any category.

Warning: Hom does not commute with taking stalks. More precisely: it is not
true that Hom(F ,G)p is isomorphic to Hom(Fp,Gp). (Can you think of a coun-
terexample? Does there at least exist a map from one of these to the other?)

We will use may variants of the definition of Hom. For example, if F and G
are sheaves of abelian groups on X, then HomAbX

(F ,G) is the is defined by taking
Hom(F ,G)(U) to be the maps as sheaves of abelian groups F |U → G|U. Similarly,
if F and G are OX-modules, we define HomModOX

(F ,G) in the analogous way.
Obnoxiously, the subscripts AbX and ModOX

are essentially always dropped (here
and in the literature), so be careful which category you are working in! We call
HomModOX

(F ,OX) the dual of the OX-module F , and denoted it F∨.

3.3.C. UNIMPORTANT EXERCISE (REALITY CHECK).

(a) If F is a sheaf of sets on X, then show that Hom({p},F) ∼= F , where {p} is
the (locally) constant sheaf corresponding to the one element set {p}.

(b) If F is a sheaf of abelian groups on X, then show that HomAbX
(Z,F) ∼= F .

(c) If F is an OX-module, then show that HomModOX
(OX,F) ∼= F .

A key idea in (b) and (c) is that 1 “generates” (in some sense) Z (in (b)) and OX (in
(c)).

3.3.3. Presheaves of abelian groups (and even “presheaf OX-modules”) form an
abelian category.

We can make module-like constructions using presheaves of abelian groups
on a topological space X. (In this section, all (pre)sheaves are of abelian groups.)
For example, we can clearly add maps of presheaves and get another map of
presheaves: if f, g : F → G, then we define the map f + g by (f + g)(V) =
f(V) + g(V). (There is something small to check here: that the result is indeed
a map of presheaves.) In this way, presheaves of abelian groups form an additive
category (Definition 2.6.1). For exactly the same reasons, sheaves of abelian groups
also form an additive category.

If f : F → G is a morphism of presheaves, define the presheaf kernel kerpre f
by (kerpre f)(U) = ker f(U).

3.3.D. EXERCISE. Show that kerpre f is a presheaf. (Hint: if U ↪→ V , there is a nat-
ural map resV,U : G(V)/f(V)(F(V)) → G(U)/f(U)(F(U)) by chasing the following
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diagram:

0 $$ kerpre f(V)

∃!

%%

$$ F(V)

resV,U

%%

$$ G(V)

resV,U

%%
0 $$ kerpre f(U) $$ F(U) $$ G(U)

You should check that the restriction maps compose as desired.)

Define the presheaf cokernel cokerpre f similarly. It is a presheaf by essentially
the same argument.

3.3.E. EXERCISE: THE COKERNEL DESERVES ITS NAME. Show that the presheaf
cokernel satisfies the universal property of cokernels (Definition 2.6.3) in the cate-
gory of presheaves.

Similarly, kerpre f → F satisfies the universal property for kernels in the cate-
gory of presheaves.

It is not too tedious to verify that presheaves of abelian groups form an abelian
category, and the reader is free to do so. The key idea is that all abelian-categorical
notions may be defined and verified “open set by open set”. We needn’t worry
about restriction maps — they “come along for the ride”. Hence we can define
terms such as subpresheaf, image presheaf, quotient presheaf, cokernel presheaf,
and they behave the way one expect. You construct kernels, quotients, cokernels,
and images open set by open set. Homological algebra (exact sequences and so
forth) works, and also “works open set by open set”. In particular:

3.3.F. EASY EXERCISE. Show (or observe) that for a topological space X with open
set U, F '→ F(U) gives a functor from presheaves of abelian groups on X, Ab

pre
X , to

abelian groups, Ab. Then show that this functor is exact.

3.3.G. EXERCISE. Show that 0 → F1 → F2 → · · · → Fn → 0 is exact if and only if
0 → F1(U) → F2(U) → · · · → Fn(U) → 0 is exact for all U.

The above discussion essentially carries over without change to presheaves
with values in any abelian category. (Think this through if you wish.)

However, we are interested in more geometric objects, sheaves, where things
can be understood in terms of their local behavior, thanks to the identity and glu-
ing axioms. We will soon see that sheaves of abelian groups also form an abelian
category, but a complication will arise that will force the notion of sheafification on
us. Sheafification will be the answer to many of our prayers. We just don’t realize
it yet.

To begin with, sheaves AbX may be easily seen to form an additive category
(essentially because presheaves Ab

pre
X already do, and sheaves form a full subcate-

gory).
Kernels work just as with presheaves:

3.3.H. IMPORTANT EXERCISE. Suppose f : F → G is a morphism of sheaves. Show
that the presheaf kernel kerpre f is in fact a sheaf. Show that it satisfies the universal
property of kernels (Definition 2.6.3). (Hint: the second question follows immedi-
ately from the fact that kerpre f satisfies the universal property in the category of
presheaves.)
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Thus if f is a morphism of sheaves, we define

ker f := kerpre f.

The problem arises with the cokernel.

3.3.I. IMPORTANT EXERCISE. Let X be C with the classical topology, let Z be the
locally constant sheaf on X with group Z, OX the sheaf of holomorphic functions,
and F the presheaf of functions admitting a holomorphic logarithm. (Why is F not
a sheaf?) Consider

0 $$ Z $$ OX

f)→exp 2πif
$$ F $$ 0

where Z → OX is the natural inclusion. Show that this is an exact sequence of
presheaves on X. Show that F is not a sheaf. (Hint: F does not satisfy the gluability
axiom. The problem is that there are functions that don’t have a logarithm but
locally have a logarithm.) This will come up again in Example 3.4.9.

We will have to put our hopes for understanding cokernels of sheaves on hold
for a while. We will first learn to understand sheaves using stalks.

3.4 Properties determined at the level of stalks, and sheafification

3.4.1. Properties determined by stalks. In this section, we will see that lots
of facts about sheaves can be checked “at the level of stalks”. This isn’t true for
presheaves, and reflects the local nature of sheaves. We will see that sections and
morphisms are determined “by their stalks”, and the property of a morphism be-
ing an isomorphism may be checked at stalks. (The last one is the trickiest.)

3.4.A. IMPORTANT EXERCISE (sections are determined by germs). Prove that a
section of a sheaf of sets is determined by its germs, i.e. the natural map

(3.4.1.1) F(U) →
∏

p∈U

Fp

is injective. Hint 1: you won’t use the gluability axiom, so this is true for separated
presheaves. Hint 2: it is false for presheaves in general, see Exercise 3.4.F, so you
will use the identity axiom. (Your proof will also apply to sheaves of groups, rings,
etc.)

This exercise suggests an important question: which elements of the right side
of (3.4.1.1) are in the image of the left side?

3.4.2. Important definition. We say that an element
∏

p∈U sp of the right side∏
p∈U Fp of (3.4.1.1) consists of compatible germs if for all p ∈ U, there is some

representative (Up, s ′
p ∈ F(Up)) for sp (where p ∈ Up ⊂ U) such that the germ of

s ′
p at all y ∈ Up is sy.You will have to think about this a little. Clearly any section

s of F over U gives a choice of compatible germs for U — take (Up, s ′
p) = (U, s).

3.4.B. IMPORTANT EXERCISE. Prove that any choice of compatible germs for F
over U is the image of a section of F over U. (Hint: you will use gluability.)
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We have thus completely described the image of (3.4.1.1), in a way that we
will find useful.

3.4.3. Remark. This perspective is part of the motivation for the agricultural termi-
nology “sheaf”: it is (the data of) a bunch of stalks, bundled together appropriately.

Now we throw morphisms into the mix.

3.4.C. EXERCISE. Show a morphism of (pre)sheaves (of sets, or rings, or abelian
groups, or OX-modules) induces a morphism of stalks. More precisely, if φ : F →
G is a morphism of (pre)sheaves on X, and p ∈ X, describe a natural map φp :
Fp → Gp. (You may wish to state this in the language of functors.)

3.4.D. EXERCISE (morphisms are determined by stalks). Show that morphisms
of sheaves are determined by morphisms of stalks. Hint: consider the following
diagram.

(3.4.3.1) F(U) $$
#"

%%

G(U)
#"

%%∏
p∈U Fp $$

∏
p∈U Gp

3.4.E. TRICKY EXERCISE (isomorphisms are determined by stalks). Show that a
morphism of sheaves is an isomorphism if and only if it induces an isomorphism
of all stalks. Hint: Use (3.4.3.1). Injectivity uses the previous exercise 3.4.D. Surjec-
tivity will use gluability, and is more subtle.

3.4.F. EXERCISE. (a) Show that Exercise 3.4.A is false for general presheaves.
(b) Show that Exercise 3.4.D is false for general presheaves.
(c) Show that Exercise 3.4.E is false for general presheaves.
(General hint for finding counterexamples of this sort: consider a 2-point space
with the discrete topology, i.e. every subset is open.)

3.4.4. Sheafification.
Every sheaf is a presheaf (and indeed by definition sheaves on X form a full

subcategory of the category of presheaves on X). Just as groupification (§2.5.3)
gives a group that best approximates a semigroup, sheafification gives the sheaf
that best approximates a presheaf, with an analogous universal property. (One
possible example to keep in mind is the sheafification of the presheaf of holomor-
phic functions admitting a square root on C with the classical topology.)

3.4.5. Definition. If F is a presheaf on X, then a morphism of presheaves sh :
F → Fsh on X is a sheafification of F if Fsh is a sheaf, and for any other sheaf G,
and any presheaf morphism g : F → G, there exists a unique morphism of sheaves
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f : Fsh → G making the diagram

F sh $$

g
..66

66
66

66
Fsh

f

%%
G

commute.

3.4.G. EXERCISE. Show that sheafification is unique up to unique isomorphism.

Show that if F is a sheaf, then the sheafification is F id $$ F . (This should be
second nature by now.)

3.4.6. Construction. We next show that any presheaf of sets (or groups, rings, etc.)
has a sheafification. Suppose F is a presheaf. Define Fsh by defining Fsh(U) as the
set of compatible germs of the presheaf F over U. Explicitly:

Fsh(U) := {(fx ∈ Fx)x∈U : ∀x ∈ U,∃x ∈ V ⊂ U, s ∈ F(V) : sy = fy∀y ∈ V}.

(Those who want to worry about the empty set are welcome to.)

3.4.H. EASY EXERCISE. Show that Fsh (using the tautological restriction maps)
forms a sheaf.

3.4.I. EASY EXERCISE. Describe a natural map of presheaves sh : F → Fsh.

3.4.J. EXERCISE. Show that the map sh satisfies the universal property of sheafifi-
cation (Definition 3.4.5). (This is easier than you might fear.)

3.4.K. USEFUL EXERCISE, NOT JUST FOR CATEGORY-LOVERS. Show that the sheafi-
fication functor is left-adjoint to the forgetful functor from sheaves on X to presheaves
on X. This is not difficult — it is largely a restatement of the universal property.
But it lets you use results from §2.6.10, and can “explain” why you don’t need to
sheafify when taking kernel, and why you need to sheafify when taking cokernel
and (soon, in Exercise 3.5.H) ⊗.

3.4.L. EASY EXERCISE. Use the universal property to show that for any morphism
of presheaves φ : F → G, we get a natural induced morphism of sheaves φsh :
Fsh → Gsh. Show that sheafification is a functor from presheaves on X to sheaves
on X.

3.4.M. EXERCISE. Show F → Fsh induces an isomorphism of stalks. (Possible
hint: Use the concrete description of the stalks. Another possibility once you read
Remark 3.6.3: judicious use of adjoints.)

3.4.7. ! Remark. The espace étalé construction (§3.2.10) yields a different-sounding
description of sheafification which may be preferred by some readers. The funda-
mental idea is identical. This is essentially the same construction as the one given
here. Another construction is described in [EH].

3.4.8. Subsheaves and quotient sheaves.
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3.4.N. EXERCISE. Suppose φ : F → G is a morphism of sheaves (of sets) on a
topological space X. Show that the following are equivalent.

(a) φ is a monomorphism in the category of sheaves.
(b) φ is injective on the level of stalks: φx : Fx → Gx injective for all x ∈ X.
(c) φ is injective on the level of open sets: φ(U) : F(U) → G(U) is injective

for all open U ⊂ X.

(Possible hints: for (b) implies (a), recall that morphisms are determined by stalks,
Exercise 3.4.D. For (a) implies (b), judiciously choose a skyscraper sheaf. For (a)
implies (c), use the “indicator sheaf” with one section over every open set con-
tained in U, and no section over any other open set.)

If these conditions hold, we say that F is a subsheaf of G (where the “inclu-
sion” φ is sometimes left implicit).

3.4.O. EXERCISE. Continuing the notation of the previous exercise, show that the
following are equivalent.

(a) φ is a epimorphism in the category of sheaves.
(b) φ is surjective on the level of stalks: φx : Fx → Gx surjective for all x ∈ X.

If these conditions hold, we say that G is a quotient sheaf of F .

Thus monomorphisms and epimorphisms — subsheafiness and quotient sheafiness —
can be checked at the level of stalks.

Both exercises generalize readily to sheaves with values in any category, where
“injective” is replaced by “monomorphism” and “surjective” is replaced by “epi-
morphism”.

Notice that there was no part (c) to Exercise 3.4.O, and Example 3.4.9 shows
why. (But there is a version of (c) that implies (a) and (b): surjectivity on all open
sets in the base of a topology implies surjectivity of the map of sheaves, Exer-
cise 3.7.E.)

3.4.9. Example (cf. Exercise 3.3.I). Let X = C with the classical topology, and define
OX to be the sheaf of holomorphic functions, and O∗

X to be the sheaf of invertible
(nowhere zero) holomorphic functions. This is a sheaf of abelian groups under
multiplication. We have maps of sheaves

(3.4.9.1) 0 $$ Z
×2πi $$ OX

exp
$$ O∗

X
$$ 1

where Z is the locally constant sheaf associated to Z. (You can figure out what the
sheaves 0 and 1 mean; they are isomorphic, and are written in this way for reasons
that may be clear.) We will soon interpret this as an exact sequence of sheaves
of abelian groups (the exponential exact sequence), although we don’t yet have the
language to do so.

3.4.P. ENLIGHTENING EXERCISE. Show that OX

exp
$$ O∗

X describes O∗
X as a

quotient sheaf of OX. Show that it is not surjective on all open sets.

This is a great example to get a sense of what “surjectivity” means for sheaves:
nowhere vanishing holomorphic functions have logarithms locally, but they need
not globally.
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3.5 Sheaves of abelian groups, and OX-modules, form abelian
categories

We are now ready to see that sheaves of abelian groups, and their cousins, OX-
modules, form abelian categories. In other words, we may treat them similarly to
vector spaces, and modules over a ring. In the process of doing this, we will see
that this is much stronger than an analogy; kernels, cokernels, exactness, and so
forth can be understood at the level of germs (which are just abelian groups), and
the compatibility of the germs will come for free.

The category of sheaves of abelian groups is clearly an additive category (Def-
inition 2.6.1). In order to show that it is an abelian category, we must show that
any morphism φ : F → G has a kernel and a cokernel. We have already seen that
φ has a kernel (Exercise 3.3.H): the presheaf kernel is a sheaf, and is a kernel in the
category of sheaves.

3.5.A. EXERCISE. Show that the stalk of the kernel is the kernel of the stalks: there
is a natural isomorphism

(ker(F → G))x
∼= ker(Fx → Gx).

We next address the issue of the cokernel. Now φ : F → G has a cokernel in
the category of presheaves; call it Hpre (where the superscript is meant to remind

us that this is a presheaf). Let Hpre sh $$ H be its sheafification. Recall that the
cokernel is defined using a universal property: it is the colimit of the diagram

F

%%

φ $$ G

0

in the category of presheaves. We claim that H is the cokernel of φ in the category
of sheaves, and show this by proving the universal property. Given any sheaf E
and a commutative diagram

F

%%

φ $$ G

%%
0 $$ E

We construct

F

%%

φ $$ G

66

%%
0

77,,,,,,,,,,,,,,,,,,,,,,,, $$ Hpre sh $$ H

E
We show that there is a unique morphism H → E making the diagram commute.
As Hpre is the cokernel in the category of presheaves, there is a unique morphism
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of presheaves Hpre → E making the diagram commute. But then by the universal
property of sheafification (Definition 3.4.5), there is a unique morphism of sheaves
H → E making the diagram commute.

3.5.B. EXERCISE. Show that the stalk of the cokernel is naturally isomorphic to
the cokernel of the stalk.

We have now defined the notions of kernel and cokernel, and verified that they
may be checked at the level of stalks. We have also verified that the properties of
a morphism being a monomorphism or epimorphism are also determined at the
level of stalks (Exercises 3.4.N and 3.4.O). Hence sheaves of abelian groups on X
form an abelian category.

We see more: all structures coming from the abelian nature of this category
may be checked at the level of stalks. For example:

3.5.C. EXERCISE. Suppose φ : F → G is a morphism of sheaves of abelian groups.
Show that the image sheaf imφ is the sheafification of the image presheaf. (You
must use the definition of image in an abelian category. In fact, this gives the
accepted definition of image sheaf for a morphism of sheaves of sets.) Show that
the stalk of the image is the image of the stalk.

As a consequence, exactness of a sequence of sheaves may be checked at the
level of stalks. In particular:

3.5.D. IMPORTANT EXERCISE. Show that taking the stalk of a sheaf of abelian
groups is an exact functor. More precisely, if X is a topological space and p ∈ X is
a point, show that taking the stalk at p defines an exact functor AbX → Ab.

3.5.E. EXERCISE (LEFT-EXACTNESS OF THE GLOBAL SECTION FUNCTOR). Sup-
pose U ⊂ X is an open set, and 0 → F → G → H is an exact sequence of sheaves
of abelian groups. Show that

0 → F(U) → G(U) → H(U)

is exact. (You can do this “by hand”, or use the fact that sheafification is an adjoint.)
Show that the global section functor need not be exact. (Hint: the exponential exact
sequence (3.4.9.1).)

3.5.F. EXERCISE: LEFT-EXACTNESS OF PUSHFORWARD. Suppose 0 → F → G → H
is an exact sequence of sheaves of abelian groups on X. If f : X → Y is a continuous
map, show that

0 → f∗F → f∗G → f∗H
is exact. (The previous exercise, dealing with the left-exactness of the global sec-
tion functor can be interpreted as a special case of this, in the case where Y is a
point.)

3.5.G. EXERCISE. Show that if (X,OX) is a ringed space, then OX-modules form
an abelian category. (There isn’t much more to check!)

We end with a useful construction using some of the ideas in this section.

3.5.H. IMPORTANT EXERCISE: TENSOR PRODUCTS OF OX-MODULES. (a) Suppose
OX is a sheaf of rings on X. Define (categorically) what we should mean by tensor
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product of two OX-modules. Give an explicit construction, and show that it satis-
fies your categorical definition. Hint: take the “presheaf tensor product” — which
needs to be defined — and sheafify. Note: ⊗OX

is often written ⊗ when the sub-
script is clear from the context. (An example showing sheafification is necessary
will arise in Example 15.1.1.) )
(b) Show that the tensor product of stalks is the stalk of tensor product.

3.5.1. Conclusion. Just as presheaves are abelian categories because all abelian-
categorical notions make sense open set by open set, sheaves are abelian categories
because all abelian-categorical notions make sense stalk by stalk.

3.6 The inverse image sheaf

We next describe a notion that is fundamental, but rather intricate. We will
not need it for some time, so this may be best left for a second reading. Suppose
we have a continuous map f : X → Y. If F is a sheaf on X, we have defined
the pushforward or direct image sheaf f∗F , which is a sheaf on Y. There is also a
notion of inverse image sheaf. (We will not call it the pullback sheaf, reserving that
name for a later construction for quasicoherent sheaves, §17.3.) This is a covariant
functor f−1 from sheaves on Y to sheaves on X. If the sheaves on Y have some
additional structure (e.g. group or ring), then this structure is respected by f−1.

3.6.1. Definition by adjoint: elegant but abstract. We define f−1 as the left-adjoint to
f∗.

This isn’t really a definition; we need a construction to show that the ad-
joint exists. Note that we then get canonical maps f−1f∗F → F (associated to
the identity in MorY(f∗F , f∗F)) and G → f∗f

−1G (associated to the identity in
MorX(f−1G, f−1G)).

3.6.2. Construction: concrete but ugly. Define the temporary notation f−1Gpre(U) =
lim−→V⊃f(U)

G(V). (Recall the explicit description of colimit: sections are sections on

open sets containing f(U), with an equivalence relation. Note that f(U) won’t be
an open set in general.)

3.6.A. EXERCISE. Show that this defines a presheaf on X.

Now define the inverse image of G by f−1G := (f−1Gpre)sh. The next exercise
shows that this satisfies the universal property. But you may wish to try the later
exercises first, and come back to Exercise 3.6.3 later. (For the later exercises, try to
give two proofs, one using the universal property, and the other using the explicit
description.)

3.6.B. IMPORTANT TRICKY EXERCISE. If f : X → Y is a continuous map, and F is
a sheaf on X and G is a sheaf on Y, describe a bijection

MorX(f−1G,F) ↔ MorY(G, f∗F).

Observe that your bijection is “natural” in the sense of the definition of adjoints
(i.e. functorial in both F and G).
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3.6.3. Remark. As a special case, if X is a point p ∈ Y, we see that f−1G is the stalk
of Gp, and maps from the stalk G to a set S are the same as maps of sheaves on Y
from G to the skyscraper sheaf with set S supported at p. You may prefer to prove
this special case by hand directly before solving Exercise 3.6.B, as it is enlightening.
(It can also be useful — can you use it to solve Exercises 3.4.M and 3.4.O?)

3.6.C. EXERCISE. Show that the stalks of f−1G are the same as the stalks of G. More
precisely, if f(p) = q, describe a natural isomorphism Gq

∼= (f−1G)p. (Possible
hint: use the concrete description of the stalk, as a colimit. Recall that stalks are
preserved by sheafification, Exercise 3.4.M. Alternatively, use adjointness.) This,
along with the notion of compatible stalks, may give you a way of thinking about
inverse image sheaves.

3.6.D. EXERCISE (EASY BUT USEFUL). If U is an open subset of Y, i : U → Y is the
inclusion, and G is a sheaf on Y, show that i−1G is naturally isomorphic to G|U.

3.6.E. EXERCISE (EASY BUT USEFUL). If y ∈ Y, i : {y} → Y is the inclusion, and G is
a sheaf on Y, show that i−1(G) is naturally isomorphic to the stalk Gy.

3.6.F. EXERCISE. Show that f−1 is an exact functor from sheaves of abelian groups
on Y to sheaves of abelian groups on X (cf. Exercise 3.5.D). (Hint: exactness can
be checked on stalks, and by Exercise 3.6.C, the stalks are the same.) The identical
argument will show that f−1 is an exact functor from OY-modules (on Y) to f−1OY-
modules (on X), but don’t bother writing that down. (Remark for experts: f−1 is
a left-adjoint, hence right-exact by abstract nonsense, as discussed in §2.6.10. Left-
exactness holds because colimits over directed systems are exact.)

3.6.G. EXERCISE. (a) Suppose Z ⊂ Y is a closed subset, and i : Z ↪→ Y is the
inclusion. If F is a sheaf on Z, then show that the stalk (i∗F)y is a one element-set
if y /∈ Z, and Fy if y ∈ Z.
(b) Definition: Define the support of a sheaf F of sets, denoted SuppF , as the locus
where the stalks are not the one-element set:

SuppF := {x ∈ X : |Fx| != 1}.

(More generally, if the sheaf has value in some category, the support consists of
points where the stalk is not the final object. For sheaves of abelian groups, the
support consists of points with non-zero stalks.) Suppose SuppF ⊂ Z where
Z is closed. Show that the natural map F → i∗i

−1F is an isomorphism. Thus a
sheaf supported on a closed subset can be considered a sheaf on that closed subset.
(“Support” is a useful notion, and will arise again in §14.7.E.)

3.6.H. EXTENSION BY ZERO f! : AN OCCASIONAL LEFT-ADJOINT TO f−1. In ad-
dition to always being a left-adjoint, f−1 can sometimes be a right-adjoint. Sup-
pose i : U ↪→ Y is an open immersion of ringed spaces Define extension by zero
i! : ModOU

→ ModOY
as follows. Suppose F is an OU-module. For open W ⊂ Y,

i!F(W) = F(W) if W ⊂ U, and 0 otherwise (with the obvious restriction maps).
Note that i!F is an OY-module, and that this clearly defines a functor.
(a) For y ∈ Y, show that (i!F)y = Fy if y ∈ U, and 0 otherwise.
(b) Show that i! is an exact functor.
(c) Describe an inclusion i!i

−1F ↪→ F .
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(d) Show that (i!, i
−1) is an adjoint pair, so there is a natural bijection HomOY

(i!F ,G) ↔
HomOU

(FG|U) for any ohY-module G. (In particular, the sections of G over U can
be identified with HomOY

(i!OU,G).)

3.7 Recovering sheaves from a “sheaf on a base”

Sheaves are natural things to want to think about, but hard to get our hands
on. We like the identity and gluability axioms, but they make proving things trick-
ier than for presheaves. We have discussed how we can understand sheaves using
stalks. We now introduce a second way of getting a hold of sheaves, by introduc-
ing the notion of a sheaf on a base. Warning: this way of understanding an entire
sheaf from limited information is confusing. It may help to keep sight of the cen-
tral insight that this limited information lets you understand germs, and the notion
of when they are compatible (with nearby germs).

First, we define the notion of a base of a topology. Suppose we have a topo-
logical space X, i.e. we know which subsets Ui of X are open. Then a base of a
topology is a subcollection of the open sets {Bj} ⊂ {Ui}, such that each Ui is a
union of the Bj. Here is one example that you have seen early in your mathemat-
ical life. Suppose X = Rn. Then the way the usual topology is often first defined
is by defining open balls Br(x) = {y ∈ Rn : |y − x| < r}, and declaring that any
union of open balls is open. So the balls form a base of the classical topology — we
say they generate the classical topology. As an application of how we use them, to
check continuity of some map f : X → Rn, you need only think about the pullback
of balls on Rn.

Now suppose we have a sheaf F on X, and a base {Bi} on X. Then consider the
information ({F(Bi)}, {resBi,Bj

: F(Bi) → F(Bj)}), which is a subset of the infor-
mation contained in the sheaf — we are only paying attention to the information
involving elements of the base, not all open sets.

We can recover the entire sheaf from this information. This is because we can
determine the stalks from this information, and we can determine when germs are
compatible.

3.7.A. EXERCISE. Make this precise.

This suggests a notion, that of a sheaf on a base. A sheaf of sets (rings etc.) on
a base {Bi} is the following. For each Bi in the base, we have a set F(Bi). If Bi ⊂ Bj,
we have maps resBj,Bi

: F(Bj) → F(Bi). (Things called B are always assumed to
be in the base.) If Bi ⊂ Bj ⊂ Bk, then resBk,Bi

= resBj,Bi
◦ resBk,Bj

. So far we have
defined a presheaf on a base {Bi}.

We also require the base identity axiom: If B = ∪Bi, then if f, g ∈ F(B) such
that resB,Bi

f = resB,Bi
g for all i, then f = g.

We require the base gluability axiom too: If B = ∪Bi, and we have fi ∈
F(Bi) such that fi agrees with fj on any basic open set contained in Bi ∩ Bj (i.e.
resBi,Bk

fi = resBj,Bk
fj for all Bk ⊂ Bi ∩ Bj) then there exists f ∈ F(B) such that

resB,Bi
f = fi for all i.
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3.7.1. Theorem. — Suppose {Bi} is a base on X, and F is a sheaf of sets on this base.
Then there is a sheaf F extending F (with isomorphisms F(Bi) ∼= F(Bi) agreeing with the
restriction maps). This sheaf F is unique up to unique isomorphism

Proof. We will define F as the sheaf of compatible germs of F.
Define the stalk of a base presheaf F at p ∈ X by

Fp = lim−→ F(Bi)

where the colimit is over all Bi (in the base) containing p.
We will say a family of germs in an open set U is compatible near p if there is a

section s of F over some Bi containing p such that the germs over Bi are precisely
the germs of s. More formally, define

F(U) := {(fp ∈ Fp)p∈U : for all p ∈ U, there exists B with p ⊂ B ⊂ U, s ∈ F(B),

with sq = fq for all q ∈ B}

where each B is in our base.
This is a sheaf (for the same reasons as the sheaf of compatible germs was

earlier, cf. Exercise 3.4.H).
I next claim that if U is in our base, the natural map F(B) → F(B) is an isomor-

phism.

3.7.B. TRICKY EXERCISE. Describe the inverse map F(B) → F(B), and verify that
it is indeed inverse. Possible hint: elements of F(U) are determined by stalks, as
are elements of F(U). !

Thus sheaves on X can be recovered from their “restriction to a base”. This is
a statement about objects in a category, so we should hope for a similar statement
about morphisms.

3.7.C. IMPORTANT EXERCISE: MORPHISMS OF SHEAVES CORRESPOND TO MOR-
PHISMS OF SHEAVES ON A BASE. Suppose {Bi} is a base for the topology of X.
(a) Verify that a morphism of sheaves is determined by the induced morphism of
sheaves on the base.
(b) Show that a morphism of sheaves on the base (i.e. such that the diagram

F(Bi) $$

%%

G(Bi)

%%
F(Bj) $$ G(Bj)

commutes for all Bj ↪→ Bi) gives a morphism of the induced sheaves. (Possible
hint: compatible stalks.)

3.7.D. IMPORTANT EXERCISE. Suppose X = ∪Ui is an open cover of X, and we
have sheaves Fi on Ui along with isomorphisms φij : Fi|Ui∩Uj

→ Fj|Ui∩Uj
(with

φii the identity) that agree on triple overlaps (i.e. φjk ◦φij = φij on Ui ∩Uj ∩Uk).
Show that these sheaves can be glued together into a sheaf F on X (unique up to
unique isomorphism), such that Fi = F |Ui

, and the isomorphisms over Ui∩Uj are
the obvious ones. (Thus we can “glue sheaves together”, using limited patching
information.) Warning: we are not assuming this is a finite cover, so you use by
induction. (You can use the ideas of this section to solve this problem, but you
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don’t necessarily need to. Hint: As the base, take those open sets contained in
some Ui.)

3.7.2. Remark for experts. Exercise 3.7.D almost says that the “set” of sheaves forms
a sheaf itself, but not quite. Making this precise leads one to the notion of a stack.

3.7.E. UNIMPORTANT EXERCISE. Suppose a morphism of sheaves F → G on a
base Bi is surjective for all Bi (i.e. F(Bi) → G(Bi) is surjective for all i). Show
that the morphism of sheaves (not on the base) is surjective. The converse is not
true, unlike the case for injectivity. This gives a useful criterion for surjectivity
(“surjectivity on small enough open sets”).





Part II
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CHAPTER 4

Toward affine schemes: the underlying set, and the
underlying topological space

The very idea of scheme is of infantile simplicity — so simple, so humble, that no one
before me thought of stooping so low. So childish, in short, that for years, despite all the

evidence, for many of my erudite colleagues, it was really “not serious”! — Grothendieck

4.1 Toward schemes

We are now ready to consider the notion of a scheme, which is the type of geometric
space central to algebraic geometry. We should first think through what we mean
by “geometric space”. You have likely seen the notion of a manifold, and we wish
to abstract this notion so that it can be generalized to other settings, notably so that
we can deal with non-smooth and arithmetic objects.

The key insight behind this generalization is the following: we can understand
a geometric space (such as a manifold) well by understanding the functions on
this space. More precisely, we will understand it through the sheaf of functions
on the space. If we are interested in differentiable manifolds, we will consider
differentiable functions; if we are interested in smooth manifolds, we will consider
smooth functions; and so on.

Thus we will define a scheme to be the following data

• The set: the points of the scheme
• The topology: the open sets of the scheme
• The structure sheaf: the sheaf of “algebraic functions” (a sheaf of rings) on

the scheme.

Recall that a topological space with a sheaf of rings is called a ringed space (§3.2.11).
We will try to draw pictures throughout. Pictures can help develop geometric

intuition, which can guide the algebraic development (and, eventually, vice versa).
Some people find pictures very helpful, while others are repulsed or nonplussed
or confused.

We will try to make all three notions as intuitive as possible. For the set, in
the key example of complex (affine) varieties (roughly, things cut out in Cn by
polynomials), we will see that the points are the “traditional points” (n-tuples
of complex numbers), plus some extra points that will be handy to have around.
For the topology, we will require that “algebraic functions vanish on closed sets”,
and require nothing else. For the sheaf of algebraic functions (the structure sheaf),
we will expect that in the complex plane, (3x2 + y2)/(2x + 4xy + 1) should be

81
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an algebraic function on the open set consisting of points where the denominator
doesn’t vanish, and this will largely motivate our definition.

4.1.1. Example: Differentiable manifolds. As motivation, we return to our
example of differentiable manifolds, reinterpreting them in this light. We will be
quite informal in this discussion. Suppose X is a manifold. It is a topological space,
and has a sheaf of differentiable functions OX (see §3.1). This gives X the structure of a
ringed space. We have observed that evaluation at a point p ∈ X gives a surjective
map from the stalk to R

OX,p
$$ $$ R,

so the kernel, the (germs of) functions vanishing at p, is a maximal ideal mX (see
§3.1.1).

We could define a differentiable real manifold as a topological space X with a
sheaf of rings. We would require that there is a cover of X by open sets such that
on each open set the ringed space is isomorphic to a ball around the origin in Rn

(with the sheaf of differentiable functions on that ball). With this definition, the
ball is the basic patch, and a general manifold is obtained by gluing these patches
together. (Admittedly, a great deal of geometry comes from how one chooses to
patch the balls together!) In the algebraic setting, the basic patch is the notion of an
affine scheme, which we will discuss soon. (In the definition of manifold, there is an
additional requirement that the topological space be Hausdorff, to avoid patholo-
gies. Schemes are often required to be “separated” to avoid essentially the same
pathologies. Separatedness will be discussed in Chapter 11.)

Functions are determined by their values at points. This is an obvious statement,
but won’t be true for schemes in general. We will see an example in Exercise 4.2.A(a),
and discuss this behavior further in §4.2.9.

Morphisms of manifolds. How can we describe differentiable maps of manifolds
X → Y? They are certainly continuous maps — but which ones? We can pull back
functions along continuous maps. Differentiable functions pull back to differen-
tiable functions. More formally, we have a map f−1OY → OX. (The inverse image
sheaf f−1 was defined in §3.6.) Inverse image is left-adjoint to pushforward, so we
also get a map f# : OY → f∗OX.

Certainly given a differentiable map of manifolds, differentiable functions pull
back to differentiable functions. It is less obvious that this is a sufficient condition for
a continuous function to be differentiable.

4.1.A. IMPORTANT EXERCISE FOR THOSE WITH A LITTLE EXPERIENCE WITH MAN-
IFOLDS. Prove that a continuous function of differentiable manifolds f : X → Y
is differentiable if differentiable functions pull back to differentiable functions, i.e.
if pullback by f gives a map OY → f∗OX. (Hint: check this on small patches.
Once you figure out what you are trying to show, you’ll realize that the result is
immediate.)

4.1.B. EXERCISE. Show that a morphism of differentiable manifolds f : X → Y with
f(p) = q induces a morphism of stalks f# : OY,q → OX,p. Show that f#(mY,q) ⊂
mX,p. In other words, if you pull back a function that vanishes at q, you get a
function that vanishes at p — not a huge surprise. (In §7.3, we formalize this by
saying that maps of differentiable manifolds are maps of local-ringed spaces.)
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4.1.2. Aside. Here is a little more for experts: Notice that this induces a map on
tangent spaces (see Aside 3.1.2)

(mX,p/m2
X,p)∨ → (mY,q/m2

Y,q)∨.

This is the tangent map you would geometrically expect. Again, it is interesting
that the cotangent map mY,q/m2

Y,q → mX,p/m2
X,p is algebraically more natural than

the tangent map (there are no “duals”).
Experts are now free to try to interpret other differential-geometric informa-

tion using only the map of topological spaces and map of sheaves. For example:
how can one check if f is smooth? How can one check if f is an immersion? (We
will see that the algebro-geometric version of these notions are smooth morphism
and locally closed immersion, see Chapter 25 and §9.1.2 respectively.)

4.1.3. Side Remark. Manifolds are covered by disks that are all isomorphic. This
isn’t true for schemes (even for “smooth complex varieties”). There are examples
of two “smooth complex curves” (Riemann surfaces) X and Y so that no non-empty
open subset of X is isomorphic to a non-empty open subset of Y. And there is an
example of a Riemann surface X such that no two open subsets of X are isomorphic.
Informally, this is because in the Zariski topology on schemes, all non-empty open
sets are “huge” and have more “structure”.

4.1.4. Other examples. If you are interested in differential geometry, you will be
interested in differentiable manifolds, on which the functions under consideration
are differentiable functions. Similarly, if you are interested in topology, you will be
interested in topological spaces, on which you will consider the continuous func-
tion. If you are interested in complex geometry, you will be interested in complex
manifolds (or possibly “complex analytic varieties”), on which the functions are
holomorphic functions. In each of these cases of interesting “geometric spaces”,
the topological space and sheaf of functions is clear. The notion of scheme fits
naturally into this family.

4.2 The underlying set of affine schemes

For any ring A, we are going to define something called Spec A, the spectrum of A.
In this section, we will define it as a set, but we will soon endow it with a topology,
and later we will define a sheaf of rings on it (the structure sheaf). Such an object
is called an affine scheme. Later Spec A will denote the set along with the topology,
and a sheaf of functions. But for now, as there is no possibility of confusion, Spec A
will just be the set.

4.2.1. The set Spec A is the set of prime ideals of A. The point of Spec A corre-
sponding to the prime ideal p will be denoted [p]. Elements a ∈ A will be called
functions on Spec A, and their value at the point [p] will be a (mod p). This is
weird: a function can take values in different places at different points — the function 7 on
Spec Z takes the value 1 (mod 2) at [(2)] and 1 (mod 3) at [(3)]. “An element a of the
ring lying in a prime ideal p” translates to “a function a that is 0 at the point [p]”
or “a function a vanishing at the point [p]”, and we will use these phrases inter-
changeably. Notice that if you add or multiply two functions, you add or multiply
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their values at all points; this is a translation of the fact that A → A/p is a homo-
morphism of rings. These translations are important — make sure you are very
comfortable with them! They should become second nature.

We now give some examples.

Example 1 (the complex affine line): A1
C := Spec C[x]. Let’s find the prime

ideals. As C[x] is an integral domain, 0 is prime. Also, (x − a) is prime, where
a ∈ C: it is even a maximal ideal, as the quotient by this ideal is field:

0 $$ (x − a) $$ C[x]
f)→f(a) $$ C $$ 0

(This exact sequence should remind you of (3.1.1.1) in our motivating example of
manifolds.)

We now show that there are no other prime ideals. We use the fact that C[x]
has a division algorithm, and is a unique factorization domain. Suppose p is a
prime ideal. If p != (0), then suppose f(x) ∈ p is a non-zero element of smallest
degree. It is not constant, as prime ideals can’t contain 1. If f(x) is not linear,
then factor f(x) = g(x)h(x), where g(x) and h(x) have positive degree. (Here we
use that C is algebraically closed.) Then g(x) ∈ p or h(x) ∈ p, contradicting the
minimality of the degree of f. Hence there is a linear element x − a of p. Then I
claim that p = (x − a). Suppose f(x) ∈ p. Then the division algorithm would give
f(x) = g(x)(x − a) + m where m ∈ C. Then m = f(x) − g(x)(x − a) ∈ p. If m != 0,
then 1 ∈ p, giving a contradiction.

Thus we have a picture of Spec C[x] (see Figure 4.1). There is one point for each
complex number, plus one extra point [(0)]. The point [(x − a)] we will reasonably
associate to a ∈ C. Where should we picture the point [(0)]? The best way of think-
ing about it is somewhat zen. It is somewhere on the complex line, but nowhere
in particular. Because (0) is contained in all of these primes, we will somehow
associate it with this line passing through all the other points. [(0)] is called the
“generic point” of the line; it is “generically on the line” but you can’t pin it down
any further than that. We will place it far to the right for lack of anywhere better
to put it. You will notice that we sketch A1

C as one-dimensional in the real sense;
this is to later remind ourselves that this will be a one-dimensional space, where
dimensions are defined in an algebraic (or complex-geometric) sense. (Dimension
will be defined in Chapter 12.)

(0)(x) (x−1) (x−a)

FIGURE 4.1. A picture of A1
C = Spec C[x]

To give you some feeling for this space, we make some statements that are
currently undefined, but suggestive. The functions on A1

C are the polynomials. So
f(x) = x2 − 3x + 1 is a function. What is its value at [(x − 1)], which we think of as
the point 1 ∈ C? Answer: f(1)! Or equivalently, we can evalute f(x) modulo x − 1
— this is the same thing by the division algorithm. (What is its value at (0)? It is
f(x) (mod 0), which is just f(x).)
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Here is a more complicated example: g(x) = (x − 3)3/(x − 2) is a “rational
function”. It is defined everywhere but x = 2. (When we know what the structure
sheaf is, we will be able to say that it is an element of the structure sheaf on the
open set A1

C − {2}.) g(x) has a triple zero at 3, and a single pole at 2.

Example 2 (the affine line over k = k): A1
k := Spec k[x] where k is an alge-

braically closed field. This is called the affine line over k. All of our discussion in
the previous example carries over without change. We will use the same picture,
which is after all intended to just be a metaphor.

Example 3: Spec Z. An amazing fact is that from our perspective, this will
look a lot like the affine line A1

k
. The integers, like k[x], form a unique factorization

domain, with a division algorithm. The prime ideals are: (0), and (p) where p
is prime. Thus everything from Example 1 carries over without change, even the
picture. Our picture of Spec Z is shown in Figure 4.2.

· · ·(2) (3) (5) (0)

FIGURE 4.2. A “picture” of Spec Z, which looks suspiciously like Figure 4.1

Let’s blithely carry over our discussion of functions to this space. 100 is a
function on Spec Z. It’s value at (3) is “1 (mod 3)”. It’s value at (2) is “0 (mod 2)”,
and in fact it has a double zero. 27/4 is a rational function on Spec Z, defined away
from (2). It has a double pole at (2), a triple zero at (3). (You can make this precise
after reading this precise in §13.3.) Its value at (5) is

27× 4−1 ≡ 2× (−1) ≡ 3 (mod 5).

Example 4: silly but important examples. Spec k where k is any field is boring:
only one point. Spec 0, where 0 is the zero-ring, is the empty set, as 0 has no prime
ideals.

4.2.A. A SMALL EXERCISE ABOUT SMALL SCHEMES. (a) Describe the set Spec k[ε]/(ε2).
This is called the ring of dual numbers, and will turn out to be quite useful. You
should think of ε as a very small number, so small that its square is 0 (although it
itself is not 0). It is a non-zero function whose value at all points is zero, thus giv-
ing our first example of functions not being determined by their values at points.
We will discuss this phenomenon further in §4.2.9.
(b) Describe the set Spec k[x](x). We will see this scheme again repeatedly, starting
with §4.2.6 and Exercise 4.4.J.

In Example 2, we restricted to the case of algebraically closed fields for a rea-
son: things are more subtle if the field is not algebraically closed.

Example 5 (the affine line over R): R[x]. Using the fact that R[x] is a unique
factorization domain, we see that the primes are (0), (x − a) where a ∈ R, and
(x2 + ax + b) where x2 + ax + b is an irreducible quadratic. The latter two are
maximal ideals, i.e. their quotients are fields. For example: R[x]/(x − 3) ∼= R,
R[x]/(x2 + 1) ∼= C.
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4.2.B. UNIMPORTANT EXERCISE. Show that for the last type of prime, of the form
(x2 + ax + b), the quotient is always isomorphic to C.

So we have the points that we would normally expect to see on the real line,
corresponding to real numbers; the generic point 0; and new points which we may
interpret as conjugate pairs of complex numbers (the roots of the quadratic). This
last type of point should be seen as more akin to the real numbers than to the
generic point. You can picture A1

R as the complex plane, folded along the real axis.
But the key point is that Galois-conjugate points (such as i and −i) are considered
glued.

Let’s explore functions on this space; consider the function f(x) = x3 − 1. Its
value at the point [(x−2)] is f(x) = 7, or perhaps better, 7 (mod x−2). How about
at (x2 + 1)? We get

x3 − 1 ≡ −x − 1 (mod x2 + 1),

which may be profitably interpreted as −i − 1.
One moral of this example is that we can work over a non-algebraically closed

field if we wish. It is more complicated, but we can recover much of the informa-
tion we wanted.

4.2.C. EXERCISE. Describe the set A1
Q. (This is harder to picture in a way analo-

gous to A1
R. But the rough cartoon of points on a line, as in Figure 4.1, remains a

reasonable sketch.)

Example 6 (the affine line over Fp): A1
Fp

= Spec Fp[x]. As in the previous
examples, this has a division algorithm, so the prime ideals are of the form (0)
or (f(x)) where f(x) ∈ Fp[x] is an irreducible polynomials, which can be of any
degree. Irreducible polynomials correspond to sets of Galois conjugates in Fp.

Note that Spec Fp[x] has p points corresponding to the elements of Fp, but also
(infinitely) many more. This makes this space much richer than simply p points.
For example, a polynomial f(x) is not determined by its values at the p elements
of Fp, but it is determined by its values at the points of Spec Fp. (As we have
mentioned before, this is not true for all schemes.)

You should think about this, even if you are a geometric person — this intu-
ition will later turn up in geometric situations. Even if you think you are interested
only in working over an algebraically closed field (such as C), you will have non-
algebraically closed fields (such as C(x)) forced upon you.

Example 7 (the complex affine plane): A2
C = Spec C[x, y]. (As with Examples

1 and 2, our discussion will apply with C replaced by any algebraically closed
field.) Sadly, C[x, y] is not a principal ideal domain: (x, y) is not a principal ideal.
We can quickly name some prime ideals. One is (0), which has the same flavor as
the (0) ideals in the previous examples. (x−2, y−3) is prime, and indeed maximal,
because C[x, y]/(x − 2, y − 3) ∼= C, where this isomorphism is via f(x, y) '→ f(2, 3).
More generally, (x − a, y − b) is prime for any (a, b) ∈ C2. Also, if f(x, y) is an
irreducible polynomial (e.g. y − x2 or y2 − x3) then (f(x, y)) is prime.

4.2.D. EXERCISE. (Feel free to skip this exercise, as we will see a different proof of
this in §12.2.3.) Show that we have identified all the prime ideals of C[x, y]. (Hint:
Suppose p is a prime ideal that is not principal. Show you can find f(x, y), g(x, y) ∈
p with no common factor. By considering the Euclidean algorithm in the Euclidean
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domain k(y)[x], show that you can find a nonzero h(x) ∈ (f(x, y), g(x, y)) ⊂ p.
Using primality, show that you can one of the linear factors of h(x), say (x − a), is
in p. Similarly show there is some (y − b) ∈ p.)

We can now attempt to draw a picture of this space. The maximal primes
correspond to the traditional points in C2: [(x−a, y−b)] corresponds to (a, b) ∈ C2.
We now have to visualize the “bonus points”. [(0)] somehow lives behind all of
the traditional points; it is somewhere on the plane, but nowhere in particular.
So for example, it does not lie on the parabola y = x2. The point [(y − x2)] lies
on the parabola y = x2, but nowhere in particular on it. You can see from this
picture that we already want to think about “dimension”. The primes (x−a, y−b)
are somehow of dimension 0, the primes (f(x, y)) are of dimension 1, and (0) is
somehow of dimension 2. (All of our dimensions here are complex or algebraic
dimensions. The complex plane C2 has real dimension 4, but complex dimension
2. Complex dimensions are in general half of real dimensions.) We won’t define
dimension precisely until Chapter 12, but you should feel free to keep it in mind
before then.

Note too that maximal ideals correspond to “smallest” points. Smaller ideals
correspond to “bigger” points. “One prime ideal contains another” means that
the points “have the opposite containment.” All of this will be made precise once
we have a topology. This order-reversal is a little confusing, and will remain so
even once we have made the notions precise.

We now come to the obvious generalization of Example 7, affine n-space.

Example 8 (complex affine n-space): An
C := Spec C[x1, . . . , xn]. (More gener-

ally, An
A is defined to be Spec A[x1, . . . , xn], where A is an arbitrary ring.)

For concreteness, let’s consider n = 3. We now have an interesting question in
what at first appears to be pure algebra: What are the prime ideals of C[x, y, z]?

Analogously to before, (x − a, y − b, z − c) is a prime ideal. This is a maximal
ideal, with residue field C; we think of these as “0-dimensional points”. We will of-
ten write (a, b, c) for [(x−a, y−b, z−c)] because of our geometric interpretation of
these ideals. There are no more maximal ideals, by Hilbert’s Weak Nullstellensatz.
(This is sometimes called the “weak version” of the Nullstellensatz.)

4.2.2. Hilbert’s Weak Nullstellensatz. — If k is an algebraically closed field, then
the maximal ideals k[x1, . . . , xn], are precisely those of the form (x1 − a1, . . . , xn − an),
where ai ∈ k.

We may as well state a slightly stronger version now.

4.2.3. Hilbert’s Nullstellensatz. — The maximal ideals of k[x1, . . . , xn] are precisely
those with residue field a finite extension of k.

4.2.E. EASY EXERCISE. Show that the Nullstellensatz implies the Weak Nullstel-
lensatz.

You will prove the Nullstellensatz in Exercise 12.2.B.There are other prime
ideals too. We have (0), which is corresponds to a “3-dimensional point”. We have
(f(x, y, z)), where f is irreducible. To this we associate the hypersurface f = 0,
so this is “2-dimensional” in nature. But we have not found them all! One clue:
we have prime ideals of “dimension” 0, 2, and 3 — we are missing “dimension
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1”. Here is one such prime ideal: (x, y). We picture this as the locus where x =
y = 0, which is the z-axis. This is a prime ideal, as the corresponding quotient
C[x, y, z]/(x, y) ∼= C[z] is an integral domain (and should be interpreted as the
functions on the z-axis). There are lots of one-dimensional primes, and it is not
possible to classify them in a reasonable way. It will turn out that they correspond
to things that we think of as irreducible curves. Thus remarkably the answer to
the purely algebraic question (“what are the primes of C[x, y, z]”) is fundamentally
geometric!

The fact that the closed points A1
Q can be interpreted as points of Q where

Galois-conjugates are glued together (Exercise 4.2.C) extends to An
Q. For example,

in A2
Q, (
√

2,
√

2) is glued to (−
√

2,−
√

2) but not to (
√

2,−
√

2). The following exer-
cise will give you some idea of how this works.

4.2.F. EXERCISE. Describe the maximal ideal of Q[x, y] corresponding (
√

2,
√

2)

and (−
√

2,−
√

2). Describe the maximal ideal of Q[x, y] corresponding (
√

2,−
√

2)

and (−
√

2,
√

2). What are the residue fields in both cases?

4.2.4. Quotients and localizations. Two natural ways of getting new rings from
old — quotients and localizations — have interpretations in terms of spectra.

4.2.5. Quotients: Spec A/I as a subset of Spec A. It is an important fact that the
primes of A/I are in bijection with the primes of A containing I.

4.2.G. ESSENTIAL ALGEBRA EXERCISE (MANDATORY IF YOU HAVEN’T SEEN IT BE-
FORE). Suppose A is a ring, and I an ideal of A. Let φ : A → A/I. Show that
φ−1 gives an inclusion-preserving bijection between primes of A/I and primes of
A containing I. Thus we can picture Spec A/I as a subset of Spec A.

As an important motivational special case, you now have a picture of complex
affine varieties. Suppose A is a finitely generated C-algebra, generated by x1, . . . ,
xn, with relations f1(x1, . . . , xn) = · · · = fr(x1, . . . , xn) = 0. Then this description
in terms of generators and relations naturally gives us an interpretation of Spec A
as a subset of An

C , which we think of as “traditional points” (n-tuples of complex
numbers) along with some “bonus” points (we haven’t yet fully described). To see
which of the traditional points are in Spec A, we simply solve the equations f1 =
· · · = fr = 0. For example, Spec C[x, y, z]/(x2+y2−z2) may be pictured as shown in
Figure 4.3. (Admittedly this is just a “sketch of the R-points”, but we will still find
it helpful later.) This entire picture carries over (along with the Nullstellensatz)
with C replaced by any algebraically closed field. Indeed, the picture of Figure 4.3
can be said to depict k[x, y, z]/(x2 + y2 − z2) for most algebraically closed fields k
(although it is misleading in characteristic 2, because of the coincidence x2 + y2 −
z2 = (x + y + z)2).

4.2.6. Localizations: Spec S−1A as a subset of Spec A. The following exercise shows
how prime behave under localization.

4.2.H. ESSENTIAL ALGEBRA EXERCISE (MANDATORY IF YOU HAVEN’T SEEN IT BE-
FORE). Suppose S is a multiplicative subset of A. The map Spec S−1A → Spec A
gives an order-preserving bijection of the primes of S−1A with the primes of A
that don’t meet the multiplicative set S.
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FIGURE 4.3. A “picture” of Spec C[x, y, z]/(x2 + y2 − z2)

Recall from §2.3.3 that there are two important flavors of localization. The
first is Af = {1, f, f2, . . . }−1A where f ∈ A. A motivating example is A = C[x, y],
f = y−x2. The second is Ap = (A− p)−1A, where p is a prime ideal. A motivating
example is A = C[x, y], S = A − (x, y).

If S = {1, f, f2, . . . }, the primes of S−1A are just those primes not containing f —
the points where “f doesn’t vanish”. (In §4.5, we will call this a distinguished open
set, once we know what open sets are.) So to picture Spec C[x, y]y−x2 , we picture
the affine plane, and throw out those points on the parabola y − x2 — the points
(a, a2) for a ∈ C (by which we mean [(x − a, y − a2)]), as well as the “new kind of
point” [(y − x2)].

In general, inverting zero-divisors can make things behave a bit oddly. Con-
sider the case A = C[x, y]/(xy) and f = x. What is the localization Af? We can use
geometric intuition to figure out what it is. Spec k[x, y]/(xy) “is” the union of the
two axes in the plane. Localizing means throwing out the locus where x vanishes.
So we are left with the x-axis, minus the origin, so we expect Spec k[x]x. So there
should be some natural isomorphism (k[x, y]/(xy))x

∼= k[x]x.

4.2.I. EXERCISE. Show that these two rings are isomorphic. (You will see that y
on the left goes to 0 on the right.)

If S = A− p, the primes of S−1A are just the primes of A contained in p. In our
example A = k[x, y], p = (x, y), we keep all those points corresponding to “things
through the origin”, i.e. the 0-dimensional point (x, y), the 2-dimensional point (0),
and those 1-dimensional points (f(x, y)) where f(0, 0) = 0, i.e. those “irreducible
curves through the origin”. You can think of this being a shred of the plane near
the origin; anything not actually “visible” at the origin is discarded (see Figure 4.4).

A special case of this is when A = Spec k[x], and p = (x) (or more gener-
ally when p is any maximal ideal). Then Ap has only two prime ideals (Exer-
cise 4.2.A(b)). You should see this as the germ of a “smooth curve”, where one
point is the “classical point”, and the other is the “generic point of the curve”.
This is an example of a discrete valuation ring, and indeed all discrete valuation
rings should be visualized in such a way. We will discuss discuss discrete valua-
tion rings in §13.3. By then we will have justified the use of the words “smooth”
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Spec k[x,y](x,y)

FIGURE 4.4. Picturing Spec k[x, y](x,y) as a “shred of A2
k”. Only

those points near the origin remain.

and “curve”. (Reality check: try to picture Spec of Z localized at (2) and at (0).
How do the pictures differ?)

4.2.7. Important fact: Maps of rings induce maps of spectra (as sets). We now
make an observation that will later grow up to be morphisms of schemes.

4.2.J. IMPORTANT EASY EXERCISE. If φ : B → A is a map of rings, and p is a prime
ideal of A, show that φ−1(p) is a prime ideal of B.

Hence a map of rings φ : B → A induces a map of sets Spec A → Spec B “in
the opposite direction”. This gives a contravariant functor from the category of
rings to the category of sets: the composition of two maps of rings induces the
composition of the corresponding maps of spectra.

4.2.K. EASY EXERCISE. Let B be a ring.
(a) Suppose I ⊂ B is an ideal. Show that the map Spec B/I → Spec B is the inclu-
sion of §4.2.5.
(b) Suppose S ⊂ B is a multiplicative set. Show that the map Spec S−1B → Spec B
is the inclusion of §4.2.6.

4.2.8. An explicit example. In the case of affine complex varieties (or indeed affine
varieties over any algebraically closed field), the translation between maps given
by explicit formulas and maps of rings is quite direct. For example, consider a map
from the parabola C2 (with coordinates a and b) given by b = a2, to the “curve”
in C3 (with coordinates x, y, and z) cut out by the equations y = x2 and z = y2.
Suppose the map sends the point (a, b) ∈ C2 to the point (a, b, b2) ∈ C3. In our
new language, we have map

Spec C[a, b]/(b − a2) $$ Spec C[x, y, z]/(y − x2, z − y2)
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given by

C[a, b]/(b − a2) C[x, y, z]/(y − x2, z − y2)++

(a, b, b2) (x, y, z),%++

i.e. x '→ a, y '→ b, and z '→ b2. If the idea is not yet clear, the following two
exercises may help.

FIGURE 4.5. The map C → C given by y '→ y2

4.2.L. EXERCISE (SPECIAL CASE). Consider the map of complex manifolds send-
ing C → C via y '→ y2; you can picture it as the projection of the parabola x = y2

in the plane to the x-axis (see Figure 4.5). Interpret the corresponding map of rings
is given by C[x] '→ C[y] by x '→ y2. Verify that the preimage (the fiber) above the
point a ∈ C is the point(s) ±

√
a ∈ C, using the definition given above. (A more

sophisticated version of this example appears in Example 10.3.3.)

4.2.M. EXERCISE (GENERAL CASE). (a) Show that the map

φ : (y1, y2, . . . , yn) '→ (f1(x1, . . . , xm), f2(x1, . . . , xm), . . . , fn(x1, . . . , xm))

determines a map

Spec C[x1, . . . , xm]/I → Spec C[y1, . . . , yn]/J

if φ(J) ⊂ I.
(b) Via the identification of the Nullstellensatz, interpret the map of (a) as a map
Cm → Cn given by

(x1, . . . , xm) '→ (f1(x1, . . . , xm), . . . , fn(x1, . . . , xm)).

The converse to (a) isn’t quite true. Once you have more experience and intu-
ition, you can figure out when it is true, and when it can be false. The failure of the
converse to hold has to do with nilpotents, which we come to very shortly (§4.2.9).

4.2.N. EXERCISE. Consider the map of sets f : An
Z → Spec Z, given by the ring map

Z → Z[x1, . . . , xn]. If p is prime, describe a bijection between the fiber f−1([(p)])
and An

Fp
. This exercise may give you a sense of how to picture maps (see Fig-

ure 4.6), and in particular why you can think of An
Z is an “An-bundle” over Spec Z.

(Can you interpret the fiber over [(0)] as An
k for some field k?)
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· · ·(3) (0)

An
F2

(2)

An
F3

An
k

· · ·

FIGURE 4.6. A picture of An
Z → Spec Z as a “family of An’s”, or

an “An-bundle over Spec Z”. What is k?

4.2.9. Functions are not determined by their values at points: the fault of nilpo-
tents. We conclude this section by describing some strange behavior. We are
developing machinery that will let us bring our geometric intuition to algebra.
There is one point where your intuition will be false, so you should know now,
and adjust your intuition appropriately. David Mumford wrote [M-CAS, p. 12]: It
is this aspect of schemes which was most scandalous when Grothendieck defined them.

Suppose we have a function (ring element) vanishing at all points. Then it is
not necessarily the zero function! The translation of this question is: is the inter-
section of all prime ideals necessarily just 0? The answer is no, as is shown by the
example of the ring of dual numbers k[ε]/(ε2): ε != 0, but ε2 = 0. (We saw this
scheme in Exercise 4.2.A(a).) Any function whose power is zero certainly lies in
the intersection of all prime ideals.

4.2.O. EXERCISE. Ring elements that have a power that is 0 are called nilpotents.
(a) If I is an ideal of nilpotents, show that the inclusion Spec B/I → Spec B of
Exercise 4.2.G is a bijection. Thus nilpotents don’t affect the underlying set. (We
will soon see in §4.4.5 that they won’t affect the topology either — the difference
will be in the structure sheaf.) (b) (easy) Show that the nilpotents of a ring B form
an ideal. This ideal is called the nilradical, and is denoted N.

Thus the nilradical is contained in the intersection of all the prime ideals. The
converse is also true:

4.2.10. Theorem. — The nilradical N(A) is the intersection of all the primes of A.

4.2.P. EXERCISE. If you don’t know this theorem, then look it up, or even better,
prove it yourself. (Hint: Use the fact that any proper ideal of A is contained in a
maximal ideal, which requires the axiom of choice. Possible further hint: Suppose
x /∈ N(A). We wish to show that there is a prime ideal not containing x. Show that
Ax is not the 0-ring, by showing that 1 != 0.)
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4.2.11. In particular, although it is upsetting that functions are not determined by
their values at points, we have precisely specified what the failure of this intuition
is: two functions have the same values at points if and only if they differ by a
nilpotent. You should think of this geometrically: a function vanishes at every
point of the spectrum of a ring if and only if it has a power that is zero. And if
there are no non-zero nilpotents — if N = (0) — then functions are determined
by their values at points. If a ring has no non-zero nilpotents, we say that it is
reduced.

4.2.Q. FUN UNIMPORTANT EXERCISE: DERIVATIVES WITHOUT DELTAS AND EP-
SILONS. Suppose we have a polynomial f(x) ∈ k[x]. Instead, we work in k[x, ε]/ε2.
What then is f(x + ε)? (Do a couple of examples, then prove the pattern you ob-
serve.) This is a hint that nilpotents will be important in defining differential infor-
mation (Ch. 22).

4.3 Visualizing schemes I: generic points

For years, you have been able to picture x2 + y2 = 1 in the plane, and you
now have an idea of how to picture Spec Z. If we are claiming to understand rings
as geometric objects (through the Spec functor), then we should wish to develop
geometric insight into them. To develop geometric intuition about schemes, it is
helpful to have pictures in your mind, extending your intuition about geometric
spaces you are already familiar with. As we go along, we will empirically develop
some idea of what schemes should look like. This section summarizes what we
have gleaned so far.

Some mathematicians prefer to think completely algebraically, and never think
in terms of pictures. Many others will be disturbed by the fact that this is an art,
not a science. And finally, this hand-waving will necessarily never be used in the
rigorous development of the theory. For these reasons, you may wish to skip these
sections. However, having the right picture in your mind can greatly help under-
standing what facts should be true, and how to prove them.

Our starting point is the example of “affine complex varieties” (things cut out
by equations involving a finite number variables over C), and more generally simi-
lar examples over arbitrary algebraically closed fields. We begin with notions that
are intuitive (“traditional” points behaving the way you expect them to), and then
add in the two features which are new and disturbing, generic points and non-
reduced behavior. You can then extend this notion to seemingly different spaces,
such as Spec Z.

Hilbert’s Weak Nullstellensatz 4.2.2 shows that the “traditional points” are
present as points of the scheme, and this carries over to any algebraically closed
field. If the field is not algebraically closed, the traditional points are glued to-
gether into clumps by Galois conjugation, as in Examples 5 (the real affine line)
and 6 (the affine line over Fp) in §4.2 above. This is a geometric interpretation of
Hilbert’s Nullstellensatz 4.2.3.

But we have some additional points to add to the picture. You should re-
member that they “correspond” to “irreducible” “closed” (algebraic) subsets. As
motivation, consider the case of the complex affine plane (Example 7): we had
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0-ring, 11
A-scheme, 130
A[[x]], 100
A1 , 84, 85
A1

Q bold, 86

A1
R bold, 85

A2
k , 86

An , 87
An

X , 331
FF(X), 127
Gm blackboard bold, 158
I(S), 102
L mathcal with bars, 322
N mathfrak, 92
O(a,b) oh, 324
P1

k , 115
Pn

A , 116
Pn

X , 333
Pn

k , 116
V(S), 94
Aut(·), 18
Γ•(F) cal, 312
Mor, 17
Ωi

X/Y
, 422

Pic X, 276
Prin X, 300
Proj underline, 332
Spec Z bold, 149
Spec A, 83
Spec Z bold, 85, 112
Spec underline, 329
Supp F mathcal, 74
!, 324
AbX , Ab

pre
X , 64

ModOX
, Mod

pre
OX

, 64

SetsX , Sets
pre
X , 64

δ, ∆, 218
L(D), 301
O(D), 298
Ov , 262
ωX/k , 487
⊕, 37
⊗, 25

√
I, 95

M̃, 107
×A , 195
d-tuple embedding, 323, 324, 367–369, 381,

388, 429
d-uple embedding, 188
f−1 , 73
f−1 , inverse image sheaf, 73
f∗, 63
hi , 351
mathcalOX,p , 82
n-plane, 187
pa , 364
étale, 477, 479
étale topology, 282, 478

abelian category, 17, 37
acyclic, 443
additive category, 37
additive functor, 37
adeles, 289
adjoint, 33, 312
adjoint pair, 33
adjoint functors, 33
adjugate matrix, 165
adjunction formula, 372, 432
affine cone, 190
affine line, 85
affine communication lemma, 129
affine cone, 189, 190
affine line, 84
affine line with doubled origin, 114
affine morphism, 168
affine morphisms as Spec underline, 331
affine morphisms separated, 223
affine open,

26.6.F. 110.
affine plane, 86
affine scheme, 83, 105
affine space, 87
affine topology/category, 279
affine variety, 130
affine-local, 129
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Algebraic Hartogs’ Lemma, 113
Algebraic Hartogs’ Lemma, 116, 132
algebraic space, 465
André-Quillen homology, 409
arithmetic genus, 364
arrow, 17
Artinian, 247
ascending chain condition, 99
associated point, 138
associated prime, 137
assumptions on graded rings, 120
automorphism, 18
axiom of choice, 92
axiom of choice, 11

base, 147, 204
base scheme, 147, 322
base change, 204
base change diagram, 204
base locus, 322
base of a topology, 75
base scheme, 204, 322
base-point, 322
base-point-free, 322
Bertini’s theorem, 429
birational, 153
birational (rational) map, 153
blow up, 343
blow-up, 203
blowing up, 343
boundary, 39
branch divisor, 426
branch locus, 422
branch point, 386

Calabi-Yau varieties, 433
Cancellation Theorem for morphisms, 225
canonical curve, 392
canonical embedding, 392
Cartesian diagram, 204
Cartesian diagram/square, 26
category, 17
category of open sets on X, 60
category of ringed spaces, 144
Cech cohomology, 355
Cech complex, 355
change of base, 204
Chevalley’s theorem, 176
Chevalley’s Theorem, 176
Chinese Remainder Theorem, 117
class group, 276, 300
closed map, 229
closed point, 98, 125
closed immersion, 181
closed immersion affine-local, 181
closed morphism, 171, 178
closed subscheme, 181
closed subscheme exact sequence, 287
cocycle condition for transition functions, 274

codimension, 236
cofibered product, 196
Cohen-Macaulay, 265, 368
Cohen-Seidenberg Going-Up theorem, 165
coherent sheaf, 287, 289
cohomology of a double complex, 45
cokernel, 37
colimit, f31
complete linear system, 322
complete (k-scheme), 230
complete linear system, 322
completion, 269
complex, 39
cone over quadric surface, 239
cone over smooth quadric surface, 117
conic, 186
connected, 102, 125
connected component, 102
connecting homomorphism, 352
conormal sheaf, 412
constant presheaf, 62
constructable set, 176
constructable subset of a Noetherian scheme,

175
convergence of spectral sequence, 47
coproduct, 27, 31
coproduct of schemes, 465
coproduct of schemes, 195
cotangent sheaf, 405, 415
cotangent complex, 410
cotangent space, 251
cotangent vector, 405
cotangent vector = differential, 251
counit of adjunction, 34
covariant, 19
covering space, 477
Cremona transformation, 326
Cremona transformation, 156
cubic, 186
curve, 236
cusp, 212, 257, 349
cycle, 39

Dedekind domain, 213, 264
degenerate, 323
degree of line bundle on curve, 363
degree of a point, 131
degree of a projective scheme, 367
degree of a rational map, 154
degree of a finite morphism, 292
degree of a projective scheme, 367
degree of coherent sheaf on curve, 365
degree of divisor on projective curve, 363
degree of invertible sheaf on Pn

k , 301
derivation, 413
derived category, 494
derived functor, 441
derived functor cohomology, 351
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descending chain condition, 99, 247
descent, 202
desingularization, 342
determinant, 176
determinant bundle, 286
diagonal morphism δ, 217
diagonalizing quadrics, 134
differential = cotangent vector, 251
dimension, 235
dimensional vanishing of cohomology, 352
direct limit, 31
direct image sheaf, 63
discrete topology, 68
discrete valuation, 262
discrete valuation ring, 262
disjoint union (of schemes), 111
distinguished affine base, 279
distinguished open set, 89, 97
divisor of zeros and poles, 298
domain of definition of rational map, 227
dominant, 153
dominant rational map, 153
double complex, 45
dual numbers, 92
dual numbers, 85
dual of a locally free sheaf, 275
dual of an OX -module, 65
dual projective space, 429
dual projective bundle, 429
dual variety, 431
dualizing complex, 494
dualizing sheaf, 353, 487
DVR, 262

effective Cartier divisor, 183, 304
effective Weil divisor, 297
elliptic curve, 276
elliptic curve, 394
embedded points, 136
embedding, 477
enough injectives, 441
enough projectives, 441
epi morphism, 37
epimorphism, 28
equidimensional, 235
essentially surjective, 22
Euler characteristic, 297, 362
Euler exact sequence, 419
Euler test, 257
exact, 39
exceptional divisor, 203
exceptional divisor, 343
exponential exact sequence, 70
Ext functors, 441
extending the base field, 202
extension by zero, 74, 318
extension of an ideal, 201
exterior algebra, 285

factorial, 133, 300, 301
faithful functor, 20
faithful functor, 29
faithfully flat, 456
faithfully flat, 456
Faltings’ Theorem (Mordell’s Conjecture), 389
fiber above a point, 204
fiber diagram, 204
fibered diagram/square, 26
fibered product of schemes, 195
final object, 23
finite implies projective, 334
finite presentation, 174
finite extension of rings, 172
finite module, 170
finite morphism is closed, 178
finite morphism is quasifinite, 173
finite morphisms are affine, 170
finite morphisms are projective, 334
finite morphisms separated, 223
finite presentation, 287
finite type, 173
finite type A-scheme, 130
finite type (quasicoherent) sheaf, 289
finitely generated, 287
finitely generated graded ring (over A), 120
finitely generated modules over discrete

valuation rings, 291
finitely presented module, 41
finitely presented algebra, 407
flabby sheaf, 447
flasque sheaf, 447
flat, 42, 339, 438, 451
flat limit, 460
flat A-module, 452
flat lft morphisms are open, 474
flat morphism, 454
flat of relative dimension n, 456
flat quasicoherent sheaf, 454
flat quasicoherent sheaf over a base, 454
flat ring homomorphism, 452
flex line, 398
forgetful functor, 20
formally étale, 486
formally smooth, 486
formally unramified, 486
fractional linear transformations, 322
free sheaf, 273, 274
Freyd-Mitchell Embedding Theorem, 38
Frobenius morphism, 379
full functor, 20, 29
function field K(·), 127
function field, 127, 136, 239
functions on a scheme, 83, 110
functor, 19
functor category, 29
functor of points, 149
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Gaussian integers mathbbZ[i], 264
Gaussian integers mathbbZ[i], 258
generalization, 98
generated by global sections, 310
generated in degree 1, 120, 187
generic point, 125
generic fiber, 204
generic point, 98
generically separable morphism, 425
generization, 125
geometric fiber, 208
geometric fiber, 207
geometric point, 208
geometrically connected, 208
geometrically

connected/irreducible/integral/reduced
fibers, 207

geometrically integral, 208
geometrically irreducible, 208
geometrically nonsingular fibers, 479
geometrically reduced, 208
germ, 60
germ of function near a point, 111
globally generated, 310
gluability axiom, 60
gluing along closed subschemes, 465
Going-Up theorem, 165
graded ring, 120
graded ring over A, 120
graph morphism, 224
graph of rational map, 194
Grassmannian, 123, 161, 420
Grothendieck topology, 478
Grothendieck topology, 282
group scheme, 159
group schemes, 158
groupoid, 18

Hartogs’ Theorem, 276
Hausdorff, 217, 217, 219
height, 236
higher direct image sheaf, 372, 373
higher pushforward sheaf, 373
Hilbert polynomial, 366
Hilbert basis theorem, 100
Hilbert function, 366
Hilbert scheme, 464
Hironaka’s example, 466
Hodge bundle, 468
Hodge theory, 424
Hom, 37
homogeneous ideal, 119
homogeneous space, 484
homogeneous ideal, 120
homology, 39
homotopic maps of complexes, 438
Hopf algebra, 160
hypercohomology, 45

hyperplane, 186, 187
hyperplane class, 300
hypersurface, 186, 237

ideal denominators, 246
ideal of denominators, 133
ideal sheaf, 181
identity axiom, 60
immersion, 477
index category, 30
induced reduced subscheme structure, 193
induced reduced subscheme structure, 193
infinite-dimensional Noetherian ring, 237
initial object, 23
injective limit, 31
injective object in an abelian category, 441
integral, 127, 164
integral closure, 211
integral extension of rings, 164
integral morphism, 173
integral morphism of rings, 164
intersection number, 371
inverse image, 73
inverse image ideal sheaf, 204
inverse image scheme, 204
inverse image sheaf, 73
inverse limit, 30
invertible ideal sheaf, 183
invertible sheaf, 274, 277
irreducible, 97, 125
irreducible (Weil) divisor, 297
irreducible component, 100
irreducible components, 125
irregularity, 425
irrelevant ideal, 120
isomorphism, 18
isomorphism of schemes, 110

Jacobian, 408
Jacobian matrix, 480
Jacobian criterion, 254
Jacobson radical, 167

K3 surfaces, 433
kernel, 37
knotted plane, 264
Kodaira vanishing, 353
Krull, 243
Krull dimension, 235
Krull dimension, 235
Krull’s Principal Ideal Theorem, 243

Lüroth’s theorem, 428
left-adjoint, 33
left-exact, 41
left-exactness of global section functor, 72
Leibniz rule, 406
length, 371
Leray spectral sequence, 352
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limit, 30
line, 187
line bundle, 273
linear space, 186
linear series, 322
linear system, 322
local complete intersection, 432
local criterion for flatness, 461
local ringed space, 111
local-ringed space, 146
localization, 23, 88
locally ringed spaces, 146
locally closed immersion, 184
locally constant sheaf, 62
locally free sheaf, 274
locally free sheaf, 273, 277
locally integral (temp.), 258
locally Noetherian scheme, 130
locally of finite type A-scheme, 130
locally of finite presentation, 174
locally of finite type, 173
locally principal subscheme, 183
locally principal Weil divisor, 299
long exact sequence, 40
long exact sequence of higher pushforward

sheaves, 373

magic diagram, 27
mapping cone, 51, 358
minimal prime, 98, 100
module of Kähler differentials, 406
module of relative differentials, 406
moduli space, 388, 396
monic morphism, 37
monomorphism, 28
Mordell’s conjecture, 389
morphism, 17
morphism of (pre)sheaves, 64
morphism of (pre)sheaves, 64
morphism of ringed spaces, 144
morphism of ringed spaces, 144
morphism of schemes, 147
multiplicity of a singularity, 350

Nagata, 237, 303
Nagata’s Lemma, 303
Nakayama’s Lemma, 166, 167, 177
natural transformation of functors, 29
nilpotents, 92, 126
nilradical, 92, 92, 95
node, 212, 257
Noetherian induction, 101
Noetherian ring, 99, 99
Noetherian rings, important facts about, 99
Noetherian scheme, 125, 130
Noetherian topological space, 98, 99
non-archimedean, 262
non-archimedean analytic geometry, 282, 292
non-degenerate, 323

non-zero-divisor, 23
nonsingular, 251, 255
nonsingularity, 251
normal, 113, 132
normal = R1+S2, 265
normal exact sequence, 432
normal sheaf, 412
normalization, 210
Nullstellensatz, 87, 131
number field, 213

object, 17
octic, 186
Oka’s theorem, 289, 292
open immersion of ringed spaces, 144
open subscheme, 110
open immersion, 163, 163
open subscheme, 163
opposite category, 20
orientation of spectral sequence, 45

page of spectral sequence, 45
partially ordered set, 19
partition of unity, 357
Picard group, 276
plane, 187
points, A-valued, 149
points, S-valued, 149
pole, 263
poset, 19
presheaf, 59
presheaf cokernel, 66
presheaf kernel, 65
primary ideal, 139
prime avoidance (temp. notation), 243
principal divisor, 300
principal Weil divisor, 299
product, 22, 195
Proj, 120
projection formula, 374
projective coordinates, 119
projective space, 116
projective A-scheme, 120
projective X-scheme, 333
projective and quasifinite implies finite, 335
projective cone, 190
projective coordinates, 116
projective distinguished open set, 121
projective line, 115
projective module, 440
projective morphism, 333
projective object in an abelian category, 440
projective space, 122
projective variety, 130
projectivization of a locally free sheaf, 333
proper, 230
proper non-projective surface, 464
proper transform, 342, 343
Puisseux series, 262
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pullback diagram, 204
pullback for [locally?] ringed spaces, 320
pure dimension, 235
pushforward sheaf, 63
pushforward of coherent sheaves, 375
pushforward of quasicoherent sheaves, 315
pushforward sheaf, 63

quadric, 186
quadric surface, 239
quadric surface, 189
quartic, 186
quasicoherent sheaf, 273
quasicoherent sheaf, 107, 277
quasicoherent sheaves: product, direct sum,

∧, Sym, cokernel, image, ⊗, 285
quasicompact, 125
quasicompact morphism, 168
quasicompact topological space, 98
quasifinite, 174
quasiisomorphism, 356
quasiprojective morphism, 359
quasiprojective scheme, 123
quasiprojective is separated, 223
quasiseparated, 222
quasiseparated morphism, 168
quasiseparated scheme, 125
quintic, 186
quotient object, 38
quotient sheaf, 70

radical, 95
radical ideal, 91
radical ideal, 95
ramification point, 386
ramification divisor, 426
ramification locus, 422
rank of locally free sheaf, 277
rank of coherent sheaf on curve, 365
rank of finite type quasicoherent sheaf, 291
rank of quadratic, 134
rational map, 152, 153
rational function, 136
rational normal curve, 323
rational normal curve, 188
rational normal curve take 1, 99
rational section of invertible sheaf, 276
reduced, 127, 130
reduced ring, 93
reduced scheme, 126
reducedness is stalk-local, 127
reduction, 194
Rees algebra, 342
reflexive sheaf, 412
regular, 251
regular scheme, 255
regular function, 136
regular local ring, 255
regular point, 251

regular section of invertible sheaf, 276
relative (co)tangent sheaf, 415
relative (co)tangent vectors, 405
representable functor, 158
residue field, 110
residue field at a point, 111
Residue theorem, 339, 363
resolution of singularities, 342
restriction map, 59
restriction of a quasicoherent sheaf, 316
restriction of sheaf to open set, 65
resultant, 176
Riemann-Roch for coherent sheaves on a

curve, 365
Riemann-Roch for surfaces, 372
right exact, 25
right-adjoint, 33
right-exact, 41
ring scheme, 159
ring of integers in a number field, 213
ring scheme, 160
ringed space, 63, 81
rulings on the quadric surface, 189

S2, 265
Sard’s theorem, 483
saturated module, 313
saturation map, 312
scheme over A, 130
scheme, definition of, 110
scheme-theoretic inverse image, 204
scheme-theoretic pullback, 204
Schubert cell, 161
sections over an open set, 59
Segre embedding, 209, 324
Segre product, 209
Segre variety, 209
separable morphism, 425
separated, 114, 219
separated over A, 219
separated presheaf, 60
separatedness, 110
septic, 186
Serre duality, 353
Serre duality (strong form), 488
Serre vanishing, 353
Serre’s criterion for normality, 265
Serre’s criterion for affineness, 373
sextic, 186
sheaf, 59
sheaf Hom (Hom underline), 65
sheaf Hom (Hom underline) of quasicoherent

sheaves, 289
sheaf Hom (underline), 65
sheaf determined by sheaf on base, 280
sheaf of ideals, 181
sheaf of relative differentials, 405
sheaf on a base, 75
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sheaf on a base, 75
sheaf on a base determines sheaf, 76
sheaf on affine base, 279
sheafification, 66, 68
singular, 251, 255
site, 282
skyscraper sheaf, 62
smooth, 251, 477, 479
smooth quadric surface, 134
specialization, 98, 125
spectral sequence, 44
spectrum, 83
stack, 77, 282
stalk, 60
stalk-local, 127, 129
strict transform, 343
strong Serre duality, 488
structure morphism, 148
structure sheaf, 81
structure sheaf (of ringed space), 63
structure sheaf on Spec A, 105
submersion, 477
subobject, 38
subscheme cut out by a section of a locally

free sheaf, 276
subsheaf, 70
support, 290
support of a sheaf, 74
support of a Weil divisor, 297
surface, 236
surjective morphism, 206
symbolic power of an ideal, 248
symmetric algebra, 285

tacnode, 212, 257
tame ramification, 427
tangent line, 398
tangent sheaf, 415
tangent space, 251
tangent vector, 251
tautological bundle, 331
tensor algebra T∗

A(M), 285
tensor product, 24, 25
tensor product of O-modules, 73
tensor product of sheaves, 73
topos, 282
torsion-free, 287
total fraction ring, 136
total space of locally free sheaf, 331
total transform, 343
trace map, 487
transcendence basis/degree, 238
transition functions, 274
transitive group action, 484
trigonal curve, 391
twisted cubic, 186
twisted cubic, 239
twisted cubic curve, 99

twisting by a line bundle, 309
two-plane example, 265

ultrafilter, 102
underline S, 62
underline Spre, 62
uniformizer, 260
unit of adjunction, 34
universal property, 15
universal property of blowing up, 343
universally, 229
universally closed, 229
unramified, 477, 479
uppersemicontinuity of rank of finite type

sheaf, 291

valuation, 262
valuation ring, 262
valuative criterion for separatedness, 265
value of a function, 83
value of a quasicoherent sheaf at a point, 291
value of function, 110
value of function at a point, 111
vanishing set, 94
vanishing theorems, 362
vanishing scheme, 183
variety, 217, 221
vector bundle, 331
Veronese, 323
Veronese embedding, 324
Veronese subring, 151
Veronese embedding, 188, 323, 367–369, 381,

388, 429
Veronese surface, 188
vertical (co)tangent vectors, 405

Weierstrass normal form, 399
weighted projective space, 189
Weil divisor, 297
wild ramification, 427

Yoneda embedding, 29
Yoneda’s Lemma, 28
Yoneda’s lemma, 199
Yoneda’s lemma, 29

Zariski (co)tangent space, 251
Zariski tangent space, 251
Zariski topology, 94, 95
zero ring, 11
zero object, 23, 37
zero-divisor, 23
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