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CHAPTER 1

Introduction

I can illustrate the .... approach with the ... image of a nut to be opened. The first
analogy that came to my mind is of immersing the nut in some softening liquid, and why
not simply water? From time to time you rub so the liquid penetrates better, and otherwise
you let time pass. The shell becomes more flexible through weeks and months — when the
time is ripe, hand pressure is enough, the shell opens like a perfectly ripened avocado!

A different image came to me a few weeks ago. The unknown thing to be known
appeared to me as some stretch of earth or hard marl, resisting penetration ... the sea
advances insensibly in silence, nothing seems to happen, nothing moves, the water is so
far off you hardly hear it ... yet finally it surrounds the resistant substance.

— Alexander Grothendieck, Récoltes et Semailles p. 552-3, translation by Colin
McLarty

1.1 Goals

These are an updated version of notes accompanying a hard year-long class
taught at Stanford in 2009-2010. I am currently editing them and adding a few
more sections, and I hope to post a reasonably complete (if somewhat rough) ver-
sion over the 2010-11 academic year at the site http://math216.wordpress.com/.

In any class, choices must be made as to what the course is about, and who it
is for — there is a finite amount of time, and any addition of material or explana-
tion or philosophy requires a corresponding subtraction. So these notes are highly
inappropriate for most people and most classes. Here are my goals. (I do not claim
that these goals are achieved; but they motivate the choices made.)

These notes currently have a very particular audience in mind: Stanford Ph.D.
students, postdocs and faculty in a variety of fields, who may want to use alge-
braic geometry in a sophisticated way. This includes algebraic and arithmetic ge-
ometers, but also topologists, number theorists, symplectic geometers, and others.

The notes deal purely with the algebraic side of the subject, and completely
neglect analytic aspects.

They assume little prior background (see §1.2), and indeed most students have
little prior background. Readers with less background will necessarily have to
work harder. It would be great if the reader had seen varieties before, but many
students haven’t, and the course does not assume it — and similarly for category
theory, homological algebra, more advanced commutative algebra, differential ge-
ometry, . . . . Surprisingly often, what we need can be developed quickly from
scratch. The cost is that the course is much denser; the benefit is that more people
can follow it; they don’t reach a point where they get thrown. (On the other hand,
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10 Math 216: Foundations of Algebraic Geometry

people who already have some familiarity with algebraic geometry, but want to
understand the foundations more completely should not be bored, and will focus
on more subtle issues.)

The notes seek to cover everything that one should see in a first course in the
subject, including theorems, proofs, and examples.

They seek to be complete, and not leave important results as black boxes
pulled from other references.

There are lots of exercises. I have found that unless I have some problems I
can think through, ideas don’t get fixed in my mind. Some are trivial — that’s
okay, and even desirable. A very few necessary ones may be hard, but the reader
should have the background to deal with them — they are not just an excuse to
push material out of the text.

There are optional starred (!) sections of topics worth knowing on a second
or third (but not first) reading. You should not read double-starred sections (!!)
unless you really really want to, but you should be aware of their existence.

The notes are intended to be readable, although certainly not easy reading.
In short, after a year of hard work, students should have a broad familiarity

with the foundations of the subject, and be ready to attend seminars, and learn
more advanced material. They should not just have a vague intuitive understand-
ing of the ideas of the subject; they should know interesting examples, know why
they are interesting, and be able to prove interesting facts about them.

I have greatly enjoyed thinking through these notes, and teaching the corre-
sponding classes, in a way I did not expect. I have had the chance to think through
the structure of algebraic geometry from scratch, not blindly accepting the choices
made by others. (Why do we need this notion? Aha, this forces us to consider this
other notion earlier, and now I see why this third notion is so relevant...) I have
repeatedly realized that ideas developed in Paris in the 1960’s are simpler than I
initially believed, once they are suitably digested.

1.1.1. Implications. We will work with as much generality as we need for most
readers, and no more. In particular, we try to have hypotheses that are as general
as possible without making proofs harder. The right hypotheses can make a proof
easier, not harder, because one can remember how they get used. As an inflamma-
tory example, the notion of quasiseparated comes up early and often. The cost is
that one extra word has to be remembered, on top of an overwhelming number
of other words. But once that is done, it is not hard to remember that essentially
every scheme anyone cares about is quasiseparated. Furthermore, whenever the
hypotheses “quasicompact and quasiseparated” turn up, the reader will likely im-
mediately see a key idea of the proof.

Similarly, there is no need to work over an algebraically closed field, or even a
field. Geometers needn’t be afraid of arithmetic examples or of algebraic examples;
a central insight of algebraic geometry is that the same formalism applies without
change.

1.1.2. Costs. Choosing these priorities requires that others be shortchanged, and
it is best to be up front about these. Because of our goal is to be comprehensive,
and to understand everything one should know after a first course, it will neces-
sarily take longer to get to interesting sample applications. You may be misled
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into thinking that one has to work this hard to get to these applications — it is not
true!

1.2 Background and conventions

All rings are assumed to be commutative unless explicitly stated otherwise.
All rings are assumed to contain a unit, denoted 1. Maps of rings must send 1 to
1. We don’t require that 0 != 1; in other words, the “0-ring” (with one element)
is a ring. (There is a ring map from any ring to the 0-ring; the 0-ring only maps
to itself. The 0-ring is the final object in the category of rings.) The definition
of “integral domain” includes 1 != 0, so the 0-ring is not an integral domain. We
accept the axiom of choice. In particular, any proper ideal in a ring is contained in
a maximal ideal. (The axiom of choice also arises in the argument that the category
of A-modules has enough injectives, see Exercise 24.2.F.)

The reader should be familiar with some basic notions in commutative ring
theory, in particular the notion of ideals (including prime and maximal ideals)
and localization. For example, the reader should be able to show that if S is a
multiplicative set of a ring A (which we assume to contain 1), then the primes of
S−1A are in natural bijection with those primes of A not meeting S (§4.2.6). Tensor
products and exact sequences of A-modules will be important. We will use the
notation (A,m) or (A,m, k) for local rings (rings with a unique maximal ideal) —
A is the ring, m its maximal ideal, and k = A/m its residue field. We will use
(in Proposition 14.7.3) the structure theorem for finitely generated modules over
a principal ideal domain A: any such module can be written as the direct sum of
principal modules A/(a).

Algebra is the offer made by the devil to the mathematician ... All you need to do is
give me your soul: give up geometry.

— Michael Atiyah

1.2.1. Caution about on foundational issues. We will not concern ourselves with
subtle foundational issues (set-theoretic issues, universes, etc.). It is true that some
people should be careful about these issues. But is that really how you want to
spend your life? (If you are one of these rare people, a good start is [KS, §1.1].)

1.2.2. Further background. It may be helpful to have books on other subjects
handy that you can dip into for specific facts, rather than reading them in ad-
vance. In commutative algebra, Eisenbud [E] is good for this. Other popular
choices are Atiyah-Macdonald [AM] and Matsumura [M-CRT]. For homological
algebra, Weibel [W] is simultaneously detailed and readable.

Background from other parts of mathematics (topology, geometry, complex
analysis) will of course be helpful for developing intuition.

Finally, it may help to keep the following quote in mind.

[Algebraic geometry] seems to have acquired the reputation of being esoteric, exclusive,
and very abstract, with adherents who are secretly plotting to take over all the rest of
mathematics! In one respect this last point is accurate ...

— David Mumford, 1975 [M-Red2, p. 227]
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Preliminaries





CHAPTER 2

Some category theory

That which does not kill me, makes me stronger. — Nietzsche

2.1 Motivation

Before we get to any interesting geometry, we need to develop a language
to discuss things cleanly and effectively. This is best done in the language of
categories. There is not much to know about categories to get started; it is just
a very useful language. Like all mathematical languages, category theory comes
with an embedded logic, which allows us to abstract intuitions in settings we know
well to far more general situations.

Our motivation is as follows. We will be creating some new mathematical
objects (such as schemes, and certain kinds of sheaves), and we expect them to
act like objects we have seen before. We could try to nail down precisely what
we mean by “act like”, and what minimal set of things we have to check in order
to verify that they act the way we expect. Fortunately, we don’t have to — other
people have done this before us, by defining key notions, such as abelian categories,
which behave like modules over a ring.

Our general approach will be as follows. I will try to tell what you need to
know, and no more. (This I promise: if I use the word “topoi”, you can shoot me.) I
will begin by telling you things you already know, and describing what is essential
about the examples, in a way that we can abstract a more general definition. We
will then see this definition in less familiar settings, and get comfortable with using
it to solve problems and prove theorems.

For example, we will define the notion of product of schemes. We could just
give a definition of product, but then you should want to know why this precise
definition deserves the name of “product”. As a motivation, we revisit the notion
of product in a situation we know well: (the category of) sets. One way to define
the product of sets U and V is as the set of ordered pairs {(u, v) : u ∈ U, v ∈ V}.
But someone from a different mathematical culture might reasonably define it as
the set of symbols {

u
v : u ∈ U, v ∈ V}. These notions are “obviously the same”.

Better: there is “an obvious bijection between the two”.
This can be made precise by giving a better definition of product, in terms of a

universal property. Given two sets M and N, a product is a set P, along with maps
µ : P → M and ν : P → N, such that for any set P ′ with maps µ ′ : P ′ → M and
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16 Math 216: Foundations of Algebraic Geometry

ν ′ : P ′ → N, these maps must factor uniquely through P:

(2.1.0.1) P ′

∃!

!!

ν ′

""!!
!!

!!
!!

!!
!!

!!
!

µ ′

##"
"
"
"
"
"
"
"
"
"
"
"
"
"

P
ν

$$

µ

%%

N

M

(The symbol ∃ means “there exists”, and the symbol ! here means “unique”.) Thus
a product is a diagram

P
ν $$

µ

%%

N

M

and not just a set P, although the maps µ and ν are often left implicit.
This definition agrees with the traditional definition, with one twist: there

isn’t just a single product; but any two products come with a unique isomorphism
between them. In other words, the product is unique up to unique isomorphism.
Here is why: if you have a product

P1
ν1 $$

µ1

%%

N

M

and I have a product

P2
ν2 $$

µ2

%%

N

M

then by the universal property of my product (letting (P2, µ2,ν2) play the role of
(P, µ,ν), and (P1, µ1,ν1) play the role of (P ′, µ ′,ν ′) in (2.1.0.1)), there is a unique
map f : P1 → P2 making the appropriate diagram commute (i.e. µ1 = µ2 ◦ f and
ν1 = ν2 ◦ f). Similarly by the universal property of your product, there is a unique
map g : P2 → P1 making the appropriate diagram commute. Now consider the
universal property of my product, this time letting (P2, µ2,ν2) play the role of both
(P, µ,ν) and (P ′, µ ′,ν ′) in (2.1.0.1). There is a unique map h : P2 → P2 such that

P2

h

!!#
#
#
#
#
#
#

ν2

&&!!
!!

!!
!!

!!
!!

!!
!

µ2

##"
"
"
"
"
"
"
"
"
"
"
"
"
"

P2 ν2

$$

µ2

%%

N

M

commutes. However, I can name two such maps: the identity map idP2
, and g ◦ f.

Thus g ◦ f = idP2
. Similarly, f ◦ g = idP1

. Thus the maps f and g arising from
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the universal property are bijections. In short, there is a unique bijection between
P1 and P2 preserving the “product structure” (the maps to M and N). This gives
us the right to name any such product M × N, since any two such products are
uniquely identified.

This definition has the advantage that it works in many circumstances, and
once we define categories, we will soon see that the above argument applies ver-
batim in any category to show that products, if they exist, are unique up to unique
isomorphism. Even if you haven’t seen the definition of category before, you can
verify that this agrees with your notion of product in some category that you have
seen before (such as the category of vector spaces, where the maps are taken to
be linear maps; or the category of smooth manifolds, where the maps are taken to
be those that are locally on the source smooth fibrations, i.e. differentiable maps
whose differential is everywhere surjective).

This is handy even in cases that you understand. For example, one way of
defining the product of two manifolds M and N is to cut them both up into charts,
then take products of charts, then glue them together. But if I cut up the manifolds
in one way, and you cut them up in another, how do we know our resulting mani-
folds are the “same”? We could wave our hands, or make an annoying argument
about refining covers, but instead, we should just show that they are “categorical
products” and hence canonically the “same” (i.e. isomorphic). We will formalize
this argument in §2.3.

Another set of notions we will abstract are categories that “behave like mod-
ules”. We will want to define kernels and cokernels for new notions, and we
should make sure that these notions behave the way we expect them to. This
leads us to the definition of abelian categories, first defined by Grothendieck in his
Tôhoku paper [Gr].

In this chapter, we will give an informal introduction to these and related no-
tions, in the hope of giving just enough familiarity to comfortably use them in
practice.

2.2 Categories and functors

We begin with an informal definition of categories and functors.

2.2.1. Categories.
A category consists of a collection of objects, and for each pair of objects, a set

of maps, or morphisms (or arrows), between them. (For experts: technically, this
is the definition of a locally small category. In the correct definition, the morphisms
need only form a class, not necessarily a set, but see Caution 1.2.1.) The collection
of objects of a category C are often denoted obj(C ), but we will usually denote
the collection also by C . If A,B ∈ C , then the set of morphisms from A to B is
denoted Mor(A,B). A morphism is often written f : A → B, and A is said to be
the source of f, and B the target of f. (Of course, Mor(A,B) is taken to be disjoint
from Mor(A ′, B ′) unless A = A ′ and B = B ′.)

Morphisms compose as expected: there is a composition Mor(B,C)×Mor(A,B) →
Mor(A,C), and if f ∈ Mor(A,B) and g ∈ Mor(B,C), then their composition is de-
noted g ◦ f. Composition is associative: if f ∈ Mor(A,B), g ∈ Mor(B,C), and
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h ∈ Mor(C,D), then h ◦ (g ◦ f) = (h ◦ g) ◦ f. For each object A ∈ C , there is always
an identity morphism idA : A → A, such that when you (left- or right-)compose a
morphism with the identity, you get the same morphism. More precisely, for any
morphisms f : A → B and g : B → C, idB ◦f = f and g ◦ idB = g. (If you wish,
you may check that “identity morphisms are unique”: there is only one morphism
deserving the name idA.)

If we have a category, then we have a notion of isomorphism between two
objects (a morphism f : A → B such that there exists some — necessarily unique —
morphism g : B → A, where f◦g and g◦f are the identity on B and A respectively),
and a notion of automorphism of an object (an isomorphism of the object with
itself).

2.2.2. Example. The prototypical example to keep in mind is the category of sets,
denoted Sets. The objects are sets, and the morphisms are maps of sets. (Because
Russell’s paradox shows that there is no set of all sets, we did not say earlier that
there is a set of all objects. But as stated in §1.2, we are deliberately omitting all
set-theoretic issues.)

2.2.3. Example. Another good example is the category Veck of vector spaces over
a given field k. The objects are k-vector spaces, and the morphisms are linear
transformations. (What are the isomorphisms?)

2.2.A. UNIMPORTANT EXERCISE. A category in which each morphism is an iso-
morphism is called a groupoid. (This notion is not important in these notes. The
point of this exercise is to give you some practice with categories, by relating them
to an object you know well.)
(a) A perverse definition of a group is: a groupoid with one object. Make sense of
this.
(b) Describe a groupoid that is not a group.

2.2.B. EXERCISE. If A is an object in a category C , show that the invertible ele-
ments of Mor(A,A) form a group (called the automorphism group of A, denoted
Aut(A)). What are the automorphism groups of the objects in Examples 2.2.2
and 2.2.3? Show that two isomorphic objects have isomorphic automorphism
groups. (For readers with a topological background: if X is a topological space,
then the fundamental groupoid is the category where the objects are points of X,
and the morphisms x → y are paths from x to y, up to homotopy. Then the auto-
morphism group of x0 is the (pointed) fundamental group π1(X, x0). In the case
where X is connected, and π1(X) is not abelian, this illustrates the fact that for
a connected groupoid — whose definition you can guess — the automorphism
groups of the objects are all isomorphic, but not canonically isomorphic.)

2.2.4. Example: abelian groups. The abelian groups, along with group homomor-
phisms, form a category Ab.

2.2.5. Important example: modules over a ring. If A is a ring, then the A-modules form
a category ModA. (This category has additional structure; it will be the prototypi-
cal example of an abelian category, see §2.6.) Taking A = k, we obtain Example 2.2.3;
taking A = Z, we obtain Example 2.2.4.
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2.2.6. Example: rings. There is a category Rings, where the objects are rings, and the
morphisms are morphisms of rings (which send 1 to 1 by our conventions, §1.2).

2.2.7. Example: topological spaces. The topological spaces, along with continuous
maps, form a category Top. The isomorphisms are homeomorphisms.

In all of the above examples, the objects of the categories were in obvious ways
sets with additional structure. This needn’t be the case, as the next example shows.

2.2.8. Example: partially ordered sets. A partially ordered set, or poset, is a set S
along with a binary relation ≥ on S satisfying:

(i) x ≥ x (reflexivity),
(ii) x ≥ y and y ≥ z imply x ≥ z (transitivity), and

(iii) if x ≥ y and y ≥ x then x = y.

A partially ordered set (S,≥) can be interpreted as a category whose objects are
the elements of S, and with a single morphism from x to y if and only if x ≥ y (and
no morphism otherwise).

A trivial example is (S,≥) where x ≥ y if and only if x = y. Another example
is

(2.2.8.1) •

%%
• $$ •

Here there are three objects. The identity morphisms are omitted for convenience,
and the two non-identity morphisms are depicted. A third example is

(2.2.8.2) •

%%

$$ •

%%
• $$ •

Here the “obvious” morphisms are again omitted: the identity morphisms, and
the morphism from the upper left to the lower right. Similarly,

· · · $$ • $$ • $$ •

depicts a partially ordered set, where again, only the “generating morphisms” are
depicted.

2.2.9. Example: the category of subsets of a set, and the category of open sets in a topo-
logical space. If X is a set, then the subsets form a partially ordered set, where
the order is given by inclusion. Informally, if U ⊂ V , then we have exactly one
more morphism U → V in the category (and otherwise none). Similarly, if X is a
topological space, then the open sets form a partially ordered set, where the order
is given by inclusion.

2.2.10. Example. A subcategory A of a category B has as its objects some of the
objects of B, and some of the morphisms, such that the morphisms of A include
the identity morphisms of the objects of A , and are closed under composition.
(For example, (2.2.8.1) is in an obvious way a subcategory of (2.2.8.2). Also, we
have an obvious “inclusion functor” i : A → B.)
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2.2.11. Functors.
A covariant functor F from a category A to a category B, denoted F : A → B,

is the following data. It is a map of objects F : obj(A ) → obj(B), and for each
A1, A2 ∈ A , and morphism m : A1 → A2, a morphism F(m) : F(A1) → F(A2) in
B. We require that F preserves identity morphisms (for A ∈ A , F(idA) = idF(A)),
and that F preserves composition (F(m2 ◦ m1) = F(m2) ◦ F(m1)). (You may wish
to verify that covariant functors send isomorphisms to isomorphisms.) A trivial
example is the identity functor id : A → A , whose definition you can guess.

If F : A → B and G : B → C are covariant functors, then we define a functor
G ◦ F : A → C (the composition of G and F ) in the obvious way. Composition of
functors is associative in an evident sense.

2.2.12. Example: a forgetful functor. Consider the functor from the category of
vector spaces (over a field k) Veck to Sets, that associates to each vector space its
underlying set. The functor sends a linear transformation to its underlying map of
sets. This is an example of a forgetful functor, where some additional structure is
forgotten. Another example of a forgetful functor is ModA → Ab from A-modules
to abelian groups, remembering only the abelian group structure of the A-module.

2.2.13. Topological examples. Examples of covariant functors include the funda-
mental group functor π1, which sends a topological space X with choice of a point
x0 ∈ X to a group π1(X, x0) (what are the objects and morphisms of the source cat-
egory?), and the ith homology functor Top → Ab, which sends a topological space
X to its ith homology group Hi(X, Z). The covariance corresponds to the fact that
a (continuous) morphism of pointed topological spaces f : X → Y with f(x0) = y0

induces a map of fundamental groups π1(X, x0) → π1(Y, y0), and similarly for
homology groups.

2.2.14. Example. Suppose A is an object in a category C . Then there is a func-
tor hA : C → Sets sending B ∈ C to Mor(A,B), and sending f : B1 → B2 to
Mor(A,B1) → Mor(A,B2) described by

[g : A → B1] (→ [f ◦ g : A → B1 → B2].

This seemingly silly functor ends up surprisingly being an important concept, and
will come up repeatedly for us.

2.2.15. Full and faithful functors. A covariant functor F : A → B is faithful if for
all A,A ′ ∈ A , the map MorA (A,A ′) → MorB(F(A), F(A ′)) is injective, and full if
it is surjective. A functor that is full and faithful is fully faithful. A subcategory
i : A → B is a full subcategory if i is full. Thus a subcategory A ′ of A is full if
and only if for all A,B ∈ obj(A ′), MorA ′(A,B) = MorA (A,B).

2.2.16. Definition. A contravariant functor is defined in the same way as a covari-
ant functor, except the arrows switch directions: in the above language, F(A1 →
A2) is now an arrow from F(A2) to F(A1). (Thus F (m2 ◦ m1) = F (m1) ◦ F (m2),
not F (m2) ◦ F (m1).)

It is wise to state whether a functor is covariant or contravariant, unless the
context makes it very clear. If it is not stated (and the context does not make it
clear), the functor is often assumed to be covariant.
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(Sometimes people describe a contravariant functor C → D as a covariant
functor C opp → D , where C opp is the same category as C except that the arrows
go in the opposite direction. Here C opp is said to be the opposite category to C .)
One can define fullness, etc. for contravariant functors, and you should do so.

2.2.17. Linear algebra example. If Veck is the category of k-vector spaces (intro-
duced in Example 2.2.3), then taking duals gives a contravariant functor (·)∨ :
Veck → Veck. Indeed, to each linear transformation f : V → W, we have a dual
transformation f∨ : W∨ → V∨, and (f ◦ g)∨ = g∨ ◦ f∨.

2.2.18. Topological example (cf. Example 2.2.13) for those who have seen cohomology. The
ith cohomology functor Hi(·, Z) : Top → Ab is a contravariant functor.

2.2.19. Example. There is a contravariant functor Top → Rings taking a topological
space X to the ring of real-valued continuous functions on X. A morphism of
topological spaces X → Y (a continuous map) induces the pullback map from
functions on Y to maps on X.

2.2.20. Example (the functor of points, cf. Example 2.2.14). Suppose A is an object
of a category C . Then there is a contravariant functor hA : C → Sets sending
B ∈ C to Mor(B,A), and sending the morphism f : B1 → B2 to the morphism
Mor(B2, A) → Mor(B1, A) via

[g : B2 → A] (→ [g ◦ f : B1 → B2 → A].

This example initially looks weird and different, but Examples 2.2.17 and 2.2.19
may be interpreted as special cases; do you see how? What is A in each case?
This functor might reasonably be called the functor of maps (to A), but is actually
known as the functor of points. We will meet this functor again (in the category
of schemes) in Definition 7.3.6.

2.2.21. ! Natural transformations (and natural isomorphisms) of covariant func-
tors, and equivalences of categories.

(This notion won’t come up in an essential way until at least Chapter 7, so you
shouldn’t read this section until then.) Suppose F and G are two covariant functors
from A to B. A natural transformation of covariant functors F → G is the data
of a morphism mA : F(A) → G(A) for each A ∈ A such that for each f : A → A ′

in A , the diagram

F(A)
F(f) $$

mA

%%

F(A ′)

mA ′

%%
G(A)

G(f)
$$ G(A ′)

commutes. A natural isomorphism of functors is a natural transformation such
that each mA is an isomorphism. (We make analogous definitions when F and G
are both contravariant.)

The data of functors F : A → B and F ′ : B → A such that F ◦ F ′ is naturally
isomorphic to the identity functor IB on B and F ′ ◦ F is naturally isomorphic to
IA is said to be an equivalence of categories. “Equivalence of categories” is an
equivalence relation on categories. The right notion of when two categories are
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“essentially the same” is not isomorphism (a functor giving bijections of objects and
morphisms) but equivalence. Exercises 2.2.C and 2.2.D might give you some vague
sense of this. Later exercises (for example, that “rings” and “affine schemes” are
essentially the same, once arrows are reversed, Exercise 7.3.D) may help too.

Two examples might make this strange concept more comprehensible. The
double dual of a finite-dimensional vector space V is not V , but we learn early to
say that it is canonically isomorphic to V . We can make that precise as follows. Let
f.d.Veck be the category of finite-dimensional vector spaces over k. Note that this
category contains oodles of vector spaces of each dimension.

2.2.C. EXERCISE. Let (·)∨∨ : f.d.Veck → f.d.Veck be the double dual functor from
the category of finite-dimensional vector spaces over k to itself. Show that (·)∨∨

is naturally isomorphic to the identity functor on f.d.Veck. (Without the finite-
dimensional hypothesis, we only get a natural transformation of functors from
id to (·)∨∨.)

Let V be the category whose objects are the k-vector spaces kn for each n ≥ 0
(there is one vector space for each n), and whose morphisms are linear transfor-
mations. This latter space can be thought of as vector spaces with bases, and the
morphisms as matrices. There is an obvious functor V → f.d.Veck, as each kn is a
finite-dimensional vector space.

2.2.D. EXERCISE. Show that V → f.d.Veck gives an equivalence of categories,
by describing an “inverse” functor. (Recall that we are being cavalier about set-
theoretic assumptions, see Caution 1.2.1, so feel free to simultaneously choose
bases for each vector space in f.d.Veck. To make this precise, you will need to use
Godel-Bernays set theory or else replace f.d.Veck with a very similar small category,
but we won’t worry about this.)

2.2.22. !! Aside for experts. Your argument for Exercise 2.2.D will show that (mod-
ulo set-theoretic issues) this definition of equivalence of categories is the same as
another one commonly given: a covariant functor F : A → B is an equivalence
of categories if it is fully faithful and every object of B is isomorphic to an object
of the form F(a) for some a ∈ A (F is essentially surjective). Indeed, one can show
that such a functor has a quasiinverse, i.e., a functor G : B → A (necessarily also
an equivalence and unique up to unique isomorphism) for which G ◦ F ∼= idA and
F ◦ G ∼= idB, and conversely, any functor that has a quasiinverse is an equivalence.

2.3 Universal properties determine an object up to unique
isomorphism

Given some category that we come up with, we often will have ways of pro-
ducing new objects from old. In good circumstances, such a definition can be
made using the notion of a universal property. Informally, we wish that there were
an object with some property. We first show that if it exists, then it is essentially
unique, or more precisely, is unique up to unique isomorphism. Then we go about
constructing an example of such an object to show existence.
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Explicit constructions are sometimes easier to work with than universal prop-
erties, but with a little practice, universal properties are useful in proving things
quickly and slickly. Indeed, when learning the subject, people often find explicit
constructions more appealing, and use them more often in proofs, but as they be-
come more experienced, they find universal property arguments more elegant and
insightful.

2.3.1. Products were defined by universal property. We have seen one important
example of a universal property argument already in §2.1: products. You should
go back and verify that our discussion there gives a notion of product in any cate-
gory, and shows that products, if they exist, are unique up to unique isomorphism.

2.3.2. Initial, final, and zero objects. Here are some simple but useful concepts
that will give you practice with universal property arguments. An object of a
category C is an initial object if it has precisely one map to every object. It is a
final object if it has precisely one map from every object. It is a zero object if it is
both an initial object and a final object.

2.3.A. EXERCISE. Show that any two initial objects are uniquely isomorphic. Show
that any two final objects are uniquely isomorphic.

In other words, if an initial object exists, it is unique up to unique isomorphism,
and similarly for final objects. This (partially) justifies the phrase “the initial object”
rather than “an initial object”, and similarly for “the final object” and “the zero
object”.

2.3.B. EXERCISE. What are the initial and final objects in Sets, Rings, and Top (if
they exist)? How about in the two examples of §2.2.9?

2.3.3. Localization of rings and modules. Another important example of a defi-
nition by universal property is the notion of localization of a ring. We first review a
constructive definition, and then reinterpret the notion in terms of universal prop-
erty. A multiplicative subset S of a ring A is a subset closed under multiplication
containing 1. We define a ring S−1A. The elements of S−1A are of the form a/s
where a ∈ A and s ∈ S, and where a1/s1 = a2/s2 if (and only if) for some s ∈ S,
s(s2a1 − s1a2) = 0. We define (a1/s1) + (a2/s2) = (s2a1 + s1a2)/(s1s2), and
(a1/s1) × (a2/s2) = (a1a2)/(s1s2). (If you wish, you may check that this equal-
ity of fractions really is an equivalence relation and the two binary operations on
fractions are well-defined on equivalence classes and make S−1A into a ring.) We
have a canonical ring map A → S−1A given by a (→ a/1. Note that if 0 ∈ S, S−1A
is the 0-ring.

There are two particularly important flavors of multiplicative subsets. The
first is {1, f, f2, . . . }, where f ∈ A. This localization is denoted Af. The second is
A − p, where p is a prime ideal. This localization S−1A is denoted Ap. (Notational
warning: If p is a prime ideal, then Ap means you’re allowed to divide by elements
not in p. However, if f ∈ A, Af means you’re allowed to divide by f. This can be
confusing. For example, if (f) is a prime ideal, then Af != A(f).)

Warning: sometimes localization is first introduced in the special case where A
is an integral domain and 0 /∈ S. In that case, A ↪→ S−1A, but this isn’t always true,
as shown by the following exercise. (But we will see that noninjective localizations
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needn’t be pathological, and we can sometimes understand them geometrically,
see Exercise 4.2.J.)

2.3.C. EXERCISE. Show that A → S−1A is injective if and only if S contains no
zerodivisors. (A zerodivisor of a ring A is an element a such that there is a non-
zero element b with ab = 0. The other elements of A are called non-zerodivisors.
For example, a unit is never a zerodivisor. Counter-intuitively, 0 is a zerodivisor
in every ring but the 0-ring.)

If A is an integral domain and S = A−{0}, then S−1A is called the fraction field
of A, which we denote K(A). The previous exercise shows that A is a subring of its
fraction field K(A). We now return to the case where A is a general (commutative)
ring.

2.3.D. EXERCISE. Verify that A → S−1A satisfies the following universal property:
S−1A is initial among A-algebras B where every element of S is sent to a unit
in B. (Recall: the data of “an A-algebra B” and “a ring map A → B” are the
same.) Translation: any map A → B where every element of S is sent to a unit
must factor uniquely through A → S−1A. Another translation: a ring map out of
S−1A is the same thing as a ring map from A that sends every element of S to a
unit. Furthermore, an S−1A-module is the same thing as an A-module for which
s × · : M → M is an A-module isomorphism for all s ∈ S.

In fact, it is cleaner to define A → S−1A by the universal property, and to
show that it exists, and to use the universal property to check various properties
S−1A has. Let’s get some practice with this by defining localizations of modules
by universal property. Suppose M is an A-module. We define the A-module map
φ : M → S−1M as being initial among A-module maps M → N such that elements
of S are invertible in N (s × · : N → N is an isomorphism for all s ∈ S). More
precisely, any such map α : M → N factors uniquely through φ:

M
φ $$

α
''$

$$
$$

$$
$$

S−1M

∃!

%%
N

(Translation: M → S−1M is universal (initial) among A-module maps from M to
modules that are actually S−1A-modules. Can you make this precise by defining
clearly the objects and morphisms in this category?)

Notice: (i) this determines φ : M → S−1M up to unique isomorphism (you
should think through what this means); (ii) we are defining not only S−1M, but
also the map φ at the same time; and (iii) essentially by definition the A-module
structure on S−1M extends to an S−1A-module structure.

2.3.E. EXERCISE. Show that φ : M → S−1M exists, by constructing something
satisfying the universal property. Hint: define elements of S−1M to be of the form
m/s where m ∈ M and s ∈ S, and m1/s1 = m2/s2 if and only if for some s ∈ S,
s(s2m1−s1m2) = 0. Define the additive structure by (m1/s1)+(m2/s2) = (s2m1+
s1m2)/(s1s2), and the S−1A-module structure (and hence the A-module structure)
is given by (a1/s1) ◦ (m2/s2) = (a1m2)/(s1s2).
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2.3.F. EXERCISE. Show that localization commutes with finite products. In other
words, if M1, . . . , Mn are A-modules, describe an isomorphism (of A-modules,
and of S−1-modules) S−1(M1 × · · · × Mn) → S−1M1 × · · · × S−1Mn. Show that
“localization does not necessarily commute with infinite products”: the obvious
map S−1(

∏
i Mi) →

∏
i S−1Mi induced by the universal property of localization

is not always an isomorphism. (Hint: (1, 1/2, 1/3, 1/4, . . . ) ∈ Q × Q × · · · .)

2.3.4. Remark. Localization does not necessarily commute with Hom, see Exam-
ple 2.6.7. But Exercise 2.6.G will show that in good situations (if the first argument
of Hom is finitely presented, localization does commute with Hom.

2.3.5. Tensor products. Another important example of a universal property con-
struction is the notion of a tensor product of A-modules

⊗A : obj(ModA) × obj(ModA) $$ obj(ModA)

(M,N) % $$ M ⊗A N

The subscript A is often suppressed when it is clear from context. The tensor prod-
uct is often defined as follows. Suppose you have two A-modules M and N. Then
elements of the tensor product M⊗AN are finite A-linear combinations of symbols
m ⊗ n (m ∈ M, n ∈ N), subject to relations (m1 + m2) ⊗ n = m1 ⊗ n + m2 ⊗ n,
m⊗ (n1 +n2) = m⊗n1 +m⊗n2, a(m⊗n) = (am)⊗n = m⊗ (an) (where a ∈ A,
m1,m2 ∈ M, n1, n2 ∈ N). More formally, M⊗A N is the free A-module generated
by M × N, quotiented by the submodule generated by (m1 + m2, n) − (m1, n) −
(m2, n), (m,n1 +n2)−(m,n1)−(m,n2), a(m,n)−(am,n), and a(m,n)−(m,an)
for a ∈ A, m,m1,m2 ∈ M, n,n1, n2 ∈ N. The image of (m,n) in this quotient is
m ⊗ n.

If A is a field k, we recover the tensor product of vector spaces.

2.3.G. EXERCISE (IF YOU HAVEN’T SEEN TENSOR PRODUCTS BEFORE). Show that
Z/(10) ⊗Z Z/(12) ∼= Z/(2). (This exercise is intended to give some hands-on prac-
tice with tensor products.)

2.3.H. IMPORTANT EXERCISE: RIGHT-EXACTNESS OF (·)⊗A N. Show that (·)⊗A N
gives a covariant functor ModA → ModA. Show that (·) ⊗A N is a right-exact
functor, i.e. if

M ′ → M → M ′′ → 0

is an exact sequence of A-modules (which means f : M → M ′′ is surjective, and
M ′ surjects onto the kernel of f; see §2.6), then the induced sequence

M ′ ⊗A N → M ⊗A N → M ′′ ⊗A N → 0

is also exact. This exercise is repeated in Exercise 2.6.F, but you may get a lot out of
doing it now. (You will be reminded of the definition of right-exactness in §2.6.4.)

The constructive definition ⊗ is a weird definition, and really the “wrong”
definition. To motivate a better one: notice that there is a natural A-bilinear map
M × N → M ⊗A N. (If M,N, P ∈ ModA, a map f : M × N → P is A-bilinear if
f(m1 + m2, n) = f(m1, n) + f(m2, n), f(m,n1 + n2) = f(m,n1) + f(m,n2), and
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f(am,n) = f(m,an) = af(m,n).) Any A-bilinear map M×N → P factors through
the tensor product uniquely: M × N → M ⊗A N → P. (Think this through!)

We can take this as the definition of the tensor product as follows. It is an A-
module T along with an A-bilinear map t : M × N → T , such that given any
A-bilinear map t ′ : M × N → T ′, there is a unique A-linear map f : T → T ′ such
that t ′ = f ◦ t.

M × N
t $$

t ′

''&
&&

&&
&&

&&
T

∃!f((
T ′

2.3.I. EXERCISE. Show that (T, t : M×N → T) is unique up to unique isomorphism.
Hint: first figure out what “unique up to unique isomorphism” means for such
pairs, using a category of pairs (T, t). Then follow the analogous argument for the
product.

In short: given M and N, there is an A-bilinear map t : M × N → M ⊗A N,
unique up to unique isomorphism, defined by the following universal property:
for any A-bilinear map t ′ : M × N → T ′ there is a unique A-linear map f : M ⊗A

N → T ′ such that t ′ = f ◦ t.
As with all universal property arguments, this argument shows uniqueness

assuming existence. To show existence, we need an explicit construction.

2.3.J. EXERCISE. Show that the construction of §2.3.5 satisfies the universal prop-
erty of tensor product.

The two exercises below are some useful facts about tensor products with
which you should be familiar.

2.3.K. IMPORTANT EXERCISE. (a) If M is an A-module and A → B is a morphism
of rings, give B ⊗A M the structure of a B-module (this is part of the exercise).
Show that this describes a functor ModA → ModB.
(b) If further A → C is another morphism of rings, show that B⊗A C has a natural
structure of a ring. Hint: multiplication will be given by (b1 ⊗ c1)(b2 ⊗ c2) =
(b1b2)⊗ (c1c2). (Exercise 2.3.T will interpret this construction as a fibered coprod-
uct.)

2.3.L. IMPORTANT EXERCISE. If S is a multiplicative subset of A and M is an A-
module, describe a natural isomorphism (S−1A)⊗AM ∼= S−1M (as S−1A-modules
and as A-modules).

2.3.6. Important Example: Fibered products. (This notion will be essential later.)
Suppose we have morphisms f : X → Z and g : Y → Z (in any category). Then
the fibered product is an object X ×Z Y along with morphisms πX : X ×Z Y → X
and πY : X ×Z Y → Y, where the two compositions f ◦ πX, g ◦ πY : X ×Z Y → Z
agree, such that given any object W with maps to X and Y (whose compositions to
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Z agree), these maps factor through some unique W → X ×Z Y:

W

∃!

''

))'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

**((
(((

(((
(((

(((
(((

((

X ×Z Y

πX

%%

πY

$$ Y

g

%%
X

f $$ Z

(Warning: the definition of the fibered product depends on f and g, even though
they are omitted from the notation X ×Z Y.)

By the usual universal property argument, if it exists, it is unique up to unique
isomorphism. (You should think this through until it is clear to you.) Thus the use
of the phrase “the fibered product” (rather than “a fibered product”) is reasonable,
and we should reasonably be allowed to give it the name X ×Z Y. We know what
maps to it are: they are precisely maps to X and maps to Y that agree as maps to Z.

Depending on your religion, the diagram

X ×Z Y

πX

%%

πY

$$ Y

g

%%
X

f $$ Z

is called a fibered/pullback/Cartesian diagram/square (six possibilities).
The right way to interpret the notion of fibered product is first to think about

what it means in the category of sets.

2.3.M. EXERCISE. Show that in Sets,

X ×Z Y = {(x, y) ∈ X × Y : f(x) = g(y)}.

More precisely, show that the right side, equipped with its evident maps to X and
Y, satisfies the universal property of the fibered product. (This will help you build
intuition for fibered products.)

2.3.N. EXERCISE. If X is a topological space, show that fibered products always
exist in the category of open sets of X, by describing what a fibered product is.
(Hint: it has a one-word description.)

2.3.O. EXERCISE. If Z is the final object in a category C , and X, Y ∈ C , show that
“X ×Z Y = X × Y”: “the” fibered product over Z is uniquely isomorphic to “the”
product. Assume all relevant (fibered) products exist. (This is an exercise about
unwinding the definition.)

2.3.P. USEFUL EXERCISE: TOWERS OF FIBER DIAGRAMS ARE FIBER DIAGRAMS. If
the two squares in the following commutative diagram are fiber diagrams, show
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that the “outside rectangle” (involving U, V , Y, and Z) is also a fiber diagram.

U $$

%%

V

%%
W $$

%%

X

%%
Y $$ Z

2.3.Q. EXERCISE. Given morphisms X1 → Y, X2 → Y, and Y → Z, show that
there is a natural morphism X1 ×Y X2 → X1 ×Z X2, assuming that both fibered
products exist. (This is trivial once you figure out what it is saying. The point of
this exercise is to see why it is trivial.)

2.3.R. USEFUL EXERCISE: THE MAGIC DIAGRAM. Suppose we are given mor-
phisms X1, X2 → Y and Y → Z. Describe the natural morphism X1 ×Y X2 →
X1 ×Z X2. Show that the following diagram is a fibered square.

X1 ×Y X2
$$

%%

X1 ×Z X2

%%
Y $$ Y ×Z Y

Assume all relevant (fibered) products exist. This diagram is surprisingly useful
— so useful that we will call it the magic diagram.

2.3.7. Coproducts. Define coproduct in a category by reversing all the arrows in
the definition of product. Define fibered coproduct in a category by reversing all
the arrows in the definition of fibered product.

2.3.S. EXERCISE. Show that coproduct for Sets is disjoint union. This is why we
use the notation

∐
for disjoint union.

2.3.T. EXERCISE. Suppose A → B and A → C are two ring morphisms, so in
particular B and C are A-modules. Recall (Exercise 2.3.K) that B ⊗A C has a ring
structure. Show that there is a natural morphism B → B⊗A C given by b (→ b⊗ 1.
(This is not necessarily an inclusion; see Exercise 2.3.G.) Similarly, there is a natural
morphism C → B⊗A C. Show that this gives a fibered coproduct on rings, i.e. that

B ⊗A C C++

B

,,

A++

,,

satisfies the universal property of fibered coproduct.

2.3.8. Monomorphisms and epimorphisms.

2.3.9. Definition. A morphism f : X → Y is a monomorphism if any two mor-
phisms g1 : Z → X and g2 : Z → X such that f ◦ g1 = f ◦ g2 must satisfy g1 = g2.
In other words, for any object Z, the natural map Hom(Z,X) → Hom(Z, Y) is an
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injection. In other words, there is at most one way of filling in the dotted arrow so
that the following diagram commutes.

Z

≤1

%% --)
))

))
))

)

X
f

$$ Y.

Intuitively, it is the categorical version of an injective map, and indeed this notion
generalizes the familiar notion of injective maps of sets. (The reason we don’t use
the word “injective” is that in some contexts, “injective” will have an intuitive
meaning which may not agree with “monomorphism”. This is also the case with
“epimorphism” vs. “surjective”.)

2.3.U. EXERCISE. Show that the composition of two monomorphisms is a monomor-
phism.

2.3.V. EXERCISE. Prove that a morphism X → Y is a monomorphism if and only
if the fibered product X ×Y X exists, and the induced morphism X → X ×Y X
is an isomorphism. We may then take this as the definition of monomorphism.
(Monomorphisms aren’t central to future discussions, although they will come up
again. This exercise is just good practice.)

2.3.W. EASY EXERCISE. We use the notation of Exercise 2.3.Q. Show that if Y → Z
is a monomorphism, then the morphism X1 ×Y X2 → X1 ×Z X2 you described in
Exercise 2.3.Q is an isomorphism. We will use this later when talking about fibered
products. (Hint: for any object V , give a natural bijection between maps from V
to the first and maps from V to the second. It is also possible to use the magic
diagram, Exercise 2.3.R.)

The notion of an epimorphism is “dual” to the definition of monomorphism,
where all the arrows are reversed. This concept will not be central for us, although
it turns up in the definition of an abelian category. Intuitively, it is the categor-
ical version of a surjective map. (But be careful when working with categories
of objects that are sets with additional structure, as epimorphisms need not be
surjective. Example: in the category Rings, Z → Q is an epimorphism, but not
surjective.)

2.3.10. Representable functors and Yoneda’s lemma. Much of our discussion
about universal properties can be cleanly expressed in terms of representable func-
tors, under the rubric of “Yoneda’s Lemma”. Yoneda’s lemma is an easy fact stated
in a complicated way. Informally speaking, you can essentially recover an object
in a category by knowing the maps into it. For example, we have seen that the
data of maps to X × Y are naturally (canonically) the data of maps to X and to Y.
Indeed, we have now taken this as the definition of X × Y.

Recall Example 2.2.20. Suppose A is an object of category C . For any object
C ∈ C , we have a set of morphisms Mor(C,A). If we have a morphism f : B → C,
we get a map of sets

(2.3.10.1) Mor(C,A) → Mor(B,A),
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by composition: given a map from C to A, we get a map from B to A by precom-
posing with f : B → C. Hence this gives a contravariant functor hA : C → Sets.
Yoneda’s Lemma states that the functor hA determines A up to unique isomor-
phism. More precisely:

2.3.X. IMPORTANT EXERCISE THAT YOU SHOULD DO ONCE IN YOUR LIFE (YONEDA’S

LEMMA). Given two objects A and A ′ in a category C , and bijections

(2.3.10.2) iC : Mor(C,A) → Mor(C,A ′)

that commute with the maps (2.3.10.1). Prove iC is induced from a unique iso-
morphism g : A → A ′. More precisely, show that there is a unique isomorphism
g : A → A ′ such that for all C ∈ C , iC is u (→ g ◦ u. (Hint: This sounds hard,
but it really is not. This statement is so general that there are really only a couple
of things that you could possibly try. For example, if you’re hoping to find an iso-
morphism A → A ′, where will you find it? Well, you are looking for an element
Mor(A,A ′). So just plug in C = A to (2.3.10.2), and see where the identity goes.
You will quickly find the desired morphism; show that it is an isomorphism, then
show that it is unique.)

There is an analogous statement with the arrows reversed, where instead of
maps into A, you think of maps from A. The role of the contravariant functor hA

of Example 2.2.20 is played by the covariant functor hA of Example 2.2.14. Because
the proof is the same (with the arrows reversed), you needn’t think it through.

Yoneda’s lemma properly refers to a more general statement. Although it
looks more complicated, it is no harder to prove.

2.3.Y. ! EXERCISE.
(a) Suppose A and B are objects in a category C . Give a bijection between the nat-
ural transformations hA → hB of covariant functors C → Sets (see Example 2.2.14
for the definition) and the morphisms B → A.
(b) State and prove the corresponding fact for contravariant functors hA (see Ex-
ample 2.2.20). Remark: A contravariant functor F from C to Sets is said to be
representable if there is a natural isomorphism

ξ : F
∼ $$ hA .

Thus the representing object A is determined up to unique isomorphism by the
pair (F, ξ). There is a similar definition for covariant functors. (We will revisit
this in §7.6, and this problem will appear again as Exercise 7.6.B. The element
ξ−1(idA) ∈ F(A) is often called the “universal object”; do you see why?)
(c) Yoneda’s lemma. Suppose F is a covariant functor C → Sets, and A ∈ C .
Give a bijection between the natural transformations hA → F and F(A). (The
corresponding fact for contravariant functors is essentially Exercise 10.1.D.)

In fancy terms, Yoneda’s lemma states the following. Given a category C , we
can produce a new category, called the functor category of C , where the objects are
contravariant functors C → Sets, and the morphisms are natural transformations
of such functors. We have a functor (which we can usefully call h) from C to its
functor category, which sends A to hA. Yoneda’s Lemma states that this is a fully
faithful functor, called the Yoneda embedding. (Fully faithful functors were defined
in §2.2.15.)
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2.4 Limits and colimits

Limits and colimits are two important definitions determined by universal
properties. They generalize a number of familiar constructions. I will give the def-
inition first, and then show you why it is familiar. For example, fractions will be
motivating examples of colimits (Exercise 2.4.B(a)), and the p-adic integers (Exam-
ple 2.4.3) will be motivating examples of limits.

2.4.1. Limits. We say that a category is a small category if the objects and the mor-
phisms are sets. (This is a technical condition intended only for experts.) Suppose
I is any small category, and C is any category. Then a functor F : I → C (i.e.
with an object Ai ∈ C for each element i ∈ I , and appropriate commuting mor-
phisms dictated by I ) is said to be a diagram indexed by I . We call I an index
category. Our index categories will be partially ordered sets (Example 2.2.8), in
which in particular there is at most one morphism between any two objects. (But
other examples are sometimes useful.) For example, if ! is the category

•

%%

$$ •

%%
• $$ •

and A is a category, then a functor ! → A is precisely the data of a commuting
square in A .

Then the limit is an object lim←−I
Ai of C along with morphisms fj : lim←−I

Ai →
Aj for each j ∈ I , such that if m : j → k is a morphism in I , then

(2.4.1.1) lim←−I
Ai

fj

%%

fk

''&
&&

&&
&&

&

Aj

F(m) $$ Ak

commutes, and this object and maps to each Ai are universal (final) with respect to
this property. More precisely, given any other object W along with maps gi : W →
Ai commuting with the F(m) (if m : j → k is a morphism in I , then gk = F(m)◦gj),
then there is a unique map g : W → lim←−I

Ai so that gi = fi ◦ g for all i. (In some
cases, the limit is sometimes called the inverse limit or projective limit. We won’t
use this language.) By the usual universal property argument, if the limit exists, it
is unique up to unique isomorphism.

2.4.2. Examples: products. For example, if I is the partially ordered set

•

%%
• $$ •

we obtain the fibered product.
If I is

• •
we obtain the product.
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If I is a set (i.e. the only morphisms are the identity maps), then the limit is
called the product of the Ai, and is denoted

∏
i Ai. The special case where I has

two elements is the example of the previous paragraph.
If I has an initial object e, then Ae is the limit, and in particular the limit

always exists.

2.4.3. Unimportant Example: the p-adic integers. For a prime number p, the p-adic
integers (or more informally, p-adics), Zp, are often described informally (and
somewhat unnaturally) as being of the form Zp = ? + ?p + ?p2 + ?p3 + · · · . They
are an example of a limit in the category of rings:

Zp

..*
**

**
**

*

**++
++

++
++

++
++

++
++

+

//,,,
,,,

,,,
,,,

,,,
,,,

,,,
,,,

,,,

· · · $$ Z/p3 $$ Z/p2 $$ Z/p.

(Warning: Zp is sometimes is used to denote the integers modulo p, but Z/(p) or
Z/pZ is better to use for this, to avoid confusion. Worse: by §2.3.3, Zp also denotes
those rationals whose denominators are a power of p. Hopefully the meaning of
Zp will be clear from the context.)

Limits do not always exist for any index category I . However, you can often
easily check that limits exist if the objects of your category can be interpreted as
sets with additional structure, and arbitrary products exist (respecting the set-like
structure).

2.4.A. IMPORTANT EXERCISE. Show that in the category Sets,

{

(ai)i∈I ∈
∏

i

Ai : F(m)(aj) = ak for all m ∈ MorI (j, k) ∈ Mor(I )

}

,

along with the obvious projection maps to each Ai, is the limit lim←−I
Ai.

This clearly also works in the category ModA of A-modules (in particular Veck

and Ab), as well as Rings.
From this point of view, 2 + 3p + 2p2 + · · · ∈ Zp can be understood as the

sequence (2, 2 + 3p, 2 + 3p + 2p2, . . . ).

2.4.4. Colimits. More immediately relevant for us will be the dual (arrow-
reversed version) of the notion of limit (or inverse limit). We just flip the arrows
fi in (2.4.1.1), and get the notion of a colimit, which is denoted lim−→I Ai. (You
should draw the corresponding diagram.) Again, if it exists, it is unique up to
unique isomorphism. (In some cases, the colimit is sometimes called the direct
limit, inductive limit, or injective limit. We won’t use this language. I prefer us-
ing limit/colimit in analogy with kernel/cokernel and product/coproduct. This
is more than analogy, as kernels and products may be interpreted as limits, and
similarly with cokernels and coproducts. Also, I remember that kernels “map to”,
and cokernels are “mapped to”, which reminds me that a limit maps to all the ob-
jects in the big commutative diagram indexed by I ; and a colimit has a map from
all the objects.)
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Even though we have just flipped the arrows, colimits behave quite differently
from limits.

2.4.5. Example. The group 5−∞ Z of rational numbers whose denominators are
powers of 5 is a colimit lim−→ 5−iZ. More precisely, 5−∞ Z is the colimit of the groups

Z $$ 5−1Z $$ 5−2Z $$ · · ·

The colimit over an index set I is called the coproduct, denoted
∐

i Ai, and is
the dual (arrow-reversed) notion to the product.

2.4.B. EXERCISE. (a) Interpret the statement “Q = lim−→
1
nZ”. (b) Interpret the

union of the some subsets of a given set as a colimit. (Dually, the intersection can
be interpreted as a limit.) The objects of the category in question are the subsets of
the given set.

Colimits don’t always exist, but there are two useful large classes of examples
for which they do.

2.4.6. Definition. A nonempty partially ordered set (S,≥) is filtered (or is said to
be a filtered set) if for each x, y ∈ S, there is a z such that x ≥ z and y ≥ z. More
generally, a nonempty category I is filtered if:

(i) for each x, y ∈ I , there is a z ∈ I and arrows x → z and y → z, and
(ii) for every two arrows u, v : x → y, there is an arrow w : y → z such that

w ◦ u = w ◦ v.

(Other terminologies are also commonly used, such as “directed partially ordered
set” and “filtered index category”, respectively.)

2.4.C. EXERCISE. Suppose I is filtered. (We will almost exclusively use the case
where I is a filtered set.) Show that any diagram in Sets indexed by I has the
following, with the obvious maps to it, as a colimit:
{

(ai, i) ∈
∐

i∈I

Ai

}/(
(ai, i) ∼ (aj, j) if and only if there are f : Ai → Ak and

g : Aj → Ak in the diagram for which f(ai) = g(aj) in Ak.

)

This idea applies to many categories whose objects can be interpreted as sets
with additional structure (such as abelian groups, A-modules, groups, etc.). For
example, in Example 2.4.5, each element of the colimit is an element of something
upstairs, but you can’t say in advance what it is an element of. For example, 17/125
is an element of the 5−3Z (or 5−4Z, or later ones), but not 5−2Z.

More generally, the colimit lim−→Mi in the category of A-modules ModA can be
described as follows. The set underlying lim−→Mi is defined as in Exercise 2.4.C. To
add the elements mi ∈ Mi and mj ∈ Mj, choose an ( ∈ I with arrows u : i → (
and v : j → (, and then define the sum of mi and mj to be F(u)(mi) + F(v)(mj) ∈
M%. The element mi ∈ Mi is 0 if and only if there is some arrow u : i → k for
which F(u)(mi) = 0, i.e. if it becomes 0 “later in the diagram”. Last, multiplication
by an element of A is defined in the obvious way.

2.4.D. EXERCISE. Verify that the A-module described above is indeed the col-
imit. (Make sure you verify that addition is well-defined, i.e. is independent of the
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choice of representatives mi and mj, the choice of (, and the choice of arrows u
and v. Similarly, make sure that scalar multiplication is well-defined.)

2.4.E. USEFUL EXERCISE (LOCALIZATION AS A COLIMIT). Generalize Exercise 2.4.B(a)
to interpret localization of an integral domain as a colimit over a filtered set: sup-
pose S is a multiplicative set of A, and interpret S−1A = lim−→

1
sA where the limit is

over s ∈ S, and in the category of A-modules. (Aside: Can you make some version
of this work even if A isn’t an integral domain, e.g. S−1A = lim−→As? This will work
in the category of A-algebras.)

A variant of this construction works without the filtered condition, if you have
another means of “connecting elements in different objects of your diagram”. For
example:

2.4.F. EXERCISE: COLIMITS OF A-MODULES WITHOUT THE FILTERED CONDITION.
Suppose you are given a diagram of A-modules indexed by I : F : I → ModA,
where we let Mi := F(i). Show that the colimit is ⊕i∈I Mi modulo the relations
mi −F(n)(mi) for every n : i → j in I (i.e. for every arrow in the diagram). (Some-
what more precisely: “modulo” means “quotiented by the submodule generated
by”.)

2.4.7. Summary. One useful thing to informally keep in mind is the following. In
a category where the objects are “set-like”, an element of a limit can be thought of
as an element in each object in the diagram, that are “compatible” (Exercise 2.4.A).
And an element of a colimit can be thought of (“has a representative that is”) an ele-
ment of a single object in the diagram (Exercise 2.4.C). Even though the definitions
of limit and colimit are the same, just with arrows reversed, these interpretations
are quite different.

2.4.8. Joke. A comathematician is a device for turning cotheorems into ffee.

2.5 Adjoints

We next come to a very useful construction closely related to universal prop-
erties. Just as a universal property “essentially” (up to unique isomorphism) de-
termines an object in a category (assuming such an object exists), “adjoints” es-
sentially determine a functor (again, assuming it exists). Two covariant functors
F : A → B and G : B → A are adjoint if there is a natural bijection for all A ∈ A
and B ∈ B

(2.5.0.1) τAB : MorB(F(A), B) → MorA (A,G(B)).

We say that (F,G) form an adjoint pair, and that F is left-adjoint to G (and G is
right-adjoint to F). By “natural” we mean the following. For all f : A → A ′ in A ,
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we require

(2.5.0.2) MorB(F(A ′), B)
Ff∗

$$

τA ′B

%%

MorB(F(A), B)

τAB

%%
MorA (A ′, G(B))

f∗
$$ MorA (A,G(B))

to commute, and for all g : B → B ′ in B we want a similar commutative diagram
to commute. (Here f∗ is the map induced by f : A → A ′, and Ff∗ is the map
induced by Ff : F(A) → F(A ′).)

2.5.A. EXERCISE. Write down what this diagram should be. (Hint: do it by
extending diagram (2.5.0.2) above.)

2.5.B. EXERCISE. Show that the map τAB (2.5.0.1) has the following properties.
For each A there is a map ηA : A → GF(A) so that for any g : F(A) → B, the
corresponding τAB(g) : A → G(B) is given by the composition

A
ηA $$ GF(A)

Gg $$ G(B).

Similarly, there is a map εB : FG(B) → B for each B so that for any f : A → G(B),
the corresponding map τ−1

AB(f) : F(A) → B is given by the composition

F(A)
Ff $$ FG(B)

εB $$ B.

Here is an example of an adjoint pair.

2.5.C. EXERCISE. Suppose M, N, and P are A-modules. Describe a bijection
HomA(M ⊗A N,P) ↔ HomA(M, HomA(N,P)). (Hint: try to use the universal
property.)

2.5.D. EXERCISE. Show that (·) ⊗A N and HomA(N, ·) are adjoint functors.

2.5.1. ! Fancier remarks we won’t use. You can check that the left adjoint determines
the right adjoint up to natural isomorphism, and vice versa. The maps ηA and
εB of Exercise 2.5.B are called the unit and counit of the adjunction. This leads
to a different characterization of adjunction. Suppose functors F : A → B and
G : B → A are given, along with natural transformations η : idA → GF and ε :
FG → idB with the property that Gε ◦ ηG = idG (for each B ∈ B, the composition
of ηG(B) : G(B) → GFG(B) and G(εB) : GFG(B) → G(B) is the identity) and
εF◦Fη = idF. Then you can check that F is left adjoint to G. These facts aren’t hard
to check, so if you want to use them, you should verify everything for yourself.

2.5.2. Examples from other fields. For those familiar with representation theory:
Frobenius reciprocity may be understood in terms of adjoints. Suppose V is a
finite-dimensional representation of a finite group G, and W is a representation of

a subgroup H < G. Then induction and restriction are an adjoint pair (IndG
H, ResG

H)
between the category of G-modules and the category of H-modules.

Topologists’ favorite adjoint pair may be the suspension functor and the loop
space functor.
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2.5.3. Example: groupification. Here is another motivating example: getting an
abelian group from an abelian semigroup. (An abelian semigroup is just like an
abelian group, except you don’t require an identity or an inverse. Morphisms of
abelian semigroups are maps of sets preserving the binary operation.) One exam-
ple is the non-negative integers 0, 1, 2, . . . under addition. Another is the positive
integers under multiplication 1, 2, . . . . From an abelian semigroup, you can create
an abelian group. Here is a formalization of that notion. A groupification of a
semigroup S is a map of semigroups π : S → G such that G is a group, and any
map of semigroups from S to a group G ′ factors uniquely through G.

S
π $$

!!-
--

--
--

G

∃!
%%

G ′

2.5.E. EXERCISE. Construct groupification H from the category of non-empty
abelian semigroups to the category of abelian groups. (One possibility of a con-
struction: given an abelian semigroup S, the elements of its groupification H(S)
are ordered pairs (a, b) ∈ S × S, which you may think of as a − b, with the equiv-
alence that (a, b) ∼ (c, d) if a + d + e = b + c + e for some e ∈ S. Describe
addition in this group, and show that it satisfies the properties of an abelian group.
Describe the semigroup map S → H(S).) Let F be the forgetful functor from the
category of abelian groups Ab to the category of abelian semigroups. Show that H
is left-adjoint to F.

(Here is the general idea for experts: We have a full subcategory of a category.
We want to “project” from the category to the subcategory. We have

Morcategory(S,H) = Morsubcategory(G,H)

automatically; thus we are describing the left adjoint to the forgetful functor. How
the argument worked: we constructed something which was in the smaller cate-
gory, which automatically satisfies the universal property.)

2.5.F. EXERCISE (A GROUP IF GROUPIFIED BY ITSELF). Show that if a semigroup
is already a group then the identity morphism is the groupification. (More correct:
the identity morphism is a groupification.)

2.5.G. EXERCISE. The purpose of this exercise is to give you some practice with
“adjoints of forgetful functors”, the means by which we get groups from semi-
groups, and sheaves from presheaves. Suppose A is a ring, and S is a multiplica-
tive subset. Then S−1A-modules are a fully faithful subcategory (§2.2.15) of the cat-
egory of A-modules (via the obvious inclusion ModS−1A ↪→ ModA). Then ModA →
ModS−1A can be interpreted as an adjoint to the forgetful functor ModS−1A →
ModA. Figure out the correct statement, and prove that it holds.

(Here is the larger story. Every S−1A-module is an A-module, and this is an
injective map, so we have a covariant forgetful functor F : ModS−1A → ModA. In
fact this is a fully faithful functor: it is injective on objects, and the morphisms
between any two S−1A-modules as A-modules are just the same when they are con-
sidered as S−1A-modules. Then there is a functor G : ModA → ModS−1A, which
might reasonably be called “localization with respect to S”, which is left-adjoint
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to the forgetful functor. Translation: If M is an A-module, and N is an S−1A-
module, then Mor(GM,N) (morphisms as S−1A-modules, which are the same as
morphisms as A-modules) are in natural bijection with Mor(M,FN) (morphisms
as A-modules).)

Here is a table of adjoints that will come up for us.

situation category category left-adjoint right-adjoint
A B F : A → B G : B → A

A-modules (Ex. 2.5.D) (·) ⊗A N HomA(N, ·)
ring maps (·) ⊗A B forgetful
A → B (e.g. Ex. 2.5.G) ModA ModB (extension (restriction

of scalars) of scalars)
(pre)sheaves on a presheaves sheaves on X
topological space on X sheafification forgetful
X (Ex. 3.4.L)
(semi)groups (§2.5.3) semigroups groups groupification forgetful
sheaves, sheaves on Y sheaves on X f−1 f∗
f : X → Y (Ex. 3.6.B)
sheaves of abelian
groups or O-modules, sheaves on U sheaves on Y f! f−1

open immersions
f : U ↪→ Y (Ex. 3.6.G)
quasicoherent sheaves, quasicoherent quasicoherent f∗ f∗
f : X → Y (Prop. 17.3.5) sheaves on Y sheaves on X

Other examples will also come up, such as the adjoint pair (∼, Γ•) between
graded modules over a graded ring, and quasicoherent sheaves on the correspond-
ing projective scheme (§16.4).

2.5.4. Useful comment for experts. One last comment only for people who have seen
adjoints before: If (F,G) is an adjoint pair of functors, then F commutes with col-
imits, and G commutes with limits. Also, limits commute with limits and colimits
commute with colimits. We will prove these facts (and a little more) in §2.6.11.

2.6 (Co-)kernels, and exact sequences (an introduction to abelian
categories)

The introduction of the digit 0 or the group concept was general nonsense too, and
mathematics was more or less stagnating for thousands of years because nobody was
around to take such childish steps...

— Alexander Grothendieck

Since learning linear algebra, you have been familiar with the notions and be-
haviors of kernels, cokernels, etc. Later in your life you saw them in the category of
abelian groups, and later still in the category of A-modules. Each of these notions
generalizes the previous one.
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We will soon define some new categories (certain sheaves) that will have familiar-
looking behavior, reminiscent of that of modules over a ring. The notions of ker-
nels, cokernels, images, and more will make sense, and they will behave “the way
we expect” from our experience with modules. This can be made precise through
the notion of an abelian category. Abelian categories are the right general setting
in which one can do “homological algebra”, in which notions of kernel, cokernel,
and so on are used, and one can work with complexes and exact sequences.

We will see enough to motivate the definitions that we will see in general:
monomorphism (and subobject), epimorphism, kernel, cokernel, and image. But
in these notes we will avoid having to show that they behave “the way we expect”
in a general abelian category because the examples we will see are directly inter-
pretable in terms of modules over rings. In particular, it is not worth memorizing
the definition of abelian category.

Two central examples of an abelian category are the category Ab of abelian
groups, and the category ModA of A-modules. The first is a special case of the
second (just take A = Z). As we give the definitions, you should verify that ModA

is an abelian category.
We first define the notion of additive category. We will use it only as a stepping

stone to the notion of an abelian category.

2.6.1. Definition. A category C is said to be additive if it satisfies the following
properties.

Ad1. For each A,B ∈ C , Mor(A,B) is an abelian group, such that composition
of morphisms distributes over addition. (You should think about what
this means — it translates to two distinct statements).

Ad2. C has a zero object, denoted 0. (This is an object that is simultaneously
an initial object and a final object, Definition 2.3.2.)

Ad3. It has products of two objects (a product A × B for any pair of objects),
and hence by induction, products of any finite number of objects.

In an additive category, the morphisms are often called homomorphisms, and
Mor is denoted by Hom. In fact, this notation Hom is a good indication that you’re
working in an additive category. A functor between additive categories preserving
the additive structure of Hom, is called an additive functor.

2.6.2. Remarks. It is a consequence of the definition of additive category that finite
direct products are also finite direct sums (coproducts) — the details don’t matter
to us. The symbol ⊕ is used for this notion. Also, it is quick to show that additive
functors send zero objects to zero objects (show that a is a 0-object if and only if
ida = 0a; additive functors preserve both id and 0), and preserves products.

One motivation for the name 0-object is that the 0-morphism in the abelian
group Hom(A,B) is the composition A → 0 → B.

Real (or complex) Banach spaces are an example of an additive category. The
category of free A-modules is another. The category of A-modules ModA is also an
example, but it has even more structure, which we now formalize as an example
of an abelian category.

2.6.3. Definition. Let C be an additive category. A kernel of a morphism
f : B → C is a map i : A → B such that f ◦ i = 0, and that is universal with respect
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to this property. Diagramatically:

Z

--)
))

))
))

)

0

&&..
..

..
..

..
..

..

∃!
%%

A
i $$

0

00B
f $$ C

(Note that the kernel is not just an object; it is a morphism of an object to B.) Hence
it is unique up to unique isomorphism by universal property nonsense. A coker-
nel is defined dually by reversing the arrows — do this yourself. The kernel of
f : B → C is the limit (§2.4) of the diagram

0

%%
B

f $$ C

and similarly the cokernel is a colimit.
If i : A → B is a monomorphism, then we say that A is a subobject of B, where

the map i is implicit. Dually, there is the notion of quotient object, defined dually
to subobject.

An abelian category is an additive category satisfying three additional prop-
erties.

(1) Every map has a kernel and cokernel.
(2) Every monomorphism is the kernel of its cokernel.
(3) Every epimorphism is the cokernel of its kernel.

It is a nonobvious (and imprecisely stated) fact that every property you want
to be true about kernels, cokernels, etc. follows from these three. (Warning: in
part of the literature, additional hypotheses are imposed as part of the definition.)

The image of a morphism f : A → B is defined as im(f) = ker(coker f). The
morphism f : A → B factors uniquely through im f → B, and A → im f is an
epimorphism, and is a cokernel of ker f → A. The reader may want to verify
this as an exercise. It is unique up to unique isomorphism. The cokernel of a
monomorphism is called the quotient. The quotient of a monomorphism A → B
is often denoted B/A (with the map from B implicit).

We will leave the foundations of abelian categories untouched. The key thing
to remember is that if you understand kernels, cokernels, images and so on in
the category of modules over a ring ModA, you can manipulate objects in any
abelian category. This is made precise by Freyd-Mitchell Embedding Theorem.
(The Freyd-Mitchell Embedding Theorem: If A is an abelian category such that
Hom(a, a ′) is a set for all a, a ′ ∈ A , then there is a ring A and an exact, fully faith-
ful functor from A into ModA, which embeds A as a full subcategory. A proof is
sketched in [W, §1.6], and references to a complete proof are given there. A proof
is also given in [KS, §9.7]. The upshot is that to prove something about a diagram
in some abelian category, we may assume that it is a diagram of modules over
some ring, and we may then “diagram-chase” elements. Moreover, any fact about
kernels, cokernels, and so on that holds in ModA holds in any abelian category.)
However, the abelian categories we will come across will obviously be related to
modules, and our intuition will clearly carry over, so we needn’t invoke a theorem
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whose proof we haven’t read. For example, we will show that sheaves of abelian
groups on a topological space X form an abelian category (§3.5), and the interpre-
tation in terms of “compatible germs” will connect notions of kernels, cokernels
etc. of sheaves of abelian groups to the corresponding notions of abelian groups.

2.6.4. Complexes, exactness, and homology.
We say a sequence

(2.6.4.1) · · · $$ A
f $$ B

g $$ C $$ · · ·

is a complex at B if g ◦ f = 0, and is exact at B if ker g = im f. A sequence is a

complex if it is a complex at each (internal) term. (For example: 0 $$ A $$ 0

is a complex if and only if A = 0; 0 $$ A
f $$ B is a complex if and only if

f is a monomorphism; and 0 $$ A
f $$ B $$ 0 is a complex if and only

if f is an isomorphism.) An exact sequence with five terms, the first and last of

which are 0, is a short exact sequence. Note that A
f $$ B $$ C $$ 0 being

exact is equivalent to describing C as a cokernel of f (with a similar statement for

0 $$ A $$ B
g $$ C ).

If you would like practice in playing with these notions before thinking about
homology, you can prove the Snake Lemma (stated in Example 2.7.5, with a stronger
version in Exercise 2.7.B), or the Five Lemma (stated in Example 2.7.6, with a
stronger version in Exercise 2.7.C). (I would do this in the category of A-modules,
but see [KS, Lem. 12.1.1, Lem. 8.3.13] for proofs in general.)

If (2.6.4.1) is a complex, then its homology (often denoted H) is ker g / im f. We
say that the ker g are the cycles, and im f are the boundaries (so homology is “cy-
cles mod boundaries”). If the complex is indexed in decreasing order, the indices
are often written as subscripts, and Hi is the homology at Ai+1 → Ai → Ai−1. If
the complex is indexed in increasing order, the indices are often written as super-
scripts, and the homology Hi at Ai−1 → Ai → Ai+1 is often called cohomology.

An exact sequence

(2.6.4.2) A• : · · · $$ Ai−1 fi−1
$$ Ai fi

$$ Ai+1 fi+1
$$ · · ·

can be “factored” into short exact sequences

0 $$ ker fi $$ Ai $$ ker fi+1 $$ 0

which is helpful in proving facts about long exact sequences by reducing them to
facts about short exact sequences.

More generally, if (2.6.4.2) is assumed only to be a complex, then it can be
“factored” into short exact sequences.

(2.6.4.3) 0 $$ ker fi $$ Ai $$ im fi $$ 0

0 $$ im fi−1 $$ ker fi $$ Hi(A•) $$ 0
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2.6.A. EXERCISE. Describe exact sequences

(2.6.4.4) 0 $$ im fi $$ Ai+1 $$ coker fi $$ 0

0 $$ Hi(A•) $$ coker fi−1 $$ im fi $$ 0

(These are somehow dual to (2.6.4.3). In fact in some mirror universe this might
have been given as the standard definition of homology.)

2.6.B. EXERCISE. Suppose

0
d0

$$ A1 d1
$$ · · · dn−1

$$ An dn
$$ $$ 0

is a complex of finite-dimensional k-vector spaces (often called A• for short). Show
that

∑
(−1)i dim Ai =

∑
(−1)ihi(A•). (Recall that hi(A•) = dim ker(di)/ im(di−1).)

In particular, if A• is exact, then
∑

(−1)i dim Ai = 0. (If you haven’t dealt much
with cohomology, this will give you some practice.)

2.6.C. IMPORTANT EXERCISE. Suppose C is an abelian category. Define the cate-
gory ComC as follows. The objects are infinite complexes

A• : · · · $$ Ai−1 fi−1
$$ Ai fi

$$ Ai+1 fi+1
$$ · · ·

in C , and the morphisms A• → B• are commuting diagrams

(2.6.4.5) A• :

%%

· · · $$ Ai−1

%%

fi−1
$$ Ai fi

$$

%%

Ai+1 fi+1
$$

%%

· · ·

B• : · · · $$ Bi−1 gi−1

$$ Bi gi

$$ Bi+1 gi+1

$$ · · ·

Show that ComC is an abelian category. (Feel free to deal with the special case
ModA.)

Essentially the same argument shows that the functor category C I is an abelian
category for any small category I and any abelian category C . This immediately
implies that the category of presheaves on at topological space X with values in an
abelian category C is automatically an abelian category.

2.6.D. IMPORTANT EXERCISE. Show that (2.6.4.5) induces a map of homology
Hi(A•) → Hi(B•). (Again, feel free to deal with the special case ModA.)

We will later define when two maps of complexes are homotopic (§24.1), and
show that homotopic maps induce isomorphisms on cohomology (Exercise 24.1.A),
but we won’t need that any time soon.
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2.6.5. Theorem (Long exact sequence). — A short exact sequence of complexes

0• :

%%

· · · $$ 0 $$

%%

0 $$

%%

0 $$

%%

· · ·

A• :

%%

· · · $$ Ai−1

%%

fi−1
$$ Ai fi

$$

%%

Ai+1 fi+1
$$

%%

· · ·

B• :

%%

· · · $$ Bi−1

%%

gi−1

$$ Bi gi

$$

%%

Bi+1 gi+1

$$

%%

· · ·

C• :

%%

· · · $$ Ci−1 hi−1
$$

%%

Ci hi
$$

%%

Ci+1 hi+1
$$

%%

· · ·

0• : · · · $$ 0 $$ 0 $$ 0 $$ · · ·

induces a long exact sequence in cohomology

. . . $$ Hi−1(C•) $$

Hi(A•) $$ Hi(B•) $$ Hi(C•) $$

Hi+1(A•) $$ · · ·

(This requires a definition of the connecting homomorphism Hi−1(C•) → Hi(A•),
which is natural in an appropriate sense.) For a concise proof in the case of com-
plexes of modules, and a discussion of how to show this in general, see [W, §1.3]. It
will also come out of our discussion of spectral sequences as well (again, in the cat-
egory of modules over a ring), see Exercise 2.7.F, but this is a somewhat perverse
way of proving it. For a proof in general, see [KS, Theorem 12.3.3].

2.6.6. Exactness of functors. If F : A → B is a covariant additive functor from one
abelian category to another, we say that F is right-exact if the exactness of

A ′ $$ A $$ A ′′ $$ 0,

in A implies that

F(A ′) $$ F(A) $$ F(A ′′) $$ 0

is also exact. Dually, we say that F is left-exact if the exactness of

0 $$ A ′ $$ A $$ A ′′ implies

0 $$ F(A ′) $$ F(A) $$ F(A ′′) is exact.
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A contravariant functor is left-exact if the exactness of

A ′ $$ A $$ A ′′ $$ 0 implies

0 $$ F(A ′′) $$ F(A) $$ F(A ′) is exact.

The reader should be able to deduce what it means for a contravariant functor to
be right-exact.

A covariant or contravariant functor is exact if it is both left-exact and right-
exact.

2.6.E. EXERCISE. Suppose F is an exact functor. Show that applying F to an exact
sequence preserves exactness. For example, if F is covariant, and A ′ → A → A ′′

is exact, then FA ′ → FA → FA ′′ is exact. (This will be generalized in Exer-
cise 2.6.H(c).)

2.6.F. EXERCISE. Suppose A is a ring, S ⊂ A is a multiplicative subset, and M is
an A-module.
(a) Show that localization of A-modules ModA → ModS−1A is an exact covariant
functor.
(b) Show that (·) ⊗ M is a right-exact covariant functor ModA → ModA. (This is a
repeat of Exercise 2.3.H.)
(c) Show that Hom(M, ·) is a left-exact covariant functor ModA → ModA. If C is
any abelian category, and C ∈ C , show that Hom(C, ·) is a left-exact covariant
functor C → Ab.
(d) Show that Hom(·,M) is a left-exact contravariant functor ModA → ModA. If C
is any abelian category, and C ∈ C , show that Hom(·, C) is a left-exact covariant
functor C → Ab.

2.6.G. EXERCISE. Suppose M is a finitely presented A-module: M has a finite
number of generators, and with these generators it has a finite number of relations;
or usefully equivalently, fits in an exact sequence

(2.6.6.1) A⊕q → A⊕p → M → 0

Use (2.6.6.1) and the left-exactness of Hom to describe an isomorphism

S−1 HomA(M,N) ∼= HomS−1A(S−1M,S−1N).

(You might be able to interpret this in light of a variant of Exercise 2.6.H below, for
left-exact contravariant functors rather than right-exact covariant functors.)

2.6.7. Example: Hom doesn’t always commute with localization. In the language of
Exercise 2.6.G, take A = N = Z, M = Q, and S = Z \ {0}.

2.6.8. ! Two useful facts in homological algebra.
We now come to two (sets of) facts I wish I had learned as a child, as they

would have saved me lots of grief. They encapsulate what is best and worst of
abstract nonsense. The statements are so general as to be nonintuitive. The proofs
are very short. They generalize some specific behavior it is easy to prove in an
ad hoc basis. Once they are second nature to you, many subtle facts will become
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obvious to you as special cases. And you will see that they will get used (implicitly
or explicitly) repeatedly.

2.6.9. ! Interaction of homology and (right/left-)exact functors.
You might wait to prove this until you learn about cohomology in Chapter 20,

when it will first be used in a serious way.

2.6.H. IMPORTANT EXERCISE (THE FHHF THEOREM). This result can take you
far, and perhaps for that reason it has sometimes been called the Fernbahnhof
(FernbaHnHoF) Theorem. Suppose F : A → B is a covariant functor of abelian
categories. Suppose C• is a complex in A .

(a) (F right-exact yields FH• $$ H•F ) If F is right-exact, describe a natu-
ral morphism FH• → H•F. (More precisely, for each i, the left side is F
applied to the cohomology at piece i of C•, while the right side is the
cohomology at piece i of FC•.)

(b) (F left-exact yields FH• H•F++ ) If F is left-exact, describe a natural mor-
phism H•F → FH•.

(c) (F exact yields FH• ++ $$ H•F ) If F is exact, show that the morphisms of
(a) and (b) are inverses and thus isomorphisms.

Hint for (a): use Ci di
$$ Ci+1 $$ coker di $$ 0 to give an isomorphism

F coker di ∼= coker Fdi. Then use the first line of (2.6.4.4) to give a epimorphism

F im di $$ $$ im Fdi . Then use the second line of (2.6.4.4) to give the desired map

FHiC• $$ HiFC• . While you are at it, you may as well describe a map for the

fourth member of the quartet {ker, coker, im, H}: F ker di $$ ker Fdi .

2.6.10. If this makes your head spin, you may prefer to think of it in the following
specific case, where both A and B are the category of A-modules, and F is (·)⊗N
for some fixed N-module. Your argument in this case will translate without change
to yield a solution to Exercise 2.6.H(a) and (c) in general. If ⊗N is exact, then N is
called a flat A-module. (The notion of flatness will turn out to be very important,
and is discussed in detail in Chapter 25.)

For example, localization is exact (Exercise 2.6.F(a)), so S−1A is a flat A-algebra
for all multiplicative sets S. Thus taking cohomology of a complex of A-modules
commutes with localization — something you could verify directly.

2.6.11. ! Interaction of adjoints, (co)limits, and (left- and right-) exactness.
A surprising number of arguments boil down to the statement:
Limits commute with limits and right-adjoints. In particular, because kernels are

limits, both right-adjoints and limits are left exact.
as well as its dual:
Colimits commute with colimits and left-adjoints. In particular, because cokernels are

colimits, both left-adjoints and colimits are right exact.
These statements were promised in §2.5.4. The latter has a useful extension:
In an abelian category, colimits over filtered index categories are exact.
(“Filtered” was defined in §2.4.6.) If you want to use these statements (for

example, later in these notes), you will have to prove them. Let’s now make them
precise.
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2.6.I. EXERCISE (KERNELS COMMUTE WITH LIMITS). Suppose C is an abelian
category, and a : I → C and b : I → C are two diagrams in C indexed by I .
For convenience, let Ai = a(i) and Bi = b(i) be the objects in those two diagrams.
Let hi : Ai → Bi be maps commuting with the maps in the diagram. (Translation:
h is a natural transformation of functors a → b, see §2.2.21.) Then the ker hi

form another diagram in C indexed by I . Describe a canonical isomorphism
lim←−ker hi

∼= ker(lim←−Ai → lim←−Bi).

2.6.J. EXERCISE. Make sense of the statement that “limits commute with limits” in
a general category, and prove it. (Hint: recall that kernels are limits. The previous
exercise should be a corollary of this one.)

2.6.12. Proposition (right-adjoints commute with limits). — Suppose (F : C →
D , G : D → C ) is a pair of adjoint functors. If A = lim←−Ai is a limit in D of a diagram
indexed by I, then GA = lim←−GAi (with the corresponding maps GA → GAi) is a limit
in C .

Proof. We must show that GA → GAi satisfies the universal property of limits.
Suppose we have maps W → GAi commuting with the maps of I . We wish to
show that there exists a unique W → GA extending the W → GAi. By adjointness
of F and G, we can restate this as: Suppose we have maps FW → Ai commuting
with the maps of I . We wish to show that there exists a unique FW → A extending
the FW → Ai. But this is precisely the universal property of the limit. !

Of course, the dual statements to Exercise 2.6.J and Proposition 2.6.12 hold by
the dual arguments.

If F and G are additive functors between abelian categories, and (F,G) is an
adjoint pair, then (as kernels are limits and cokernels are colimits) G is left-exact
and F is right-exact.

2.6.K. EXERCISE. Show that in ModA, colimits over filtered index categories are
exact. (Your argument will apply without change to any abelian category whose
objects can be interpreted as “sets with additional structure”.) Right-exactness
follows from the above discussion, so the issue is left-exactness. (Possible hint:
After you show that localization is exact, Exercise 2.6.F(a), or sheafification is exact,
Exercise 3.5.D, in a hands-on way, you will be easily able to prove this. Conversely,
if you do this exercise, those two will be easy.)

2.6.L. EXERCISE. Show that filtered colimits commute with homology in ModA.
Hint: use the FHHF Theorem (Exercise 2.6.H), and the previous Exercise.

In light of Exercise 2.6.L, you may want to think about how limits (and colim-
its) commute with homology in general, and which way maps go. The statement
of the FHHF Theorem should suggest the answer. (Are limits analogous to left-
exact functors, or right-exact functors?) We won’t directly use this insight.

2.6.13. ! Dreaming of derived functors. When you see a left-exact functor, you
should always dream that you are seeing the end of a long exact sequence. If

0 → M ′ → M → M ′′ → 0
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is an exact sequence in abelian category A , and F : A → B is a left-exact functor,
then

0 → FM ′ → FM → FM ′′

is exact, and you should always dream that it should continue in some natural
way. For example, the next term should depend only on M ′, call it R1FM ′, and if it
is zero, then FM → FM ′′ is an epimorphism. This remark holds true for left-exact
and contravariant functors too. In good cases, such a continuation exists, and is
incredibly useful. We will discuss this in Chapter 24.

2.7 ! Spectral sequences

Spectral sequences are a powerful book-keeping tool for proving things in-
volving complicated commutative diagrams. They were introduced by Leray in
the 1940’s at the same time as he introduced sheaves. They have a reputation for
being abstruse and difficult. It has been suggested that the name ‘spectral’ was
given because, like spectres, spectral sequences are terrifying, evil, and danger-
ous. I have heard no one disagree with this interpretation, which is perhaps not
surprising since I just made it up.

Nonetheless, the goal of this section is to tell you enough that you can use
spectral sequences without hesitation or fear, and why you shouldn’t be frightened
when they come up in a seminar. What is perhaps different in this presentation is
that we will use spectral sequences to prove things that you may have already
seen, and that you can prove easily in other ways. This will allow you to get
some hands-on experience for how to use them. We will also see them only in the
special case of double complexes (which is the version by far the most often used
in algebraic geometry), and not in the general form usually presented (filtered
complexes, exact couples, etc.). See [W, Ch. 5] for more detailed information if
you wish.

You should not read this section when you are reading the rest of Chapter 2.
Instead, you should read it just before you need it for the first time. When you
finally do read this section, you must do the exercises.

For concreteness, we work in the category ModA of module over a ring A.
However, everything we say will apply in any abelian category. (And if it helps
you feel secure, work instead in the category Veck of vector spaces over a field k.)

2.7.1. Double complexes.
A double complex is a collection of A-modules Ep,q (p, q ∈ Z), and “right-

ward” morphisms dp,q
→ : Ep,q → Ep+1,q and “upward” morphisms dp,q

↑ : Ep,q →
Ep,q+1. In the superscript, the first entry denotes the column number (the “x-
coordinate”), and the second entry denotes the column number (the “y-coordinate”).
(Warning: this is opposite to the convention for matrices.) The subscript is meant
to suggest the direction of the arrows. We will always write these as d→ and d↑

and ignore the superscripts. We require that d→ and d↑ satisfy (a) d2
→ = 0, (b)

d2
↑ = 0, and one more condition: (c) either d→d↑ = d↑d→ (all the squares com-

mute) or d→d↑ + d↑d→ = 0 (they all anticommute). Both come up in nature, and
you can switch from one to the other by replacing dp,q

↑ with (−1)qdp,q
↑ . So I will
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assume that all the squares anticommute, but that you know how to turn the com-
muting case into this one. (You will see that there is no difference in the recipe,
basically because the image and kernel of a homomorphism f equal the image and
kernel respectively of −f.)

Ep,q+1
dp,q+1

→ $$ Ep+1,q+1

anticommutes

Ep,q

dp,q
↑

,,

dp,q
→ $$ Ep,q+1

dp,q+1
↑

,,

There are variations on this definition, where for example the vertical arrows
go downwards, or some different subset of the Ep,q are required to be zero, but I
will leave these straightforward variations to you.

From the double complex we construct a corresponding (single) complex E•

with Ek = ⊕iE
i,k−i, with d = d→ + d↑ . In other words, when there is a single

superscript k, we mean a sum of the kth antidiagonal of the double complex. The
single complex is sometimes called the total complex. Note that d2 = (d→ +d↑)

2 =
d2

→ + (d→d↑ + d↑d→ ) + d2
↑ = 0, so E• is indeed a complex.

The cohomology of the single complex is sometimes called the hypercoho-
mology of the double complex. We will instead use the phrase “cohomology of
the double complex”.

Our initial goal will be to find the cohomology of the double complex. You
will see later that we secretly also have other goals.

A spectral sequence is a recipe for computing some information about the
cohomology of the double complex. I won’t yet give the full recipe. Surprisingly,
this fragmentary bit of information is sufficent to prove lots of things.

2.7.2. Approximate Definition. A spectral sequence with rightward orientation
is a sequence of tables or pages →Ep,q

0 , →Ep,q
1 , →Ep,q

2 , . . . (p, q ∈ Z), where →Ep,q
0 =

Ep,q, along with a differential

→dp,q
r : →Ep,q

r → →Ep−r+1,q+r
r

with →dp,q
r ◦ →dp−r,q+r−1

r = 0, and with an isomorphism of the cohomology of

→dr at →Ep,q
r (i.e. ker →dp,q

r / im →dp−r,q+r−1
r ) with →Ep,q

r+1.
The orientation indicates that our 0th differential is the rightward one: d0 =

d→ . The left subscript “→” is usually omitted.
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The order of the morphisms is best understood visually:

(2.7.2.1) •

•

•

• d0
$$

d1

,,d2/
/
/
/
/
/

11/
/
/
/
/
/

d3'
'
'
'
'
'
'
'
'
'
'

22'
'
'
'
'
'
'
'
'
'
'

•

(the morphisms each apply to different pages). Notice that the map always is
“degree 1” in terms of the grading of the single complex E•. (You should figure
out what this informal statement really means.)

The actual definition describes what E•,•
r and d•,•

r really are, in terms of E•,•.
We will describe d0, d1, and d2 below, and you should for now take on faith that
this sequence continues in some natural way.

Note that Ep,q
r is always a subquotient of the corresponding term on the 0th

page Ep,q
0 = Ep,q. In particular, if Ep,q = 0, then Ep,q

r = 0 for all r, so Ep,q
r = 0

unless p, q ∈ Z≥0.
Suppose now that E•,• is a first quadrant double complex, i.e. Ep,q = 0 for p <

0 or q < 0. Then for any fixed p, q, once r is sufficiently large, Ep,q
r+1 is computed

from (E•,•
r , dr) using the complex

0

Ep,q
r

dp,q
r

330
0
0
0
0
0
0
0
0
0
0
0
0

0

dp−r+1,q+r
r

330
0
0
0
0
0
0
0
0
0
0
0
0

and thus we have canonical isomorphisms

Ep,q
r

∼= Ep,q
r+1

∼= Ep,q
r+2

∼= · · ·

We denote this module Ep,q
∞ . The same idea works in other circumstances, for

example if the double complex is only nonzero in a finite number of rows — Ep,q =
0 unless q0 < q < q1. This will come up for example in the long exact sequence
and mapping cone discussion (Exercises 2.7.F and 2.7.E below).

We now describe the first few pages of the spectral sequence explicitly. As
stated above, the differential d0 on E•,•

0 = E•,• is defined to be d→ . The rows are
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complexes:

• $$ • $$ •

The 0th page E0: • $$ • $$ •

• $$ • $$ •

and so E1 is just the table of cohomologies of the rows. You should check that
there are now vertical maps dp,q

1 : Ep,q
1 → Ep,q+1

1 of the row cohomology groups,
induced by d↑ , and that these make the columns into complexes. (This is essen-
tially the fact that a map of complexes induces a map on homology.) We have
“used up the horizontal morphisms”, but “the vertical differentials live on”.

• • •

The 1st page E1: •

,,

•

,,

•

,,

•

,,

•

,,

•

,,

We take cohomology of d1 on E1, giving us a new table, Ep,q
2 . It turns out that

there are natural morphisms from each entry to the entry two above and one to the
left, and that the composition of these two is 0. (It is a very worthwhile exercise
to work out how this natural morphism d2 should be defined. Your argument
may be reminiscent of the connecting homomorphism in the Snake Lemma 2.7.5
or in the long exact sequence in cohomology arising from a short exact sequence
of complexes, Exercise 2.6.C. This is no coincidence.)

• • •

The 2nd page E2: • • •

• •

111
1
1
1
1
1
1
1
1
1
1
1
1
1
1

•

111
1
1
1
1
1
1
1
1
1
1
1
1
1
1

This is the beginning of a pattern.
Then it is a theorem that there is a filtration of Hk(E•) by Ep,q

∞ where p+q = k.
(We can’t yet state it as an official Theorem because we haven’t precisely defined
the pages and differentials in the spectral sequence.) More precisely, there is a
filtration

(2.7.2.2) E0,k
∞

! "E
1,k−1
∞ $$ ? ! "E

2,k−2
∞ $$ · · · ! " Ek,0

∞ $$ Hk(E•)

where the quotients are displayed above each inclusion. (Here is a tip for remem-
ber which way the quotients are supposed to go. The later differentials point
deeper and deeper into the filtration. Thus the entries in the direction of the later
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arrowheads are the subobjects, and the entries in the direction of the later “arrow-
tails” are quotients. This tip has the advantage of being independent of the details
of the spectral sequence, e.g. the “quadrant” or the orientation.)

We say that the spectral sequence →E•,•
• converges to H•(E•). We often say

that →E•,•
2 (or any other page) abuts to H•(E•).

Although the filtration gives only partial information about H•(E•), some-
times one can find H•(E•) precisely. One example is if all Ei,k−i

∞ are zero, or if
all but one of them are zero (e.g. if E•,•

r has precisely one non-zero row or col-
umn, in which case one says that the spectral sequence collapses at the rth step,
although we will not use this term). Another example is in the category of vector
spaces over a field, in which case we can find the dimension of Hk(E•). Also, in
lucky circumstances, E2 (or some other small page) already equals E∞ .

2.7.A. EXERCISE: INFORMATION FROM THE SECOND PAGE. Show that H0(E•) =
E0,0

∞ = E0,0
2 and

0 $$ E0,1
2

$$ H1(E•) $$ E1,0
2

d1,0
2 $$ E0,2

2
$$ H2(E•).

2.7.3. The other orientation.
You may have observed that we could as well have done everything in the

opposite direction, i.e. reversing the roles of horizontal and vertical morphisms.
Then the sequences of arrows giving the spectral sequence would look like this
(compare to (2.7.2.1)).

(2.7.3.1) •

•

,,

$$

&&..
..

..
..

..
..

..

442
22

22
22

22
22

22
22

22
22

22
22

•

•

•

This spectral sequence is denoted ↑E
•,•
• (“with the upwards orientation”). Then

we would again get pieces of a filtration of H•(E•) (where we have to be a bit
careful with the order with which ↑E

p,q
∞ corresponds to the subquotients — it in

the opposite order to that of (2.7.2.2) for →Ep,q
∞ ). Warning: in general there is no

isomorphism between →Ep,q
∞ and ↑E

p,q
∞ .

In fact, this observation that we can start with either the horizontal or vertical
maps was our secret goal all along. Both algorithms compute information about
the same thing (H•(E•)), and usually we don’t care about the final answer — we
often care about the answer we get in one way, and we get at it by doing the
spectral sequence in the other way.

2.7.4. Examples.
We are now ready to see how this is useful. The moral of these examples is

the following. In the past, you may have proved various facts involving various
sorts of diagrams, by chasing elements around. Now, you will just plug them into
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a spectral sequence, and let the spectral sequence machinery do your chasing for
you.

2.7.5. Example: Proving the Snake Lemma. Consider the diagram

0 $$ D $$ E $$ F $$ 0

0 $$ A $$

α

,,

B $$

β

,,

C

γ

,,

$$ 0

where the rows are exact in the middle (at B, C, D, G, H, I) and the squares com-
mute. (Normally the Snake Lemma is described with the vertical arrows pointing
downwards, but I want to fit this into my spectral sequence conventions.) We wish
to show that there is an exact sequence

(2.7.5.1) 0 → kerα → kerβ → kerγ → cokerα → cokerβ → cokerγ → 0.

We plug this into our spectral sequence machinery. We first compute the co-
homology using the rightwards orientation, i.e. using the order (2.7.2.1). Then be-
cause the rows are exact, Ep,q

1 = 0, so the spectral sequence has already converged:
Ep,q

∞ = 0.
We next compute this “0” in another way, by computing the spectral sequence

using the upwards orientation. Then ↑E
•,•
1 (with its differentials) is:

0 $$ cokerα $$ cokerβ $$ cokerγ $$ 0

0 $$ kerα $$ kerβ $$ kerγ $$ 0.

Then ↑E
•,•
2 is of the form:

0

&&33
33

33
33

33
33

33 0

&&..
..

..
..

..
..

..

0

&&..
..

..
..

..
..

.. ??

&&33
33

33
33

33
33

33 ?

&&..
..

..
..

..
..

.. ? 0

0 ? ?

&&..
..

..
..

..
..

.. ??

&&33
33

33
33

33
33

33 0

0 0

We see that after ↑E2, all the terms will stabilize except for the double-question-
marks — all maps to and from the single question marks are to and from 0-entries.
And after ↑E3, even these two double-question-mark terms will stabilize. But in
the end our complex must be the 0 complex. This means that in ↑E2, all the entries
must be zero, except for the two double-question-marks, and these two must be
isomorphic. This means that 0 → kerα → kerβ → kerγ and cokerα → cokerβ →
cokerγ → 0 are both exact (that comes from the vanishing of the single-question-
marks), and

coker(kerβ → kerγ) ∼= ker(cokerα → cokerβ)

is an isomorphism (that comes from the equality of the double-question-marks).
Taken together, we have proved the exactness of (2.7.5.1), and hence the Snake
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Lemma! (Notice: in the end we didn’t really care about the double complex. We
just used it as a prop to prove the snake lemma.)

Spectral sequences make it easy to see how to generalize results further. For
example, if A → B is no longer assumed to be injective, how would the conclusion
change?

2.7.B. UNIMPORTANT EXERCISE (GRAFTING EXACT SEQUENCES, A WEAKER VER-
SION OF THE SNAKE LEMMA). Extend the snake lemma as follows. Suppose we
have a commuting diagram

0 $$ X ′ $$ Y ′ $$ Z ′ $$ A ′ $$ · · ·

· · · $$ W $$

,,

X $$

a

,,

Y $$

b

,,

Z $$

c

,,

0.

,,

where the top and bottom rows are exact. Show that the top and bottom rows can
be ”grafted together” to an exact sequence

· · · $$ W $$ ker a $$ ker b $$ ker c

$$ coker a $$ coker b $$ coker c $$ A ′ $$ · · · .

2.7.6. Example: the Five Lemma. Suppose

(2.7.6.1) F $$ G $$ H $$ I $$ J

A $$

α

,,

B $$

β

,,

C

γ

,,

$$ D $$

δ

,,

E

ε

,,

where the rows are exact and the squares commute.
Suppose α, β, δ, ε are isomorphisms. We will show that γ is an isomorphism.
We first compute the cohomology of the total complex using the rightwards

orientation (2.7.2.1). We choose this because we see that we will get lots of zeros.
Then →E•,•

1 looks like this:

? 0 0 0 ?

?

,,

0

,,

0

,,

0

,,

?

,,

Then →E2 looks similar, and the sequence will converge by E2, as we will never get
any arrows between two non-zero entries in a table thereafter. We can’t conclude
that the cohomology of the total complex vanishes, but we can note that it van-
ishes in all but four degrees — and most important, it vanishes in the two degrees
corresponding to the entries C and H (the source and target of γ).

We next compute this using the upwards orientation (2.7.3.1). Then ↑E1 looks
like this:

0 $$ 0 $$ ? $$ 0 $$ 0

0 $$ 0 $$ ? $$ 0 $$ 0
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and the spectral sequence converges at this step. We wish to show that those two
question marks are zero. But they are precisely the cohomology groups of the total
complex that we just showed were zero — so we are done!

The best way to become comfortable with this sort of argument is to try it out
yourself several times, and realize that it really is easy. So you should do the fol-
lowing exercises! Many can readily be done directly, but you should deliberately
try to use this spectral sequence machinery in order to get practice and develop
confidence.

2.7.C. EXERCISE: THE SUBTLE FIVE LEMMA. By looking at the spectral sequence
proof of the Five Lemma above, prove a subtler version of the Five Lemma, where
one of the isomorphisms can instead just be required to be an injection, and an-
other can instead just be required to be a surjection. (I am deliberately not telling
you which ones, so you can see how the spectral sequence is telling you how to
improve the result.)

2.7.D. EXERCISE. If β and δ (in (2.7.6.1)) are injective, and α is surjective, show
that γ is injective. Give the dual statement (whose proof is of course essentially
the same).

2.7.E. EXERCISE (THE MAPPING CONE). Suppose µ : A• → B• is a morphism of
complexes. Suppose C• is the single complex associated to the double complex
A• → B•. (C• is called the mapping cone of µ.) Show that there is a long exact
sequence of complexes:

· · · → Hi−1(C•) → Hi(A•) → Hi(B•) → Hi(C•) → Hi+1(A•) → · · · .

(There is a slight notational ambiguity here; depending on how you index your
double complex, your long exact sequence might look slightly different.) In partic-
ular, we will use the fact that µ induces an isomorphism on cohomology if and only
if the mapping cone is exact. (We won’t use it until the proof of Theorem 20.2.4.)

2.7.F. EXERCISE. Use spectral sequences to show that a short exact sequence of
complexes gives a long exact sequence in cohomology (Exercise 2.6.C). (This is a
generalization of Exercise 2.7.E.)

The Grothendieck (or composition of functor) spectral sequence (Exercise 24.3.D)
will be an important example of a spectral sequence that specializes in a number
of useful ways.

You are now ready to go out into the world and use spectral sequences to your
heart’s content!

2.7.7. !! Complete definition of the spectral sequence, and proof.
You should most definitely not read this section any time soon after reading

the introduction to spectral sequences above. Instead, flip quickly through it to
convince yourself that nothing fancy is involved.

We consider the rightwards orientation. The upwards orientation is of course
a trivial variation of this.

2.7.8. Goals. We wish to describe the pages and differentials of the spectral se-
quence explicitly, and prove that they behave the way we said they did. More
precisely, we wish to:
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(a) describe Ep,q
r (and verify that Ep,q

0 is indeed Ep,q),
(b) verify that Hk(E•) is filtered by Ep,k−p

∞ as in (2.7.2.2),
(c) describe dr and verify that d2

r = 0, and
(d) verify that Ep,q

r+1 is given by cohomology using dr.

Before tackling these goals, you can impress your friends by giving this short
description of the pages and differentials of the spectral sequence. We say that
an element of E•,• is a (p, q)-strip if it is an element of ⊕l≥0Ep−l,q+l (see Fig. 2.1).
Its non-zero entries lie on an “upper-leftwards” semi-infinite antidiagonal starting
with position (p, q). We say that the (p, q)-entry (the projection to Ep,q) is the

leading term of the (p, q)-strip. Let Sp,q ⊂ E•,• be the submodule of all the (p, q)-
strips. Clearly Sp,q ⊂ Ep+q, and Sk,0 = Ek.

. . . 0 0 0 0

0 ∗p−2,q+2 0 0 0

0 0 ∗p−1,q+1 0 0

0 0 0 ∗p,q 0

0 0 0 0 0p+1,q−1

FIGURE 2.1. A (p, q)-strip (in Sp,q ⊂ Ep+q). Clearly S0,k = Ek.

Note that the differential d = d↑ +d→ sends a (p, q)-strip x to a (p+ 1, q)-strip
dx. If dx is furthermore a (p−r+1, q+r)-strip (r ∈ Z≥0), we say that x is an r-closed
(p, q)-strip — “the differential knocks x at least r terms deeper into the filtration”.

We denote the set of r-closed (p, q)-strips Sp,q
r (so for example Sp,q

0 = Sp,q, and

Sk,0
0 = Ek). An element of Sp,q

r may be depicted as:

. . . $$ ?

∗p−2,q+2

,,

$$ 0

∗p−1,q+1

,,

$$ 0

∗p,q $$

,,

0
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2.7.9. Preliminary definition of Ep,q
r . We are now ready to give a first definition of

Ep,q
r , which by construction should be a subquotient of Ep,q = Ep,q

0 . We describe
it as such by describing two submodules Yp,q

r ⊂ Xp,q
r ⊂ Ep,q, and defining Ep,q

r =
Xp,q

r /Yp,q
r . Let Xp,q

r be those elements of Ep,q that are the leading terms of r-closed
(p, q)-strips. Note that by definition, d sends (r−1)-closed (p+(r−1)−1, q−(r−1))-
strips to (p, q)-strips. Let Yp,q

r be the leading ((p, q))-terms of the differential d of
(r−1)-closed (p+(r−1)−1, q−(r−1))-strips (where the differential is considered
as a (p, q)-strip).

2.7.G. EXERCISE (REALITY CHECK). Verify that Ep,q
0 is (canonically isomorphic to)

Ep,q.

We next give the definition of the differential dr of such an element x ∈ Xp,q
r .

We take any r-closed (p, q)-strip with leading term x. Its differential d is a (p − r +
1, q + r)-strip, and we take its leading term. The choice of the r-closed (p, q)-strip
means that this is not a well-defined element of Ep,q. But it is well-defined modulo
the differentials of the (r − 1)-closed (p + 1, q + 1)-strips, and hence gives a map
Ep,q

r → Ep−r+1,q+r
r .

This definition is fairly short, but not much fun to work with, so we will forget
it, and instead dive into a snakes’ nest of subscripts and superscripts.

We begin with making some quick but important observations about (p, q)-
strips.

2.7.H. EXERCISE (NOT HARD). Verify the following.

(a) Sp,q = Sp−1,q+1 ⊕ Ep,q.
(b) (Any closed (p, q)-strip is r-closed for all r.) Any element x of Sp,q = Sp,q

0

that is a cycle (i.e. dx = 0) is automatically in Sp,q
r for all r. For example,

this holds when x is a boundary (i.e. of the form dy).
(c) Show that for fixed p, q,

Sp,q
0 ⊃ Sp,q

1 ⊃ · · · ⊃ Sp,q
r ⊃ · · ·

stabilizes for r . 0 (i.e. Sp,q
r = Sp,q

r+1 = · · · ). Denote the stabilized mod-
ule Sp,q

∞ . Show Sp,q
∞ is the set of closed (p, q)-strips (those (p, q)-strips

annihilated by d, i.e. the cycles). In particular, S0,k
∞ is the set of cycles in

Ek.

2.7.10. Defining Ep,q
r .

Define Xp,q
r := Sp,q

r /Sp−1,q+1
r−1 and Yp,q

r := dS
p+(r−1)−1,q−(r−1)
r−1 /Sp−1,q+1

r−1 .
Then Yp,q

r ⊂ Xp,q
r by Exercise 2.7.H(b). We define

(2.7.10.1) Ep,q
r =

Xp,q
r

Yp,q
r

=
Sp,q

r

dS
p+(r−1)−1,q−(r−1)
r−1 + Sp−1,q+1

r−1

We have completed Goal 2.7.8(a).
You are welcome to verify that these definitions of Xp,q

r and Yp,q
r and hence

Ep,q
r agree with the earlier ones of §2.7.9 (and in particular Xp,q

r and Yp,q
r are both

submodules of Ep,q), but we won’t need this fact.

2.7.I. EXERCISE: Ep,k−p
∞ GIVES SUBQUOTIENTS OF Hk(E•). By Exercise 2.7.H(c),

Ep,q
r stabilizes as r → ∞. For r . 0, interpret Sp,q

r /dS
p+(r−1)−1,q−(r−1)
r−1 as the
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cycles in Sp,q
∞ ⊂ Ep+q modulo those boundary elements of dEp+q−1 contained in

Sp,q
∞ . Finally, show that Hk(E•) is indeed filtered as described in (2.7.2.2).

We have completed Goal 2.7.8(b).

2.7.11. Definition of dr.
We shall see that the map dr : Ep,q

r → Ep−r+1,q+r
r is just induced by our

differential d. Notice that d sends r-closed (p, q)-strips Sp,q
r to (p − r + 1, q + r)-

strips Sp−r+1,q+r, by the definition “r-closed”. By Exercise 2.7.H(b), the image lies
in Sp−r+1,q+r

r .

2.7.J. EXERCISE. Verify that d sends

dS
p+(r−1)−1,q−(r−1)
r−1 +Sp−1,q+1

r−1 → dS
(p−r+1)+(r−1)−1,(q+r)−(r−1)
r−1 +S

(p−r+1)−1,(q+r)+1
r−1 .

(The first term on the left goes to 0 from d2 = 0, and the second term on the left
goes to the first term on the right.)

Thus we may define

dr : Ep,q
r =

Sp,q
r

dS
p+(r−1)−1,q−(r−1)
r−1 + Sp−1,q+1

r−1

→

Sp−r+1,q+r
r

dSp−1,q+1
r−1 + Sp−r,q+r+1

r−1

= Ep−r+1,q+r
r

and clearly d2
r = 0 (as we may interpret it as taking an element of Sp,q

r and apply-
ing d twice).

We have accomplished Goal 2.7.8(c).

2.7.12. Verifying that the cohomology of dr at Ep,q
r is Ep,q

r+1. We are left with the
unpleasant job of verifying that the cohomology of

(2.7.12.1) Sp+r−1,q−r
r

dSp+2r−3,q−2r+1
r−1 +Sp+r−2,q−r+1

r−1

dr $$ Sp,q
r

dSp+r−2,q−r+1
r−1 +Sp−1,q+1

r−1

dr $$ Sp−r+1,q+r
r

dSp−1,q+1
r−1 +Sp−r,q+r+1

r−1

is naturally identified with

Sp,q
r+1

dSp+r−1,q−r
r + Sp−1,q+1

r

and this will conclude our final Goal 2.7.8(d).
We begin by understanding the kernel of the right map of (2.7.12.1). Suppose

a ∈ Sp,q
r is mapped to 0. This means that da = db + c, where b ∈ Sp−1,q+1

r−1 . If

u = a − b, then u ∈ Sp,q, while du = c ∈ Sp−r,q+r+1
r−1 ⊂ Sp−r,q+r+1, from which u

is (r + 1)-closed, i.e. u ∈ Sp,q
r+1. Thus a = b + u ∈ Sp−1,q+1

r−1 + Sp,q
r+1. Conversely, any

a ∈ Sp−1,q+1
r−1 + Sp,q

r+1 satisfies

da ∈ dSp−1,q+1
r−1 + dSp,q

r+1 ⊂ dSp−1,q+1
r−1 + Sp−r,q+r+1

r−1
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(using dSp,q
r+1 ⊂ Sp−r,q+r+1

0 and Exercise 2.7.H(b)) so any such a is indeed in the
kernel of

Sp,q
r →

Sp−r+1,q+r
r

dSp−1,q+1
r−1 + Sp−r,q+r+1

r−1

.

Hence the kernel of the right map of (2.7.12.1) is

ker =
Sp−1,q+1

r−1 + Sp,q
r+1

dSp+r−2,q−r+1
r−1 + Sp−1,q+1

r−1

.

Next, the image of the left map of (2.7.12.1) is immediately

im =
dSp+r−1,q−r

r + dSp+r−2,q−r+1
r−1 + Sp−1,q+1

r−1

dSp+r−2,q−r+1
r−1 + Sp−1,q+1

r−1

=
dSp+r−1,q−r

r + Sp−1,q+1
r−1

dSp+r−2,q−r+1
r−1 + Sp−1,q+1

r−1

(as Sp+r−1,q−r
r contains Sp+r−2,q−r+1

r−1 ).
Thus the cohomology of (2.7.12.1) is

ker / im =
Sp−1,q+1

r−1 + Sp,q
r+1

dSp+r−1,q−r
r + Sp−1,q+1

r−1

=
Sp,q

r+1

Sp,q
r+1 ∩ (dSp+r−1,q−r

r + Sp−1,q+1
r−1 )

where the equality on the right uses the fact that dSp+r−1,q−r
r ⊂ Sp,q

r+1 and an
isomorphism theorem. We thus must show

Sp,q
r+1 ∩ (dSp+r−1,q−r

r + Sp−1,q+1
r−1 ) = dSp+r−1,q−r

r + Sp−1,q+1
r .

However,

Sp,q
r+1 ∩ (dSp+r−1,q−r

r + Sp−1,q+1
r−1 ) = dSp+r−1,q−r

r + Sp,q
r+1 ∩ Sp−1,q+1

r−1

and Sp,q
r+1 ∩ Sp+1,q−1

r−1 consists of (p−1, q+1)-strips whose differential vanishes up

to row p + r, from which Sp,q
r+1 ∩ Sp−1,q+1

r−1 = Sp−1,q+1
r as desired.

This completes the explanation of how spectral sequences work for a first-
quadrant double complex. The argument applies without significant change to
more general situations, including filtered complexes.





CHAPTER 3

Sheaves

It is perhaps surprising that geometric spaces are often best understood in
terms of (nice) functions on them. For example, a differentiable manifold that is
a subset of Rn can be studied in terms of its differentiable functions. Because
“geometric spaces” can have few (everywhere-defined) functions, a more precise
version of this insight is that the structure of the space can be well understood
by considering all functions on all open subsets of the space. This information
is encoded in something called a sheaf. Sheaves were introduced by Leray in the
1940’s, and Serre introduced them to algebraic geometry. (The reason for the name
will be somewhat explained in Remark 3.4.3.) We will define sheaves and describe
useful facts about them. We will begin with a motivating example to convince you
that the notion is not so foreign.

One reason sheaves are slippery to work with is that they keep track of a huge
amount of information, and there are some subtle local-to-global issues. There are
also three different ways of getting a hold of them.

• in terms of open sets (the definition §3.2) — intuitive but in some ways
the least helpful

• in terms of stalks (see §3.4.1)
• in terms of a base of a topology (§3.7).

Knowing which to use requires experience, so it is essential to do a number of
exercises on different aspects of sheaves in order to truly understand the concept.

3.1 Motivating example: The sheaf of differentiable functions.

Consider differentiable functions on the topological space X = Rn (or more
generally on a smooth manifold X). The sheaf of differentiable functions on X is
the data of all differentiable functions on all open subsets on X. We will see how
to manage this data, and observe some of its properties. On each open set U ⊂ X,
we have a ring of differentiable functions. We denote this ring of functions O(U).

Given a differentiable function on an open set, you can restrict it to a smaller
open set, obtaining a differentiable function there. In other words, if U ⊂ V is an
inclusion of open sets, we have a “restriction map” resV,U : O(V) → O(U).

Take a differentiable function on a big open set, and restrict it to a medium
open set, and then restrict that to a small open set. The result is the same as if you
restrict the differentiable function on the big open set directly to the small open set.

59



60 Math 216: Foundations of Algebraic Geometry

In other words, if U ↪→ V ↪→ W, then the following diagram commutes:

O(W)
resW,V $$

resW,U ''4
44

44
44

44
O(V)

resV,U5555
55
55
55
5

O(U)

Next take two differentiable functions f1 and f2 on a big open set U, and an
open cover of U by some {Ui}. Suppose that f1 and f2 agree on each of these Ui.
Then they must have been the same function to begin with. In other words, if
{Ui}i∈I is a cover of U, and f1, f2 ∈ O(U), and resU,Ui

f1 = resU,Ui
f2, then f1 = f2.

Thus we can identify functions on an open set by looking at them on a covering by
small open sets.

Finally, given the same U and cover {Ui}, take a differentiable function on
each of the Ui — a function f1 on U1, a function f2 on U2, and so on — and they
agree on the pairwise overlaps. Then they can be “glued together” to make one
differentiable function on all of U. In other words, given fi ∈ O(Ui) for all i, such
that resUi,Ui∩Uj

fi = resUj,Ui∩Uj
fj for all i and j, then there is some f ∈ O(U)

such that resU,Ui
f = fi for all i.

The entire example above would have worked just as well with continuous
functions, or smooth functions, or just plain functions. Thus all of these classes
of “nice” functions share some common properties. We will soon formalize these
properties in the notion of a sheaf.

3.1.1. The germ of a differentiable function. Before we do, we first give another
definition, that of the germ of a differentiable function at a point p ∈ X. Intuitively,
it is a “shred” of a differentiable function at p. Germs are objects of the form
{(f, open U) : p ∈ U, f ∈ O(U)} modulo the relation that (f,U) ∼ (g, V) if there is
some open set W ⊂ U,V containing p where f|W = g|W (i.e., resU,W f = resV,W g).
In other words, two functions that are the same in a neighborhood of p (but may
differ elsewhere) have the same germ. We call this set of germs the stalk at p,
and denote it Op. Notice that the stalk is a ring: you can add two germs, and get
another germ: if you have a function f defined on U, and a function g defined on
V , then f + g is defined on U ∩ V . Moreover, f + g is well-defined: if f ′ has the
same germ as f, meaning that there is some open set W containing p on which
they agree, and g ′ has the same germ as g, meaning they agree on some open W ′

containing p, then f ′ + g ′ is the same function as f + g on U ∩ V ∩ W ∩ W ′.
Notice also that if p ∈ U, you get a map O(U) → Op. Experts may already see

that we are talking about germs as colimits.
We can see that Op is a local ring as follows. Consider those germs vanishing

at p, which we denote mp ⊂ Op. They certainly form an ideal: mp is closed under
addition, and when you multiply something vanishing at p by any function, the
result also vanishes at p. We check that this ideal is maximal by showing that the
quotient ring is a field:

(3.1.1.1) 0 $$ mp := ideal of germs vanishing at p $$ Op

f)→f(p)$$ R $$ 0

3.1.A. EXERCISE. Show that this is the only maximal ideal of Op. (Hint: show that
every element of Op \ m is invertible.)
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Note that we can interpret the value of a function at a point, or the value of
a germ at a point, as an element of the local ring modulo the maximal ideal. (We
will see that this doesn’t work for more general sheaves, but does work for things
behaving like sheaves of functions. This will be formalized in the notion of a locally
ringed space, which we will see, briefly, in §7.3.)

3.1.2. Aside. Notice that m/m2 is a module over Op/m ∼= R, i.e. it is a real vector
space. It turns out to be naturally (whatever that means) the cotangent space to
the manifold at p. This insight will prove handy later, when we define tangent and
cotangent spaces of schemes.

3.1.B. EXERCISE FOR THOSE WITH DIFFERENTIAL GEOMETRIC BACKGROUND. Prove
this.

3.2 Definition of sheaf and presheaf

We now formalize these notions, by defining presheaves and sheaves. Presheaves
are simpler to define, and notions such as kernel and cokernel are straightforward.
Sheaves are more complicated to define, and some notions such as cokernel re-
quire more thought. But sheaves are more useful because they are in some vague
sense more geometric; you can get information about a sheaf locally.

3.2.1. Definition of sheaf and presheaf on a topological space X.
To be concrete, we will define sheaves of sets. However, in the definition the

category Sets can be replaced by any category, and other important examples are
abelian groups Ab, k-vector spaces Veck, rings Rings, modules over a ring ModA,
and more. (You may have to think more when dealing with a category of objects
that aren’t “sets with additional structure”, but there aren’t any new complications.
In any case, this won’t be relevant for us, although people who want to do this
should start by solving Exercise 3.2.C.) Sheaves (and presheaves) are often written
in calligraphic font. The fact that F is a sheaf on a topological space X is often
written as

F

X

3.2.2. Definition: Presheaf. A presheaf F on a topological space X is the
following data.

• To each open set U ⊂ X, we have a set F (U) (e.g. the set of differentiable
functions in our motivating example). (Notational warning: Several notations are
in use, for various good reasons: F (U) = Γ(U,F ) = H0(U,F ). We will use them
all.) The elements of F (U) are called sections of F over U.

• For each inclusion U ↪→ V of open sets, we have a restriction map resV,U :
F (V) → F (U) (just as we did for differentiable functions).

The data is required to satisfy the following two conditions.
• The map resU,U is the identity: resU,U = idF(U).
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• If U ↪→ V ↪→ W are inclusions of open sets, then the restriction maps com-
mute, i.e.

F (W)
resW,V $$

resW,U 666
66

66
66

66
F (V)

resV,U5577
77
77
77
7

F (U)

commutes.

3.2.A. EXERCISE FOR CATEGORY-LOVERS: “A PRESHEAF IS THE SAME AS A CON-
TRAVARIANT FUNCTOR”. Given any topological space X, we have a “category
of open sets” (Example 2.2.9), where the objects are the open sets and the mor-
phisms are inclusions. Verify that the data of a presheaf is precisely the data of a
contravariant functor from the category of open sets of X to the category of sets.
(This interpretation is surprisingly useful.)

3.2.3. Definition: Stalks and germs. We define the stalk of a presheaf at a point
in two equivalent ways. One will be hands-on, and the other will be as a colimit.

3.2.4. Define the stalk of a presheaf F at a point p to be the set of germs of F at p,
denoted Fp, as in the example of §3.1.1. Germs correspond to sections over some
open set containing p, and two of these sections are considered the same if they
agree on some smaller open set. More precisely: the stalk is

{(f, open U) : p ∈ U, f ∈ F (U)}

modulo the relation that (f,U) ∼ (g, V) if there is some open set W ⊂ U,V where
p ∈ W and resU,W f = resV,W g.

3.2.5. A useful (and better) equivalent definition of a stalk is as a colimit of all
F (U) over all open sets U containing p:

Fp = lim−→ F (U).

The index category is a directed set (given any two such open sets, there is a third
such set contained in both), so these two definitions are the same by Exercise 2.4.C.
Hence we can define stalks for sheaves of sets, groups, rings, and other things for
which colimits exist for directed sets.

If p ∈ U, and f ∈ F (U), then the image of f in Fp is called the germ of f at p.
(Warning: unlike the example of §3.1.1, in general, the value of a section at a point
doesn’t make sense.)

3.2.6. Definition: Sheaf. A presheaf is a sheaf if it satisfies two more axioms.
Notice that these axioms use the additional information of when some open sets
cover another.

Identity axiom. If {Ui}i∈I is an open cover of U, and f1, f2 ∈ F (U), and
resU,Ui

f1 = resU,Ui
f2 for all i, then f1 = f2.

(A presheaf satisfying the identity axiom is called a separated presheaf, but
we will not use that notation in any essential way.)

Gluability axiom. If {Ui}i∈I is a open cover of U, then given fi ∈ F (Ui) for all
i, such that resUi,Ui∩Uj

fi = resUj,Ui∩Uj
fj for all i, j, then there is some f ∈ F (U)

such that resU,Ui
f = fi for all i.
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In mathematics, definitions often come paired: “at most one” and “at least
one”. In this case, identity means there is at most one way to glue, and gluability
means that there is at least one way to glue.

(For experts and scholars of the empty set only: an additional axiom some-
times included is that F(∅) is a one-element set, and in general, for a sheaf with
values in a category, F(∅) is required to be the final object in the category. This
actually follows from the above definitions, assuming that the empty product is
appropriately defined as the final object.)

Example. If U and V are disjoint, then F (U∪V) = F (U)×F (V). Here we use
the fact that F(∅) is the final object.

The stalk of a sheaf at a point is just its stalk as a presheaf — the same defini-
tion applies — and similarly for the germs of a section of a sheaf.

3.2.B. UNIMPORTANT EXERCISE: PRESHEAVES THAT ARE NOT SHEAVES. Show
that the following are presheaves on C (with the classical topology), but not sheaves:
(a) bounded functions, (b) holomorphic functions admitting a holomorphic square
root.

Both of the presheaves in the previous Exercise satisfy the identity axiom. A
“natural” example failing even the identity axiom is implicit in Remark 3.7.4.

We now make a couple of points intended only for category-lovers.

3.2.7. Interpretation in terms of the equalizer exact sequence. The two axioms for a
presheaf to be a sheaf can be interpreted as “exactness” of the “equalizer exact

sequence”: · $$ F (U) $$
∏

F (Ui)
$$$$
∏

F (Ui ∩ Uj). Identity is exact-

ness at F (U), and gluability is exactness at
∏

F (Ui). I won’t make this precise,
or even explain what the double right arrow means. (What is an exact sequence of
sets?!) But you may be able to figure it out from the context.

3.2.C. EXERCISE. The identity and gluability axioms may be interpreted as saying
that F (∪i∈IUi) is a certain limit. What is that limit?

We now give a number of examples of sheaves.

3.2.D. EXERCISE. (a) Verify that the examples of §3.1 are indeed sheaves (of differ-
entiable functions, or continuous functions, or smooth functions, or functions on
a manifold or Rn).
(b) Show that real-valued continuous functions on (open sets of) a topological
space X form a sheaf.

3.2.8. Important Example: Restriction of a sheaf. Suppose F is a sheaf on X, and U
is an open subset of X. Define the restriction of F to U, denoted F |U, to be the
collection F |U(V) = F (V) for all open subsets V ⊂ U. Clearly this is a sheaf on
U. (Unimportant but fun fact: §3.6 will tell us how to restrict sheaves to arbitrary
subsets.)
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3.2.9. Important Example: skyscraper sheaf. Suppose X is a topological space, with
p ∈ X, and S is a set. Let ip : p → X be the inclusion. Then ip,∗S defined by

ip,∗S(U) =

{
S if p ∈ U, and

{e} if p /∈ U

forms a sheaf. Here {e} is any one-element set. (Check this if it isn’t clear to you
— what are the restriction maps?) This is called a skyscraper sheaf, because the
informal picture of it looks like a skyscraper at p. There is an analogous definition
for sheaves of abelian groups, except ip,∗(S)(U) = {0} if p /∈ U; and for sheaves
with values in a category more generally, ip,∗S(U) should be a final object.

3.2.10. Constant presheaves and constant sheaves. Let X be a topological space, and
S a set. Define Spre(U) = S for all open sets U. You will readily verify that Spre

forms a presheaf (with restriction maps the identity). This is called the constant
presheaf associated to S. This isn’t (in general) a sheaf. (It may be distracting to
say why. Lovers of the empty set will insist that the sheaf axioms force the sections
over the empty set to be the final object in the category, i.e. a one-element set. But
even if we patch the definition by setting Spre(∅) = {e}, if S has more than one
element, and X is the two-point space with the discrete topology, i.e. where every
subset is open, you can check that Spre fails gluability.)

3.2.E. EXERCISE (CONSTANT SHEAVES). Now let F (U) be the maps to S that are
locally constant, i.e. for any point x in U, there is a neighborhood of x where the
function is constant. Show that this is a sheaf. (A better description is this: endow
S with the discrete topology, and let F (U) be the continuous maps U → S.) This
is called the constant sheaf (associated to S); do not confuse it with the constant
presheaf. We denote this sheaf S.

3.2.F. EXERCISE (“MORPHISMS GLUE”). Suppose Y is a topological space. Show
that “continuous maps to Y” form a sheaf of sets on X. More precisely, to each
open set U of X, we associate the set of continuous maps of U to Y. Show that this
forms a sheaf. (Exercise 3.2.D(b), with Y = R, and Exercise 3.2.E, with Y = S with
the discrete topology, are both special cases.)

3.2.G. EXERCISE. This is a fancier version of the previous exercise.
(a) (sheaf of sections of a map) Suppose we are given a continuous map f : Y → X.
Show that “sections of f” form a sheaf. More precisely, to each open set U of X,
associate the set of continuous maps s : U → Y such that f ◦ s = id|U. Show that
this forms a sheaf. (For those who have heard of vector bundles, these are a good
example.) This is motivation for the phrase “section of a sheaf”.
(b) (This exercise is for those who know what a topological group is. If you don’t
know what a topological group is, you might be able to guess.) Suppose that Y
is a topological group. Show that continuous maps to Y form a sheaf of groups.
(Example 3.2.D(b), with Y = R, is a special case.)

3.2.11. ! The space of sections (espace étalé) of a (pre)sheaf. Depending on your back-
ground, you may prefer the following perspective on sheaves, which we will not
discuss further. Suppose F is a presheaf (e.g. a sheaf) on a topological space X.
Construct a topological space Y along with a continuous map π : Y → X as follows:
as a set, Y is the disjoint union of all the stalks of X. This also describes a natural
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set map π : Y → X. We topologize Y as follows. Each section s of F over an open
set U determines a subset {(x, sx) : x ∈ U} of Y. The topology on Y is the weakest
topology such that these subsets are open. (These subsets form a base of the topol-
ogy. For each y ∈ Y, there is a neighborhood V of y and a neighborhood U of π(y)
such that π|V is a homeomorphism from V to U. Do you see why these facts are
true?) The topological space is could be thought of as the “space of sections” of
F (and in french is called the espace étalé of F ). The reader may wish to show
that (a) if F is a sheaf, then the sheaf of sections of Y → X (see the previous ex-
ercise 3.2.G(a)) can be naturally identified with the sheaf F itself. (b) Moreover,
if F is a presheaf, the sheaf of sections of Y → X is the sheafification of F , to be
defined in Definition 3.4.5 (see Remark 3.4.7). Example 3.2.E may be interpreted
as an example of this construction.

3.2.H. IMPORTANT EXERCISE: THE PUSHFORWARD SHEAF OR DIRECT IMAGE SHEAF.
Suppose f : X → Y is a continuous map, and F is a presheaf on X. Then define
f∗F by f∗F (V) = F (f−1(V)), where V is an open subset of Y. Show that f∗F is a
presheaf on Y, and is a sheaf if F is. This is called the direct image or pushforward
of F . More precisely, f∗F is called the pushforward of F by f.

As the notation suggests, the skyscraper sheaf (Example 3.2.9) can be inter-
preted as the pushforward of the constant sheaf S on a one-point space p, under
the inclusion morphism i : {p} → X.

Once we realize that sheaves form a category, we will see that the pushforward
is a functor from sheaves on X to sheaves on Y (Exercise 3.3.B).

3.2.I. EXERCISE (PUSHFORWARD INDUCES MAPS OF STALKS). Suppose f : X → Y is
a continuous map, and F is a sheaf of sets (or rings or A-modules) on X. If f(x) =
y, describe the natural morphism of stalks (f∗F )y → Fx. (You can use the explicit
definition of stalk using representatives, §3.2.4, or the universal property, §3.2.5. If
you prefer one way, you should try the other.) Once we define the category of
sheaves of sets on a topological space in §3.3.1, you will see that your construction
will make the following diagram commute:

SetsX
f∗ $$

%%

SetsY

%%
Sets $$ Sets

3.2.12. Important Example: Ringed spaces, and OX-modules. Suppose OX is a
sheaf of rings on a topological space X (i.e. a sheaf on X with values in the category
of Rings). Then (X,OX) is called a ringed space. The sheaf of rings is often denoted
by OX, pronounced “oh-X”. This sheaf is called the structure sheaf of the ringed
space. (Note: the stalk of OX at a point is written “OX,x”, because this looks less
hideous than “OXx”.) We now define the notion of an OX-module. The notion is
analogous to one we have seen before: just as we have modules over a ring, we
have OX-modules over the structure sheaf (of rings) OX.

There is only one possible definition that could go with this name. An OX-
module is a sheaf of abelian groups F with the following additional structure.
For each U, F (U) is an OX(U)-module. Furthermore, this structure should behave



66 Math 216: Foundations of Algebraic Geometry

well with respect to restriction maps: if U ⊂ V , then

(3.2.12.1)

OX(V) × F (V)
action $$

resV,U × resV,U

%%

F (V)

resV,U

%%
OX(U) × F (U)

action $$ F (U)

commutes. (You should convince yourself that I haven’t forgotten anything.)
Recall that the notion of A-module generalizes the notion of abelian group,

because an abelian group is the same thing as a Z-module. Similarly, the notion of
OX-module generalizes the notion of sheaf of abelian groups, because the latter is
the same thing as a Z-module, where Z is the constant sheaf associated to Z. Hence
when we are proving things about OX-modules, we are also proving things about
sheaves of abelian groups.

3.2.J. EXERCISE. If (X,OX) is a ringed space, and F is an OX-module, describe
how for each x ∈ X, Fx is an OX,x-module.

3.2.13. For those who know about vector bundles. The motivating example of OX-
modules is the sheaf of sections of a vector bundle. If (X,OX) is a differentiable
manifold (so OX is the sheaf of differentiable functions), and π : V → X is a vector
bundle over X, then the sheaf of differentiable sections φ : X → V is an OX-module.
Indeed, given a section s of π over an open subset U ⊂ X, and a function f on U,
we can multiply s by f to get a new section fs of π over U. Moreover, if V is a
smaller subset, then we could multiply f by s and then restrict to V , or we could
restrict both f and s to V and then multiply, and we would get the same answer.
That is precisely the commutativity of (3.2.12.1).

3.3 Morphisms of presheaves and sheaves

3.3.1. Whenever one defines a new mathematical object, category theory teaches to
try to understand maps between them. We now define morphisms of presheaves,
and similarly for sheaves. In other words, we will descibe the category of presheaves
(of sets, abelian groups, etc.) and the category of sheaves.

A morphism of presheaves of sets (or indeed of sheaves with values in any
category) on X, φ : F → G , is the data of maps φ(U) : F (U) → G (U) for all U
behaving well with respect to restriction: if U ↪→ V then

F (V)

resV,U

%%

φ(V) $$ G (V)

resV,U

%%
F (U)

φ(U) $$ G (U)

commutes. (Notice: the underlying space of both F and G is X.)
Morphisms of sheaves are defined identically: the morphisms from a sheaf F

to a sheaf G are precisely the morphisms from F to G as presheaves. (Translation:
The category of sheaves on X is a full subcategory of the category of presheaves on
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X.) If (X,OX) is a ringed space, then morphisms of OX-modules have the obvious
definition. (Can you write it down?)

An example of a morphism of sheaves is the map from the sheaf of differen-
tiable functions on R to the sheaf of continuous functions. This is a “forgetful
map”: we are forgetting that these functions are differentiable, and remembering
only that they are continuous.

We may as well set some notation: let SetsX, AbX, etc. denote the category of
sheaves of sets, abelian groups, etc. on a topological space X. Let ModOX

denote
the category of OX-modules on a ringed space (X,OX). Let Sets

pre
X , etc. denote the

category of presheaves of sets, etc. on X.

3.3.2. Aside for category-lovers. If you interpret a presheaf on X as a contravari-
ant functor (from the category of open sets), a morphism of presheaves on X is a
natural transformation of functors (§2.2.21).

3.3.A. EXERCISE: MORPHSMS OF (PRE)SHEAVES INDUCE MORPHISMS OF STALKS.
If φ : F → G is a morphism of presheaves on X, and x ∈ X, describe the induced
morphism of stalks φx : Fx → Gx. (Your proof will extend in obvious ways. For
example, if φ is a morphism of OX-modules, then φx is a map of OX,x-modules.)

3.3.B. EXERCISE. Suppose f : X → Y is a continuous map of topological spaces
(i.e. a morphism in the category of topological spaces). Show that pushforward
gives a functor SetsX → SetsY . Here Sets can be replaced by many other categories.
(Watch out for some possible confusion: a presheaf is a functor, and presheaves
form a category. It may be best to forget that presheaves are functors for now.)

3.3.C. IMPORTANT EXERCISE AND DEFINITION: “SHEAF Hom”. Suppose F and
G are two sheaves of sets on X. (In fact, it will suffice that F is a presheaf.) Let
Hom (F ,G ) be the collection of data

Hom (F ,G )(U) := Mor(F |U,G |U).

(Recall the notation F |U, the restriction of the sheaf to the open set U, Exam-
ple 3.2.8.) Show that this is a sheaf of sets on X. This is called “sheaf Hom ”. (Strictly
speaking, we should reserve Hom for when we are in additive category, so this
should possibly be called “sheaf Mor”. But the terminology “sheaf Hom” is too
established to uproot.) Show that if G is a sheaf of abelian groups, then Hom (F ,G )
is a sheaf of abelian groups. Implicit in this fact is that Hom(F ,G ) is an abelian
group. (This exercise is somewhat tedious, but in the end very rewarding.) The
same construction will “obviously” work for sheaves with values in any category.
Also, it will be clear from your construction that, like Hom, Hom is a contravariant
functor in its first argument and a covariant functor in its second argument.

Warning: Hom does not commute with taking stalks. More precisely: it is
not true that Hom (F ,G )p is isomorphic to Hom(Fp,Gp). (Can you think of a
counterexample? Does there at least exist a map from one of these to the other?)

We will use many variants of the definition of Hom . For example, if F and
G are sheaves of abelian groups on X, then Hom AbX

(F ,G ) is defined by taking
Hom AbX

(F ,G )(U) to be the maps as sheaves of abelian groups F |U → G |U. (Note
that Hom AbX

(F ,G ) has the structure of a sheaf of abelian groups in a natural way.)
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Similarly, if F and G are OX-modules, we define Hom ModOX
(F ,G ) in the analo-

gous way (and it is an OX-module). Obnoxiously, the subscripts AbX and ModOX

are always dropped (here and in the literature), so be careful which category you
are working in! We call Hom ModOX

(F ,OX) the dual of the OX-module F , and de-

noted it F∨.

3.3.D. UNIMPORTANT EXERCISE (REALITY CHECK).

(a) If F is a sheaf of sets on X, then show that Hom ({p},F ) ∼= F , where {p}

is the constant sheaf associated to the one element set {p}.
(b) If F is a sheaf of abelian groups on X, then show that Hom AbX

(Z,F ) ∼= F
(an isomorphism of sheaves of abelian groups).

(c) If F is an OX-module, then show that Hom ModOX
(OX,F ) ∼= F (an iso-

morphism of OX-modules).

A key idea in (b) and (c) is that 1 “generates” (in some sense) Z (in (b)) and OX (in
(c)).

3.3.3. Presheaves of abelian groups (and even “presheaf OX-modules”) form an
abelian category.

We can make module-like constructions using presheaves of abelian groups
on a topological space X. (In this section, all (pre)sheaves are of abelian groups.)
For example, we can clearly add maps of presheaves and get another map of
presheaves: if φ,ψ : F → G , then we define the map f + g by (φ + ψ)(V) =
φ(V) + ψ(V). (There is something small to check here: that the result is indeed a
map of presheaves.) In this way, presheaves of abelian groups form an additive
category (Definition 2.6.1). For exactly the same reasons, sheaves of abelian groups
also form an additive category.

If φ : F → G is a morphism of presheaves, define the presheaf kernel kerpre φ
by (kerpre φ)(U) = kerφ(U).

3.3.E. EXERCISE. Show that kerpre φ is a presheaf. (Hint: if U ↪→ V , define the
restriction map by chasing the following diagram:

0 $$ kerpre φ(V)

∃!

%%

$$ F (V)

resV,U

%%

$$ G (V)

resV,U

%%
0 $$ kerpre φ(U) $$ F (U) $$ G (U)

You should check that the restriction maps compose as desired.)

Define the presheaf cokernel cokerpre φ similarly. It is a presheaf by essentially
the same argument.

3.3.F. EXERCISE: THE COKERNEL DESERVES ITS NAME. Show that the presheaf cok-
ernel satisfies the universal property of cokernels (Definition 2.6.3) in the category
of presheaves.

Similarly, kerpre φ → F satisfies the universal property for kernels in the cate-
gory of presheaves.

It is not too tedious to verify that presheaves of abelian groups form an abelian
category, and the reader is free to do so. The key idea is that all abelian-categorical
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notions may be defined and verified “open set by open set”. We needn’t worry
about restriction maps — they “come along for the ride”. Hence we can define
terms such as subpresheaf, image presheaf, quotient presheaf, cokernel presheaf,
and they behave the way one expect. You construct kernels, quotients, cokernels,
and images open set by open set. Homological algebra (exact sequences and so
forth) works, and also “works open set by open set”. In particular:

3.3.G. EASY EXERCISE. Show (or observe) that for a topological space X with open
set U, F (→ F (U) gives a functor from presheaves of abelian groups on X, Ab

pre
X ,

to abelian groups, Ab. Then show that this functor is exact.

3.3.H. EXERCISE. Show that 0 → F1 → F2 → · · · → Fn → 0 is exact if and only
if 0 → F1(U) → F2(U) → · · · → Fn(U) → 0 is exact for all U.

The above discussion essentially carries over without change to presheaves
with values in any abelian category. (Think this through if you wish.)

However, we are interested in more geometric objects, sheaves, where things
can be understood in terms of their local behavior, thanks to the identity and glu-
ing axioms. We will soon see that sheaves of abelian groups also form an abelian
category, but a complication will arise that will force the notion of sheafification on
us. Sheafification will be the answer to many of our prayers. We just haven’t yet
realized what we should be praying for.

To begin with, sheaves AbX may be easily seen to form an additive category
(essentially because presheaves Ab

pre
X already do, and sheaves form a full subcate-

gory).
Kernels work just as with presheaves:

3.3.I. IMPORTANT EXERCISE. Suppose φ : F → G is a morphism of sheaves.
Show that the presheaf kernel kerpre φ is in fact a sheaf. Show that it satisfies
the universal property of kernels (Definition 2.6.3). (Hint: the second question
follows immediately from the fact that kerpre φ satisfies the universal property in
the category of presheaves.)

Thus if φ is a morphism of sheaves, we define

kerφ := kerpre φ.

The problem arises with the cokernel.

3.3.J. IMPORTANT EXERCISE. Let X be C with the classical topology, let Z be the
constant sheaf on X associated to Z, OX the sheaf of holomorphic functions, and
F the presheaf of functions admitting a holomorphic logarithm. Describe an exact
sequence of presheaves on X:

0 $$ Z $$ OX
$$ F $$ 0

where Z → OX is the natural inclusion and OX → F is given by f (→ exp 2πif. (Be
sure to verify exactness.) Show that F is not a sheaf. (Hint: F does not satisfy
the gluability axiom. The problem is that there are functions that don’t have a
logarithm but locally have a logarithm.) This will come up again in Example 3.4.9.
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We will have to put our hopes for understanding cokernels of sheaves on hold
for a while. We will first learn to understand sheaves using stalks.

3.4 Properties determined at the level of stalks, and sheafification

3.4.1. Properties determined by stalks. In this section, we will see that lots
of facts about sheaves can be checked “at the level of stalks”. This isn’t true for
presheaves, and reflects the local nature of sheaves. We will see that sections and
morphisms are determined “by their stalks”, and the property of a morphism be-
ing an isomorphism may be checked at stalks. (The last one is the trickiest.)

3.4.A. IMPORTANT EXERCISE (sections are determined by germs). Prove that a
section of a sheaf of sets is determined by its germs, i.e. the natural map

(3.4.1.1) F (U) →
∏

p∈U

Fp

is injective. Hint 1: you won’t use the gluability axiom, so this is true for separated
presheaves. Hint 2: it is false for presheaves in general, see Exercise 3.4.F, so you
will use the identity axiom. (Your proof will also apply to sheaves of groups, rings,
etc. — informally speaking, to categories of “sets with additional structure”. The
same is true of many exercises in this section.)

This exercise suggests an important question: which elements of the right side
of (3.4.1.1) are in the image of the left side?

3.4.2. Important definition. We say that an element
∏

p∈U sp of the right side∏
p∈U Fp of (3.4.1.1) consists of compatible germs if for all p ∈ U, there is some

representative (Up, s ′
p ∈ F (Up)) for sp (where p ∈ Up ⊂ U) such that the germ of

s ′
p at all y ∈ Up is sy.You will have to think about this a little. Clearly any section

s of F over U gives a choice of compatible germs for U — take (Up, s ′
p) = (U, s).

3.4.B. IMPORTANT EXERCISE. Prove that any choice of compatible germs for a
sheaf of sets F over U is the image of a section of F over U. (Hint: you will use
gluability.)

We have thus completely described the image of (3.4.1.1), in a way that we
will find useful.

3.4.3. Remark. This perspective is part of the motivation for the agricultural termi-
nology “sheaf”: it is (the data of) a bunch of stalks, bundled together appropriately.

Now we throw morphisms into the mix.

3.4.C. EXERCISE. Show a morphism of (pre)sheaves (of sets, or rings, or abelian
groups, or OX-modules) induces a morphism of stalks. More precisely, if φ : F →
G is a morphism of (pre)sheaves on X, and p ∈ X, describe a natural map φp :
Fp → Gp. (You may wish to state this in the language of functors.)
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3.4.D. EXERCISE (morphisms are determined by stalks). If φ1 and φ2 are mor-
phisms from a presheaf of sets F to a sheaf of sets G that induce the same maps
on each stalk, show that φ1 = φ2. Hint: consider the following diagram.

(3.4.3.1) F (U) $$

%%

G (U)
#"

%%∏
p∈U Fp

$$
∏

p∈U Gp

3.4.E. TRICKY EXERCISE (isomorphisms are determined by stalks). Show that
a morphism of sheaves of sets is an isomorphism if and only if it induces an iso-
morphism of all stalks. Hint: Use (3.4.3.1). Injectivity of maps of stalks uses the
previous exercise 3.4.D. Once you have injectivity, show surjectivity, perhaps us-
ing Exercise 3.4.B, or gluability in some other way; this is more subtle.

3.4.F. EXERCISE. (a) Show that Exercise 3.4.A is false for general presheaves.
(b) Show that Exercise 3.4.D is false for general presheaves.
(c) Show that Exercise 3.4.E is false for general presheaves.
(General hint for finding counterexamples of this sort: consider a 2-point space
with the discrete topology.)

3.4.4. Sheafification.
Every sheaf is a presheaf (and indeed by definition sheaves on X form a full

subcategory of the category of presheaves on X). Just as groupification (§2.5.3)
gives a group that best approximates a semigroup, sheafification gives the sheaf
that best approximates a presheaf, with an analogous universal property. (One
possible example to keep in mind is the sheafification of the presheaf of holomor-
phic functions admitting a square root on C with the classical topology.)

3.4.5. Definition. If F is a presheaf on X, then a morphism of presheaves sh :
F → F sh on X is a sheafification of F if F sh is a sheaf, and for any sheaf G ,
and any presheaf morphism g : F → G , there exists a unique morphism of sheaves
f : F sh → G making the diagram

F
sh $$

g
77*

**
**

**
**

F sh

f

%%
G

commute.

3.4.G. EXERCISE. Show that sheafification is unique up to unique isomorphism.

Show that if F is a sheaf, then the sheafification is F
id $$ F . (This should be

second nature by now.)

3.4.6. Construction. We next show that any presheaf of sets (or groups, rings, etc.)
has a sheafification. Suppose F is a presheaf. Define F sh by defining F sh(U) as
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the set of compatible germs of the presheaf F over U. Explicitly:

F sh(U) := {(fx ∈ Fx)x∈U : for all x ∈ U, there exists x ∈ V ⊂ U and s ∈ F (V)

with sy = fy for all y ∈ V}.

(Those who want to worry about the empty set are welcome to.)

3.4.H. EASY EXERCISE. Show that F sh (using the tautological restriction maps)
forms a sheaf.

3.4.I. EASY EXERCISE. Describe a natural map of presheaves sh : F → F sh.

3.4.J. EXERCISE. Show that the map sh satisfies the universal property of sheafifi-
cation (Definition 3.4.5). (This is easier than you might fear.)

3.4.K. EASY EXERCISE. Use the universal property to show that for any morphism
of presheaves φ : F → G , we get a natural induced morphism of sheaves φsh :
F sh → G sh. Show that sheafification is a functor from presheaves on X to sheaves
on X.

3.4.L. USEFUL EXERCISE, NOT JUST FOR CATEGORY-LOVERS. Show that the sheafi-
fication functor is left-adjoint to the forgetful functor from sheaves on X to presheaves
on X. This is not difficult — it is largely a restatement of the universal property.
But it lets you use results from §2.6.11, and can “explain” why you don’t need to
sheafify when taking kernel (why the presheaf kernel is already the sheaf kernel),
and why you need to sheafify when taking cokernel and (soon, in Exercise 3.5.I)
⊗.

3.4.M. EXERCISE. Show F → F sh induces an isomorphism of stalks. (Possible
hint: Use the concrete description of the stalks. Another possibility once you read
Remark 3.6.3: judicious use of adjoints.)

As a reality check, you may want to verify that “the sheafification of a constant
presheaf is the corresponding constant sheaf” (see §3.2.10): if X is a topological
space and S is a set, then (Spre)sh may be naturally identified with S.

3.4.7. ! Remark. The total space of sections (espace étalé) construction (§3.2.11)
yields a different-sounding description of sheafification which may be preferred
by some readers. The main idea is identical. This is essentially the same construc-
tion as the one given here. Another construction is described in [EH].

3.4.8. Subsheaves and quotient sheaves.

3.4.N. EXERCISE. Suppose φ : F → G is a morphism of sheaves of sets on a
topological space X. Show that the following are equivalent.

(a) φ is a monomorphism in the category of sheaves.
(b) φ is injective on the level of stalks: φx : Fx → Gx is injective for all x ∈ X.
(c) φ is injective on the level of open sets: φ(U) : F (U) → G (U) is injective

for all open U ⊂ X.

(Possible hints: for (b) implies (a), recall that morphisms are determined by stalks,
Exercise 3.4.D. For (a) implies (c), use the “indicator sheaf” with one section over
every open set contained in U, and no section over any other open set.)
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If these conditions hold, we say that F is a subsheaf of G (where the “inclu-
sion” φ is sometimes left implicit).

(You may later wish to extend your solution to Exercise 3.4.N to show that for
any morphism of presheaves, if all maps of sections are injective, then all stalk maps
are injective. And furthermore, if φ : F → G is a morphism from a separated
presheaf to an arbitrary presheaf, then injectivity on the level of stalks implies
that φ is a monomorphism in the category of presheaves. This is useful in some
approaches to Exercise 3.5.C.)

3.4.O. EXERCISE. Continuing the notation of the previous exercise, show that the
following are equivalent.

(a) φ is an epimorphism in the category of sheaves.
(b) φ is surjective on the level of stalks: φx : Fx → Gx is surjective for all

x ∈ X.

If these conditions hold, we say that G is a quotient sheaf of F .

Thus monomorphisms and epimorphisms — subsheafiness and quotient sheafiness —
can be checked at the level of stalks.

Both exercises generalize readily to sheaves with values in any reasonable cat-
egory, where “injective” is replaced by “monomorphism” and “surjective” is re-
placed by “epimorphism”.

Notice that there was no part (c) to Exercise 3.4.O, and Example 3.4.9 shows
why. (But there is a version of (c) that implies (a) and (b): surjectivity on all open
sets in the base of a topology implies surjectivity of the map of sheaves, Exer-
cise 3.7.E.)

3.4.9. Example (cf. Exercise 3.3.J). Let X = C with the classical topology, and define
OX to be the sheaf of holomorphic functions, and O∗

X to be the sheaf of invertible
(nowhere zero) holomorphic functions. This is a sheaf of abelian groups under
multiplication. We have maps of sheaves

(3.4.9.1) 0 $$ Z
×2πi $$ OX

exp
$$ O∗

X
$$ 1

where Z is the constant sheaf associated to Z. (You can figure out what the sheaves
0 and 1 mean; they are isomorphic, and are written in this way for reasons that may
be clear.) We will soon interpret this as an exact sequence of sheaves of abelian
groups (the exponential exact sequence), although we don’t yet have the language to
do so.

3.4.P. ENLIGHTENING EXERCISE. Show that OX

exp
$$ O∗

X describes O∗
X as a

quotient sheaf of OX. Show that it is not surjective on all open sets.

This is a great example to get a sense of what “surjectivity” means for sheaves:
nowhere vanishing holomorphic functions have logarithms locally, but they need
not globally.

3.5 Sheaves of abelian groups, and OX-modules, form abelian
categories
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We are now ready to see that sheaves of abelian groups, and their cousins, OX-
modules, form abelian categories. In other words, we may treat them similarly to
vector spaces, and modules over a ring. In the process of doing this, we will see
that this is much stronger than an analogy; kernels, cokernels, exactness, and so
forth can be understood at the level of germs (which are just abelian groups), and
the compatibility of the germs will come for free.

The category of sheaves of abelian groups is clearly an additive category (Def-
inition 2.6.1). In order to show that it is an abelian category, we must show that
any morphism φ : F → G has a kernel and a cokernel. We have already seen that
φ has a kernel (Exercise 3.3.I): the presheaf kernel is a sheaf, and is a kernel in the
category of sheaves.

3.5.A. EXERCISE. Show that the stalk of the kernel is the kernel of the stalks: there
is a natural isomorphism

(ker(F → G ))x
∼= ker(Fx → Gx).

We next address the issue of the cokernel. Now φ : F → G has a cokernel in
the category of presheaves; call it H pre (where the superscript is meant to remind

us that this is a presheaf). Let H pre sh $$ H be its sheafification. Recall that the
cokernel is defined using a universal property: it is the colimit of the diagram

F

%%

φ $$ G

0

in the category of presheaves. We claim that H is the cokernel of φ in the category
of sheaves, and show this by proving the universal property. Given any sheaf E
and a commutative diagram

F

%%

φ $$ G

%%
0 $$ E

We construct

F

%%

φ $$ G

88

%%
0

//,,,
,,,

,,,
,,,

,,,
,,,

,,,
,,,

,, $$ H pre sh $$ H

E

We show that there is a unique morphism H → E making the diagram commute.
As H pre is the cokernel in the category of presheaves, there is a unique morphism
of presheaves H pre → E making the diagram commute. But then by the universal
property of sheafification (Definition 3.4.5), there is a unique morphism of sheaves
H → E making the diagram commute.
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3.5.B. EXERCISE. Show that the stalk of the cokernel is naturally isomorphic to
the cokernel of the stalk.

We have now defined the notions of kernel and cokernel, and verified that they
may be checked at the level of stalks. We have also verified that the properties of
a morphism being a monomorphism or epimorphism are also determined at the
level of stalks (Exercises 3.4.N and 3.4.O). Hence sheaves of abelian groups on X
form an abelian category.

We see more: all structures coming from the abelian nature of this category
may be checked at the level of stalks. For example:

3.5.C. EXERCISE. Suppose φ : F → G is a morphism of sheaves of abelian groups.
Show that the image sheaf imφ is the sheafification of the image presheaf. (You
must use the definition of image in an abelian category. In fact, this gives the
accepted definition of image sheaf for a morphism of sheaves of sets.) Show that
the stalk of the image is the image of the stalk.

As a consequence, exactness of a sequence of sheaves may be checked at the
level of stalks. In particular:

3.5.D. IMPORTANT EXERCISE. Show that taking the stalk of a sheaf of abelian
groups is an exact functor. More precisely, if X is a topological space and p ∈ X is
a point, show that taking the stalk at p defines an exact functor AbX → Ab.

3.5.E. EXERCISE: LEFT-EXACTNESS OF THE FUNCTOR OF “SECTIONS OVER U”.
Suppose U ⊂ X is an open set, and 0 → F → G → H is an exact sequence of
sheaves of abelian groups. Show that

0 → F (U) → G (U) → H (U)

is exact. (You should do this “by hand”, even if you realize there is a very fast
proof using the left-exactness of the “forgetful” right-adjoint to the sheafification
functor.) Show that the section functor need not be exact: show that if 0 → F →
G → H → 0 is an exact sequence of sheaves of abelian groups, then

0 → F (U) → G (U) → H (U) → 0

need not be exact. (Hint: the exponential exact sequence (3.4.9.1).)

3.5.F. EXERCISE: LEFT-EXACTNESS OF PUSHFORWARD. Suppose 0 → F → G →
H is an exact sequence of sheaves of abelian groups on X. If f : X → Y is a
continuous map, show that

0 → f∗F → f∗G → f∗H

is exact. (The previous exercise, dealing with the left-exactness of the global sec-
tion functor can be interpreted as a special case of this, in the case where Y is a
point.)

3.5.G. EXERCISE: LEFT-EXACTNESS OF Hom . Suppose Suppose 0 → F → G → H
is an exact sequence of sheaves of abelian groups on X, and E is a sheaf of abelian
groups. Show that

0 → Hom (E ,F ) → Hom (G ,F ) → Hom (H ,F )
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and

(3.5.0.2) 0 → Hom (H ,E ) → Hom (G ,E ) → Hom (F ,E )

are both exact, where the maps come from the fact that Hom is a functor (covariant
or contravariant) in both its arguments.

3.5.H. EXERCISE. Show that if (X,OX) is a ringed space, then OX-modules form
an abelian category. (There is a fair bit to check, but there aren’t many new ideas.)

3.5.1. Many facts about sheaves of abelian groups carry over to OX-modules with-
out change. For example, Hom OX

is a left-exact contravariant functor in its first
argument and a left-exact covariant functor in its second argument.

We end with a useful construction using some of the ideas in this section.

3.5.I. IMPORTANT EXERCISE: TENSOR PRODUCTS OF OX-MODULES. (a) Suppose
OX is a sheaf of rings on X. Define (categorically) what we should mean by tensor
product of two OX-modules. Give an explicit construction, and show that it satis-
fies your categorical definition. Hint: take the “presheaf tensor product” — which
needs to be defined — and sheafify. Note: ⊗OX

is often written ⊗ when the sub-
script is clear from the context. (An example showing sheafification is necessary
will arise in Example 15.1.1.) )
(b) Show that the tensor product of stalks is the stalk of tensor product. (If you can
show this, you may be able to make sense of the phrase “colimits commute with
tensor products”.)

3.5.2. Conclusion. Just as presheaves are abelian categories because all abelian-
categorical notions make sense open set by open set, sheaves are abelian categories
because all abelian-categorical notions make sense stalk by stalk.

3.6 The inverse image sheaf

We next describe a notion that is fundamental, but rather intricate. We will
not need it for some time, so this may be best left for a second reading. Suppose
we have a continuous map f : X → Y. If F is a sheaf on X, we have defined
the pushforward or direct image sheaf f∗F , which is a sheaf on Y. There is also a
notion of inverse image sheaf. (We will not call it the pullback sheaf, reserving that
name for a later construction for quasicoherent sheaves, §17.3.) This is a covariant
functor f−1 from sheaves on Y to sheaves on X. If the sheaves on Y have some
additional structure (e.g. group or ring), then this structure is respected by f−1.

3.6.1. Definition by adjoint: elegant but abstract. We define f−1 as the left-adjoint to
f∗.

This isn’t really a definition; we need a construction to show that the ad-
joint exists. Note that we then get canonical maps f−1f∗F → F (associated to
the identity in MorY(f∗F , f∗F )) and G → f∗f

−1G (associated to the identity in
MorX(f−1G , f−1G )).
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3.6.2. Construction: concrete but ugly. Define the temporary notation f−1G pre(U) =
lim−→V⊃f(U)

G (V). (Recall the explicit description of colimit: sections are sections on

open sets containing f(U), with an equivalence relation. Note that f(U) won’t be
an open set in general.)

3.6.A. EXERCISE. Show that this defines a presheaf on X.

Now define the inverse image of G by f−1G := (f−1G pre)sh. Note that f−1

is a functor from sheaves on Y to sheaves on X. The next exercise shows that this
satisfies the universal property. But you may wish to try the later exercises first,
and come back to Exercise 3.6.B later. (For the later exercises, try to give two proofs,
one using the universal property, and the other using the explicit description.)

3.6.B. IMPORTANT TRICKY EXERCISE. If f : X → Y is a continuous map, and F is
a sheaf on X and G is a sheaf on Y, describe a bijection

MorX(f−1G ,F ) ↔ MorY(G , f∗F ).

Observe that your bijection is “natural” in the sense of the definition of adjoints
(i.e. functorial in both F and G ). Thus Construction 3.6.2 satisfies the universal
property of Definition 3.6.1. Possible hint: Show that both sides agree with the
following third construction, which we denote MorXY(G ,F ). A collection of maps
φUV : G (V) → F (U) (as U runs through all open sets of X, and V runs through all
open sets of Y containing f(U)) is said to be compatible if for all open U ′ ⊂ U ⊂ X
and all open V ′ ⊂ V ⊂ Y with f(U) ⊂ V , f(U ′) ⊂ V ′, the diagram

G (V)
φVU $$

resV,V ′

%%

F (U)

resU,U ′

%%
G (V ′)

φV ′U ′$$ F (U ′)

commutes. Define MorXY(G ,F ) to be the set of all compatible collections φ =
{φUV }.

3.6.3. Remark. As a special case, if X is a point p ∈ Y, we see that f−1G is the stalk
Gp of G , and maps from the stalk Gp to a set S are the same as maps of sheaves on Y
from G to the skyscraper sheaf with set S supported at p. You may prefer to prove
this special case by hand directly before solving Exercise 3.6.B, as it is enlightening.
(It can also be useful — can you use it to solve Exercises 3.4.M and 3.4.O?)

3.6.C. EXERCISE. Show that the stalks of f−1G are the same as the stalks of G .
More precisely, if f(p) = q, describe a natural isomorphism Gq

∼= (f−1G )p. (Possi-
ble hint: use the concrete description of the stalk, as a colimit. Recall that stalks are
preserved by sheafification, Exercise 3.4.M. Alternatively, use adjointness.) This,
along with the notion of compatible stalks, may give you a way of thinking about
inverse image sheaves.

3.6.D. EXERCISE (EASY BUT USEFUL). If U is an open subset of Y, i : U → Y is the
inclusion, and G is a sheaf on Y, show that i−1G is naturally isomorphic to G |U.
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3.6.E. EXERCISE. Show that f−1 is an exact functor from sheaves of abelian groups
on Y to sheaves of abelian groups on X (cf. Exercise 3.5.D). (Hint: exactness can be
checked on stalks, and by Exercise 3.6.C, the stalks are the same.) Essentially the
same argument will show that f−1 is an exact functor from OY-modules (on Y) to
f−1OY-modules (on X), but don’t bother writing that down. (Remark for experts:
f−1 is a left-adjoint, hence right-exact by abstract nonsense, as discussed in §2.6.11.
Left-exactness holds because colimits over directed systems are exact.)

3.6.F. EXERCISE. (a) Suppose Z ⊂ Y is a closed subset, and i : Z ↪→ Y is the
inclusion. If F is a sheaf on Z, then show that the stalk (i∗F )y is a one element-
set if y /∈ Z, and Fy if y ∈ Z.
(b) Definition: Define the support of a sheaf G of sets, denoted Supp G , as the locus
where the stalks are not the one-element set:

Supp G := {x ∈ X : |Gx| != 1}.

(More generally, if the sheaf has value in some category, the support consists of
points where the stalk is not the final object. For sheaves of abelian groups, the
support consists of points with non-zero stalks.) Suppose Supp G ⊂ Z where
Z is closed. Show that the natural map G → i∗i

−1G is an isomorphism. Thus a
sheaf supported on a closed subset can be considered a sheaf on that closed subset.
(“Support” is a useful notion, and will arise again in §14.7.C.)

3.6.G. EXERCISE (EXTENSION BY ZERO f! : AN OCCASIONAL left-adjoint TO f−1).
In addition to always being a left-adjoint, f−1 can sometimes be a right-adjoint.
Suppose i : U ↪→ Y is an inclusion of an open set into Y. We denote the re-
striction of the sheaf OY to U by OU. (We will later call i : (U,OU) → (Y,OY)
an open immersion of ringed spaces in Definition 7.2.1.) Define extension by zero
i! : ModOU

→ ModOY
as follows. Suppose F is an OU-module. For open W ⊂ Y,

define (ipre
! F )(W) = F (W) if W ⊂ U, and 0 otherwise (with the obvious restric-

tion maps). This is clearly a presheaf OY-module. Define i! as (ipre
! )sh. Note that

i!F is an OY-module, and that this defines a functor. (The symbol “!” is read as
“shriek”. I have no idea why, but I suspect it is because people often shriek when
they see it. Thus “i!” is read as “i-lower-shriek”.)
(a) Show that ipre

! is not always a sheaf. (We won’t need this, but it may give some
insight into why this is called “extension by zero”. Possible source for an example:
continuous functions on R.)
(b) For y ∈ Y, show that (i!F )y = Fy if y ∈ U, and 0 otherwise.
(c) Show that i! is an exact functor.
(d) If G is an OY-module, describe an inclusion i!i

−1G ↪→ G . (Interesting remark
we won’t need: Let Z be the complement of U, and j : Z → Y the natural inclusion.
Then there is a short exact sequence 0 → i!i

−1G → G → j∗j
−1G → 0. This is best

checked by describing the maps, then checking exactness at stalks.)
(e) Show that (i!, i

−1) is an adjoint pair, so there is a natural bijection HomOY
(i!F ,G ) ↔

HomOU
(F ,G |U) for any OX-module F and OY-module G . (In particular, the sec-

tions of G over U can be identified with HomOY
(i!OU,G ).)

3.7 Recovering sheaves from a “sheaf on a base”
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Sheaves are natural things to want to think about, but hard to get our hands on.
We like the identity and gluability axioms, but they make proving things trickier
than for presheaves. We have discussed how we can understand sheaves using
stalks (using “compatible germs”). We now introduce a second way of getting a
hold of sheaves, by introducing the notion of a sheaf on a base. Warning: this way
of understanding an entire sheaf from limited information is confusing. It may
help to keep sight of the central insight that this partial information is enough
to understand germs, and the notion of when they are compatible (with nearby
germs).

First, we define the notion of a base of a topology. Suppose we have a topo-
logical space X, i.e. we know which subsets Ui of X are open. Then a base of a
topology is a subcollection of the open sets {Bj} ⊂ {Ui}, such that each Ui is a
union of the Bj. Here is one example that you have seen early in your mathemat-
ical life. Suppose X = Rn. Then the way the usual topology is often first defined
is by defining open balls Br(x) = {y ∈ Rn : |y − x| < r}, and declaring that any
union of open balls is open. So the balls form a base of the classical topology — we
say they generate the classical topology. As an application of how we use them, to
check continuity of some map f : X → Rn, you need only think about the pullback
of balls on Rn — part of the traditional δ-ε definition of continuity.

Now suppose we have a sheaf F on a topological space X, and a base {Bi}
of open sets on X. Then consider the information ({F (Bi)}, {resBi,Bj

: F (Bi) →
F (Bj)}), which is a subset of the information contained in the sheaf — we are only
paying attention to the information involving elements of the base, not all open
sets.

We can recover the entire sheaf from this information. This is because we can
determine the stalks from this information, and we can determine when germs are
compatible.

3.7.A. EXERCISE. Make this precise. How can you recover a sheaf F from this
partial information?

This suggests a notion, called a sheaf on a base. A sheaf of sets (or abelian
groups, rings, . . . ) on a base {Bi} is the following. For each Bi in the base, we have
a set F(Bi). If Bi ⊂ Bj, we have maps resBj,Bi

: F(Bj) → F(Bi), with resBi,Bi
=

idF(Bi). (Things called B are always assumed to be in the base.) If Bi ⊂ Bj ⊂ Bk,
then resBk,Bi

= resBj,Bi
◦ resBk,Bj

. So far we have defined a presheaf on a base
{Bi}.

We also require the base identity axiom: If B = ∪Bi, then if f, g ∈ F(B) are
such that resB,Bi

f = resB,Bi
g for all i, then f = g.

We require the base gluability axiom too: If B = ∪Bi, and we have fi ∈
F(Bi) such that fi agrees with fj on any basic open set contained in Bi ∩ Bj (i.e.
resBi,Bk

fi = resBj,Bk
fj for all Bk ⊂ Bi ∩ Bj) then there exists f ∈ F(B) such that

resB,Bi
f = fi for all i.

3.7.1. Theorem. — Suppose {Bi} is a base on X, and F is a sheaf of sets on this base.
Then there is a sheaf F extending F (with isomorphisms F (Bi) ∼= F(Bi) agreeing with
the restriction maps). This sheaf F is unique up to unique isomorphism

Proof. We will define F as the sheaf of compatible germs of F.
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Define the stalk of a base presheaf F at p ∈ X by

Fp = lim−→ F(Bi)

where the colimit is over all Bi (in the base) containing p.
We will say a family of germs in an open set U is compatible near p if there is a

section s of F over some Bi containing p such that the germs over Bi are precisely
the germs of s. More formally, define

F (U) := {(fp ∈ Fp)p∈U : for all p ∈ U, there exists B with p ⊂ B ⊂ U, s ∈ F(B),

with sq = fq for all q ∈ B}

where each B is in our base.
This is a sheaf (for the same reasons as the sheaf of compatible germs was

earlier, cf. Exercise 3.4.H).
I next claim that if B is in our base, the natural map F(B) → F (B) is an isomor-

phism.

3.7.B. TRICKY EXERCISE. Verify that F(B) → F (B) is an isomorphism, likely by
describing the inverse map F (B) → F(B), and verifying that it is indeed inverse.
Possible hint: elements of F (B) are determined by stalks, as are elements of F(B).

It will be clear from your solution to the Tricky Exercise 3.7.B that the restric-
tion maps for F are the same as the restriction maps of F (for elements of the
base). !

Theorem 3.7.1 shows that sheaves on X can be recovered from their “restriction
to a base”. It is clear from the argument (and in particular the solution to the Tricky
Exercise 3.7.B) that if F is a sheaf and F is the corresponding sheaf on the base B,
then for any x, Fx is naturally isomorphic to Fx.

Theorem 3.7.1 is a statement about objects in a category, so we should hope for
a similar statement about morphisms.

3.7.C. IMPORTANT EXERCISE: MORPHISMS OF SHEAVES CORRESPOND TO MOR-
PHISMS OF SHEAVES ON A BASE. Suppose {Bi} is a base for the topology of X.
A morphism F → G on sheaves on the base is a collection of maps F(Bk) → G(Bk)
such that the diagram

F(Bi) $$

resBi,Bj

%%

G(Bi)

resBi,Bj

%%
F(Bj) $$ G(Bj)

commutes for all Bj ↪→ Bi.
(a) Verify that a morphism of sheaves is determined by the induced morphism of
sheaves on the base
(b) Show that a morphism of sheaves on the base gives a morphism of the induced
sheaves. (Possible hint: compatible stalks.)

3.7.2. Remark. The above constructions and arguments describe an equivalence of
categories (§2.2.21) between sheaves on X and sheaves on a given base of X. There
is no new content to this statement, but you may wish to think through what it
means. What are the functors in each direction? Why aren’t their compositions
the identity?
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3.7.3. Remark. It will be useful to extend these notions to OX-modules (see for ex-
ample Exercise 14.3.C). You will readily be able to verify that there is a correspon-
dence (really, equivalence of categories) between OX-modules and OX-modules
on a base. Rather than working out the details, you should just informally think
through the main points: what is an “OX-module on a base”? Given an OX-module
on a base, why is the corresponding sheaf naturally an OX-module? Later, if you
are forced at gunpoint to fill in details, you will be able to.

3.7.D. IMPORTANT EXERCISE. Suppose X = ∪Ui is an open cover of X, and we
have sheaves Fi on Ui along with isomorphisms φij : Fi|Ui∩Uj

→ Fj|Ui∩Uj
(with

φii the identity) that agree on triple overlaps, i.e. φjk ◦φij = φik on Ui ∩ Uj ∩ Uk

(this is called the cocycle condition, for reasons we ignore). Show that these
sheaves can be glued together into a sheaf F on X (unique up to unique isomor-
phism), such that Fi

∼= F |Ui
, and the isomorphisms over Ui ∩ Uj are the obvious

ones. (Thus we can “glue sheaves together”, using limited patching information.)
Warning: we are not assuming this is a finite cover, so you cannot use induction.
For this reason this exercise can be perplexing. (You can use the ideas of this sec-
tion to solve this problem, but you don’t necessarily need to. Hint: As the base,
take those open sets contained in some Ui. Small observation: the hypothesis on
φii is extraneous, as it follows from the cocycle condition.)

3.7.4. Remark for experts. Exercise 3.7.D almost says that the “set” of sheaves forms
a sheaf itself, but not quite. Making this precise leads one to the notion of a stack.

3.7.E. UNIMPORTANT EXERCISE. Suppose a morphism of sheaves F → G on a
base Bi is surjective for all Bi (i.e. F(Bi) → G(Bi) is surjective for all i). Show
that the morphism of sheaves (not on the base) is surjective. The converse is not
true, unlike the case for injectivity. This gives a useful criterion for surjectivity: a
morphism of sheaves is surjective if it is surjective for sections on a base. You may
enjoy trying this out with Example 3.4.9 (dealing with holomorphic functions in
the classical topology on X = C), showing that the exponential map exp : OX →
O∗

X is surjective, using the base of contractible open sets.

3.7.5. Observation. In the proof of Theorem 3.7.1, we need even less information
than given in the hypotheses. What we are really using is that the opens in the
base, and their inclusions, form a filtered set. You will appreciate this observation
much later, in the proof of Theorem 14.3.2.
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CHAPTER 4

Toward affine schemes: the underlying set, and
topological space

The very idea of scheme is of infantile simplicity — so simple, so humble, that no one
before me thought of stooping so low. So childish, in short, that for years, despite all the

evidence, for many of my erudite colleagues, it was really “not serious”! — Grothendieck

4.1 Toward schemes

We are now ready to consider the notion of a scheme, which is the type of geometric
space central to algebraic geometry. We should first think through what we mean
by “geometric space”. You have likely seen the notion of a manifold, and we wish
to abstract this notion so that it can be generalized to other settings, notably so that
we can deal with non-smooth and arithmetic objects.

The key insight behind this generalization is the following: we can understand
a geometric space (such as a manifold) well by understanding the functions on
this space. More precisely, we will understand it through the sheaf of functions
on the space. If we are interested in differentiable manifolds, we will consider
differentiable functions; if we are interested in smooth manifolds, we will consider
smooth functions; and so on.

Thus we will define a scheme to be the following data

• The set: the points of the scheme
• The topology: the open sets of the scheme
• The structure sheaf: the sheaf of “algebraic functions” (a sheaf of rings) on

the scheme.

Recall that a topological space with a sheaf of rings is called a ringed space (§3.2.12).
We will try to draw pictures throughout. Pictures can help develop geometric

intuition, which can guide the algebraic development (and, eventually, vice versa).
Some people find pictures very helpful, while others are repulsed or nonplussed
or confused.

We will try to make all three notions as intuitive as possible. For the set, in
the key example of complex (affine) varieties (roughly, things cut out in Cn by
polynomials), we will see that the points are the “traditional points” (n-tuples
of complex numbers), plus some extra points that will be handy to have around.
For the topology, we will require that “algebraic functions vanish on closed sets”,
and require nothing else. For the sheaf of algebraic functions (the structure sheaf),
we will expect that in the complex plane, (3x2 + y2)/(2x + 4xy + 1) should be

85
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an algebraic function on the open set consisting of points where the denominator
doesn’t vanish, and this will largely motivate our definition.

4.1.1. Example: Differentiable manifolds. As motivation, we return to our
example of differentiable manifolds, reinterpreting them in this light. We will be
quite informal in this discussion. Suppose X is a manifold. It is a topological space,
and has a sheaf of differentiable functions OX (see §3.1). This gives X the structure of a
ringed space. We have observed that evaluation at a point p ∈ X gives a surjective
map from the stalk to R

OX,p
$$ $$ R,

so the kernel, the (germs of) functions vanishing at p, is a maximal ideal mX (see
§3.1.1).

We could define a differentiable real manifold as a topological space X with a
sheaf of rings. We would require that there is a cover of X by open sets such that
on each open set the ringed space is isomorphic to a ball around the origin in Rn

(with the sheaf of differentiable functions on that ball). With this definition, the
ball is the basic patch, and a general manifold is obtained by gluing these patches
together. (Admittedly, a great deal of geometry comes from how one chooses to
patch the balls together!) In the algebraic setting, the basic patch is the notion of an
affine scheme, which we will discuss soon. (In the definition of manifold, there is an
additional requirement that the topological space be Hausdorff, to avoid patholo-
gies. Schemes are often required to be “separated” to avoid essentially the same
pathologies. Separatedness will be discussed in Chapter 11.)

Functions are determined by their values at points. This is an obvious statement,
but won’t be true for schemes in general. We will see an example in Exercise 4.2.A(a),
and discuss this behavior further in §4.2.9.

Morphisms of manifolds. How can we describe differentiable maps of manifolds
X → Y? They are certainly continuous maps — but which ones? We can pull back
functions along continuous maps. Differentiable functions pull back to differen-
tiable functions. More formally, we have a map f−1OY → OX. (The inverse image
sheaf f−1 was defined in §3.6.) Inverse image is left-adjoint to pushforward, so we
also get a map f!OY → f∗OX.

Certainly given a differentiable map of manifolds, differentiable functions pull
back to differentiable functions. It is less obvious that this is a sufficient condition for
a continuous function to be differentiable.

4.1.A. IMPORTANT EXERCISE FOR THOSE WITH A LITTLE EXPERIENCE WITH MANI-
FOLDS. Prove that a continuous function of differentiable manifolds f : X → Y is
differentiable if differentiable functions pull back to differentiable functions, i.e. if
pullback by f gives a map OY → f∗OX. (Hint: check this on small patches. Once
you figure out what you are trying to show, you will realize that the result is im-
mediate.)

4.1.B. EXERCISE. Show that a morphism of differentiable manifolds f : X → Y with
f(p) = q induces a morphism of stalks f! : OY,q → OX,p. Show that f!(mY,q) ⊂
mX,p. In other words, if you pull back a function that vanishes at q, you get a
function that vanishes at p — not a huge surprise. (In §7.3, we formalize this by
saying that maps of differentiable manifolds are maps of locally ringed spaces.)



September 6, 2011 draft 87

4.1.2. Aside. Here is a little more for experts: Notice that this induces a map on
tangent spaces (see Aside 3.1.2)

(mX,p/m2
X,p)∨ → (mY,q/m2

Y,q)∨.

This is the tangent map you would geometrically expect. Again, it is interesting
that the cotangent map mY,q/m2

Y,q → mX,p/m2
X,p is algebraically more natural than

the tangent map (there are no “duals”).
Experts are now free to try to interpret other differential-geometric informa-

tion using only the map of topological spaces and map of sheaves. For example:
how can one check if f is a smooth map? How can one check if f is an immer-
sion? (We will see that the algebro-geometric version of these notions are smooth
morphism and locally closed immersion, see Chapter 26 and §9.1.3 respectively.)

4.1.3. Side Remark. Manifolds are covered by disks that are all isomorphic. This
isn’t true for schemes (even for “smooth complex varieties”). There are examples
of two “smooth complex curves” (the algebraic version of Riemann surfaces) X
and Y so that no non-empty open subset of X is isomorphic to a non-empty open
subset of Y. And there is an example of a Riemann surface X such that no two open
subsets of X are isomorphic. Informally, this is because in the Zariski topology on
schemes, all non-empty open sets are “huge” and have more “structure”.

4.1.4. Other examples. If you are interested in differential geometry, you will be
interested in differentiable manifolds, on which the functions under consideration
are differentiable functions. Similarly, if you are interested in topology, you will be
interested in topological spaces, on which you will consider the continuous func-
tion. If you are interested in complex geometry, you will be interested in complex
manifolds (or possibly “complex analytic varieties”), on which the functions are
holomorphic functions. In each of these cases of interesting “geometric spaces”,
the topological space and sheaf of functions is clear. The notion of scheme fits
naturally into this family.

4.2 The underlying set of affine schemes

For any ring A, we are going to define something called Spec A, the spectrum of A.
In this section, we will define it as a set, but we will soon endow it with a topology,
and later we will define a sheaf of rings on it (the structure sheaf). Such an object
is called an affine scheme. Later Spec A will denote the set along with the topology,
and a sheaf of functions. But for now, as there is no possibility of confusion, Spec A
will just be the set.

4.2.1. The set Spec A is the set of prime ideals of A. The prime ideal p of A when
considered as an element of Spec A will be denoted [p], to avoid confusion. Ele-
ments a ∈ A will be called functions on Spec A, and their value at the point [p]
will be a (mod p). This is weird: a function can take values in different rings at different
points — the function 5 on Spec Z takes the value 1 (mod 2) at [(2)] and 2 (mod 3) at
[(3)]. “An element a of the ring lying in a prime ideal p” translates to “a function
a that is 0 at the point [p]” or “a function a vanishing at the point [p]”, and we will
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use these phrases interchangeably. Notice that if you add or multiply two func-
tions, you add or multiply their values at all points; this is a translation of the fact
that A → A/p is a ring homomorphism. These translations are important — make
sure you are very comfortable with them! They should become second nature.

We now give some examples.

Example 1 (the complex affine line): A1
C := Spec C[x]. Let’s find the prime

ideals of C[x]. As C[x] is an integral domain, 0 is prime. Also, (x − a) is prime, for
any a ∈ C: it is even a maximal ideal, as the quotient by this ideal is a field:

0 $$ (x − a) $$ C[x]
f)→f(a) $$ C $$ 0

(This exact sequence may remind you of (3.1.1.1) in our motivating example of
manifolds.)

We now show that there are no other prime ideals. We use the fact that C[x]
has a division algorithm, and is a unique factorization domain. Suppose p is a
prime ideal. If p != (0), then suppose f(x) ∈ p is a non-zero element of smallest
degree. It is not constant, as prime ideals can’t contain 1. If f(x) is not linear,
then factor f(x) = g(x)h(x), where g(x) and h(x) have positive degree. (Here we
use that C is algebraically closed.) Then g(x) ∈ p or h(x) ∈ p, contradicting the
minimality of the degree of f. Hence there is a linear element x − a of p. Then I
claim that p = (x − a). Suppose f(x) ∈ p. Then the division algorithm would give
f(x) = g(x)(x − a) + m where m ∈ C. Then m = f(x) − g(x)(x − a) ∈ p. If m != 0,
then 1 ∈ p, giving a contradiction.

Thus we have a picture of A1
C = Spec C[x] (see Figure 4.1). There is one point

for each complex number, plus one extra point [(0)]. We can mostly picture A1
C as C:

the point [(x−a)] we will reasonably associate to a ∈ C. Where should we picture
the point [(0)]? The best way of thinking about it is somewhat zen. It is somewhere
on the complex line, but nowhere in particular. Because (0) is contained in all of
these primes, we will somehow associate it with this line passing through all the
other points. [(0)] is called the “generic point” of the line; it is “generically on the
line” but you can’t pin it down any further than that. (We will formally define
“generic point” in §4.6.) We will place it far to the right for lack of anywhere better
to put it. You will notice that we sketch A1

C as one-(real-)dimensional (even though
we picture it as an enhanced version of C); this is to later remind ourselves that
this will be a one-dimensional space, where dimensions are defined in an algebraic
(or complex-geometric) sense. (Dimension will be defined in Chapter 12.)

(0)(x) (x − 1) (x − a)

FIGURE 4.1. A picture of A1
C = Spec C[x]

To give you some feeling for this space, we make some statements that are
currently undefined, but suggestive. The functions on A1

C are the polynomials. So
f(x) = x2 − 3x + 1 is a function. What is its value at [(x − 1)], which we think of as
the point 1 ∈ C? Answer: f(1)! Or equivalently, we can evalute f(x) modulo x − 1
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— this is the same thing by the division algorithm. (What is its value at (0)? It is
f(x) (mod 0), which is just f(x).)

Here is a more complicated example: g(x) = (x − 3)3/(x − 2) is a “rational
function”. It is defined everywhere but x = 2. (When we know what the structure
sheaf is, we will be able to say that it is an element of the structure sheaf on the
open set A1

C \ {2}.) We want to say that g(x) has a triple zero at 3, and a single pole
at 2, and we will be able to after §13.4.

Example 2 (the affine line over k = k): A1
k := Spec k[x] where k is an alge-

braically closed field. This is called the affine line over k. All of our discussion in
the previous example carries over without change. We will use the same picture,
which is after all intended to just be a metaphor.

Example 3: Spec Z. An amazing fact is that from our perspective, this will
look a lot like the affine line A1

k
. The integers, like k[x], form a unique factorization

domain, with a division algorithm. The prime ideals are: (0), and (p) where p
is prime. Thus everything from Example 1 carries over without change, even the
picture. Our picture of Spec Z is shown in Figure 4.2.

· · ·(2) (3) (5) (0)

FIGURE 4.2. A “picture” of Spec Z, which looks suspiciously like Figure 4.1

Let’s blithely carry over our discussion of functions to this space. 100 is a
function on Spec Z. Its value at (3) is “1 (mod 3)”. Its value at (2) is “0 (mod 2)”,
and in fact it has a double zero. 27/4 is a rational function on Spec Z, defined away
from (2). We want to say that it has a double pole at (2), and a triple zero at (3). Its
value at (5) is

27 × 4−1 ≡ 2 × (−1) ≡ 3 (mod 5).

Example 4: silly but important examples, and the German word for bacon.
The set Spec k where k is any field is boring: one point. Spec 0, where 0 is the
zero-ring, is the empty set, as 0 has no prime ideals.

4.2.A. A SMALL EXERCISE ABOUT SMALL SCHEMES. (a) Describe the set Spec k[ε]/(ε2).
The ring k[ε]/(ε2) is called the ring of dual numbers, and will turn out to be quite
useful. You should think of ε as a very small number, so small that its square is
0 (although it itself is not 0). It is a non-zero function whose value at all points
is zero, thus giving our first example of functions not being determined by their
values at points. We will discuss this phenomenon further in §4.2.9.
(b) Describe the set Spec k[x](x) (see §2.3.3 for discussion of localization). We will
see this scheme again repeatedly, starting with §4.2.6 and Exercise 4.4.K. You might
later think of it as a shred of a particularly nice “smooth curve”.

In Example 2, we restricted to the case of algebraically closed fields for a rea-
son: things are more subtle if the field is not algebraically closed.

Example 5 (the affine line over R): R[x]. Using the fact that R[x] is a unique
factorization domain, similar arguments to those of Examples 1–3 show that the
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primes are (0), (x − a) where a ∈ R, and (x2 + ax + b) where x2 + ax + b is an
irreducible quadratic. The latter two are maximal ideals, i.e. their quotients are
fields. For example: R[x]/(x − 3) ∼= R, R[x]/(x2 + 1) ∼= C.

4.2.B. UNIMPORTANT EXERCISE. Show that for the last type of prime, of the form
(x2 + ax + b), the quotient is always isomorphic to C.

So we have the points that we would normally expect to see on the real line,
corresponding to real numbers; the generic point 0; and new points which we may
interpret as conjugate pairs of complex numbers (the roots of the quadratic). This
last type of point should be seen as more akin to the real numbers than to the
generic point. You can picture A1

R as the complex plane, folded along the real axis.
But the key point is that Galois-conjugate points (such as i and −i) are considered
glued.

Let’s explore functions on this space. Consider the function f(x) = x3 − 1. Its
value at the point [(x−2)] is f(x) = 7, or perhaps better, 7 (mod x−2). How about
at (x2 + 1)? We get

x3 − 1 ≡ −x − 1 (mod x2 + 1),

which may be profitably interpreted as −i − 1.
One moral of this example is that we can work over a non-algebraically closed

field if we wish. It is more complicated, but we can recover much of the informa-
tion we care about.

4.2.C. IMPORTANT EXERCISE. Describe the set A1
Q. (This is harder to picture in a

way analogous to A1
R. But the rough cartoon of points on a line, as in Figure 4.1,

remains a reasonable sketch.)

Example 6 (the affine line over Fp): A1
Fp

= Spec Fp[x]. As in the previous
examples, Fp[x] is a Euclidean domain, so the prime ideals are of the form (0) or
(f(x)) where f(x) ∈ Fp[x] is an irreducible polynomial, which can be of any degree.
Irreducible polynomials correspond to sets of Galois conjugates in Fp.

Note that Spec Fp[x] has p points corresponding to the elements of Fp, but
also many more (infinitely more, see Exercise 4.2.D). This makes this space much
richer than simply p points. For example, a polynomial f(x) is not determined by
its values at the p elements of Fp, but it is determined by its values at the points of
Spec Fp[x]. (As we have mentioned before, this is not true for all schemes.)

You should think about this, even if you are a geometric person — this intu-
ition will later turn up in geometric situations. Even if you think you are interested
only in working over an algebraically closed field (such as C), you will have non-
algebraically closed fields (such as C(x)) forced upon you.

4.2.D. EXERCISE. If k is a field, show that Spec k[x] has infinitely many points.
(Hint: Euclid’s proof of the infiniteude of primes of Z.)

Example 7 (the complex affine plane): A2
C = Spec C[x, y]. (As with Examples

1 and 2, our discussion will apply with C replaced by any algebraically closed
field.) Sadly, C[x, y] is not a principal ideal domain: (x, y) is not a principal ideal.
We can quickly name some prime ideals. One is (0), which has the same flavor as
the (0) ideals in the previous examples. (x−2, y−3) is prime, and indeed maximal,
because C[x, y]/(x − 2, y − 3) ∼= C, where this isomorphism is via f(x, y) (→ f(2, 3).
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More generally, (x − a, y − b) is prime for any (a, b) ∈ C2. Also, if f(x, y) is an
irreducible polynomial (e.g. y − x2 or y2 − x3) then (f(x, y)) is prime.

4.2.E. EXERCISE. Show that we have identified all the prime ideals of C[x, y]. Hint:
Suppose p is a prime ideal that is not principal. Show you can find f(x, y), g(x, y) ∈
p with no common factor. By considering the Euclidean algorithm in the Euclidean
domain C(x)[y], show that you can find a nonzero h(x) ∈ (f(x, y), g(x, y)) ⊂ p.
Using primality, show that one of the linear factors of h(x), say (x − a), is in p.
Similarly show there is some (y − b) ∈ p.

[(f(x, y))]

[(0)]

closed point
[(x − a, y − b)]

FIGURE 4.3. Picturing A2
C = Spec C[x, y]

We now attempt to draw a picture of A2
C (see Figure 4.3). The maximal primes

of C[x, y] correspond to the traditional points in C2: [(x − a, y − b)] corresponds
to (a, b) ∈ C2. We now have to visualize the “bonus points”. [(0)] somehow lives
behind all of the traditional points; it is somewhere on the plane, but nowhere
in particular. So for example, it does not lie on the parabola y = x2. The point
[(y − x2)] lies on the parabola y = x2, but nowhere in particular on it. (Figure 4.3
is a bit misleading. For example, the point [(0)] isn’t in the fourth quadrant; it
is somehow near every other point, which is why it is depicted as a somewhat
diffuse large dot.) You can see from this picture that we already are implicitly
thinking about “dimension”. The primes (x−a, y−b) are somehow of dimension
0, the primes (f(x, y)) are of dimension 1, and (0) is of dimension 2. (All of our
dimensions here are complex or algebraic dimensions. The complex plane C2 has
real dimension 4, but complex dimension 2. Complex dimensions are in general
half of real dimensions.) We won’t define dimension precisely until Chapter 12,
but you should feel free to keep it in mind before then.

Note too that maximal ideals correspond to the “smallest” points. Smaller
ideals correspond to “bigger” points. “One prime ideal contains another” means
that the points “have the opposite containment.” All of this will be made precise
once we have a topology. This order-reversal is a little confusing, and will remain
so even once we have made the notions precise.

We now come to the obvious generalization of Example 7.

Example 8 (complex affine n-space — important!): Let An
C := Spec C[x1, . . . , xn].

(More generally, An
A is defined to be Spec A[x1, . . . , xn], where A is an arbitrary
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ring. When the base ring is clear from context, the subscript A is often omitted.)
For concreteness, let’s consider n = 3. We now have an interesting question in
what at first appears to be pure algebra: What are the prime ideals of C[x, y, z]?

Analogously to before, (x − a, y − b, z − c) is a prime ideal. This is a maximal
ideal, with residue field C; we think of these as “0-dimensional points”. We will of-
ten write (a, b, c) for [(x−a, y−b, z−c)] because of our geometric interpretation of
these ideals. There are no more maximal ideals, by Hilbert’s Weak Nullstellensatz.

4.2.2. Hilbert’s Weak Nullstellensatz. — If k is an algebraically closed field, then
the maximal ideals k[x1, . . . , xn], are precisely those of the form (x1 − a1, . . . , xn − an),
where ai ∈ k.

We may as well state a slightly stronger version now.

4.2.3. Hilbert’s Nullstellensatz. — If k is any field, the maximal ideals of k[x1, . . . , xn]
are precisely those with residue field a finite extension of k. Translation: any field extension
of k that is finitely generated as a ring is necessarily also finitely generated as a module
(i.e. is a finite field extension).

The Nullstellensatz 4.2.3 clearly implies the Weak Nullstellensatz 4.2.2. We
will prove the Nullstellensatz in §8.4.3, and again in Exercise 12.2.B.

There are other prime ideals of C[x, y, z] too. We have (0), which is corre-
sponds to a “3-dimensional point”. We have (f(x, y, z)), where f is irreducible. To
this we associate the hypersurface f = 0, so this is “2-dimensional” in nature. But
we have not found them all! One clue: we have prime ideals of “dimension” 0,
2, and 3 — we are missing “dimension 1”. Here is one such prime ideal: (x, y).
We picture this as the locus where x = y = 0, which is the z-axis. This is a
prime ideal, as the corresponding quotient C[x, y, z]/(x, y) ∼= C[z] is an integral
domain (and should be interpreted as the functions on the z-axis). There are lots
of one-dimensional primes, and it is not possible to classify them in a reasonable
way. It will turn out that they correspond to things that we think of as irreducible
curves. Thus remarkably the answer to the purely algebraic question (“what are
the primes of C[x, y, z]”) is fundamentally geometric!

The fact that the closed points A1
Q can be interpreted as points of Q where

Galois-conjugates are glued together (Exercise 4.2.C) extends to An
Q. For example,

in A2
Q, (

√
2,
√

2) is glued to (−
√

2,−
√

2) but not to (
√

2,−
√

2). The following exer-
cise will give you some idea of how this works.

4.2.F. EXERCISE. Describe the maximal ideal of Q[x, y] corresponding to (
√

2,
√

2)

and (−
√

2,−
√

2). Describe the maximal ideal of Q[x, y] corresponding to (
√

2,−
√

2)

and (−
√

2,
√

2). What are the residue fields in both cases?

The description of closed points of A2
Q (and its generalizations) as Galois-orbits

can even be extended to non-closed points, as follows.

4.2.G. UNIMPORTANT AND TRICKY BUT FUN EXERCISE. Consider the map of
sets φ : C2 → A2

Q defined as follows. (z1, z2) is sent to the prime ideal of Q[x, y]
consisting of polynomials vanishing at (z1, z2).
(a) What is the image of (π,π2)?
! (b) Show that φ is surjective. (Warning: You will need some ideas we haven’t
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discussed in order to solve this. Once we define the Zariski topology on A2
Q, you

will be able to check that φ is continuous, where we give C2 the classical topology.
This example generalizes.)

4.2.4. Quotients and localizations. Two natural ways of getting new rings from
old — quotients and localizations — have interpretations in terms of spectra.

4.2.5. Quotients: Spec A/I as a subset of Spec A. It is an important fact that the
primes of A/I are in bijection with the primes of A containing I.

4.2.H. ESSENTIAL ALGEBRA EXERCISE (MANDATORY IF YOU HAVEN’T SEEN IT BE-
FORE). Suppose A is a ring, and I an ideal of A. Let φ : A → A/I. Show that
φ−1 gives an inclusion-preserving bijection between primes of A/I and primes of
A containing I. Thus we can picture Spec A/I as a subset of Spec A.

As an important motivational special case, you now have a picture of complex
affine varieties. Suppose A is a finitely generated C-algebra, generated by x1, . . . ,
xn, with relations f1(x1, . . . , xn) = · · · = fr(x1, . . . , xn) = 0. Then this description
in terms of generators and relations naturally gives us an interpretation of Spec A
as a subset of An

C , which we think of as “traditional points” (n-tuples of complex
numbers) along with some “bonus” points we haven’t yet fully described. To see
which of the traditional points are in Spec A, we simply solve the equations f1 =
· · · = fr = 0. For example, Spec C[x, y, z]/(x2+y2−z2) may be pictured as shown in
Figure 4.4. (Admittedly this is just a “sketch of the R-points”, but we will still find
it helpful later.) This entire picture carries over (along with the Nullstellensatz)
with C replaced by any algebraically closed field. Indeed, the picture of Figure 4.4
can be said to depict k[x, y, z]/(x2 + y2 − z2) for most algebraically closed fields k
(although it is misleading in characteristic 2, because of the coincidence x2 + y2 −
z2 = (x + y + z)2).

FIGURE 4.4. A “picture” of Spec C[x, y, z]/(x2 + y2 − z2)

4.2.6. Localizations: Spec S−1A as a subset of Spec A. The following exercise shows
how prime ideals behave under localization.

4.2.I. ESSENTIAL ALGEBRA EXERCISE (MANDATORY IF YOU HAVEN’T SEEN IT BE-
FORE). Suppose S is a multiplicative subset of A. Show that the map Spec S−1A →
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Spec A gives an order-preserving bijection of the primes of S−1A with the primes
of A that don’t meet the multiplicative set S.

Recall from §2.3.3 that there are two important flavors of localization. The
first is Af = {1, f, f2, . . . }−1A where f ∈ A. A motivating example is A = C[x, y],
f = y−x2. The second is Ap = (A− p)−1A, where p is a prime ideal. A motivating
example is A = C[x, y], S = A − (x, y).

If S = {1, f, f2, . . . }, the primes of S−1A are just those primes not containing f —
the points where “f doesn’t vanish”. (In §4.5, we will call this a distinguished open
set, once we know what open sets are.) So to picture Spec C[x, y]y−x2 , we picture
the affine plane, and throw out those points on the parabola y − x2 — the points
(a, a2) for a ∈ C (by which we mean [(x − a, y − a2)]), as well as the “new kind of
point” [(y − x2)].

It can be initially confusing to think about localization in the case where zerodi-
visors are inverted, because localization A → S−1A is not injective (Exercise 2.3.C).
Geometric intuition can help. Consider the case A = C[x, y]/(xy) and f = x. What
is the localization Af? The space Spec C[x, y]/(xy) “is” the union of the two axes
in the plane. Localizing means throwing out the locus where x vanishes. So we
are left with the x-axis, minus the origin, so we expect Spec C[x]x. So there should
be some natural isomorphism (C[x, y]/(xy))x

∼= C[x]x.

4.2.J. EXERCISE. Show that these two rings are isomorphic. (You will see that y
on the left goes to 0 on the right.)

If S = A− p, the primes of S−1A are just the primes of A contained in p. In our
example A = C[x, y], p = (x, y), we keep all those points corresponding to “things
through the origin”, i.e. the 0-dimensional point (x, y), the 2-dimensional point (0),
and those 1-dimensional points (f(x, y)) where f(0, 0) = 0, i.e. those “irreducible
curves through the origin”. You can think of this being a shred of the plane near
the origin; anything not actually “visible” at the origin is discarded (see Figure 4.5).

Spec C[x, y](x,y)

FIGURE 4.5. Picturing Spec C[x, y](x,y) as a “shred of A2
C”. Only

those points near the origin remain.

Another example is when A = Spec k[x], and p = (x) (or more generally when
p is any maximal ideal). Then Ap has only two prime ideals (Exercise 4.2.A(b)).
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You should see this as the germ of a “smooth curve”, where one point is the “clas-
sical point”, and the other is the “generic point of the curve”. This is an example
of a discrete valuation ring, and indeed all discrete valuation rings should be visu-
alized in such a way. We will discuss discrete valuation rings in §13.4. By then we
will have justified the use of the words “smooth” and “curve”. (Reality check: try
to picture Spec of Z localized at (2) and at (0). How do the two pictures differ?)

4.2.7. Important fact: Maps of rings induce maps of spectra (as sets). We now
make an observation that will later grow up to be the notion of morphisms of
schemes.

4.2.K. IMPORTANT EASY EXERCISE. If φ : B → A is a map of rings, and p is a
prime ideal of A, show that φ−1(p) is a prime ideal of B.

Hence a map of rings φ : B → A induces a map of sets Spec A → Spec B “in
the opposite direction”. This gives a contravariant functor from the category of
rings to the category of sets: the composition of two maps of rings induces the
composition of the corresponding maps of spectra.

4.2.L. EASY EXERCISE. Let B be a ring.
(a) Suppose I ⊂ B is an ideal. Show that the map Spec B/I → Spec B is the inclu-
sion of §4.2.5.
(b) Suppose S ⊂ B is a multiplicative set. Show that the map Spec S−1B → Spec B
is the inclusion of §4.2.6.

4.2.8. An explicit example. In the case of affine complex varieties (or indeed affine
varieties over any algebraically closed field), the translation between maps given
by explicit formulas and maps of rings is quite direct. For example, consider a
map from the parabola in C2 (with coordinates a and b) given by b = a2, to the
“curve” in C3 (with coordinates x, y, and z) cut out by the equations y = x2 and
z = y2. Suppose the map sends the point (a, b) ∈ C2 to the point (a, b, b2) ∈ C3.
In our new language, we have map

Spec C[a, b]/(b − a2) $$ Spec C[x, y, z]/(y − x2, z − y2)

given by

C[a, b]/(b − a2) C[x, y, z]/(y − x2, z − y2)++

(a, b, b2) (x, y, z),%++

i.e. x (→ a, y (→ b, and z (→ b2. If the idea is not yet clear, the following two
exercises may help.

4.2.M. EXERCISE (SPECIAL CASE). Consider the map of complex manifolds send-
ing C → C via y (→ y2; you can picture it as the projection of the parabola x = y2

in the plane to the x-axis (see Figure 4.6). Interpret the corresponding map of rings
as given by C[x] (→ C[y] by x (→ y2. Verify that the preimage (the fiber) above the
point a ∈ C is the point(s) ±

√
a ∈ C, using the definition given above. (A more

sophisticated version of this example appears in Example 10.3.3.)
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FIGURE 4.6. The map C → C given by y (→ y2

4.2.N. EXERCISE (GENERAL CASE). (a) Show that the map

φ : (y1, y2, . . . , yn) (→ (f1(x1, . . . , xm), f2(x1, . . . , xm), . . . , fn(x1, . . . , xm))

determines a map

Spec C[x1, . . . , xm]/I → Spec C[y1, . . . , yn]/J

if φ(J) ⊂ I.
(b) Via the identification of the Nullstellensatz, interpret the map of (a) as a map
Cm → Cn given by

(x1, . . . , xm) (→ (f1(x1, . . . , xm), . . . , fn(x1, . . . , xm)).

The converse to (a) isn’t quite true. Once you have more experience and intu-
ition, you can figure out when it is true, and when it can be false. The failure of the
converse to hold has to do with nilpotents, which we come to very shortly (§4.2.9).

4.2.O. IMPORTANT EXERCISE. Consider the map of sets f : An
Z → Spec Z, given

by the ring map Z → Z[x1, . . . , xn]. If p is prime, describe a bijection between the
fiber f−1([(p)]) and An

Fp
. (You won’t need to describe either set! Which is good

because you can’t.) This exercise may give you a sense of how to picture maps
(see Figure 4.7), and in particular why you can think of An

Z as an “An-bundle”
over Spec Z. (Can you interpret the fiber over [(0)] as An

k for some field k?)

4.2.9. Functions are not determined by their values at points: the fault of nilpo-
tents. We conclude this section by describing some strange behavior. We are de-
veloping machinery that will let us bring our geometric intuition to algebra. There
is one serious serious point where your intuition will be false, so you should know
now, and adjust your intuition appropriately. As noted by Mumford ([M-CAS,
p. 12]), “it is this aspect of schemes which was most scandalous when Grothendieck
defined them.”

Suppose we have a function (ring element) vanishing at all points. Then it is
not necessarily the zero function! The translation of this question is: is the inter-
section of all prime ideals necessarily just 0? The answer is no, as is shown by the
example of the ring of dual numbers k[ε]/(ε2): ε != 0, but ε2 = 0. (We saw this
ring in Exercise 4.2.A(a).) Any function whose power is zero certainly lies in the
intersection of all prime ideals.

4.2.P. EXERCISE. Ring elements that have a power that is 0 are called nilpotents.
(a) If I is an ideal of nilpotents, show that the inclusion Spec B/I → Spec B of
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· · ·(3) (0)

An
F2

(2)

An
F3

An
k

· · ·

FIGURE 4.7. A picture of An
Z → Spec Z as a “family of An’s”, or

an “An-bundle over Spec Z”. What is k?

Exercise 4.2.H is a bijection. Thus nilpotents don’t affect the underlying set. (We
will soon see in §4.4.5 that they won’t affect the topology either — the difference
will be in the structure sheaf.)
(b) Show that the nilpotents of a ring B form an ideal. This ideal is called the
nilradical, and is denoted N = N(B).

Thus the nilradical is contained in the intersection of all the prime ideals. The
converse is also true:

4.2.10. Theorem. — The nilradical N(A) is the intersection of all the primes of A.

4.2.Q. EXERCISE. If you don’t know this theorem, then look it up, or even better,
prove it yourself. (Hint: Use the fact that any proper ideal of A is contained in
a maximal ideal, which requires Zorn’s lemma. Possible further hint: Suppose
x /∈ N(A). We wish to show that there is a prime ideal not containing x. Show that
Ax is not the 0-ring, by showing that 1 != 0.)

4.2.11. In particular, although it is upsetting that functions are not determined by
their values at points, we have precisely specified what the failure of this intuition
is: two functions have the same values at points if and only if they differ by a
nilpotent. You should think of this geometrically: a function vanishes at every
point of the spectrum of a ring if and only if it has a power that is zero. And if
there are no non-zero nilpotents — if N = (0) — then functions are determined
by their values at points. If a ring has no non-zero nilpotents, we say that it is
reduced.

4.2.R. EXERCISE (CONNECTION TO VARIETIES. ) If k is an algebraically closed field,
and A = k[x1, . . . , xn]/I is a finitely generated k-algebra with N(A) = {0}. By Exer-
cise 4.2.H, we can consider the set Spec A as a subset of An

k . The space An
k considers

the “classical” (old-fashioned) points kn. Show that functions on A are determined
by their values on the closed points, which by the Weak Nullstellensatz 4.2.2 are
identified with the “classical” points kn ∩ Spec A of Spec A. Hint: if f and g are 2
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functions on X, then they differ on an open subset of X, so show that any nonempty
open subset of X contains a closed point. (Remark: Before the advent of scheme
theory, functions on varieties (over algebraically closed fields) were thought of as
functions on “classical” points, and this exercise basically shows that there is no
harm in thinking of “traditional” varieties as a particular kind of schemes.)

4.2.S. FUN UNIMPORTANT EXERCISE: DERIVATIVES WITHOUT DELTAS AND EPSILONS

(OR AT LEAST WITHOUT DELTAS). Suppose we have a polynomial f(x) ∈ k[x]. In-
stead, we work in k[x, ε]/(ε2). What then is f(x + ε)? (Do a couple of examples,
then prove the pattern you observe.) This is a hint that nilpotents will be important
in defining differential information (Chapter 23).

4.3 Visualizing schemes I: generic points

For years, you have been able to picture x2 + y2 = 1 in the plane, and you
now have an idea of how to picture Spec Z. If we are claiming to understand rings
as geometric objects (through the Spec functor), then we should wish to develop
geometric insight into them. To develop geometric intuition about schemes, it is
helpful to have pictures in your mind, extending your intuition about geometric
spaces you are already familiar with. As we go along, we will empirically develop
some idea of what schemes should look like. This section summarizes what we
have gleaned so far.

Some mathematicians prefer to think completely algebraically, and never think
in terms of pictures. Others will be disturbed by the fact that this is an art, not a sci-
ence. And finally, this hand-waving will necessarily never be used in the rigorous
development of the theory. For these reasons, you may wish to skip these sections.
However, having the right picture in your mind can greatly help understanding
what facts should be true, and how to prove them.

Our starting point is the example of “affine complex varieties” (things cut out
by equations involving a finite number variables over C), and more generally simi-
lar examples over arbitrary algebraically closed fields. We begin with notions that
are intuitive (“traditional” points behaving the way you expect them to), and then
add in the two features which are new and disturbing, generic points and nonre-
duced behavior. You can then extend this notion to seemingly different spaces,
such as Spec Z.

Hilbert’s Weak Nullstellensatz 4.2.2 shows that the “traditional points” are
present as points of the scheme, and this carries over to any algebraically closed
field. If the field is not algebraically closed, the traditional points are glued to-
gether into clumps by Galois conjugation, as in Examples 5 (the real affine line)
and 6 (the affine line over Fp) in §4.2 above. This is a geometric interpretation of
Hilbert’s Nullstellensatz 4.2.3.

But we have some additional points to add to the picture. You should re-
member that they “correspond” to “irreducible” “closed” (algebraic) subsets. As
motivation, consider the case of the complex affine plane (Example 7): we had
one for each irreducible polynomial, plus one corresponding to the entire plane.
We will make “closed” precise when we define the Zariski topology (in the next
section). You may already have an idea of what “irreducible” should mean; we
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make that precise at the start of §4.6. By “correspond” we mean that each closed
irreducible subset has a corresponding point sitting on it, called its generic point
(defined in §4.6). It is a new point, distinct from all the other points in the subset.
The correspondence is described in Exercise 4.7.E for Spec A, and in Exercise 6.1.B
for schemes in general. We don’t know precisely where to draw the generic point,
so we may stick it arbitrarily anywhere, but you should think of it as being “almost
everywhere”, and in particular, near every other point in the subset.

In §4.2.5, we saw how the points of Spec A/I should be interpreted as a subset
of Spec A. So for example, when you see Spec C[x, y]/(x + y), you should picture
this not just as a line, but as a line in the xy-plane; the choice of generators x and y
of the algebra C[x, y] implies an inclusion into affine space.

In §4.2.6, we saw how the points of Spec S−1A should be interpreted as subsets
of Spec A. The two most important cases were discussed. The points of Spec Af

correspond to the points of Spec A where f doesn’t vanish; we will later (§4.5)
interpret this as a distinguished open set.

If p is a prime ideal, then Spec Ap should be seen as a “shred of the space
Spec A near the subset corresponding to p”. The simplest nontrivial case of this
is p = (x) ⊂ Spec k[x] = A (see Exercise 4.2.A, which we discuss again in Exer-
cise 4.4.K).

4.4 The underlying topological space of an affine scheme

We next introduce the Zariski topology on the spectrum of a ring. For exam-
ple, consider A2

C = Spec C[x, y], the complex plane (with a few extra points). In
algebraic geometry, we will only be allowed to consider algebraic functions, i.e.
polynomials in x and y. The locus where a polynomial vanishes should reason-
ably be a closed set, and the Zariski topology is defined by saying that the only
sets we should consider closed should be these sets, and other sets forced to be
closed by these. In other words, it is the coarsest topology where these sets are
closed.

In particular, although topologies are often described using open subsets, it
will be more convenient for us to define this topology in terms of closed subsets.
If S is a subset of a ring A, define the Vanishing set of S by

V(S) := {[p] ∈ Spec A : S ⊂ p}.

It is the set of points on which all elements of S are zero. (It should now be second
nature to equate “vanishing at a point” with “contained in a prime”.) We declare
that these — and no other — are the closed subsets.

For example, consider V(xy, yz) ⊂ A3
C = Spec C[x, y, z]. Which points are con-

tained in this locus? We think of this as solving xy = yz = 0. Of the “traditional”
points (interpreted as ordered triples of complex numbers, thanks to the Hilbert’s
Nullstellensatz 4.2.2), we have the points where y = 0 or x = z = 0: the xz-plane
and the y-axis respectively. Of the “new” points, we have the generic point of the
xz-plane (also known as the point [(y)]), and the generic point of the y-axis (also
known as the point [(x, z)]). You might imagine that we also have a number of
“one-dimensional” points contained in the xz-plane.
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4.4.A. EASY EXERCISE. Check that the x-axis is contained in V(xy, yz). (The x-axis
is defined by y = z = 0, and the y-axis and z-axis are defined analogously.)

Let’s return to the general situation. The following exercise lets us restrict
attention to vanishing sets of ideals.

4.4.B. EASY EXERCISE. Show that if (S) is the ideal generated by S, then V(S) =
V((S)).

We define the Zariski topology by declaring that V(S) is closed for all S. Let’s
check that this is a topology:

4.4.C. EXERCISE. (a) Show that ∅ and Spec A are both open.
(b) If Ii is a collection of ideals (as i runs over some index set), show that ∩iV(Ii) =
V(

∑
i Ii). Hence the union of any collection of open sets is open.

(c) Show that V(I1) ∪ V(I2) = V(I1I2). (The product of two ideals I1 and I2 of A
are finite A-linear combinations of products of elements of I1 and I2, i.e. elements
of the form

∑n
j=1 i1,ji2,j, where ik,j ∈ Ik. Equivalently, it is the ideal generated by

products of elements of I1 and I2. You should quickly check that this is an ideal,
and that products are associative, i.e. (I1I2)I3) = I1(I2I3).) Hence the intersection
of any finite number of open sets is open.

4.4.1. Properties of the “vanishing set” function V(·). The function V(·) is ob-
viously inclusion-reversing: If S1 ⊂ S2, then V(S2) ⊂ V(S1). Warning: We could
have equality in the second inclusion without equality in the first, as the next exer-
cise shows.

4.4.D. EXERCISE/DEFINITION. If I ⊂ A is an ideal, then define its radical by

√
I := {r ∈ A : rn ∈ I for some n ∈ Z>0}.

For example, the nilradical N (§4.2.P) is
√

(0). Show that
√

I is an ideal (cf. Exer-
cise 4.2.P(b)). Show that V(

√
I) = V(I). We say an ideal is radical if it equals its

own radical. You should verify that
√√

I =
√

I, and that prime ideals are radical.

Here are two useful consequences. As (I ∩ J)2 ⊂ IJ ⊂ I ∩ J (products of ideals
were defined in Exercise 4.4.C), we have that V(IJ) = V(I ∩ J) (= V(I) ∪ V(J)
by Exercise 4.4.C(c)). Also, combining this with Exercise 4.4.B, we see V(S) =

V((S)) = V(
√

(S)).

4.4.E. EXERCISE (RADICALS COMMUTE WITH FINITE INTERSECTION). If I1, . . . , In

are ideals of a ring A, show that
√

∩n
i=1Ii = ∩n

i=1

√
Ii. We will use this property

without referring back to this exercise.

4.4.F. EXERCISE FOR LATER USE. Show that
√

I is the intersection of all the prime
ideals containing I. (Hint: Use Theorem 4.2.10 on an appropriate ring.)

4.4.2. Examples. Let’s see how this meshes with our examples from the previous
section.

Recall that A1
C, as a set, was just the “traditional” points (corresponding to

maximal ideals, in bijection with a ∈ C), and one “new” point (0). The Zariski
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topology on A1
C is not that exciting: the open sets are the empty set, and A1

C minus
a finite number of maximal ideals. (It “almost” has the cofinite topology. No-
tice that the open sets are determined by their intersections with the “traditional
points”. The “new” point (0) comes along for the ride, which is a good sign that it
is harmless. Ignoring the “new” point, observe that the topology on A1

C is a coarser
topology than the classical topology on C.)

4.4.G. EXERCISE. Describe the topological space A1
k (cf. Exercise 4.2.D).

The case Spec Z is similar. The topology is “almost” the cofinite topology in
the same way. The open sets are the empty set, and Spec Z minus a finite number
of “ordinary” ((p) where p is prime) primes.

4.4.3. Closed subsets of A2
C. The case A2

C is more interesting. You should think
through where the “one-dimensional primes” fit into the picture. In Exercise 4.2.E,
we identified all the primes of C[x, y] (i.e. the points of A2

C) as the maximal ideals
(x−a, y−b) (where a, b ∈ C), the “one-dimensional points” (f(x, y)) (where f(x, y)
is irreducible), and the “two-dimensional point” (0).

Then the closed subsets are of the following form:
(a) the entire space, and
(b) a finite number (possibly zero) of “curves” (each of which is the closure of

a “one-dimensional point”) and a finite number (possibly zero) of closed points.

4.4.4. Important fact: Maps of rings induce continuous maps of topological
spaces. We saw in §4.2.7 that a map of rings φ : B → A induces a map of
sets π : Spec A → Spec B.

4.4.H. IMPORTANT EXERCISE. By showing that closed sets pull back to closed sets,
show that π is a continuous map.

Not all continuous maps arise in this way. Consider for example the contin-
uous map on A1

C that is the identity except 0 and 1 (i.e. [(x)] and [(x − 1)]) are
swapped; no polynomial can manage this marvellous feat.

In §4.2.7, we saw that Spec B/I and Spec S−1B are naturally subsets of Spec B.
It is natural to ask if the Zariski topology behaves well with respect to these inclu-
sions, and indeed it does.

4.4.I. IMPORTANT EXERCISE (CF. EXERCISE 4.2.L). Suppose that I, S ⊂ B are an
ideal and multiplicative subset respectively.
(a) Show that Spec B/I is naturally a closed subset of Spec B. If S = {1, f, f2, . . . }
(f ∈ B), show that Spec S−1B is naturally an open subset of Spec B. Show that for
arbitrary S, Spec S−1B need not be open or closed. (Hint: Figure 4.5.)
(b) Show that the Zariski topology on Spec B/I (resp. Spec S−1B) is the subspace
topology induced by inclusion in Spec B. (Hint: compare closed subsets.)

4.4.5. In particular, if I ⊂ N is an ideal of nilpotents, the bijection Spec B/I →
Spec B (Exercise 4.2.P) is a homeomorphism. Thus nilpotents don’t affect the topo-
logical space. (The difference will be in the structure sheaf.)
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4.4.J. USEFUL EXERCISE FOR LATER. Suppose I ⊂ B is an ideal. Show that f

vanishes on V(I) if and only if f ∈
√

I (i.e. fn ∈ I for some n ≥ 1). (If you are stuck,
you will get a hint when you see Exercise 4.5.E.)

4.4.K. EASY EXERCISE (CF. EXERCISE 4.2.A). Describe the topological space
Spec k[x](x).

4.5 A base of the Zariski topology on Spec A: Distinguished open
sets

If f ∈ A, define the distinguished open set D(f) = {[p] ∈ Spec A : f /∈ p}. It is
the locus where f doesn’t vanish. (I often privately write this as D(f != 0) to remind
myself of this. I also privately call this a “Doesn’t-vanish set” in analogy with V(f)
being the Vanishing set.) We have already seen this set when discussing Spec Af

as a subset of Spec A. For example, we have observed that the Zariski-topology on
the distinguished open set D(f) ⊂ Spec A coincides with the Zariski topology on
Spec Af (Exercise 4.4.I).

The reason these sets are important is that they form a particularly nice base
for the (Zariski) topology:

4.5.A. EASY EXERCISE. Show that the distinguished open sets form a base for the
(Zariski) topology. (Hint: Given a subset S ⊂ A, show that the complement of
V(S) is ∪f∈SD(f).)

Here are some important but not difficult exercises to give you a feel for this
concept.

4.5.B. EXERCISE. Suppose fi ∈ A as i runs over some index set J. Show that
∪i∈JD(fi) = Spec A if and only if (fi) = A, or equivalently and very usefully,
there are ai (i ∈ J), all but finitely many 0, such that

∑
i∈J aifi = 1. (One of the

directions will use the fact that any proper ideal of A is contained in some maximal
ideal.)

4.5.C. EXERCISE. Show that if Spec A is an infinite union of distinguished open
sets ∪j∈JD(fj), then in fact it is a union of a finite number of these, i.e. there is a
finite subset J ′ so that Spec A = ∪j∈J ′D(fj). (Hint: exercise 4.5.B.)

4.5.D. EASY EXERCISE. Show that D(f) ∩ D(g) = D(fg).

4.5.E. IMPORTANT EXERCISE (CF. EXERCISE 4.4.J). Show that D(f) ⊂ D(g) if and
only if fn ∈ (g) for some n ≥ 1, if and only if g is a unit in Af.

We will use Exercise 4.5.E often. You can solve it thinking purely algebraically,
but the following geometric interpretation may be helpful. Inside Spec A, we have
the closed subset V(g) = Spec A/(g), where g vanishes, and its complement D(g),
where g doesn’t vanish. Then f is a function on this closed subset V(g) (or more
precisely, on Spec A/(g)), and by assumption it vanishes at all points of the closed
subset. Now any function vanishing at every point of the spectrum of a ring must
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be nilpotent (Theorem 4.2.10). In other words, there is some n such that fn = 0 in
A/(g), i.e. fn ≡ 0 (mod g) in A, i.e. fn ∈ (g).

4.5.F. EASY EXERCISE. Show that D(f) = ∅ if and only if f ∈ N.

4.6 Topological definitions (and Noetherian conditions)

A topological space is said to be irreducible if it is nonempty, and it is not the
union of two proper closed subsets. In other words, X is irreducible if whenever
X = Y ∪ Z with Y and Z closed, we have Y = X or Z = X.

4.6.A. EASY EXERCISE.
(a) Show that in an irreducible topological space, any nonempty open set is dense.
(The moral: unlike in the classical topology, in the Zariski topology, non-empty
open sets are all “huge”.)
(b) If X is a topological space, and Z (with the subspace topology) is an irreducible
subset, then the closure Z in Z is irreducible as well.

4.6.B. EASY EXERCISE. If A is an integral domain, show that Spec A is irreducible.
(Hint: pay attention to the generic point [(0)].) We will generalize this in Exer-
cise 4.6.O.

A point of a topological space x ∈ X is said to be closed if {x} is a closed subset.
In the classical topology on Cn, all points are closed.

4.6.C. EXERCISE. Show that the closed points of Spec A correspond to the maximal
ideals.

Thus Hilbert’s Nullstellensatz lets us interpret the closed points of An
C as the

n-tuples of complex numbers. Hence from now on we will say “closed point”
instead of “traditional point” and “non-closed point” instead of “bonus” or “new-
fangled” point when discussing subsets of An

C .

4.6.1. Quasicompactness. A topological space X is quasicompact if given any
cover X = ∪i∈IUi by open sets, there is a finite subset S of the index set I such that
X = ∪i∈SUi. Informally: every cover has a finite subcover. Depending on your
definition of “compactness”, this is the definition of compactness, minus possibly
a Hausdorff condition. We will like this condition, because we are afraid of infinity.

4.6.D. EXERCISE. (a) Show that Spec A is quasicompact. (Hint: Exercise 4.5.C.)
! (b) (less important) Show that in general Spec A can have nonquasicompact open
sets. (Possible hint: let A = k[x1, x2, x3, . . . ] and m = (x1, x2, . . . ) ⊂ A, and con-
sider the complement of V(m). This example will be useful to construct other
“counterexamples” later, e.g. Exercises 8.1.B and 8.3.E. In Exercise 4.6.M, we see
that such weird behavior doesn’t happen for “suitably nice” (Noetherian) rings.)

4.6.E. EXERCISE. (a) If X is a topological space that is a finite union of quasicom-
pact spaces, show that X is quasicompact.
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(b) Show that every closed subset of a quasicompact topological space is quasicom-
pact.

4.6.2. Specialization and generization. Given two points x, y of a topological
space X, we say that x is a specialization of y, and y is a generization of x, if x ∈ {y}.
This now makes precise our hand-waving about “one point containing another”.
It is of course nonsense for a point to contain another. But it is not nonsense to
say that the closure of a point contains another. For example, in A2

C = Spec C[x, y],
[(y − x2)] is a generization of (2, 4) = [(x − 2, y − 4)], and (2, 4) is a specialization
of [(y − x2)].

4.6.F. EXERCISE. If X = Spec A, show that [p] is a specialization of [q] if and only if
q ⊂ p. Hence show that V(p) = {[p]}.

We say that a point x ∈ X is a generic point for a closed subset K if {x} = K.
(Recall that if S is a subset of a topological space, then S denotes its closure.)

4.6.G. EXERCISE. Verify that [(y − x2)] ∈ A2 is a generic point for V(y − x2).

We will soon see (Exercise 4.7.E) that there is a natural bijection between points
of Spec A and irreducible closed subsets of Spec A. You know enough to prove this
now, although we will wait until we have developed some convenient terminol-
ogy.

4.6.H. TRICKY EXERCISE. (a) Suppose I = (wz−xy,wy−x2, xz−y2) ⊂ k[w, x, y, z].
Show that Spec k[w, x, y, z]/I is irreducible, by showing that I is prime. (This is
hard, so here is one of several possible hints: Show that the quotient ring is an in-
tegral domain, by showing that it is isomorphic to the subring of k[a, b] generated
by monomials of degree divisible by 3. There are other approaches as well, some
of which we will see later. This is an example of a hard question: how do you tell if
an ideal is prime?) We will later see this as the cone over the twisted cubic curve (the
twisted cubic curve is defined in Exercise 9.2.A, and is a special case of a Veronese
embedding, §9.2.6).
(b) Note that the generators of the ideal of part (a) may be rewritten as the equa-
tions ensuring that

rank

(
w x y
x y z

)
≤ 1,

i.e., as the determinants of the 2 × 2 submatrices. Generalize this to the ideal of
rank one 2× n matrices. This notion will correspond to the cone (§9.2.11) over the
degree n rational normal curve (Exercise 9.2.J).

4.6.3. Noetherian conditions.
In the examples we have considered (except in starred Exercise 4.6.D(b)), the

spaces have naturally broken up into some obvious pieces. Let’s make that a bit
more precise.

A topological space X is called Noetherian if it satisfies the descending chain
condition for closed subsets: any sequence Z1 ⊇ Z2 ⊇ · · · ⊇ Zn ⊇ · · · of closed
subsets eventually stabilizes: there is an r such that Zr = Zr+1 = · · · .

The following exercise may be enlightening.
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4.6.I. EXERCISE. Show that any decreasing sequence of closed subsets of A2
C =

Spec C[x, y] must eventually stabilize. Note that it can take arbitrarily long to sta-
bilize. (The closed subsets of A2

C were described in §4.4.3.)

4.6.4. Noetherian rings. It turns out that all of the spectra we have considered
have this property, but that isn’t true of the spectra of all rings. The key character-
istic all of our examples have had in common is that the rings were Noetherian. A
ring is Noetherian if every ascending sequence I1 ⊂ I2 ⊂ · · · of ideals eventually
stabilizes: there is an r such that Ir = Ir+1 = · · · . (This is called the ascending
chain condition on ideals.)

Here are some quick facts about Noetherian rings. You should be able to prove
them all.

• Fields are Noetherian. Z is Noetherian.
• If A is Noetherian, and φ : A → B is any ring homomorphism, then φ(A)

is Noetherian. Equivalently, quotients of Noetherian rings are Noether-
ian.

• If A is Noetherian, and S is any multiplicative set, then S−1A is Noether-
ian.

An important related notion is that of a Noetherian module. Although we won’t
use this notion for time (§10.6.3), we will develop their most important properties
while Noetherian ideas are fresh in your mind, in §4.6.10.

4.6.J. IMPORTANT EXERCISE. Show that a ring A is Noetherian if and only if every
ideal of A is finitely generated.

The next fact is non-trivial.

4.6.5. The Hilbert basis theorem. — If A is Noetherian, then so is A[x].

Hilbert proved this in an epochal paper [Hil] where he also proved the Hilbert
syzygy theorem (§16.3.2), and defined Hilbert functions and showed that they are
eventually polynomial (§20.5).

By the results described above, any polynomial ring over any field, or over
the integers, is Noetherian — and also any quotient or localization thereof. Hence
for example any finitely-generated algebra over k or Z, or any localization thereof,
is Noetherian. Most “nice” rings are Noetherian, but not all rings are Noether-
ian: k[x1, x2, . . . ] is not, because (x1) ⊂ (x1, x2) ⊂ (x1, x2, x3) ⊂ · · · is a strictly
ascending chain of ideals (cf. Exercise 4.6.D(b)).

Proof of the Hilbert Basis Theorem 4.6.5. We show that any ideal I ⊂ A[x] is finitely-
generated. We inductively produce a set of generators f1, . . . as follows. For n > 0,
if I != (f1, . . . , fn−1), let fn be any non-zero element of I − (f1, . . . , fn−1) of lowest
degree. Thus f1 is any element of I of lowest degree, assuming I != (0). If this
procedure terminates, we are done. Otherwise, let an ∈ A be the initial coefficient
of fn for n > 0. Then as A is Noetherian, (a1, a2, . . . ) = (a1, . . . , aN) for some N.
Say aN+1 =

∑N
i=1 biai. Then

fN+1 −
N∑

i=1

bifix
deg fN+1−deg fi
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is an element of I that is nonzero (as fN+1 /∈ (f1, . . . , fN)) of lower degree than
fN+1, yielding a contradiction. !

4.6.K. UNIMPORTANT EXERCISE. Show that if A is Noetherian, then so is A[[x]] :=
lim←−A[x]/xn, the ring of power series in x. (Possible hint: Suppose I ⊂ A[[x]] is an
ideal. Let In ⊂ A be the coefficients of xn that appear in the elements of I. Show
that In is an ideal. Show that In ⊂ In+1, and that I is determined by (I0, I1, I2, . . . ).)

4.6.L. EXERCISE. If A is Noetherian, show that Spec A is a Noetherian topological
space. Describe a ring A such that Spec A is not a Noetherian topological space.
(Aside: if Spec A is a Noetherian topological space, A need not be Noetherian. One
example is A = k[x1, x2, x3, . . . ]/(x1, x2

2, x3
3, . . . ). Then Spec A has one point, so is

Noetherian. But A is not Noetherian as ([x1]) " ([x1], [x2]) " ([x1], [x2], [x3]) " · · ·
in A.

4.6.M. EXERCISE (PROMISED IN EXERCISE 4.6.D(B)). Show that every open subset
of a Noetherian topological space is quasicompact. Hence if A is Noetherian, every
open subset of Spec A is quasicompact.

If X is a topological space, and Z is a maximal irreducible subset (an irreducible
subset not contained in any larger irreducible subset), Z is said to be an irreducible
component of X. Irreducible components are closed (as the closure of irreducible
subsets are irreducible, Exercise 4.6.A(b)), and it can be helpful to think of irre-
ducible components of X as maximal among the irreducible closed subsets of X.
We think of these as the “pieces of X” (see Figure 4.8).

FIGURE 4.8. This closed subset of A2
C has six irreducible components

4.6.N. EXERCISE/DEFINITION. A prime of a ring A is a minimal prime if it is
minimal with respect to inclusion. (For example, the only minimal prime of k[x, y]
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is (0).) If A is any ring, show that the irreducible components of Spec A are in
bijection with the minimal primes of A.

4.6.O. EXERCISE (GENERALIZING EXERCISE 4.6.B). Show that Spec A is irre-
ducible if and only if A has only one minimal prime ideal.

4.6.P. EXERCISE. What are the minimal primes of k[x, y]/(xy) (where k is a field)?

4.6.6. Proposition. — Suppose X is a Noetherian topological space. Then every non-
empty closed subset Z can be expressed uniquely as a finite union Z = Z1 ∪ · · · ∪ Zn of
irreducible closed subsets, none contained in any other.

Translation: any non-empty closed subset Z has a finite number of pieces. As
a corollary, this implies that a Noetherian ring A has only finitely many minimal
primes.

Proof. The following technique is called Noetherian induction, for reasons that
will be clear. We will use it again, many times.

Consider the collection of nonempty closed subsets of X that cannot be ex-
pressed as a finite union of irreducible closed subsets. We will show that it is
empty. Otherwise, let Y1 be one such. If it properly contains another such, then
choose one, and call it Y2. If this one contains another such, then choose one, and
call it Y3, and so on. By the descending chain condition, this must eventually stop,
and we must have some Yr that cannot be written as a finite union of irreducible
closed subsets, but every closed subset properly contained in it can be so written.
But then Yr is not itself irreducible, so we can write Yr = Y ′ ∪ Y ′′ where Y ′ and
Y ′′ are both proper closed subsets. Both of these by hypothesis can be written as
the union of a finite number of irreducible subsets, and hence so can Yr, yield-
ing a contradiction. Thus each closed subset can be written as a finite union of
irreducible closed subsets. We can assume that none of these irreducible closed
subsets contain any others, by discarding some of them.

We now show uniqueness. Suppose

Z = Z1 ∪ Z2 ∪ · · · ∪ Zr = Z ′
1 ∪ Z ′

2 ∪ · · · ∪ Z ′
s

are two such representations. Then Z ′
1 ⊂ Z1 ∪ Z2 ∪ · · · ∪ Zr, so Z ′

1 = (Z1 ∩ Z ′
1) ∪

· · · ∪ (Zr ∩ Z ′
1). Now Z ′

1 is irreducible, so one of these is Z ′
1 itself, say (without

loss of generality) Z1 ∩ Z ′
1. Thus Z ′

1 ⊂ Z1. Similarly, Z1 ⊂ Z ′
a for some a; but

because Z ′
1 ⊂ Z1 ⊂ Z ′

a, and Z ′
1 is contained in no other Z ′

i, we must have a = 1,
and Z ′

1 = Z1. Thus each element of the list of Z’s is in the list of Z ′’s, and vice
versa, so they must be the same list. !

The following exercise shows that any topological space is the union of irre-
ducible components. Only non-Noetherian or curious readers should solve it. For
the most part, we will consider the cases when X is a Noetherian topological space
or when X is irreducible.

4.6.Q. ! EXERCISE. Every point x of a topological space X is contained in an irre-
ducible component of X. Hint: consider the partially ordered set S of irreducible
closed subsets of X containing x. Use Zorn’s Lemma to show the existence of a
maximal totally ordered subset {Zα} of S . Show that ∪Zα is irreducible.
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4.6.7. Definition. A topological space X is connected if it cannot be written as
the disjoint union of two non-empty open sets. A subset Y of X is a connected
component if it is a maximal connected subset.

4.6.R. EXERCISE. Show that an irreducible topological space is connected.

4.6.S. EXERCISE. Give (with proof!) an example of a ring A where Spec A is
connected but reducible. (Possible hint: a picture may help. The symbol “×” has
two “pieces” yet is connected.)

4.6.T. EXERCISE. If A is a Noetherian ring, show that the connected components of
Spec A are unions of the irreducible components. Show that the subsets of Spec A
that are simultaneously open and closed are precisely the unions of the connected
components of Spec A.

4.6.U. EXERCISE. If A = A1 × A2 × · · · × An, describe a homeomorphism
Spec A1

∐
Spec A2

∐
· · ·

∐
Spec An → Spec A for which each Spec Ai is mapped

onto a distinguished open subset D(fi) of Spec A. Thus, Spec
∏n

i=1 Ai =
∐n

i=1 Spec Ai.
(Hint: let fi = (0, . . . , 0, 1, 0, . . . , 0) where the 1 is in the ith component.)

An extension of the previous exercise (that you can prove if you wish) is that
Spec A is not connected if and only if A is isomorphic to the product of nonzero
rings A1 and A2. The key idea is to show that both conditions are equivalent to
there existing nonzero a1, a2 ∈ A for which a2

1 = a1, a2
2 = a2, a1 + a2 = 1, and

hence a1a2 = 0. An element a ∈ A satisfying a2 = a is called an idempotent.

4.6.8. ! Fun but irrelevant remark. The previous exercise shows that
∐n

i=1 Spec Ai
∼=

Spec
∏n

i=1 Ai, but this never holds if “n is infinite” and all Ai are nonzero, as
Spec of any ring is quasicompact (Exercise 4.6.D(a)). This leads to an interesting
phenomenon. We show that Spec

∏∞
i=1 Ai is “strictly bigger” than

∐∞
i=1 Spec Ai

where each Ai is isomorphic to the field k. First, we have an inclusion of sets∐∞
i=1 Spec Ai ↪→ Spec

∏∞
i=1 Ai, as there is a maximal ideal of

∏
Ai correspond-

ing to each i (precisely those elements 0 in the ith component.) But there are other
maximal ideals of

∏
Ai. Hint: describe a proper ideal not contained in any of these

maximal ideals. (One idea: consider elements
∏

ai that are “eventually zero”, i.e.
ai = 0 for i . 0.) This leads to the notion of ultrafilters, which are very useful, but
irrelevant to our current discussion.

4.6.9. Remark. We could define constructible and locally closed subsets now, but
we wait until Exercise 8.4.A.

4.6.10. Noetherian conditions for modules. As promised in §4.6.4, we introduce
Noetherian modules while Noetherian ideas are fresh in your mind.

If A is any ring, not necessarily Noetherian, we say an A-module is Noether-
ian if it satisfies the ascending chain condition for submodules. Thus for example
a ring A is Noetherian if and only if it is a Noetherian A-module.

4.6.V. EXERCISE. Show that if M is a Noetherian A-module, then any submodule
of M is a finitely generated A-module.
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4.6.W. EXERCISE. If 0 → M ′ → M → M ′′ → 0 is exact, show that M ′ and
M ′′ are Noetherian if and only if M is Noetherian. (Hint: Given an ascending
chain in M, we get two simultaneous ascending chains in M ′ and M ′′. Possible

further hint: prove that if M ′ $$ M
φ $$ M ′′ is exact, and N ⊂ N ′ ⊂ M, and

N ∩ M ′ = N ′ ∩ M ′ and φ(N) = φ(N ′), then N = N ′.)

4.6.X. EXERCISE. Show that if A is a Noetherian ring, then A⊕n is a Noetherian
A-module.

4.6.Y. EXERCISE. Show that if A is a Noetherian ring and M is a finitely generated
A-module, then M is a Noetherian module. Hence by Exercise 4.6.V, any submod-
ule of a finitely generated module over a Noetherian ring is finitely generated.

4.7 The function I(·), taking subsets of Spec A to ideals of A

We now introduce a notion that is in some sense “inverse” to the vanishing set
function V(·). Given a subset S ⊂ Spec A, I(S) is the set of functions vanishing on
S. In other words, I(S) =

⋂
[p]∈S p ⊂ A (at least when S is nonempty).

We make three quick observations:

• I(S) is clearly an ideal of A.
• I(·) is inclusion-reversing: if S1 ⊂ S2, then I(S2) ⊂ I(S1).
• I(S) = I(S).

4.7.A. EXERCISE. Let A = k[x, y]. If S = {[(x)], [(x − 1, y)]} (see Figure 4.9), then
I(S) consists of those polynomials vanishing on the y-axis, and at the point (1, 0).
Give generators for this ideal.

[(x − 1, y)]

[(x)]

FIGURE 4.9. The set S of Exercise/example 4.7.A, pictured as a
subset of A2

4.7.B. TRICKY EXERCISE. Suppose S ⊂ A3
C is the union of the three axes. Give

generators for the ideal I(S). Be sure to prove it! We will see in Exercise 13.1.F that
this ideal is not generated by less than three elements.
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4.7.C. EXERCISE. Show that V(I(S)) = S. Hence V(I(S)) = S for a closed set S.
(Compare this to Exercise 4.7.D.)

Note that I(S) is always a radical ideal — if f ∈
√

I(S), then fn vanishes on S
for some n > 0, so then f vanishes on S, so f ∈ I(S).

4.7.D. EXERCISE. Prove that if J ⊂ A is an ideal, then I(V(J)) =
√

J. (Huge hint:
Exercise 4.4.J.)

This exercise and Exercise 4.7.C suggest that V and I are “almost” inverse.
More precisely:

4.7.1. Theorem. — V(·) and I(·) give a bijection between closed subsets of Spec A and
radical ideals of A (where a closed subset gives a radical ideal by I(·), and a radical ideal
gives a closed subset by V(·)).

Theorem 4.7.1 is sometimes called Hilbert’s Nullstellensatz, but we reserve
that name for Theorem 4.2.3.

4.7.E. IMPORTANT EXERCISE (CF. EXERCISE 4.6.N). Show that V(·) and I(·) give
a bijection between irreducible closed subsets of Spec A and prime ideals of A. From
this conclude that in Spec A there is a bijection between points of Spec A and irre-
ducible closed subsets of Spec A (where a point determines an irreducible closed
subset by taking the closure). Hence each irreducible closed subset of Spec A has pre-
cisely one generic point — any irreducible closed subset Z can be written uniquely
as {z}.



CHAPTER 5

The structure sheaf, and the definition of schemes in
general

5.1 The structure sheaf of an affine scheme

The final ingredient in the definition of an affine scheme is the structure sheaf
OSpec A, which we think of as the “sheaf of algebraic functions”. You should keep
in your mind the example of “algebraic functions” on Cn, which you understand
well. For example, in A2, we expect that on the open set D(xy) (away from the
two axes), (3x4 + y + 4)/x7y3 should be an algebraic function.

These functions will have values at points, but won’t be determined by their
values at points. But like all sections of sheaves, they will be determined by their
germs (see §5.3.3).

It suffices to describe the structure sheaf as a sheaf (of rings) on the base of
distinguished open sets (Theorem 3.7.1 and Exercise 4.5.A).

5.1.1. Definition. Define OSpec A(D(f)) to be the localization of A at the multiplica-
tive set of all functions that do not vanish outside of V(f) (i.e. those g ∈ A such
that V(g) ⊂ V(f), or equivalently D(f) ⊂ D(g), cf. Exercise 4.5.E). This depends
only on D(f), and not on f itself.

5.1.A. GREAT EXERCISE. Show that the natural map Af → OSpec A(D(f)) is an
isomorphism. (Possible hint: Exercise 4.5.E.)

If D(f ′) ⊂ D(f), define the restriction map resD(f),D(f ′) : OSpec A(D(f)) →
OSpec A(D(f ′)) in the obvious way: the latter ring is a further localization of the
former ring. The restriction maps obviously commute: this is a “presheaf on the
distinguished base”.

5.1.2. Theorem. — The data just described give a sheaf on the distinguished base, and
hence determine a sheaf on the topological space Spec A.

This sheaf is called the structure sheaf, and will be denoted OSpec A, or some-
times O if the subscript is clear from the context. Such a topological space, with
sheaf, will be called an affine scheme. The notation Spec A will hereafter denote
the data of a topological space with a structure sheaf.

Proof. We must show the base identity and base gluability axioms hold (§3.7). We
show that they both hold for the open set that is the entire space Spec A, and leave

111
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to you the trick which extends them to arbitrary distinguished open sets (Exer-
cises 5.1.B and 5.1.C). Suppose Spec A = ∪i∈ID(fi), or equivalently (Exercise 4.5.B)
the ideal generated by the fi is the entire ring A.

We check identity on the base. Suppose that Spec A = ∪i∈ID(fi) where i
runs over some index set I. Then there is some finite subset of I, which we name
{1, . . . , n}, such that Spec A = ∪n

i=1D(fi), i.e. (f1, . . . , fn) = A (quasicompactness
of Spec A, Exercise 4.5.C). Suppose we are given s ∈ A such that resSpec A,D(fi) s =
0 in Afi

for all i. We wish to show that s = 0. The fact that resSpec A,D(fi) s = 0 in
Afi

implies that there is some m such that for each i ∈ {1, . . . , n}, fm
i s = 0. Now

(fm
1 , . . . , fm

n ) = A (for example, from Spec A = ∪D(fi) = ∪D(fm
i )), so there are

ri ∈ A with
∑n

i=1 rif
m
i = 1 in A, from which

s =
(∑

rif
m
i

)
s =

∑
ri(f

m
i s) = 0.

Thus we have checked the “base identity” axiom for Spec A. (Serre has described
this as a “partition of unity” argument, and if you look at it in the right way, his
insight is very enlightening.)

5.1.B. EXERCISE. Make the tiny changes to the above argument to show base
identity for any distinguished open D(f). (Hint: judiciously replace A by Af in the
above argument.)

We next show base gluability. Suppose again ∪i∈ID(fi) = Spec A, where I is a
index set (possibly horribly infinite). Suppose we are given elements in each Afi

that agree on the overlaps Afifj
. Note that intersections of distinguished open sets

are also distinguished open sets.
(Aside: experts will realize that we are trying to show exactness of

(5.1.2.1) 0 → A →
∏

i

Afi
→

∏

i ,=j

Afifj
.

Be careful interpreting the right-hand map — signs are involved! The map Afi
→

Afifj
should be taken to be the “obvious one” if i < j, and negative of the “obvious

one” if i > j. Base identity corresponds to injectivity at A. The composition of the
right two morphisms is trivially zero, and gluability is exactness at

∏
i Afi

.)
Assume first that I is finite, say I = {1, . . . , n}. We have elements ai/fli

i ∈ Afi

agreeing on overlaps Afifj
. Letting gi = fli

i , using D(fi) = D(gi), we can simplify
notation by considering our elements as of the form ai/gi ∈ Agi

.
The fact that ai/gi and aj/gj “agree on the overlap” (i.e. in Agigj

) means that
for some mij,

(gigj)
mij(gjai − giaj) = 0

in A. By taking m = max mij (here we use the finiteness of I), we can simplify
notation:

(gigj)
m(gjai − giaj) = 0

for all i, j. Let bi = aig
m
i for all i, and hi = gm+1

i (so D(hi) = D(gi)). Then we
can simplify notation even more: on each D(hi), we have a function bi/hi, and
the overlap condition is

(5.1.2.2) hjbi = hibj.
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Now ∪iD(hi) = Spec A, implying that 1 =
∑n

i=1 rihi for some ri ∈ A. Define

(5.1.2.3) r =
∑

ribi.

This will be the element of A that restricts to each bj/hj. Indeed, from the overlap
condition (5.1.2.2),

rhj =
∑

i

ribihj =
∑

i

rihibj = bj.

We next deal with the case where I is infinite. Choose a finite subset {1, . . . , n} ⊂
I with (f1, . . . , fn) = A (or equivalently, use quasicompactness of Spec A to choose
a finite subcover by D(fi)). Construct r as above, using (5.1.2.3). We will show that
for any α ∈ I − {1, . . . , n}, r restricts to the desired element aα of Afα . Repeat the
entire process above with {1, . . . , n,α} in place of {1, . . . , n}, to obtain r ′ ∈ A which
restricts to αα for i ∈ {1, . . . , n,α}. Then by base identity, r ′ = r. (Note that we use
base identity to prove base gluability. This is an example of how the identity axiom
is “prior” to the gluability axiom.) Hence r restricts to aα/flα

α as desired.

5.1.C. EXERCISE. Alter this argument appropriately to show base gluability for
any distinguished open D(f).

We have now completed the proof of Theorem 5.1.2. !

The following generalization of Theorem 5.1.2 will be essential in the defini-
tion of a quasicoherent sheaf in Chapter 14.

5.1.D. IMPORTANT EXERCISE/DEFINITION. Suppose M is an A-module. Show
that the following construction describes a sheaf M̃ on the distinguished base. De-
fine M̃(D(f)) to be the localization of M at the multiplicative set of all functions
that do not vanish outside of V(f). Define restriction maps resD(f),D(g) in the anal-
ogous way to OSpec A. Show that this defines a sheaf on the distinguished base,
and hence a sheaf on Spec A. Then show that this is an OSpec A-module.

5.1.3. Remark (cf. (5.1.2.1)). In the course of answering the previous exercise, you
will show that if (f1, . . . , fr) = A, M can be identified with a specific submodule
of Mf1

× · · · × Mfr
. Even though M → Mfi

may not be an inclusion for any fi,
M → Mf1

× · · · × Mfr
is an inclusion. This will be useful later: we will want to

show that if M has some nice property, then Mf does too, which will be easy. We
will also want to show that if (f1, . . . , fn) = A, then if Mfi

have this property, then
M does too, and we will invoke this.

5.2 Visualizing schemes II: nilpotents

In §4.3, we discussed how to visualize the underlying set of schemes, adding
in generic points to our previous intuition of “classical” (or closed) points. Our
later discussion of the Zariski topology fit well with that picture. In our definition
of the “affine scheme” (Spec A,OSpec A), we have the additional information of
nilpotents, which are invisible on the level of points (§4.2.9), so now we figure
out to picture them. We will then readily be able to glue them together to picture
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schemes in general, once we have made the appropriate definitions. As we are
building intuition, we will not be rigorous or precise.

To begin, we picture Spec C[x]/(x) as a closed subset (a point) of Spec C[x]: to
the quotient C[x] → C[x]/(x), we associate the picture of a closed inclusion. The
ring map can be interpreted as restriction of functions: to a polynomial in C[x], we
associate its value at 0 (its residue class modulo (x), by the Remainder Theorem).
The quotient C[x]/(x2) should fit in between these rings,

C[x] $$ $$ C[x]/(x2) $$ $$ C[x]/(x)

f(x) % $$ f(0),

and we should picture it in terms of the information the quotient remembers. The
image of a polynomial f(x) is the information of its value at 0, and its derivative
(cf. Exercise 4.2.S). We thus picture this as being the point, plus a little bit more —
a little bit of “fuzz” on the point (see Figure 5.1). (These will later be examples of
closed subschemes, the schematic version of closed subsets, §9.1.)

Spec C[x]/(x)

Spec C[x] = A1
C

Spec C[x]/(x3)

Spec C[x]/(x2)

FIGURE 5.1. Picturing quotients of C[x]

Similarly, C[x]/(x3) remembers even more information — the second deriva-
tive as well. Thus we picture this as the point 0 plus even more fuzz.

More subtleties arise in two dimensions (see Figure 5.2). Consider Spec C[x, y]/(x, y)2,
which is sandwiched between two rings we know well:

C[x, y] $$ $$ C[x, y]/(x, y)2 $$ $$ C[x, y]/(x, y)

f(x, y) % $$ f(0).

Again, taking the quotient by (x, y)2 remembers the first derivative, “in both direc-
tions”. We picture this as fuzz around the point. Similarly, (x, y)3 remembers the
second derivative “in all directions”.

Consider instead the ideal (x2, y). What it remembers is the derivative only
in the x direction — given a polynomial, we remember its value at 0, and the
coefficient of x. We remember this by picturing the fuzz only in the x direction.
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Spec C[x, y]/(y2)

Spec C[x, y]/(x, y)

Spec C[x, y]/(x2, y2)

Spec C[x, y]/(x, y)2Spec C[x, y]/(x2, y)

FIGURE 5.2. Picturing quotients of C[x, y]

This gives us some handle on picturing more things of this sort, but now it be-
comes more an art than a science. For example, Spec C[x, y]/(x2, y2) we might pic-
ture as a fuzzy square around the origin. One feature of this example is that given
two ideals I and J of a ring A (such as C[x, y]), your fuzzy picture of Spec A/(I, J)
should be the “intersection” of your picture of Spec A/I and Spec A/J in Spec A.
(You will make this precise in Exercise 9.1.G(a).) For example, Spec C[x, y]/(x2, y2)
should be the intersection of two thickened lines. (How would you picture Spec C[x, y]/(x5, y3)?
Spec C[x, y, z]/(x3, y4, z5, (x + y + z)2)? Spec C[x, y]/((x, y)5, y3)?)

This idea captures useful information that you already have some intuition
for. For example, consider the intersection of the parabola y = x2 and the x-axis
(in the xy-plane). See Figure 5.3. You already have a sense that the intersection has
multiplicity two. In terms of this visualization, we interpret this as intersecting (in
Spec C[x, y]):

Spec C[x, y]/(y − x2) ∩ Spec C[x, y]/(y) = Spec C[x, y]/(y − x2, y)

= Spec C[x, y]/(y, x2)

which we interpret as the fact that the parabola and line not just meet with multi-
plicity two, but that the “multiplicity 2” part is in the direction of the x-axis. You
will make this example precise in Exercise 9.1.G(b).

=intersect

FIGURE 5.3. The scheme-theoretic intersection of the parabola
y = x2 and the x-axis is a nonreduced scheme (with fuzz in the
x-direction)
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5.2.1. We will later make the location of the fuzz somewhat more precise when we
discuss associated points (§6.5). We will see that in reasonable circumstances, the
fuzz is concentrated on closed subsets (Remark 14.7.2).

5.3 Definition of schemes

We can now define scheme in general. First, define an isomorphism of ringed
spaces (X,OX) and (Y,OY) as (i) a homeomorphism f : X → Y, and (ii) an isomor-
phism of sheaves OX and OY , considered to be on the same space via f. (Part (ii),
more precisely, is an isomorphism OY → f∗OX of sheaves on Y, or equivalently by
adjointness f−1OY → OX of sheaves on X.) In other words, we have a “correspon-
dence” of sets, topologies, and structure sheaves. An affine scheme is a ringed
space that is isomorphic to (Spec A,OSpec A) for some A. A scheme (X,OX) is a
ringed space such that any point x ∈ X has a neighborhood U such that (U,OX|U)
is an affine scheme. The scheme can be denoted (X,OX), although it is often de-
noted X, with the structure sheaf implicit.

An isomorphism of two schemes (X,OX) and (Y,OY) is an isomorphism as
ringed spaces. If U ⊂ X is an open subset, then Γ(OX, U) are said to be the func-
tions on U; this generalizes in an obvious way the definition of functions on an
affine scheme, §4.2.1.

5.3.1. Remark. From the definition of the structure sheaf on an affine scheme,
several things are clear. First of all, if we are told that (X,OX) is an affine scheme,
we may recover its ring (i.e. find the ring A such that Spec A = X) by taking the
ring of global sections, as X = D(1), so:

Γ(X,OX) = Γ(D(1),OSpec A) as D(1) = Spec A

= A.

(You can verify that we get more, and can “recognize X as the scheme Spec A”: we
get an isomorphism f : (Spec Γ(X,OX),OSpec Γ(X,OX)) → (X,OX). For example, if
m is a maximal ideal of Γ(X,OX), f([m]) = V(m).) The following exercise will give
you some practice with these notions.

5.3.A. EXERCISE (WHICH CAN BE STRANGELY CONFUSING). Describe a bijection
between the isomorphisms Spec A → Spec A ′ and the ring isomorphisms A ′ → A.

More generally, given f ∈ A, Γ(D(f),OSpec A) ∼= Af. Thus under the natural
inclusion of sets Spec Af ↪→ Spec A, the Zariski topology on Spec A restricts to
give the Zariski topology on Spec Af (Exercise 4.4.I), and the structure sheaf of
Spec A restricts to the structure sheaf of Spec Af, as the next exercise shows.

5.3.B. IMPORTANT BUT EASY EXERCISE. Suppose f ∈ A. Show that under the
identification of D(f) in Spec A with Spec Af (§4.5), there is a natural isomorphism
of ringed spaces (D(f),OSpec A|D(f)) ∼= (Spec Af,OSpec Af

). Hint: notice that distin-
guished open sets of Spec Rf are already distinguished open sets in Spec R.

5.3.C. EASY EXERCISE. If X is a scheme, and U is any open subset, prove that
(U,OX|U) is also a scheme.
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5.3.2. Definitions. We say (U,OX|U) is an open subscheme of X. If U is also an
affine scheme, we often say U is an affine open subset, or an affine open sub-
scheme, or sometimes informally just an affine open. For example, D(f) is an
affine open subscheme of Spec A.

5.3.D. EASY EXERCISE. Show that if X is a scheme, then the affine open sets form
a base for the Zariski topology.

5.3.E. EASY EXERCISE. The disjoint union of schemes is defined as you would
expect: it is the disjoint union of sets, with the expected topology (thus it is the
disjoint union of topological spaces), with the expected sheaf. Once we know what
morphisms are, it will be immediate (Exercise 10.1.A) that (just as for sets and
topological spaces) disjoint union is the coproduct in the category of schemes.
(a) Show that the disjoint union of a finite number of affine schemes is also an affine
scheme. (Hint: Exercise 4.6.U.)
(b) (a first example of a non-affine scheme) Show that an infinite disjoint union of
(non-empty) affine schemes is not an affine scheme. (Hint: affine schemes are
quasicompact, Exercise 4.6.D(a).)

5.3.3. Stalks of the structure sheaf: germs, values at a point, and the residue field
of a point. Like every sheaf, the structure sheaf has stalks, and we shouldn’t be
surprised if they are interesting from an algebraic point of view. In fact, we have
seen them before.

5.3.F. IMPORTANT EXERCISE. Show that the stalk of OSpec A at the point [p] is the
local ring Ap.

Essentially the same argument will show that the stalk of the sheaf M̃ (defined
in Exercise 5.1.D) at [p] is Mp. Here is an interesting consequence, or if you prefer, a
geometric interpretation of an algebraic fact. A section is determined by its germs
(Exercise 3.4.A), meaning that M →

∏
p Mp is an inclusion. So for example an

A-module is zero if and only if all its localizations at primes are zero.

5.3.4. Definition. We say a ringed space is a locally ringed space if its stalks are
local rings. (The motivation for the terminology comes from thinking of sheaves in
terms of stalks. A ringed space is a sheaf whose stalks are rings. A locally ringed space
is a sheaf whose stalks are local rings.) Thus schemes are locally ringed spaces.
Manifolds are another example of locally ringed spaces, see §3.1.1. In both cases,
taking quotient by the maximal ideal may be interpreted as evaluating at the point.
The maximal ideal of the local ring OX,p is denoted mX,p or mp, and the residue
field OX,p/mp is denoted κ(p). Functions on an open subset U of a locally ringed
space have values at each point of U. The value at p of such a function lies in κ(p).
As usual, we say that a function vanishes at a point p if its value at p is 0.

As an example, consider a point [p] of an affine scheme Spec A. (Of course, this
example is “universal”, as all points may be interpreted in this way, by choosing
an affine neighborhood.) The residue field at [p] is Ap/pAp, which is isomorphic
to K(A/p), the fraction field of the quotient. It is useful to note that localization at
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p and taking quotient by p “commute”, i.e. the following diagram commutes.

(5.3.4.1) Ap

quotient

&&..
..

..
..

..
..

.

A

localize
99
88888888

quotient !!#
##

##
##

# Ap/pAp = K(A/p)

A/p

localize, i.e. K(·)

::999999999999

For example, consider the scheme A2
k = Spec k[x, y], where k is a field of char-

acteristic not 2. Then (x2 + y2)/x(y2 − x5) is a function away from the y-axis
and the curve y2 − x5. Its value at (2, 4) (by which we mean [(x − 2, y − 4)]) is
(22 + 42)/(2(42 − 25)), as

x2 + y2

x(y2 − x5)
≡

22 + 42

2(42 − 25)

in the residue field — check this if it seems mysterious. And its value at [(y)],

the generic point of the x-axis, is x2

−x6 = −1/x4, which we see by setting y to 0.
This is indeed an element of the fraction field of k[x, y]/(y), i.e. k(x). (If you think
you care only about algebraically closed fields, let this example be a first warning:
Ap/pAp won’t be algebraically closed in general, even if A is a finitely generated
C-algebra!)

If anything makes you nervous, you should make up an example to make you
feel better. Here is one: 27/4 is a function on Spec Z − {[(2)], [(7)]} or indeed on an
even bigger open set. What is its value at [(5)]? Answer: 2/(−1) ≡ −2 (mod 5).
What is its value at the generic point [(0)]? Answer: 27/4. Where does it vanish?
At [(3)].

5.3.5. Stray definition: the fiber of an O-module at a point. If F is an O-module on
a scheme X (or more generally, a locally ringed space), define the fiber of F at a
point p ∈ X by

F |p := Fp ⊗OX,p
κ(p).

As a reality check, O |p is κ(p) by definition.

5.4 Three examples

We now give three extended examples. Our short-term goal is to see that we
can really work with the structure sheaf, and can compute the ring of sections of
interesting open sets that aren’t just distinguished open sets of affine schemes. Our
long-term goal is to meet interesting examples that will come up repeatedly in the
future.

5.4.1. Example: The plane minus the origin. This example will show you that
the distinguished base is something that you can work with. Let A = k[x, y], so
Spec A = A2

k. Let’s work out the space of functions on the open set U = A2 −
{(0, 0)} = A2 − {[(x, y)]}.
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You can’t cut out this set with a single equation (can you see why?), so this
isn’t a distinguished open set. But in any case, even if we are not sure if this is
a distinguished open set, we can describe it as the union of two things which are
distinguished open sets: U = D(x) ∪ D(y). We will find the functions on U by
gluing together functions on D(x) and D(y).

The functions on D(x) are, by Definition 5.1.1, Ax = k[x, y, 1/x]. The functions
on D(y) are Ay = k[x, y, 1/y]. Note that A ↪→ Ax, Ay. This is because x and y are
not zerodivisors. (The ring A is an integral domain — it has no zerodivisors, be-
sides 0 — so localization is always an inclusion, Exercise 2.3.C.) So we are looking
for functions on D(x) and D(y) that agree on D(x) ∩ D(y) = D(xy), i.e. they are
just the same Laurent polynomial. Which things of this first form are also of the
second form? Just traditional polynomials —

(5.4.1.1) Γ(U,OA2) ≡ k[x, y].

In other words, we get no extra functions by throwing out this point. Notice how
easy that was to calculate!

5.4.2. Aside. Notice that any function on A2 − {(0, 0)} extends over all of A2.
This is an analogue of Hartogs’ Lemma in complex geometry: you can extend a
holomorphic function defined on the complement of a set of codimension at least
two on a complex manifold over the missing set. This will work more generally
in the algebraic setting: you can extend over points in codimension at least 2 not
only if they are “smooth”, but also if they are mildly singular — what we will call
normal. We will make this precise in §12.3.10. This fact will be very useful for us.

5.4.3. We now show an interesting fact: (U,OA2 |U) is a scheme, but it is not an
affine scheme. (This is confusing, so you will have to pay attention.) Here’s
why: otherwise, if (U,OA2 |U) = (Spec A,OSpec A), then we can recover A by taking
global sections:

A = Γ(U,OA2 |U),

which we have already identified in (5.4.1.1) as k[x, y]. So if U is affine, then U ∼=
A2

k. But this bijection between primes in a ring and points of the spectrum is more
constructive than that: given the prime ideal I, you can recover the point as the generic
point of the closed subset cut out by I, i.e. V(I), and given the point p, you can recover the
ideal as those functions vanishing at p, i.e. I(p). In particular, the prime ideal (x, y) of
A should cut out a point of Spec A. But on U, V(x) ∩ V(y) = ∅. Conclusion: U is
not an affine scheme. (If you are ever looking for a counterexample to something,
and you are expecting one involving a non-affine scheme, keep this example in
mind!)

5.4.4. Gluing two copies of A1 together in two different ways. We have now
seen two examples of non-affine schemes: an infinite disjoint union of non-empty
schemes: Exercise 5.3.E and A2 − {(0, 0)}. I want to give you two more examples.
They are important because they are the first examples of fundamental behavior,
the first pathological, and the second central.

First, I need to tell you how to glue two schemes together. Before that, you
should review how to glue topological spaces together along isomorphic open
sets. Given two topological spaces X and Y, and open subsets U ⊂ X and V ⊂ Y
along with a homeomorphism U ∼= V , we can create a new topological space W,
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that we think of as gluing X and Y together along U ∼= V . It is the quotient of
the disjoint union X

∐
Y by the equivalence relation U ∼= V , where the quotient

is given the quotient topology. Then X and Y are naturally (identified with) open
subsets of W, and indeed cover W. Can you restate this cleanly with an arbitrary
(not necessarily finite) number of topological spaces?

Now that we have discussed gluing topological spaces, let’s glue schemes to-
gether. Suppose you have two schemes (X,OX) and (Y,OY), and open subsets

U ⊂ X and V ⊂ Y, along with a homeomorphism f : U
∼ $$ V , and an iso-

morphism of structure sheaves OV
∼ $$ f∗OU (i.e. an isomorphism of schemes

(U,OX|U) ∼= (V,OY |V)). Then we can glue these together to get a single scheme.
Reason: let W be X and Y glued together using the isomorphism U ∼= V . Then Ex-
ercise 3.7.D shows that the structure sheaves can be glued together to get a sheaf
of rings. Note that this is indeed a scheme: any point has a neighborhood that is
an affine scheme. (Do you see why?)

5.4.A. ESSENTIAL EXERCISE (CF. EXERCISE 3.7.D). For later reference, show that
you can glue an arbitrary collection of schemes together. Suppose we are given:

• schemes Xi (as i runs over some index set I, not necessarily finite),
• open subschemes Xij ⊂ Xi,
• isomorphisms fij : Xij → Xji with fii the identity

such that

• (the cocycle condition) the isomorphisms “agree on triple intersections”,
i.e. fik|Xij∩Xik

= fjk|Xji∩Xjk
◦ fij|Xij∩Xik

.

(The cocycle condition ensures that fij and fji are inverses. In fact, the hypothesis
that fii is the identity also follows from the cocycle condition.) Show that there is a
unique scheme X (up to unique isomorphism) along with open subsets isomorphic
to the Xi respecting this gluing data in the obvious sense. (Hint: what is X as a set?
What is the topology on this set? In terms of your description of the open sets of
X, what are the sections of this sheaf over each open set?)

I will now give you two non-affine schemes. In both cases, I will glue together
two copies of the affine line A1

k. Let X = Spec k[t], and Y = Spec k[u]. Let
U = D(t) = Spec k[t, 1/t] ⊂ X and V = D(u) = Spec k[u, 1/u] ⊂ Y. We will get
both examples by gluing X and Y together along U and V . The difference will be
in how we glue.

5.4.5. Extended example: the affine line with the doubled origin. Consider the
isomorphism U ∼= V via the isomorphism k[t, 1/t] ∼= k[u, 1/u] given by t ↔ u (cf.
Exercise 5.3.A). The resulting scheme is called the affine line with doubled origin.
Figure 5.4 is a picture of it.

FIGURE 5.4. The affine line with doubled origin



September 6, 2011 draft 121

As the picture suggests, intuitively this is an analogue of a failure of Haus-
dorffness. Now A1 itself is not Hausdorff, so we can’t say that it is a failure of
Hausdorffness. We see this as weird and bad, so we will want to make a definition
that will prevent this from happening. This will be the notion of separatedness (to
be discussed in Chapter 11). This will answer other of our prayers as well. For
example, on a separated scheme, the “affine base of the Zariski topology” is nice
— the intersection of two affine open sets will be affine (Proposition 11.1.8).

5.4.B. EXERCISE. Show that the affine line with doubled origin is not affine. Hint:
calculate the ring of global sections, and look back at the argument for A2 − {(0, 0)}.

5.4.C. EASY EXERCISE. Do the same construction with A1 replaced by A2. You
will have defined the affine plane with doubled origin. Describe two affine open
subsets of this scheme whose intersection is not an affine open subset.

5.4.6. Example 2: the projective line. Consider the isomorphism U ∼= V via
the isomorphism k[t, 1/t] ∼= k[u, 1/u] given by t ↔ 1/u. Figure 5.5 is a suggestive
picture of this gluing. The resulting scheme is called the projective line over the
field k, and is denoted P1

k.

FIGURE 5.5. Gluing two affine lines together to get P1

Notice how the points glue. Let me assume that k is algebraically closed for
convenience. (You can think about how this changes otherwise.) On the first affine
line, we have the closed (“traditional”) points [(t − a)], which we think of as “a
on the t-line”, and we have the generic point [(0)]. On the second affine line, we
have closed points that are “b on the u-line”, and the generic point. Then a on
the t-line is glued to 1/a on the u-line (if a != 0 of course), and the generic point
is glued to the generic point (the ideal (0) of k[t] becomes the ideal (0) of k[t, 1/t]
upon localization, and the ideal (0) of k[u] becomes the ideal (0) of k[u, 1/u]. And
(0) in k[t, 1/t] is (0) in k[u, 1/u] under the isomorphism t ↔ 1/u).

5.4.7. If k is algebraically closed, we can interpret the closed points of P1
k in the

following way, which may make this sound closer to the way you have seen pro-
jective space defined earlier. The points are of the form [a;b], where a and b are
not both zero, and [a;b] is identified with [ac;bc] where c ∈ k×. Then if b != 0, this
is identified with a/b on the t-line, and if a != 0, this is identified with b/a on the
u-line.



122 Math 216: Foundations of Algebraic Geometry

5.4.8. Proposition. — P1
k is not affine.

Proof. We do this by calculating the ring of global sections. The global sections
correspond to sections over X and sections over Y that agree on the overlap. A
section on X is a polynomial f(t). A section on Y is a polynomial g(u). If we restrict
f(t) to the overlap, we get something we can still call f(t); and similarly for g(u).
Now we want them to be equal: f(t) = g(1/t). But the only polynomials in t that
are at the same time polynomials in 1/t are the constants k. Thus Γ(P1,OP1) = k.
If P1 were affine, then it would be Spec Γ(P1,OP1) = Spec k, i.e. one point. But it
isn’t — it has lots of points. !

We have proved an analogue of a theorem: the only holomorphic functions on
CP1 are the constants!

5.4.9. Important example: Projective space. We now make a preliminary defi-
nition of projective n-space over a field k, denoted Pn

k , by gluing together n + 1
open sets each isomorphic to An

k . Judicious choice of notation for these open sets
will make our life easier. Our motivation is as follows. In the construction of P1

above, we thought of points of projective space as [x0; x1], where (x0, x1) are only
determined up to scalars, i.e. (x0, x1) is considered the same as (λx0, λx1). Then
the first patch can be interpreted by taking the locus where x0 != 0, and then we
consider the points [1; t], and we think of t as x1/x0; even though x0 and x1 are not
well-defined, x1/x0 is. The second corresponds to where x1 != 0, and we consider
the points [u; 1], and we think of u as x0/x1. It will be useful to instead use the
notation x1/0 for t and x0/1 for u.

For Pn, we glue together n + 1 open sets, one for each of i = 0, . . . , n + 1. The
ith open set Ui will have coordinates x0/i, . . . , x(i−1)/i, x(i+1)/i, . . . , xn/i. It will
be convenient to write this as

Spec k[x0/i, x1/i, . . . , xn/i]/(xi/i − 1)

(so we have introduced a “dummy variable” xi/i which we set to 1). We glue the
distinguished open set D(xj/i) of Ui to the distinguished open set D(xi/j) of Uj,
by identifying these two schemes by describing the identification of rings

Spec k[x0/i, x1/i, . . . , xn/i, 1/xj/i]/(xi/i − 1) ∼=

Spec k[x0/j, x1/j, . . . , xn/j, 1/xi/j]/(xj/j − 1)

via xk/i = xk/j/xi/j and xk/j = xk/i/xj/i (which implies xi/jxj/i = 1). We need to
check that this gluing information agrees over triple overlaps.

5.4.D. EXERCISE. Check this, as painlessly as possible. (Possible hint: the triple
intersection is affine; describe the corresponding ring.)

5.4.10. Definition. Note that our definition does not use the fact that k is a field.
Hence we may as well define Pn

A for any ring A. This will be useful later.

5.4.E. EXERCISE. Show that the only global sections of the structure sheaf are
constants, and hence that Pn

k is not affine if n > 0. (Hint: you might fear that you
will need some delicate interplay among all of your affine open sets, but you will
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only need two of your open sets to see this. There is even some geometric intu-
ition behind this: the complement of the union of two open sets has codimension
2. But “Algebraic Hartogs’ Lemma” (discussed informally in §5.4.2, to be stated
rigorously in Theorem 12.3.10) says that any function defined on this union ex-
tends to be a function on all of projective space. Because we are expecting to see
only constants as functions on all of projective space, we should already see this
for this union of our two affine open sets.)

5.4.F. EXERCISE (GENERALIZING §5.4.7). Show that if k is algebraically closed,
the closed points of Pn

k may be interpreted in the traditional way: the points are
of the form [a0; . . . ;an], where the ai are not all zero, and [a0; . . . ;an] is identified
with [λa0; . . . ; λan] where λ ∈ k×.

We will later give other definitions of projective space (Definition 5.5.4, §17.4.2).
Our first definition here will often be handy for computing things. But there is
something unnatural about it — projective space is highly symmetric, and that
isn’t clear from our current definition.

5.4.11. Fun aside: The Chinese Remainder Theorem is a geometric fact. The
Chinese Remainder theorem is embedded in what we have done, which shouldn’t
be obvious. I will show this by example, but you should then figure out the general
statement. The Chinese Remainder Theorem says that knowing an integer modulo
60 is the same as knowing an integer modulo 3, 4, and 5. Here’s how to see this in
the language of schemes. What is Spec Z/(60)? What are the primes of this ring?
Answer: those prime ideals containing (60), i.e. those primes dividing 60, i.e. (2),
(3), and (5). Figure 5.6 is a sketch of Spec Z/(60). They are all closed points, as
these are all maximal ideals, so the topology is the discrete topology. What are the
stalks? You can check that they are Z/4, Z/3, and Z/5. The nilpotents “at (2)” are
indicated by the “fuzz” on that point. (We discussed visualizing nilpotents with
“infinitesimal fuzz” in §5.2.) So what are global sections on this scheme? They are
sections on this open set (2), this other open set (3), and this third open set (5). In
other words, we have a natural isomorphism of rings

Z/60 → Z/4 × Z/3 × Z/5.

[(5)][(2)] [(3)]

FIGURE 5.6. A picture of the scheme Spec Z/(60)

5.4.12. ! Example. Here is an example of a function on an open subset of a scheme
that is a bit surprising. On X = Spec k[w, x, y, z]/(wx − yz), consider the open sub-
set D(y) ∪ D(w). Show that the function x/y on D(y) agrees with z/w on D(w)
on their overlap D(y) ∩ D(w). Hence they glue together to give a section. You
may have seen this before when thinking about analytic continuation in complex
geometry — we have a “holomorphic” function which has the description x/y on



124 Math 216: Foundations of Algebraic Geometry

an open set, and this description breaks down elsewhere, but you can still “analyt-
ically continue” it by giving the function a different definition on different parts of
the space.

Follow-up for curious experts: This function has no “single description” as a
well-defined expression in terms of w, x, y, z! There is a lot of interesting geometry
here. This scheme will be a constant source of interesting examples for us. We
will later recognize it as the cone over the quadric surface. Here is a glimpse, in
terms of words we have not yet defined. Now Spec k[w, x, y, z] is A4, and is, not
surprisingly, 4-dimensional. We are looking at the set X, which is a hypersurface,
and is 3-dimensional. It is a cone over a “smooth” quadric surface in P3 (flip to
Figure 9.2). D(y) is X minus some hypersurface, so we are throwing away a codi-
mension 1 locus. D(w) involves throwing away another codimension 1 locus. You
might think that their intersection is then codimension 2, and that maybe failure of
extending this weird function to a global polynomial comes because of a failure of
our Hartogs’ Lemma-type theorem, which will be a failure of normality. But that’s
not true — V(y) ∩ V(w) is in fact codimension 1 — so no Hartogs-type theorem
holds. Here is what is actually going on. V(y) involves throwing away the (cone
over the) union of two lines ( and m1, one in each “ruling” of the surface, and V(w)
also involves throwing away the (cone over the) union of two lines ( and m2. The
intersection is the (cone over the) line (, which is a codimension 1 set. Neat fact:
despite being “pure codimension 1”, it is not cut out even set-theoretically by a sin-
gle equation. (It is hard to get an example of this behavior. This construction is the
simplest example I know.) This means that any expression f(w, x, y, z)/g(w, x, y, z)
for our function cannot correctly describe our function on D(y)∪D(w) — at some
point of D(y)∪D(w) it must be 0/0. Here’s why. Our function can’t be defined on
V(y) ∩ V(w), so g must vanish here. But g can’t vanish just on the cone over ( —
it must vanish elsewhere too. (For those familiar with closed subschemes, here is
why the cone over l is not cut out set-theoretically by a single equation. If ( = V(f),
then D(f) is affine. Let ( ′ be another line in the same ruling as (, and let C(() (resp.
( ′) be the cone over ( (resp. ( ′). Then C(( ′) can be given the structure of a closed
subscheme of Spec k[w, x, y, z] (a notion we’ll properly define in §9.1), and can be
given the structure of A2. Then C(( ′) ∩ V(f) is a closed subscheme of D(f). Any
closed subscheme of an affine scheme is affine. But ( ∩ ( ′ = ∅, so the cone over (
intersects the cone over ( ′ in a point, so C(( ′)∩V(f) is A2 minus a point, which we
have seen is not affine, so we have a contradiction.)

5.5 Projective schemes

Projective schemes are important for a number of reasons. Here are a few.
Schemes that were of “classical interest” in geometry — and those that you would
have cared about before knowing about schemes — are all projective or quasipro-
jective. Moreover, schemes of “current interest” tend to be projective or quasipro-
jective. In fact, it is very hard to even give an example of a scheme satisfying basic
properties — for example, finite type and “Hausdorff” (“separated”) over a field
— that is provably not quasiprojective. For complex geometers: it is hard to find a
compact complex variety that is provably not projective (see Remark 11.3.6), and
it is quite hard to come up with a complex variety that is provably not an open
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subset of a projective variety. So projective schemes are really ubiquitous. Also a
projective k-scheme is a good approximation of the algebro-geometric version of
compactness (“properness”, see §11.3).

Finally, although projective schemes may be obtained by gluing together affines,
and we know that keeping track of gluing can be annoying, there is a simple means
of dealing with them without worrying about gluing. Just as there is a rough dic-
tionary between rings and affine schemes, we will have an analogous dictionary
between graded rings and projective schemes. Just as one can work with affine
schemes by instead working with rings, one can work with projective schemes by
instead working with graded rings. To get an initial sense of how this works, con-
sider Example 9.2.1 (which secretly gives the notion of projective A-schemes in full
generality). Recall that any collection of homogeneous elements of A[x0, . . . , xn]
describes a closed subscheme of Pn

A. (The x0, . . . , xn are called projective coordi-
nates on the scheme. Warning: they are not functions on the scheme. Any closed
subscheme of Pn

A cut out by a set of homogeneous polynomials will soon be called
a projective A-scheme.) Thus if I is a homogeneous ideal in A[x0, . . . , xn] (i.e. gen-
erated by homogeneous polynomials), we have defined a closed subscheme of Pn

A

deserving the name V(I). Conversely, given a closed subset S of Pn
A, we can con-

sider those homogeneous polynomials in the projective coordinates, vanishing on
S. This homogeneous ideal deserves the name I(S).

5.5.1. A motivating picture from classical geometry. For geometric intuition, we recall
how one thinks of projective space “classically” (in the classical topology, over the
real numbers). Pn can be interpreted as the lines through the origin in Rn+1. Thus
subsets of Pn correspond to unions of lines through the origin of Rn+1, and closed
subsets correspond to such unions which are closed. (The same is not true with
“closed” replaced by “open”!)

One often pictures Pn as being the “points at infinite distance” in Rn+1, where
the points infinitely far in one direction are associated with the points infinitely far
in the opposite direction. We can make this more precise using the decomposition

Pn+1 = Rn+1
∐

Pn

by which we mean that there is an open subset in Pn+1 identified with Rn+1 (the
points with last projective coordinate non-zero), and the complementary closed
subset identified with Pn (the points with last projective coordinate zero).

Then for example any equation cutting out some set V of points in Pn will also
cut out some set of points in Rn+1 that will be a closed union of lines. We call this
the affine cone of V . These equations will cut out some union of P1’s in Pn+1, and
we call this the projective cone of V . The projective cone is the disjoint union of the
affine cone and V . For example, the affine cone over x2 + y2 = z2 in P2 is just
the “classical” picture of a cone in R3, see Figure 5.7. We will make this analogy
precise in our algebraic setting in §9.2.11. To make a connection with the previous
discussion on homogeneous ideals: the homogeneous ideal given by the cone is
(x2 + y2 − z2).

5.5.2. The Proj construction.
We will now produce a scheme out of a graded ring. A graded ring for us

is a ring S• = ⊕n∈ZSn (the subscript is called the grading), where multiplication
respects the grading, i.e. sends Sm × Sn to Sm+n. Note that S0 is a subring, and
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x2 + y2 = z2 in P2

affine cone: x2 + y2 = z2 in R3

projective cone in P3

FIGURE 5.7. The affine and projective cone of x2 + y2 = z2 in
classical geometry

S• is a S0-algebra. In our examples so far, we have a graded ring A[x0, . . . , xn]/I
where I is a homogeneous ideal. We are taking the usual grading on A[x0, . . . , xn],
where each xi has weight 1. In most of the examples below, S0 = A, and S• is
generated as an S0-algebra by S1.

5.5.3. Graded rings over A, and finitely generated graded rings. Fix a ring A (the base
ring). Our motivating example is S• = A[x0, x1, x2], with the usual grading. If S•

is graded by Z, with S0 = A, we say that S• is a graded ring over A. Hence each Sn

is an A-module. The subset S+ := ⊕i>0Si ⊂ S• is an ideal, called the irrelevant
ideal. The reason for the name “irrelevant” will be clearer in a few paragraphs.
If the irrelevant ideal S+ is a finitely-generated ideal, we say that S• is a finitely
generated graded ring over A. If S• is generated by S1 as an A-algebra, we say
that S• is generated in degree 1. (We will later find it useful to interpret “S• is
generated in degree 1” as “the natural map Sym• S1 → S• is a surjection”. The
symmetric algebra construction will be briefly discussed in §14.5.3.)

5.5.A. EXERCISE. (a) Show that S• is a finitely-generated graded ring if and only
if S• is a finitely-generated graded A-algebra, i.e. generated over A = S0 by a
finite number of homogeneous elements of positive degree. (Hint for the forward
implication: show that the generators of S+ as an ideal are also generators of S• as
an algebra.)
(b) Show that a graded ring S• is Noetherian if and only if A = S0 is Noetherian
and S• is a finitely generated graded ring.

Motivated by our example of Pn
A and its closed subschemes, we now define a

scheme Proj S•. As we did with Spec of a ring, we will build it first as a set, then as
a topological space, and finally as a ringed space. In our preliminary definition of
Pn

A, we glued together n + 1 well-chosen affine pieces, but we don’t want to make
any choices, so we do this by simultaneously consider “all possible” affines. Our
affine building blocks will be as follows. For each homogeneous f ∈ S+, note that
the localization (S•)f is naturally a graded ring as well, where deg(1/f) = − deg f.
Consider

(5.5.3.1) Spec((S•)f)0.
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where ((S•)f)0 means the 0-graded piece of the graded ring (S•)f. The notation
((S•)f)0 is admittedly horrible — the first and third subscripts refer to the grading,
and the second refers to localization.

(Before we begin: another possible way of defining Proj S• is by gluing to-
gether affines, by jumping straight to Exercises 5.5.G, 5.5.H, and 5.5.I. If you prefer
that, by all means do so.)

The points of Proj S• are the set of homogeneous prime ideals of S• not con-
taining the irrelevant ideal S+ (the “relevant prime ideals”).

5.5.B. IMPORTANT AND TRICKY EXERCISE. Suppose f ∈ S+ is homogeneous. Give
a bijection between the primes of ((S•)f)0 and the homogeneous prime ideals of
(S•)f. Describe the latter as a subset of Proj S•. Hint: From the ring map ((S•)f)0 →
(S•)f, from each homogeneous prime of (S•)f we find a prime of ((S•)f)0. The
reverse direction is the harder one. Given a prime ideal P0 ⊂ ((S•)f)0, define
P ⊂ (S•)f as ⊕Qi, where Qi ⊂ ((S•)f)i, and a ∈ Qi if and only if adeg f/fi ∈ P0.
Note that Q0 = P0. Show that a is in Qi if and only if a2 ∈ Q2i; show that if
a1, a2 ∈ Qi then (a1 + a2)2 ∈ Q2i and hence a1 + a2 ∈ Qi; then show that P is an
ideal; then show that P is prime.)

The interpretation of the points of Proj S• with homogeneous prime ideals
helps us picture Proj S•. For example, if S• = k[x, y, z] with the usual grading,
then we picture the homogeneous prime ideal (z2 −x2 −y2) as a subset of Spec S•;
it is a cone (see Figure 5.7). As in §5.5.1, we picture P2

k as the “plane at infinity”.
Thus we picture this equation as cutting out a conic “at infinity”. We will make
this intuition somewhat more precise in §9.2.11.

5.5.C. EXERCISE (THE ZARISKI TOPOLOGY ON Proj S•). If I is a homogeneous ideal
of S• contained in S+, define the vanishing set of I, V(I) ⊂ Proj S•, to be those ho-
mogeneous prime ideals containing I. As in the affine case, let V(f) be V((f)), and
let D(f) = Proj S• \ V(f) (the projective distinguished open set) be the comple-
ment of V(f) (i.e. the open subscheme corresponding to that open set). Show that
D(f) is precisely the subset ((S•)f)0 you described in the previous exercise.

(Caution: the definitions made in the previous exercise can certainly be ex-
tended to any ideal in S+ and D(f) can be defined even if f has degree 0. In what
follows, we deliberately make these narrower definitions. For example, we will
want the D(f) to form an affine cover, and if f has degree 0, then D(f) needn’t be
affine.)

As in the affine case, the V(I)’s satisfy the axioms of the closed set of a topol-
ogy, and we call this the Zariski topology on Proj S•. Many statements about the
Zariski topology on Spec of a ring carry over to this situation with little extra work.
Clearly D(f)∩D(g) = D(fg), by the same immediate argument as in the affine case
(Exercise 4.5.D). As in the affine case (Exercise 4.5.E), if D(f) ⊂ D(g), then fn ∈ (g)
for some n, and vice versa.

5.5.D. EASY EXERCISE. Verify that the projective distinguished open sets D(f)
(as f runs through the homogeneous elements of S+) form a base of the Zariski
topology.

5.5.E. EXERCISE. Fix a graded ring S•.
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(a) Suppose I is any homogeneous ideal of S• contained in S+, and f is a
homogeneous element. Show that f vanishes on V(I) if and only if fn ∈ I
for some n. (Hint: Mimic the affine case; see Exercise 4.4.J.)

(b) If Z ⊂ Proj S•, define I(·). Show that it is a homogeneous ideal. For any
two subsets, show that I(Z1 ∪ Z2) = I(Z1) ∩ I(Z2).

(c) For any subset Z ⊂ Proj S•, show that V(I(Z)) = Z.

5.5.F. EXERCISE (CF. EXERCISE 4.5.B). Fix a graded ring S•. Show that the follow-
ing are equivalent.

(a) V(I) = ∅.
(b) for any fi (as i runs through some index set) generating I, ∪D(fi) =

Proj S•.
(c)

√
I ⊃ S+.

This is more motivation for the S+ being “irrelevant”: any ideal whose radical
contains it is “geometrically irrelevant”.

Let’s get back to constructing Proj S• as a scheme.

5.5.G. EXERCISE. Suppose some homogeneous f ∈ S+ is given. Via the inclusion

D(f) = Spec((S•)f)0 ↪→ Proj S•,

show that the Zariski topology on Proj S• restricts to the Zariski topology on Spec((S•)f)0.

Now that we have defined Proj S• as a topological space, we are ready to de-
fine the structure sheaf. On D(f), we wish it to be the structure sheaf of Spec((S•)f)0.
We will glue these sheaves together using Exercise 3.7.D on gluing sheaves.

5.5.H. EXERCISE. If f, g ∈ S+ are homogeneous, describe an isomorphism be-
tween Spec((S•)fg)0 and the distinguished open subset D(gdeg f/fdeg g) of Spec((S•)f)0.

Similarly, Spec((S•)fg)0 is identified with a distinguished open subset of Spec((S•)g)0.
We then glue the various Spec((S•)f)0 (as f varies) altogether, using these pairwise
gluings.

5.5.I. EXERCISE. By checking that these gluings behave well on triple overlaps
(see Exercise 3.7.D), finish the definition of the scheme Proj S•.

5.5.J. EXERCISE (SOME WILL FIND THIS ESSENTIAL, OTHERS WILL PREFER TO IG-
NORE IT). (Re)interpret the structure sheaf of Proj S• in terms of compatible stalks.

5.5.4. Definition. We (re)define projective space (over a ring A) by Pn
A := Proj A[x0, . . . , xn].

This definition involves no messy gluing, or special choice of patches.

5.5.K. EXERCISE. Check that this agrees with our earlier construction of Pn
A (Defi-

nition 5.4.9). (How do you know that the D(xi) cover Proj A[x0, . . . , xn]?)

Notice that with our old definition of projective space, it would have been a
nontrivial exercise to show that D(x2 + y2 − z2) ⊂ P2

k (the complement of a plane
conic) is affine; with our new perspective, it is immediate — it is Spec(k[x, y, z](x2+y2−z2))0.
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5.5.L. EXERCISE. Both parts of this problem ask you to figure out the “right defini-
tion” of the vanishing scheme, in analogy with V(·) defined earlier. In both cases,
you will be defining a closed subscheme, a notion we will introduce in §9.1. A closed
subscheme of X is (informally) a particular kind of scheme structure on a closed
subset of X.
(a) (the most important part) If S• is generated in degree 1, and f ∈ S+ is homoge-
neous, explain how to define V(f) “in” Proj S•, the vanishing scheme of f. (Warn-
ing: f in general isn’t a function on Proj S•. We will later interpret it as something
close: a section of a line bundle.) Hence define V(I) for any homogeneous ideal I
of S+.
(b) (harder) If S• is a graded ring over A, but not necessarily generated in degree
1, explain how to define the vanishing scheme V(f) “in” Proj S•. (Hint: On D(g),
let V(f) be cut out by all degree 0 equations of the form fh/gn, where n ∈ Z+, and
h is homogeneous. Show that this gives a well defined scheme structure on the
set V(f). (Once we know what a closed subscheme is, in §9.1, this will be clearly a
closed subscheme.) Your calculations will mirror those of Exercise 5.5.H.)

5.5.5. Projective and quasiprojective schemes.
We call a scheme of the form Proj S•, where S• is a finitely generated graded ring

over A, a projective scheme over A, or a projective A-scheme. A quasiprojective
A-scheme is a quasicompact open subscheme of a projective A-scheme. The “A”
is omitted if it is clear from the context; often A is a field.

5.5.6. Unimportant remarks. (i) Note that Proj S• makes sense even when S• is not
finitely generated. This can be useful. But having this more general construction
can make things easier. For example, you will later be able to do Exercise 7.4.D
without worrying about Exercise 7.4.H.)

(ii) The quasicompact requirement in the definition quasiprojectivity is of course
redundant in the Noetherian case (cf. Exercise 4.6.M), which is all that matters to
most.

5.5.7. Silly example. Note that P0
A = Proj A[T ] ∼= Spec A. Thus “Spec A is a

projective A-scheme”.

5.5.8. Example: PV . We can make this definition of projective space even more
choice-free as follows. Let V be an (n + 1)-dimensional vector space over k. (Here
k can be replaced by any ring A as usual.) Define

Sym• V∨ = k ⊕ V∨ ⊕ Sym2 V∨ ⊕ · · · .

(The reason for the dual is explained by the next exercise.) If for example V is
the dual of the vector space with basis associated to x0, . . . , xn, we would have
Sym• V∨ = k[x0, . . . , xn]. Then we can define PV := Proj Sym• V∨. In this lan-
guage, we have an interpretation for x0, . . . , xn: they are the linear functionals on
the underlying vector space V .

5.5.M. UNIMPORTANT EXERCISE. Suppose k is algebraically closed. Describe
a natural bijection between one-dimensional subspaces of V and the points of
PV . Thus this construction canonically (in a basis-free manner) describes the one-
dimensional subspaces of the vector space V .
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Unimportant remark: you may be surprised at the appearance of the dual in
the definition of PV . This is explained by the previous exercise. Most normal
(traditional) people define the projectivization of a vector space V to be the space
of one-dimensional subspaces of V . Grothendieck considered the projectivization
to be the space of one-dimensional quotients. One motivation for this is that it
gets rid of the annoying dual in the definition above. There are better reasons,
that we won’t go into here. In a nutshell, quotients tend to be better-behaved than
subobjects for coherent sheaves, which generalize the notion of vector bundle. (We
will discuss them in Chapter 14.)

On another note related to Exercise 5.5.M: you can also describe a natural
bijection between points of V and the points of Spec Sym• V∨. This construction
respects the affine/projective cone picture of §9.2.11.

5.5.9. The Grassmannian. At this point, we could describe the fundamental geo-
metric object known as the Grassmannian, and give the “wrong” definition of it.
We will instead wait until §7.7 to give the wrong definition, when we will know
enough to sense that something is amiss. The right definition will be given in §17.6.



CHAPTER 6

Some properties of schemes

6.1 Topological properties

We will now define some useful properties of schemes. The definitions of irre-
ducible, irreducible component, closed point, specialization, generization, generic point,
connected, connected component, and quasicompact were given in §4.5–4.6. You
should have pictures in your mind of each of these notions.

Exercise 4.6.O shows that An is irreducible (it was easy). This argument “be-
haves well under gluing”, yielding:

6.1.A. EASY EXERCISE. Show that Pn
k is irreducible.

6.1.B. EXERCISE. Exercise 4.7.E showed that there is a bijection between irre-
ducible closed subsets and points. Show that this is true of schemes as well.

6.1.C. EASY EXERCISE. Prove that if X is a scheme that has a finite cover X =
∪n

i=1 Spec Ai where Ai is Noetherian, then X is a Noetherian topological space
(§4.6.3). (We will soon call such a scheme a Noetherian scheme, §6.3.4.) Hint: show
that a topological space that is a finite union of Noetherian subspaces is itself Noe-
therian.

Thus Pn
k and Pn

Z are Noetherian topological spaces: we built them by gluing
together a finite number of spectra of Noetherian rings.

6.1.D. EASY EXERCISE. Show that a scheme X is quasicompact if and only if it can
be written as a finite union of affine schemes. (Hence Pn

k is quasicompact.)

6.1.E. IMPORTANT EXERCISE: QUASICOMPACT SCHEMES HAVE CLOSED POINTS.
Show that if X is a quasicompact scheme, then every point has a closed point in its
closure. Show that every nonempty closed subset of X contains a closed point of X.
In particular, every nonempty quasicompact scheme has a closed point. (Warning:
there exist non-empty schemes with no closed points, so your argument had better
use the quasicompactness hypothesis!)

This exercise will often be used in the following way. If there is some property
P of points of a scheme that is “open” (if a point p has P, then there is some neigh-
borhood U of p such that all the points in U have P), then to check if all points of
a quasicompact scheme have P, it suffices to check only the closed points. This
provides a connection between schemes and the classical theory of varieties — the
points of traditional varieties are the closed points of the corresponding schemes.

131



132 Math 216: Foundations of Algebraic Geometry

A first example of this is Exercise 6.2.C. In many good situations, the closed points
are dense (such as for varieties), Exercise 6.3.F, but this is not true in some impor-
tant cases, such as spectra of local rings (e.g. Spec k[x](x), see Exercise 4.4.K).

6.1.1. Quasiseparated schemes. Quasiseparatedness is a weird notion that comes
in handy for certain people. (Warning: we will later realize that this is really a prop-
erty of morphisms, not of schemes §8.3.1.) Most people, however, can ignore this
notion, as the schemes they will encounter in real life will all have this property.
A topological space is quasiseparated if the intersection of any two quasicompact
open sets is quasicompact. Thus a scheme is quasiseparated if the intersection of
any two affine open subsets is a finite union of affine open subsets.

6.1.F. SHORT EXERCISE. Prove this equivalence.

We will see later that this will be a useful hypothesis in theorems (in conjunc-
tion with quasicompactness), and that various interesting kinds of schemes (affine,
locally Noetherian, separated, see Exercises 6.1.G, 6.3.C, and 11.1.H resp.) are qua-
siseparated, and this will allow us to state theorems more succinctly (e.g. “if X is
quasicompact and quasiseparated” rather than “if X is quasicompact, and either
this or that or the other thing hold”).

6.1.G. EXERCISE. Show that affine schemes are quasiseparated.

“Quasicompact and quasiseparated” means something concrete:

6.1.H. EXERCISE. Show that a scheme X is quasicompact and quasiseparated if
and only if X can be covered by a finite number of affine open subsets, any two of
which have intersection also covered by a finite number of affine open subsets.

So when you see “quasicompact and quasiseparated” as hypotheses in a the-
orem, you should take this as a clue that you will use this interpretation, and that
finiteness will be used in an essential way.

6.1.I. EASY EXERCISE. Show that all projective A-schemes are quasicompact and
quasiseparated. (Hint: use the fact that the graded ring in the definition is finitely
generated — those finite number of generators will lead you to a covering set.)

6.1.2. Dimension. One very important topological notion is dimension. (It is
amazing that this is a topological idea.) But despite being intuitively fundamental,
it is more difficult, so we postpone it until Chapter 12.

6.2 Reducedness and integrality

Recall that one of the alarming things about schemes is that functions are not deter-
mined by their values at points, and that was because of the presence of nilpotents
(§4.2.9).

6.2.1. Definition. A ring is said to be reduced if it has no nonzero nilpotents
(§4.2.11). A scheme X is reduced if OX(U) is reduced for every open set U of X.
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An example of a nonreduced affine scheme is Spec k[x, y]/(y2, xy). A useful
representation of this scheme is given in Figure 6.1, although we will only explain
in §6.5 why this is a good picture. The fuzz indicates that there is some nonre-
ducedness going on at the origin. Here are two different functions: x and x + y.
Their values agree at all points (all closed points [(x − a, y)] = (a, 0) and at the
generic point [(y)]). They are actually the same function on the open set D(x),
which is not surprising, as D(x) is reduced, as the next exercise shows. (This ex-
plains why the fuzz is only at the origin, where y = 0.)

FIGURE 6.1. A picture of the scheme Spec k[x, y]/(y2, xy). The
fuzz indicates where “the nonreducedness lives”.

6.2.A. EXERCISE. Show that
(
k[x, y]/(y2, xy)

)
x

has no nonzero nilpotent elements.
(Possible hint: show that it is isomorphic to another ring, by considering the geo-
metric picture. Exercise 4.2.J may give another hint.)

6.2.B. EXERCISE (REDUCEDNESS IS A stalk-local PROPERTY, I.E. CAN BE CHECKED

AT STALKS). Show that a scheme is reduced if and only if none of the stalks have
nonzero nilpotents. Hence show that if f and g are two functions on a reduced
scheme that agree at all points, then f = g. (Two hints: OX(U) ↪→

∏
x∈U OX,x

from Exercise 3.4.A, and the nilradical is intersection of all prime ideals from The-
orem 4.2.10.)

We remark that the fuzz in Figure 6.1 indicates the points where there is nonre-
ducedness.

6.2.C. EXERCISE. If X is a quasicompact scheme, show that it suffices to check
reducedness at closed points. (Hint: Exercise 6.1.E.)

Warning for experts: if a scheme X is reduced, then it is immediate from the
definition that its ring of global sections is reduced. However, the converse is not
true; the example of the scheme X cut out by x2 = 0 in P2

k will come up in §20.1.5,
and you already know enough to verify that Γ(X,OX) ∼= k.

6.2.D. EXERCISE. Suppose X is quasicompact, and f is a function (a global section
of OX) that vanishes at all points of x. Show that there is some n such that fn = 0.
Show that this may fail if X is not quasicompact. (This exercise is less important,
but shows why we like quasicompactness, and gives a standard pathology when
quasicompactness doesn’t hold.) Hint: take an infinite disjoint union of Spec An

with An := k[ε]/εn.

Definition. A scheme X is integral if it is nonempty, and OX(U) is an integral
domain for every nonempty open set U of X.

6.2.E. IMPORTANT EXERCISE. Show that a scheme X is integral if and only if it is
irreducible and reduced.
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6.2.F. EXERCISE. Show that an affine scheme Spec A is integral if and only if A is
an integral domain.

6.2.G. EXERCISE. Suppose X is an integral scheme. Then X (being irreducible) has
a generic point η. Suppose Spec A is any non-empty affine open subset of X. Show
that the stalk at η, OX,η, is naturally K(A), the fraction field of A. This is called the
function field K(X) of X. It can be computed on any non-empty open set of X, as
any such open set contains the generic point.

6.2.H. EXERCISE. Suppose X is an integral scheme. Show that the restriction maps
resU,V : OX(U) → OX(V) are inclusions so long as V != ∅. Suppose Spec A is any
non-empty affine open subset of X (so A is an integral domain). Show that the
natural map OX(U) → OX,η = K(A) (where U is any non-empty open set) is an
inclusion. Thus irreducible varieties (an important example of integral schemes
defined later) have the convenient property that sections over different open sets
can be considered subsets of the same ring. Thus restriction maps (except to the
empty set) are always inclusions, and gluing is easy: functions fi on a cover Ui

of U (as i runs over an index set) glue if and only if they are the same element of
K(X). This is one reason why (irreducible) varieties are usually introduced before
schemes.

Integrality is not stalk-local (the disjoint union of two integral schemes is not
integral, as Spec A

∐
Spec B = Spec A × B, cf. Exercise 4.6.U), but it almost is, see

Exercise 6.3.E.

6.3 Properties of schemes that can be checked “affine-locally”

This section is intended to address something tricky in the definition of schemes.
We have defined a scheme as a topological space with a sheaf of rings, that can be
covered by affine schemes. Hence we have all of the affine open sets in the cover,
but we don’t know how to communicate between any two of them. Somewhat
more explicitly, if I have an affine cover, and you have an affine cover, and we
want to compare them, and I calculate something on my cover, there should be
some way of us getting together, and figuring out how to translate my calcula-
tion over to your cover. The Affine Communication Lemma 6.3.2 will provide a
convenient machine for doing this.

Thanks to this lemma, we can define a host of important properties of schemes.
All of these are “affine-local” in that they can be checked on any affine cover, i.e. a
covering by open affine sets. We like such properties because we can check them
using any affine cover we like. If the scheme in question is quasicompact, then we
need only check a finite number of affine open sets.

6.3.1. Proposition. — Suppose Spec A and Spec B are affine open subschemes of a
scheme X. Then Spec A ∩ Spec B is the union of open sets that are simultaneously distin-
guished open subschemes of Spec A and Spec B.
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[p]

Spec A
Spec BSpec Af

Spec Bg

FIGURE 6.2. A trick to show that the intersection of two affine
open sets may be covered by open sets that are simultaneously
distinguished in both affine open sets

Proof. (See Figure 6.2 for a sketch.) Given any point p ∈ Spec A ∩ Spec B, we
produce an open neighborhood of p in Spec A ∩ Spec B that is simultaneously dis-
tinguished in both Spec A and Spec B. Let Spec Af be a distinguished open subset
of Spec A contained in Spec A ∩ Spec B and containing p. Let Spec Bg be a dis-
tinguished open subset of Spec B contained in Spec Af and containing p. Then
g ∈ Γ(Spec B,OX) restricts to an element g ′ ∈ Γ(Spec Af,OX) = Af. The points of
Spec Af where g vanishes are precisely the points of Spec Af where g ′ vanishes, so

Spec Bg = Spec Af \ {[p] : g ′ ∈ p}

= Spec(Af)g ′ .

If g ′ = g ′′/fn (g ′′ ∈ A) then Spec(Af)g ′ = Spec Afg ′′ , and we are done. !

The following easy result will be crucial for us.

6.3.2. Affine Communication Lemma. — Let P be some property enjoyed by some
affine open sets of a scheme X, such that

(i) if an affine open set Spec A ↪→ X has property P then for any f ∈ A, Spec Af ↪→
X does too.

(ii) if (f1, . . . , fn) = A, and Spec Afi
↪→ X has P for all i, then so does Spec A ↪→

X.

Suppose that X = ∪i∈I Spec Ai where Spec Ai has property P. Then every open affine
subset of X has P too.

We say such a property is affine-local. Note that any property that is stalk-
local (a scheme has property P if and only if all its stalks have property Q) is
necessarily affine-local (a scheme has property P if and only if all of its affines
have property R, where an affine scheme has property R if and only if and only if
all its stalks have property Q). But it is sometimes not so obvious what the right
definition of Q is; see for example the discussion of normality in the next section.

Proof. Let Spec A be an affine subscheme of X. Cover Spec A with a finite num-
ber of distinguished open sets Spec Agj

, each of which is distinguished in some
Spec Ai. This is possible by Proposition 6.3.1 and the quasicompactness of Spec A
(Exercise 4.6.D(a)). By (i), each Spec Agj

has P. By (ii), Spec A has P. !
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By choosing property P appropriately, we define some important properties
of schemes.

6.3.3. Proposition. — Suppose A is a ring, and (f1, . . . , fn) = A.

(a) If A is reduced, then Afi
is also reduced. If each Afi

is reduced, then so is A.
(b) If A is a Noetherian ring, then so is Afi

. If each Afi
is Noetherian, then so is A.

(c) Suppose B is a ring, and A is a B-algebra. (Hence Ag is a B-algebra for all
g ∈ A.) If A is a finitely generated B-algebra, then so is Afi

. If each Afi
is a

finitely-generated B-algebra, then so is A.

We will prove these shortly (§6.3.9). But let’s first motivate you to read the
proof by giving some interesting definitions and results assuming Proposition 6.3.3
is true.

6.3.A. EXERCISE. Show that X is reduced if and only if X can be covered by affine
open sets Spec A where A is reduced.

Our earlier definition of reducedness required us to check that the ring of func-
tions over any open set is nilpotent-free. Our new definition lets us check a single
affine cover. Hence for example An

k and Pn
k are reduced.

6.3.4. Important Definition. Suppose X is a scheme. If X can be covered by affine
open sets Spec A where A is Noetherian, we say that X is a locally Noetherian
scheme. If in addition X is quasicompact, or equivalently can be covered by finitely
many such affine open sets, we say that X is a Noetherian scheme. (We will see a
number of definitions of the form “if X has this property, we say that it is locally Q;
if further X is quasicompact, we say that it is Q.”) By Exercise 6.1.C, the underlying
topological space of a Noetherian scheme is Noetherian.

6.3.B. EXERCISE. Show that all open subsets of a Noetherian topological space
(hence a Noetherian scheme) are quasicompact.

6.3.C. EXERCISE. Show that locally Noetherian schemes are quasiseparated.

6.3.D. EXERCISE. Show that a Noetherian scheme has a finite number of irre-
ducible components. Show that a Noetherian scheme has a finite number of con-
nected components, each a finite union of irreducible components.

6.3.E. UNIMPORTANT EXERCISE. Show that a locally Noetherian scheme X is
integral if and only if X is connected and all stalks OX,p are integral domains. Thus
in “good situations” (when the scheme is Noetherian), integrality is the union of
local (stalks are integral domains) and global (connected) conditions. (Warning:
Noetherian hypotheses are necessary, see [MO7477].)

6.3.5. Schemes over a given field, or more generally over a given ring (A-schemes). You
may be particularly interested in working over a particular field, such as C or Q,
or over a ring such as Z. Motivated by this, we define the notion of A-scheme,
or scheme over A, where A is a ring, as a scheme where all the rings of sections
of the structure sheaf (over all open sets) are A-algebras, and all restriction maps
are maps of A-algebras. (Like some earlier notions such as quasiseparatedness,
this will later in Exercise 7.3.G be properly understood as a “relative notion”; it
is the data of a morphism X → Spec A.) Suppose now X is an A-scheme. If X
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can be covered by affine open sets Spec Bi where each Bi is a finitely generated A-
algebra, we say that X is locally of finite type over A, or that it is a locally of
finite type A-scheme. (This is admittedly cumbersome terminology; it will make
more sense later, once we know about morphisms in §8.3.10.) If furthermore X
is quasicompact, X is (of) finite type over A, or a finite type A-scheme. Note
that a scheme locally of finite type over k or Z (or indeed any Noetherian ring)
is locally Noetherian, and similarly a scheme of finite type over any Noetherian
ring is Noetherian. As our key “geometric” examples: (i) Spec C[x1, . . . , xn]/I is
a finite-type C-scheme; and (ii) Pn

C is a finite type C-scheme. (The field C may be
replaced by an arbitrary ring A.)

6.3.6. Varieties. We now make a connection to the classical language of varieties.
An affine scheme that is a reduced and of finite type k-scheme is said to be an affine
variety (over k), or an affine k-variety. A reduced (quasi-)projective k-scheme is
a (quasi-)projective variety (over k), or an (quasi-)projective k-variety. (Warning:
in the literature, it is sometimes also assumed in the definition of variety that the
scheme is irreducible, or that k is algebraically closed.) We will not define va-
rieties in general until §11.1.7; we will need the notion of separatedness first, to
exclude abominations like the line with the doubled origin (Example 5.4.5). But
many of the statements we will make in this section about affine k-varieties will
automatically apply more generally to k-varieties.

6.3.F. EXERCISE. Show that a point of a locally finite type k-scheme is a closed
point if and only if the residue field of the stalk of the structure sheaf at that point
is a finite extension of k. (Hint: the Nullstellensatz 4.2.3.) Show that the closed
points are dense on such a scheme (even though it needn’t be quasicompact, cf.
Exercise 6.1.E). (For another exercise on closed points, see 6.1.E. Warning: closed
points need not be dense even on quite reasonable schemes, such as that of Exer-
cise 4.4.K.)

6.3.7. !! Exercise (analytification of complex varieties). (Warning: Any discussion of
analytification will be only for readers who are familiar with the notion of a com-
plex analytic varieties, or willing to develop it on their own in parallel with our
development of schemes.) Suppose X is a reduced, finite type C-scheme. Define
the corresponding complex analytic prevariety Xan. (The definition of an analytic
prevariety is the same as the definition of a variety without the Hausdorff condi-
tion.) Caution: your definition should not depend on a choice of an affine cover
of X. (Hint: First explain how to analytify reduced finite type affine C-schemes.
Then glue.) Give a bijection between the closed points of X and the points of Xan,
using the weak Nullstellensatz 4.2.2. (In fact one may construct a continuous map
of sets X → Xan generalizing Exercise 4.2.G, but this is more fun than useful.) In
Exercise 7.3.J, we will see that analytification can be made into a functor.

6.3.8. Definition. The degree of a closed point p of a locally finite type k-scheme is
the degree of the field extension κ(p)/k. For example, in A1

k = Spec k[t], the point
[k[t]/p(t)] (p irreducible) is deg p. If k is algebraically closed, the degree of every
closed point is 1.
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6.3.9. Proof of Proposition 6.3.3. We divide each part into (i) and (ii) following the
statement of the Affine Communication Lemma 6.3.2. We leave (a) for practice for
you after you have read the proof of (b) (Exercise 6.3.H).

(b) (i) If I1 " I2 " I3 " · · · is a strictly increasing chain of ideals of Af, then
we can verify that J1 " J2 " J3 " · · · is a strictly increasing chain of ideals of A,
where

Jj = {r ∈ A : r ∈ Ij}

where r ∈ Ij means “the image in Af lies in Ij”. (We think of this as Ij ∩ A, except
in general A needn’t inject into Afi

.) Clearly Jj is an ideal of A. If x/fn ∈ Ij+1 \ Ij

where x ∈ A, then x ∈ Jj+1, and x /∈ Jj (or else x(1/f)n ∈ Jj as well). (ii) Suppose
I1 " I2 " I3 " · · · is a strictly increasing chain of ideals of A. Then for each
1 ≤ i ≤ n,

Ii,1 ⊂ Ii,2 ⊂ Ii,3 ⊂ · · ·

is an increasing chain of ideals in Afi
, where Ii,j = Ij ⊗A Afi

. It remains to show
that for each j, Ii,j " Ii,j+1 for some i; the result will then follow.

6.3.G. EXERCISE. Finish this argument.

6.3.H. EXERCISE. Prove (a).

(c) (i) is clear: if A is generated over B by r1, . . . , rn, then Af is generated over
B by r1, . . . , rn, 1/f.

(ii) Here is the idea. As the fi generate A, we can write 1 =
∑

cifi for ci ∈ A.
We have generators of Ai: rij/fj

i, where rij ∈ A. I claim that {fi}i ∪ {ci} ∪ {rij}ij
generate A as a B-algebra. Here’s why. Suppose you have any r ∈ A. Then in
Afi

, we can write r as some polynomial in the rij’s and fi, divided by some huge
power of fi. So “in each Afi

, we have described r in the desired way”, except for
this annoying denominator. Now use a partition of unity type argument as in the
proof of Theorem 5.1.2 to combine all of these into a single expression, killing the
denominator. Show that the resulting expression you build still agrees with r in
each of the Afi

. Thus it is indeed r.

6.3.I. EXERCISE. Make this argument precise.

This concludes the proof of Proposition 6.3.3. !

6.3.J. EASY EXERCISE. Suppose S• is a finitely generated graded ring over A.
Show that Proj S• is of finite type over A = S0. If S0 is a Noetherian ring, show
that Proj S• is a Noetherian scheme, and hence that Proj S• has a finite number
of irreducible components. Show that any quasiprojective scheme is locally of
finite type over A. If A is Noetherian, show that any quasiprojective A-scheme is
quasicompact, and hence of finite type over A. Show this need not be true if A is
not Noetherian. Better: give an example of a quasiprojective A-scheme that is not
quasicompact, necessarily for some non-Noetherian A. (Hint: Silly example 5.5.7.)

6.4 Normality and factoriality
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6.4.1. Normality.
We can now define a property of schemes that says that they are “not too

far from smooth”, called normality, which will come in very handy. We will see
later that “locally Noetherian normal schemes satisfy Hartogs’ Lemma” (Algebraic
Hartogs’ Lemma 12.3.10 for Noetherian normal schemes): functions defined away
from a set of codimension 2 extend over that set. (We saw a first glimpse of this
in §5.4.2.) As a consequence, rational functions that have no poles (certain sets of
codimension one where the function isn’t defined) are defined everywhere. We
need definitions of dimension and poles to make this precise.

A scheme X is normal if all of its stalks OX,p are normal, i.e. are integral do-
mains, and integrally closed in their fraction fields. (An integral domain A is in-
tegrally closed if the only zeros in K(A) to any monic polynomial in A[x] must
lie in A itself. The basic example is Z.) As reducedness is a stalk-local property
(Exercise 6.2.B), normal schemes are reduced.

6.4.A. EXERCISE. Show that integrally closed domains behave well under local-
ization: if A is an integrally closed domain, and S is a multiplicative subset not
containing 0, show that S−1A is an integrally closed domain. (Hint: assume that
xn + an−1xn−1 + · · · + a0 = 0 where ai ∈ S−1A has a root in the fraction field.
Turn this into another equation in A[x] that also has a root in the fraction field.)

It is no fun checking normality at every single point of a scheme. Thanks
to this exercise, we know that if A is an integrally closed domain, then Spec A
is normal. Also, for quasicompact schemes, normality can be checked at closed
points, thanks to this exercise, and the fact that for such schemes, any point is a
generization of a closed point (see Exercise 6.1.E).

It is not true that normal schemes are integral. For example, the disjoint
union of two normal schemes is normal. Thus Spec k

∐
Spec k ∼= Spec(k × k) ∼=

Spec k[x]/(x(x − 1)) is normal, but its ring of global sections is not an integral do-
main.

6.4.B. UNIMPORTANT EXERCISE. Show that a Noetherian scheme is normal if and
only if it is the finite disjoint union of integral Noetherian normal schemes. (Hint:
Exercise 6.3.E.)

We are close to proving a useful result in commutative algebra, so we may as
well go all the way.

6.4.2. Proposition. — If A is an integral domain, then the following are equivalent.

(i) A is integrally closed.
(ii) Ap is integrally closed for all prime ideals p ⊂ A.

(iii) Am is integrally closed for all maximal ideals m ⊂ A.

Proof. Exercise 6.4.A shows that integral closure is preserved by localization, so (i)
implies (ii). Clearly (ii) implies (iii).

It remains to show that (iii) implies (i). This argument involves a pretty con-
struction that we will use again. Suppose A is not integrally closed. We show that
there is some m such that Am is also not integrally closed. Suppose

(6.4.2.1) xn + an−1xn−1 + · · · + a0 = 0
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(with ai ∈ A) has a solution s in K(A) \ A. Let I be the ideal of denominators of s:

I := {r ∈ A : rs ∈ A}.

(Note that I is clearly an ideal of A.) Now I != A, as 1 /∈ I. Thus there is some
maximal ideal m containing I. Then s /∈ Am, so equation (6.4.2.1) in Am[x] shows
that Am is not integrally closed as well, as desired. !

6.4.C. UNIMPORTANT EXERCISE. If A is an integral domain, show that A =
∩Am, where the intersection runs over all maximal ideals of A. (We won’t use this
exercise, but it gives good practice with the ideal of denominators.)

6.4.D. UNIMPORTANT EXERCISE RELATING TO THE IDEAL OF DENOMINATORS.
One might naively hope from experience with unique factorization domains that
the ideal of denominators is principal. This is not true. As a counterexample,
consider our new friend A = k[w, x, y, z]/(wz − xy) (which we last saw in Exam-
ple 5.4.12, and which we will later recognize as the cone over the quadric surface),
and w/y = x/z ∈ K(A). Show that I = (y, z). We will soon see that I is not prin-
cipal (Exercise 13.1.C). But we will later see that in good situations (Noetherian,
normal), it is “pure codimension 1” — this is the content of Algebraic Hartogs’
Lemma 12.3.10. In its proof, §12.3.11, we give a geometric interpretation of the
ideal of denominators.

6.4.3. Factoriality.
We define a notion which implies normality.

6.4.4. Definition. If all the stalks of a scheme X are unique factorization domains,
we say that X is factorial. (Unimportant remark: This is sometimes called locally
factorial, which may falsely suggest that this notion if affine local, which it isn’t, see
Exercise 6.4.M. But the alternative terminology avoids another confusion: unique
factorial domains are sometimes called factorial rings, and while we will see that
if A is a unique factorial domain then Spec A is factorial, we will also see in Exer-
cise 6.4.M that the converse does not hold.)

6.4.E. EXERCISE. Show that any nonzero localization of a unique factorization
domain is a unique factorization domain.

Thus if A is a unique factorization domain, then Spec A is factorial. (The con-
verse need not hold. This property is not affine-local, see Exercise 6.4.M. In fact,
we will see that elliptic curves are factorial, yet no affine open set is the Spec of
a unique factorization domain, §21.9.1.) Hence it suffices to check factoriality by
finding an appropriate affine cover.

6.4.5. Remark: How to check if a ring is a unique factorization domain. There are very
few means of checking that a Noetherian integral domain is a unique factoriza-
tion domain. Some useful ones are: (0) elementary means (rings with a euclidean
algorithm such as Z, k[t], and Z[i]; polynomial rings over a unique factorization
domain, by Gauss’ Lemma). (1) Exercise 6.4.E, that the localization of a unique
factorization domain is also a unique factorization domain. (2) height 1 primes are
principal (Proposition 12.3.5). (3) Nagata’s Lemma (Exercise 15.2.R). (4) normal
and Cl = 0 (Exercise 15.2.Q).
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6.4.6. Factoriality implies normality. One of the reasons we like factoriality is that it
implies normality.

6.4.F. IMPORTANT EXERCISE. Show that unique factorization domains are inte-
grally closed. Hence factorial schemes are normal, and if A is a unique factor-
ization domain, then Spec A is normal. (However, rings can be integrally closed
without being unique factorization domains, as we will see in Exercise 6.4.K. An-
other example, without proof is given in Exercise 6.4.M; in this example, Spec of
the ring is factorial. A variation on Exercise 6.4.K will show that schemes can be
normal without being factorial, see Exercise 13.1.D.)

6.4.G. EASY EXERCISE. Show that the following schemes are normal: An
k , Pn

k ,
Spec Z. (As usual, k is a field. Although it is true that if A is integrally closed then
A[x] is as well [B, Ch. 5, §1, no. 3, Cor. 2], this is not an easy fact, so do not use it
here.)

6.4.H. HANDY EXERCISE (YIELDING MANY OF ENLIGHTENING EXAMPLES LATER).
Suppose A is a unique factorization domain with 2 a unit, f ∈ A has no repeated
prime factors, and z2 − f is irreducible in A[z]. Show that Spec A[z]/(z2 − f) is
normal. Show that if f is not square-free, then Spec A[z]/(z2 − f) is not normal.
(Hint: B := A[z]/(z2 −f) is an integral domain, as (z2 −f) is prime in A[z]. Suppose
we have monic F(T) ∈ B[T ] so that F(T) = 0 has a root α in K(B). Then by replacing
F(T) by F(T)F(T), we can assume F(T) ∈ A[T ]. Also, α = g + hz where g, h ∈ K(A).
Now α is the root of Q(T) = 0 for monic Q(T) = T2 − 2gT + (g2 − h2f) ∈ K(A)[T ],
so we can factor F(T) = P(T)Q(T) in K(A)[T ]. By Gauss’ lemma, 2g, g2 − h2f ∈ A.
Say g = r/2, h = s/t (s and t have no common factors, r, s, t ∈ A). Then g2 −h2f =
(r2t2 − 4s2f)/4t2. Then t is a unit, and r is even.)

6.4.I. EXERCISE. Show that the following schemes are normal:

(a) Spec Z[x]/(x2−n) where n is a square-free integer congruent to 3 (mod 4);
(b) Spec k[x1, . . . , xn]/(x2

1 + x2
2 + · · · + x2

m) where char k != 2, m ≥ 3;
(c) Spec k[w, x, y, z]/(wz−xy) where char k != 2 and k is algebraically closed.

This is our cone over a quadric surface example from Exercises 5.4.12
and 6.4.D. (Hint: Exercise 6.4.J may help.)

6.4.J. EXERCISE (DIAGONALIZING QUADRICS). Suppose k is an algebraically
closed field of characteristic not 2.
(a) Show that any quadratic form in n variables can be “diagonalized” by chang-
ing coordinates to be a sum of at most n squares (e.g. uw − v2 = ((u + w)/2)2 +
(i(u − w)/2)2 + (iv)2), where the linear forms appearing in the squares are linearly in-
dependent. (Hint: use induction on the number of variables, by “completing the
square” at each step.)
(b) Show that the number of squares appearing depends only on the quadric. For
example, x2 + y2 + z2 cannot be written as a sum of two squares. (Possible ap-
proach: given a basis x1, . . . , xn of the linear forms, write the quadratic form as

(
x1 · · · xn

)
M




x1

...
xn
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where M is a symmetric matrix. Determine how M transforms under a change of
basis, and show that the rank of M is independent of the choice of basis.)

The rank of the quadratic form is the number of (“linearly independent”)
squares needed.

6.4.K. EXERCISE (RINGS CAN BE INTEGRALLY CLOSED BUT NOT FACTORIAL). Sup-
pose k is an algebraically closed field of characteristic not 2. Let A = k[w, x, y, z]/(wz−
xy), so Spec A is the cone over the quadric surface (cf. Exercises 5.4.12 and 6.4.D).
(a) Show that A is integrally closed. (Hint: Exercises 6.4.I(c) and 6.4.J.)
(b) Show that A is not a unique factorization domain. (Clearly wz = xy. But why
are w, x, y, and z irreducible? Hint: Since A is a graded integral domain, if a
homogeneous element factor, show that the factors must be homogeneous.)

6.4.L. EXERCISE. Suppose A is a k-algebra where char k = 0, and l/k is a finite
field extension. Show that if A⊗k l is normal (and in particular an integral domain)
then A is normal. (This is a case of a more general fact, and stated correctly, the
converse is true.) Show that Spec k[w, x, y, z]/(wz − xy) is normal if k has charac-
teristic 0. Possible hint: reduce to the case where l/k is Galois.

6.4.M. EXERCISE (FACTORIALITY IS NOT AFFINE-LOCAL). Let A = (Q[x, y]x2+y2)0

denote the homogeneous degree 0 part of the ring Q[x, y]x2+y2 . In other words, it
consists of quotients f(x, y)/(x2 +y2)n, where f has pure degree 2n. Show that the

distinguished open sets D( x2

x2+y2 ) and D( y2

x2+y2 ) cover Spec A. (Hint: the sum of
those two fractions is 1.) Show that A x2

x2+y2

and A y2

x2+y2

are unique factorization

domains. (Hint for the first: show that each ring is isomorphic to Q[t]t2+1, where
t = y/x; this is a localization of the unique factorization domain Q[t].) Finally,
show that A is not a unique factorization domain. Possible hint:

(
xy

x2 + y2

)2

=

(
x2

x2 + y2

) (
y2

x2 + y2

)
.

Number theorists may prefer a different example: Z[
√

−5] is not factorial (as
witnessed by 2 · 3 = (1 +

√
−5)(1 −

√
−5)), but is normal because it is a Dedekind

domain. (We will be able to make this precise. You can use the usual norm |a +
b
√

−5| = a2 + 5b2 to show that 2, 3, 1 +
√

−5, and 1 −
√

−5 are all irreducible. See
§13.4.15 for why Z[

√
−5] it is factorial. (Here again the Picard group is Z/2, but

this is a coincidence, or so I think.)

6.5 Associated points of schemes, and drawing fuzzy pictures

The price of metaphor is eternal vigilance. — Norbert Wiener

(This important topic won’t be used in an essential way for some time, cer-
tainly until we talk about dimension in Chapter 12, so it may be best skipped on a
first reading. Better: read this section considering only the case where A is an in-
tegral domain, or possibly a reduced Noetherian ring, thereby bypassing some of
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the annoyances. Then you will at least be comfortable with the notion of a rational
function in these situations.)

Recall from just after Definition 6.2.1 (of reduced) our “fuzzy” picture of the
nonreduced scheme Spec k[x, y]/(y2, xy) (see Figure 6.1). When this picture was
introduced, we mentioned that the “fuzz” at the origin indicated that the nonre-
duced behavior was concentrated there. This was verified in Exercise 6.2.A, and
indeed the origin is the only point where the stalk of the structure sheaf is nonre-
duced.

You might imagine that in a bigger scheme, we might have different closed
subsets with different amount of “nonreducedness”. This intuition will be made
precise in this section. We will define associated points of a scheme, which will
be the most important points of a scheme, encapsulating much of the interesting
behavior of the structure sheaf. For example, in Figure 6.1, the associated points
are the generic point of the x-axis, and the origin (where “the nonreducedness
lives”).

The primes corresponding to the associated points of an affine scheme Spec A
will be called associated primes of A. In fact this is backwards; we will define associ-
ated primes first, and then define associated points.

6.5.1. Properties of associated points. The properties of associated points that
it will be most important to remember are as follows. Frankly, it is much more
important to remember these facts than it is to remember their proofs. But we will,
of course, prove these statements.

(0) They will exist for any locally Noetherian scheme, and for integral schemes.
There are a finite number in any affine open set (and hence in any quasicompact
open set). This will come for free.

(1) The generic points of the irreducible components of a locally Noetherian scheme are
associated points. The other associated points are called embedded points. Thus in
Figure 6.1, the origin is the only embedded point. (By the way, there are easier ana-
logues of these properties where Noetherian hypotheses are replaced by integral
conditions; see Exercise 6.5.C.)

(2) If a locally Noetherian scheme X is reduced, then X has no embedded points. (This
jibes with the intuition of the picture of associated points described earlier.) It
follows from (1) and (2) that if X is integral (i.e. irreducible and reduced, Exer-
cise 6.2.E), then the generic point is the only associated point.

(3) Recall that one nice property of integral schemes X (such as irreducible
affine varieties) not shared by all schemes is that for any non-empty open U ⊂ X,
the natural map Γ(U,OX) → K(X) is an inclusion (Exercise 6.2.H). Thus all sections
over any non-empty open set, and stalks, can be thought of as lying in a single field
K(X), which is the stalk at the generic point.

More generally, if X is a locally Noetherian scheme, then for any U ⊂ X, the natural
map

(6.5.1.1) Γ(U,OX) →
∏

associated p in U

OX,p

is an injection.
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6.5.2. Definitions. We define a rational function on a scheme with associated
points to be an element of the image of Γ(U,OU) in (6.5.1.1) for some U containing
all the associated points. Equivalently, the set of rational functions is the colimit
of OX(U) over all open sets containing the associated points. Thus if X is integral,
the rational functions are the elements of the stalk at the generic point, and even
if there is more than one associated point, it is helpful to think of them in this
stalk-like manner. For example, in Figure 6.1, we think of x−2

(x−1)(x−3) as a ratio-

nal function, but not x−2
x(x−1) . The rational functions form a ring, called the total

fraction ring of X, denoted Q(X). If X = Spec A is affine, then this ring is called
the total fraction ring of A, and is denoted Q(A). (But we will never use this no-
tation.) If X is integral, this is the function field K(X), so this extends our earlier
Definition 6.2.G of K(·). It can be more conveniently interpreted as follows, us-
ing the injectivity of (6.5.1.1). A rational function is a function defined on an open
set containing all associated points, i.e. an ordered pair (U, f), where U is an open
set containing all associated points, and f ∈ Γ(U,OX). Two such data (U, f) and
(U ′, f ′) define the same open rational function if and only if the restrictions of f
and f ′ to U ∩ U ′ are the same. If X is reduced, this is the same as requiring that
they are defined on an open set of each of the irreducible components. A rational
function has a maximal domain of definition, because any two actual functions
on an open set (i.e. sections of the structure sheaf over that open set) that agree as
“rational functions” (i.e. on small enough open sets containing associated points)
must be the same function, by the injectivity of (6.5.1.1). We say that a rational
function f is regular at a point p if p is contained in this maximal domain of defini-
tion (or equivalently, if there is some open set containing p where f is defined). For
example, in Figure 6.1, the rational function x−2

(x−1)(x−3) has domain of definition

consisting of everything but 1 and 3 (i.e. [(x−1)] and [(x−3)]), and is regular away
from those two points.

The previous facts are intimately related to the following one.

(4) A function on an affine Noetherian scheme X is a zerodivisor if and only if it
vanishes at an associated point of X.

Motivated by the above four properties, when sketching (locally Noetherian)
schemes, we will draw the irreducible components (the closed subsets correspond-
ing to maximal associated points), and then draw “additional fuzz” precisely at the
closed subsets corresponding to embedded points. All of our earlier sketches were
of this form. (See Figure 6.3.) The fact that these sketches “make sense” implicitly
uses the fact that the notion of associated points behaves well with respect to open
sets (and localization, cf. Theorem 6.5.4(d)).

6.5.A. EXERCISE (FIRST PRACTICE WITH MAKING FUZZY PICTURES). Assume the
properties (1)–(4) of associated points (§6.5.1). Suppose X is a closed subscheme
of A2

C = Spec C[x, y] with associated points at [(y − x2)], [(x − 1, y − 1)], and [(x −
2, y − 2)]. (a) Sketch X, including fuzz. (b) Do you have enough information to
know if X is reduced? (c) Do you have enough information to know if x + y − 2 is
a zerodivisor? How about x+y− 3? How about y−x2? (Exercise 6.5.K will verify
that such an X actually exists!)

We now finally define associated points, and show that they have the desired
properties (1) through (4).
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FIGURE 6.3. This scheme has 6 associated points, of which 3
are embedded points. A function is a zerodivisor if it vanishes at
one of these six points. It is nilpotent if it vanishes at all six of
these points. (In fact, it suffices to vanish at the non-embedded
associated points.)

6.5.3. Definition. We work more generally with modules M over a ring A. A prime
p ⊂ A is associated to M if p is the annihilator of an element m of M (p = {a ∈
A : am = 0}). The set of primes associated to M is denoted Ass M (or AssA M).
Awkwardly, if I is an ideal of A, the associated primes of the module A/I are said
to be the associated primes of I. This is not my fault.

6.5.B. EASY EXERCISE. Show that p is associated to M if and only if M has a
submodule isomorphic to A/p.

6.5.4. Theorem (properties of associated primes). — Suppose A is a Noetherian
ring, and M != 0 is finitely generated.

(a) The set Ass M is finite and nonempty.
(b) The natural map M →

∏
p∈Ass M Mp is an injection.

(c) The set of zerodivisors of M is ∪p∈Ass Mp.
(d) (association commutes with localization) If S is a multiplicative set, then

AssS−1A S−1M = AssA M ∩ Spec S−1A

(= {p ∈ AssA M : p ∩ S = ∅}).
(e) The set Ass M contains the primes minimal among those containing ann M :=

{a ∈ A : aM = 0}.

6.5.5. Definition. We define the associated points of a locally Noetherian scheme
X to be those points p ∈ X such that, on any affine open set Spec A containing p, p
corresponds to an associated prime of A. This notion is independent of choice of
affine neighborhood Spec A: if p has two affine open neighborhoods Spec A and
Spec B (say corresponding to primes p ⊂ A and q ⊂ B respectively), then p corre-
sponds to an associated prime of A if and only if it corresponds to an associated
prime of Ap = OX,p = Bq if and only if it corresponds to an associated prime of B,
by Theorem 6.5.4(d).
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6.5.C. STRAIGHTFORWARD EXERCISE. State and prove the analogues of (1)–(4)
for schemes that are integral rather than locally Noetherian. State and prove the
analogues of Theorem 6.5.4 in the special case M = A, where the hypothesis that
A is Noetherian is replaced by the hypothesis that A is an integral domain.

6.5.D. IMPORTANT EXERCISE. Show how Theorem 6.5.4 implies properties (0)–(4).
(By (3), I mean the injectivity of (6.5.1.1). The trickiest is probably (2).)

We now prove Theorem 6.5.4.

6.5.E. EXERCISE. Suppose M != 0 is an A-module. Show that if I ⊂ A is maxi-
mal among all ideals that are annihilators of elements of M, then I is prime, and
hence I ∈ Ass M. Thus if A is Noetherian, then Ass M is nonempty (part of Theo-
rem 6.5.4(a)).

6.5.F. EXERCISE. Suppose that M is a module over a Noetherian ring A. Show
that m = 0 if and only if m is 0 in Mp for each of the maximal associated primes of
M. (Hint: use the previous exercise.)

This immediately implies Theorem 6.5.4(b). It also implies Theorem 6.5.4(c):
Any nonzero element of ∪p∈Ass Mp is clearly a zerodivisor. Conversely, if a annihi-
lates a nonzero element of M, then a is contained in a maximal annihilator ideal.

6.5.G. EXERCISE. If 0 → M ′ → M → M ′′ → 0 is a short exact sequence of
A-modules, show that

Ass M ′ ⊂ Ass M ⊂ Ass M ′ ∪ Ass M ′′.

(Possible hint for the second containment: if m ∈ M has annihilator p, then Am =
A/p, cf. Exercise 6.5.B.)

6.5.H. EXERCISE. If M is a finitely generated module over Noetherian A, show
that M has a filtration

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M

where Mi+1/Mi
∼= R/pi for some prime ideal pi. Show that the associated primes

are among the pi, and thus prove Theorem 6.5.4(a).

6.5.I. EXERCISE. Prove Theorem 6.5.4(d) as follows.
(a) Show that

AssA M ∩ Spec S−1A ⊂ AssS−1A S−1M.

(Hint: suppose p ∈ AssA M ∩ Spec S−1A, with p = ann m for m ∈ M.)
(b) Suppose q ∈ AssS−1A S−1M, which corresponds to p ∈ A (i.e. q = p(S−1A)).
Then q = annS−1A m (m ∈ S−1M), which yields a nonzero element of

HomS−1A(S−1A/q, S−1M).

Argue that this group is isomorphic to S−1 HomA(A/p,M) (see Exercise 2.6.G),
and hence HomA(A/p,M) != 0.

6.5.J. EXERCISE. Prove Theorem 6.5.4(e) as follows. If p is minimal over ann M,
localize at p, so that p is the only prime containing ann M. Use Theorem 6.5.4(d).
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6.5.K. EXERCISE. Let I = (y − x2)3 ∩ (x − 1, y − 1)15 ∩ (x − 2, y − 2). Show that
X = Spec C[x, y]/I satisfies the hypotheses of Exercise 6.5.A. (Side question: Is
there a “smaller” example? Is there a “smallest”?)

6.5.6. Aside: Primary ideals. The notion of primary ideals is important, although
we won’t use it. (An ideal I ⊂ A in a ring is primary if I != A and if xy ∈ I implies
either x ∈ I or yn ∈ I for some n > 0.) The associated primes of an ideal turn out
to be precisely those primes appearing in its primary decomposition. See [E, §3.3],
for example, for more on this topic.





Part III

Morphisms of schemes





CHAPTER 7

Morphisms of schemes

7.1 Introduction

We now describe the morphisms between schemes. We will define some easy-
to-state properties of morphisms, but leave more subtle properties for later.

Recall that a scheme is (i) a set, (ii) with a topology, (iii) and a (structure) sheaf
of rings, and that it is sometimes helpful to think of the definition as having three
steps. In the same way, the notion of morphism of schemes X → Y may be defined
(i) as a map of sets, (ii) that is continuous, and (iii) with some further informa-
tion involving the sheaves of functions. In the case of affine schemes, we have
already seen the map as sets (§4.2.7) and later saw that this map is continuous
(Exercise 4.4.H).

Here are two motivations for how morphisms should behave. The first is alge-
braic, and the second is geometric.

7.1.1. Algebraic motivation. We will want morphisms of affine schemes Spec B →
Spec A to be precisely the ring maps A → B. We have already seen that ring maps
A → B induce maps of topological spaces in the opposite direction (Exercise 4.4.H);
the main new ingredient will be to see how to add the structure sheaf of functions
into the mix. Then a morphism of schemes should be something that “on the level
of affines, looks like this”.

7.1.2. Geometric motivation. Motivated by the theory of differentiable manifolds
(§4.1.1), which like schemes are ringed spaces, we want morphisms of schemes at
the very least to be morphisms of ringed spaces; we now describe what these are.
Notice that if π : X → Y is a map of differentiable manifolds, then a differentiable
function on Y pulls back to a differentiable function on X. More precisely, given
an open subset U ⊂ Y, there is a natural map Γ(U,OY) → Γ(π−1(U),OX). This
behaves well with respect to restriction (restricting a function to a smaller open
set and pulling back yields the same result as pulling back and then restricting),
so in fact we have a map of sheaves on Y: OY → π∗OX. Similarly a morphism
of schemes X → Y should induce a map OY → π∗OX. But in fact in the category
of differentiable manifolds a continuous map X → Y is a map of differentiable
manifolds precisely when differentiable functions on Y pull back to differentiable
functions on X (i.e. the pullback map from differentiable functions on Y to functions
on X in fact lies in the subset of differentiable functions, i.e. the continuous map
X → Y induces a pullback of differential functions OY → OX), so this map of

151
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sheaves characterizes morphisms in the differentiable category. So we could use
this as the definition of morphism in the differentiable category.

But how do we apply this to the category of schemes? In the category of dif-
ferentiable manifolds, a continuous map X → Y induces a pullback of (the sheaf of)
functions, and we can ask when this induces a pullback of differentiable functions.
However, functions are odder on schemes, and we can’t recover the pullback map
just from the map of topological spaces. A reasonable patch is to hardwire this
into the definition of morphism, i.e. to have a continuous map f : X → Y, along
with a pullback map f! : OY → f∗OX. This leads to the definition of the category of
ringed spaces.

One might hope to define morphisms of schemes as morphisms of ringed
spaces. This isn’t quite right, as then Motivation 7.1.1 isn’t satisfied: as desired,
to each morphism A → B there is a morphism Spec B → Spec A, but there can be
additional morphisms of ringed spaces Spec B → Spec A not arising in this way
(see Exercise 7.2.E). A revised definition as morphisms of ringed spaces that lo-
cally looks of this form will work, but this is awkward to work with, and we take
a different approach. However, we will check that our eventual definition actually
is equivalent to this (Exercise 7.3.C).

We begin by formally defining morphisms of ringed spaces.

7.2 Morphisms of ringed spaces

7.2.1. Definition. A morphism π : X → Y of ringed spaces is a continuous
map of topological spaces (which we unfortunately also call π) along with a map
OY → π∗OX, which we think of as a “pullback map”. By adjointness (§3.6.1),
this is the same as a map π−1OY → OX. There is an obvious notion of composi-
tion of morphisms, so ringed spaces form a category. Hence we have notion of
automorphisms and isomorphisms. You can easily verify that an isomorphism
f : (X,OX) → (Y,OY) is a homeomorphism f : X → Y along with an isomorphism
OY → f∗OX (or equivalently f−1OY → OX).

If U ⊂ Y is an open subset, then there is a natural morphism of ringed spaces
(U,OY |U) → (Y,OY) (which implicitly appeared earlier in Exercise 3.6.G). More
precisely, if U → Y is an isomorphism of U with an open subset V of Y, and we are
given an isomorphism (U,OU) ∼= (V,OY |V) (via the isomorphism U ∼= V), then the
resulting map of ringed spaces is called an open immersion of ringed spaces.

7.2.A. EXERCISE (MORPHISMS OF RINGED SPACES GLUE). Suppose (X,OX) and
(Y,OY) are ringed spaces, X = ∪iUi is an open cover of X, and we have morphisms
of ringed spaces fi : Ui → Y that “agree on the overlaps”, i.e. fi|Ui∩Uj

= fj|Ui∩Uj
.

Show that there is a unique morphism of ringed spaces f : X → Y such that f|Ui
=

fi. (Exercise 3.2.F essentially showed this for topological spaces.)

7.2.B. EASY IMPORTANT EXERCISE: O -MODULES PUSH FORWARD. Given a mor-
phism of ringed spaces f : X → Y, show that sheaf pushforward induces a functor
ModOX

→ ModOY
.
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7.2.C. EASY IMPORTANT EXERCISE. Given a morphism of ringed spaces f : X → Y
with f(p) = q, show that there is a map of stalks (OY)q → (OX)p.

7.2.D. KEY EXERCISE. Suppose π! : B → A is a morphism of rings. Define a
morphism of ringed spaces π : Spec A → Spec B as follows. The map of topological
spaces was given in Exercise 4.4.H. To describe a morphism of sheaves OB →
π∗OA on Spec B, it suffices to describe a morphism of sheaves on the distinguished
base of Spec B. On D(g) ⊂ Spec B, we define

OB(D(g)) → OA(π−1D(g)) = OA(D(π!g))

by Bg → Aπ!g. Verify that this makes sense (e.g. is independent of g), and that
this describes a morphism of sheaves on the distinguished base. (This is the third
in a series of exercises. We saw that a morphism of rings induces a map of sets
in §4.2.7, a map of topological spaces in Exercise 4.4.H, and now a map of ringed
spaces here.)

This will soon be an example of morphism of schemes! In fact we could make
that definition right now.

7.2.2. Tentative Definition we won’t use (cf. Motivation 7.1.1 in §7.1). A mor-
phism of schemes f : (X,OX) → (Y,OY) is a morphism of ringed spaces that
“locally looks like” the maps of affine schemes described in Key Exercise 7.2.D.
Precisely, for each choice of affine open sets Spec A ⊂ X, Spec B ⊂ Y, such that
f(Spec A) ⊂ Spec B, the induced map of ringed spaces should be of the form
shown in Key Exercise 7.2.D.

We would like this definition to be checkable on an affine cover, and we might
hope to use the Affine Communication Lemma to develop the theory in this way.
This works, but it will be more convenient to use a clever trick: in the next section,
we will use the notion of locally ringed spaces, and then once we have used it, we
will discard it like yesterday’s garbage.

The map of ringed spaces of Key Exercise 7.2.D is really not complicated. Here
is an example. Consider the ring map C[x] → C[y] given by x (→ y2 (see Figure 4.6).
We are mapping the affine line with coordinate y to the affine line with coordinate
x. The map is (on closed points) a (→ a2. For example, where does [(y − 3)] go
to? Answer: [(x − 9)], i.e. 3 (→ 9. What is the preimage of [(x − 4)]? Answer: those
prime ideals in C[y] containing [(y2 −4)], i.e. [(y−2)] and [(y+2)], so the preimage
of 4 is indeed ±2. This is just about the map of sets, which is old news (§4.2.7), so
let’s now think about functions pulling back. What is the pullback of the function
3/(x − 4) on D([(x − 4)]) = A1 − {4}? Of course it is 3/(y2 − 4) on A1 − {−2, 2}.

We conclude with an example showing that not every morphism of ringed
spaces between affine schemes is of the form of Key Exercise 7.2.D. (In the lan-
guage of the next section, this morphism of ringed spaces is not a morphism of
locally ringed spaces.)

7.2.E. UNIMPORTANT EXERCISE. Recall (Exercise 4.4.K) that Spec k[x](x) has two
points, corresponding to (0) and (x), where the second point is closed, and the first
is not. Consider the map of ringed spaces Spec k(x) → Spec k[x](x) sending the point
of Spec k(x) to [(x)], and the pullback map f!OSpec k[x](x)

→ OSpec k(x) is induced by
k ↪→ k(x). Show that this map of ringed spaces is not of the form described in Key
Exercise 7.2.D.
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7.3 From locally ringed spaces to morphisms of schemes

In order to prove that morphisms behave in a way we hope, we will use the
notion of a locally ringed space. It will not be used later, although it is useful else-
where in geometry. The notion of locally ringed spaces (and maps between them)
is inspired by what we know about manifolds (see Exercise 4.1.B). If π : X → Y is
a morphism of manifolds, with π(p) = q, and f is a function on Y vanishing at q,
then the pulled back function π!f on X should vanish on p. Put differently: germs
of functions (at q ∈ Y) vanishing at q should pull back to germs of functions (at
p ∈ X) vanishing at p.

7.3.1. Definition. Recall (Definition 5.3.4) that a locally ringed space is a ringed space
(X,OX) such that the stalks OX,x are all local rings. A morphism of locally ringed
spaces f : X → Y is a morphism of ringed spaces such that the induced map of
stalks OY,q → OX,p (Exercise 7.2.C) sends the maximal ideal of the former into
the maximal ideal of the latter (a “homomorphism of local rings”). This means
something rather concrete and intuitive: “if p (→ q, and g is a function vanishing
at q, then it will pull back to a function vanishing at p.” Note that locally ringed
spaces form a category.

To summarize: we use the notion of locally ringed space only to define mor-
phisms of schemes, and to show that morphisms have reasonable properties. The
main things you need to remember about locally ringed spaces are (i) that the func-
tions have values at points, and (ii) that given a map of locally ringed spaces, the
pullback of where a function vanishes is precisely where the pulled back function
vanishes.

7.3.A. EXERCISE. Show that morphisms of locally ringed spaces glue (cf. Exer-
cise 7.2.A). (Hint: your solution to Exercise 7.2.A may work without change.)

7.3.B. EASY IMPORTANT EXERCISE. (a) Show that Spec A is a locally ringed space.
(Hint: Exercise 5.3.F.) (b) Show that the morphism of ringed spaces f : Spec A →
Spec B defined by a ring morphism f! : B → A (Exercise 4.4.H) is a morphism of
locally ringed spaces.

7.3.2. Key Proposition. — If f : Spec A → Spec B is a morphism of locally ringed
spaces then it is the morphism of locally ringed spaces induced by the map f! : B =
Γ(Spec B,OSpec B) → Γ(Spec A,OSpec A) = A as in Exercise 7.3.B(b).

Proof. Suppose f : Spec A → Spec B is a morphism of locally ringed spaces. We
wish to show that it is determined by its map on global sections f! : B → A. We first
need to check that the map of points is determined by global sections. Now a point
p of Spec A can be identified with the prime ideal of global functions vanishing on
it. The image point f(p) in Spec B can be interpreted as the unique point q of
Spec B, where the functions vanishing at q pull back to precisely those functions
vanishing at p. (Here we use the fact that f is a map of locally ringed spaces.) This
is precisely the way in which the map of sets Spec A → Spec B induced by a ring
map B → A was defined (§4.2.7).

Note in particular that if b ∈ B, f−1(D(b)) = D(f!b), again using the hypothe-
sis that f is a morphism of locally ringed spaces.
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It remains to show that f! : OSpec B → f∗OSpec A is the morphism of sheaves
given by Exercise 7.2.D (cf. Exercise 7.3.B(b)). It suffices to check this on the dis-
tinguished base (Exercise 3.7.C(a)). We now want to check that for any map of
locally ringed spaces inducing the map of sheaves OSpec B → f∗OSpec A, the map of
sections on any distinguished open set D(b) ⊂ Spec B is determined by the map
of global sections B → A.

Consider the commutative diagram

B Γ(Spec B,OSpec B)
f!

Spec B $$

resSpec B,D(b)

%%

Γ(Spec A,OSpec A)

resSpec A,D(f!b)

%%

A

Bb Γ(D(b),OSpec B)
f!

D(b) $$ Γ(D(f!b),OSpec A) Af!b = A ⊗B Bb.

The vertical arrows (restrictions to distinguished open sets) are localizations by

b, so the lower horizontal map f!
D(b) is determined by the upper map (it is just

localization by b). !

We are ready for our definition.

7.3.3. Definition. If X and Y are schemes, then a morphism π : X → Y as locally
ringed spaces is called a morphism of schemes. We have thus defined the category
of schemes, which we denote Sch. (We then have notions of isomorphism — just
the same as before, §5.3.4 — and automorphism. We note that the target Y of π
is sometimes called the base scheme or the base, when we are interpreting π as
a family of schemes parametrized by Y — this may become clearer once we have
defined the fibers of morphisms in §10.3.2.)

The definition in terms of locally ringed spaces easily implies Tentative Defi-
nition 7.2.2:

7.3.C. IMPORTANT EXERCISE. Show that a morphism of schemes f : X → Y is a
morphism of ringed spaces that looks locally like morphisms of affines. Precisely,
if Spec A is an affine open subset of X and Spec B is an affine open subset of Y, and
f(Spec A) ⊂ Spec B, then the induced morphism of ringed spaces is a morphism
of affine schemes. (In case it helps, note: if W ⊂ X and Y ⊂ Z are both open
immersions of ringed spaces, then any morphism of ringed spaces X → Y induces
a morphism of ringed spaces W → Z, by composition W → X → Y → Z.) Show
that it suffices to check on a set (Spec Ai, Spec Bi) where the Spec Ai form an open
cover of X.

In practice, we will use the affine cover interpretation, and forget completely
about locally ringed spaces. In particular, put imprecisely, the category of affine
schemes is the category of rings with the arrows reversed. More precisely:

7.3.D. EXERCISE. Show that the category of rings and the opposite category of
affine schemes are equivalent (see §2.2.21 to read about equivalence of categories).

In particular, here is something surprising: there can be interesting maps from
one point to another. For example, here are two different maps from the point
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Spec C to the point Spec C: the identity (corresponding to the identity C → C),
and complex conjugation. (There are even more such maps!)

It is clear (from the corresponding facts about locally ringed spaces) that mor-
phisms glue (Exercise 7.3.A), and the composition of two morphisms is a mor-
phism. Isomorphisms in this category are precisely what we defined them to be
earlier (§5.3.4).

7.3.4. The category of complex schemes (or more generally the category of k-
schemes where k is a field, or more generally the category of A-schemes where
A is a ring, or more generally the category of S-schemes where S is a scheme).
The category of S-schemes SchS (where S is a scheme) is defined as follows. The
objects are morphisms of the form

X

%%
S

(The morphism to S is called the structure morphism. A motivation for this ter-
minology is the fact that if S = Spec A, the structure morphism gives the functions
on each open set the structure of an A-algebra, cf. §6.3.5.) The morphisms in the
category of S-schemes are defined to be commutative diagrams

X

%%

$$ Y

%%
S

= $$ S

which is more conveniently written as a commutative diagram

X $$

---
-
-
-
-
-
- Y

((::
:
:
:
:
:

S.

When there is no confusion (if the base scheme is clear), simply the top row of the
diagram is given. In the case where S = Spec A, where A is a ring, we get the
notion of an A-scheme, which is the same as the same definition as in §6.3.5, but
in a more satisfactory form. For example, complex geometers may consider the
category of C-schemes.

The next two examples are important. The first will show you that you can
work with these notions in a straightforward, hands-on way. The second will show
that you can work with these notions in a formal way.

7.3.E. IMPORTANT EXERCISE. (This exercise will give you some practice with
understanding morphisms of schemes by cutting up into affine open sets.) Make

sense of the following sentence: “An+1 \ {#0} → Pn given by

(x0, x1, . . . , xn+1) (→ [x0; x1; . . . ; xn]

is a morphism of schemes.” Caution: you can’t just say where points go; you have
to say where functions go. So you will have to divide these up into affines, and
describe the maps, and check that they glue.
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7.3.F. ESSENTIAL EXERCISE. Show that morphisms X → Spec A are in natural
bijection with ring morphisms A → Γ(X,OX). Hint: Show that this is true when X
is affine. Use the fact that morphisms glue, Exercise 7.3.A. (This is even true in the
category of locally ringed spaces. You are free to prove it in this generality, but it
is easier in the category of schemes.)

In particular, there is a canonical morphism from a scheme to Spec of its ring
of global sections. (Warning: Even if X is a finite-type k-scheme, the ring of global
sections might be nasty! In particular, it might not be finitely generated, see 21.9.8.)

7.3.G. EASY EXERCISE. Show that this definition of A-scheme agrees with the
earlier definition of §6.3.5.

7.3.5. ! Side fact for experts: Γ and Spec are adjoints. We have a contravariant functor
Spec from rings to locally ringed spaces, and a contravariant functor Γ from locally
ringed spaces to rings. In fact (Γ, Spec) is an adjoint pair! Thus we could have
defined Spec by requiring it to be right-adjoint to Γ .

7.3.H. EASY EXERCISE. If S• is a finitely generated graded A-algebra, describe a
natural “structure morphism” Proj S• → Spec A.

7.3.I. EASY EXERCISE. Show that Spec Z is the final object in the category of
schemes. In other words, if X is any scheme, there exists a unique morphism
to Spec Z. (Hence the category of schemes is isomorphic to the category of Z-
schemes.) If k is a field, show that Spec k is the final object in the category of
k-schemes.

7.3.J. !! EASY EXERCISE FOR THOSE WITH APPROPRIATE BACKGROUND: THE AN-
ALYTIFICATION FUNCTOR. Recall the analytification construction of Exercise 6.3.7.
For each morphism of reduced finite-type C-schemes f : X → Y (over C), define a
morphism of complex analytic prevarieties fan : Xan → Yan (the analytification
of f). Show that analytification gives a functor from the category of reduced finite
type C-schemes to the category of complex analytic prevarieties

7.3.6. Definition: The functor of points, and S-valued points of a scheme. If S
is a scheme, then S-valued points of a scheme X, denoted X(S), are defined to be
maps S → X. If A is a ring, then A-valued points of a scheme X, denoted X(A),
are defined to be the (Spec A)-valued points of the scheme. We denote S-valued
points of X by X(S) and A-valued points of X by X(A).

If you are working over a base scheme B — for example, complex algebraic
geometers will consider only schemes and morphisms over B = Spec C — then in
the above definition, there is an implicit structure map S → B (or Spec A → B in
the case of X(A)). For example, for a complex geometer, if X is a scheme over C,
the C(t)-valued points of X correspond to commutative diagrams of the form

Spec C(t) $$

f 44;
;;

;;
;;

;;
;

X

g
;;<<
<<
<<
<<
<

Spec C
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where g : X → Spec C is the structure map for X, and f corresponds to the obvious
inclusion of rings C → C(t). (Warning: a k-valued point of a k-scheme X is some-
times called a “rational point” of X, which is dangerous, as for most of the world,
“rational” refers to Q. We will use the safer phrase “k-valued point” of X.)

The terminology ”S-valued point” is unfortunate, because we earlier defined
the notion of points of a scheme, and S-valued points are not (necessarily) points!
But this definition is well-established in the literature.

7.3.K. EXERCISE. (a) (easy) Show that a morphism of schemes X → Y induces a
map of S-valued points X(S) → Y(S). (b) Note that morphisms of schemes X → Y
are not determined by their “underlying” map of points. (What is an example?)
Show that they are determined by their induced maps of S-valued points, as S
varies over all schemes. (Hint: pick S = X. In the course of doing this exercise, you
will largely prove Yoneda’s Lemma in the guise of Exercise 10.1.D.)

Here is another reason S-valued points are a reasonable notion: the A-valued
points of an affine scheme Spec Z[x1, . . . , xn]/(f1, . . . , fr) (where fi ∈ Z[x1, . . . , xn] are
relations) are precisely the solutions to the equations

f1(x1, . . . , xn) = · · · = fr(x1, . . . , xn) = 0

in the ring A. For example, the rational solutions to x2 + y2 = 16 are precisely the
Q-valued points of Spec Z[x, y]/(x2 + y2 − 16). The integral solutions are precisely
the Z-valued points. So A-valued points of an affine scheme (finite type over Z)
can be interpreted simply. In the special case where A is local, A-valued points of
a general scheme have a good interpretation too:

7.3.L. EXERCISE (MORPHISMS FROM Spec OF A LOCAL RING TO X). Suppose X
is a scheme, and (A,m) is a local ring. Suppose we have a scheme morphism
π : Spec A → X sending [m] to x. Show that any open set containing x contains
the image of π. Show that there is a bijection between Hom(Spec A,X) and {x ∈
X, local homomorphisms Ox,X → A}.

Another reason this notion is good is that the notation X(S) suggests the inter-
pretation of X as a (contravariant) functor hX from schemes to sets — the functor
of (scheme-valued) points of the scheme X (cf. Example 2.2.20).

A related reason this notion is good is that “products of S-valued points” be-
have as you might hope, see §10.1.3.

On the other hand, maps to projective space can be confusing. There are some
maps we can write down easily, as shown by applying the next exercise in the case
X = Spec A, where A is a B-algebra.

7.3.M. EASY (BUT SURPRISINGLY ENLIGHTENING) EXERCISE. Suppose B is a ring.
If X is a B-scheme, and f0, . . . , fn are n + 1 functions on X with no common zeros,
then show that [f0; . . . ; fn] gives a morphism X → Pn

B.

You might hope that this gives all morphisms. But this isn’t the case. Indeed,
even the identity morphism X = P1

k → P1
k isn’t of this form, as the source P1

has no nonconstant global functions with which to build this map. (There are
similar examples with an affine source.) However, there is a correct generalization
(characterizing all maps from schemes to projective schemes) in Theorem 17.4.1.
This result roughly states that this works, so longer as the fi are not quite functions,



September 6, 2011 draft 159

but sections of a line bundle. Our desire to understand maps to projective schemes
in a clean way will be one important motivation for understanding line bundles.

We will see more ways to describe maps to projective space in the next section.
A different description directly generalizing Exercise 7.3.M will be given in Exer-
cise 16.3.F, which will turn out (in Theorem 17.4.1) to be a “universal” description.

Incidentally, before Grothendieck, it was considered a real problem to figure
out the right way to interpret points of projective space with “coordinates” in a
ring. These difficulties were due to a lack of functorial reasoning. And the clues to
the right answer already existed (the same problems arise for maps from a smooth
real manifold to RPn) — if you ask such a geometric question (for projective space
is geometric), the answer is necessarily geometric, not purely algebraic!

7.3.7. Visualizing schemes III: picturing maps of schemes when nilpotents are present.
You now know how to visualize the points of schemes (§4.3), and nilpotents (§5.2
and §6.5). The following imprecise exercise will give you some sense of how to vi-
sualize maps of schemes when nilpotents are involved. Suppose a ∈ C. Consider
the map of rings C[x] → C[ε]/ε2 given by x (→ aε. Recall that Spec C[ε]/(ε2) may
be pictured as a point with a tangent vector (§5.2). How would you picture this
map if a != 0? How does your picture change if a = 0? (The tangent vector should
be “crushed” in this case.)

Exercise 13.1.G will extend this considerably; you may enjoy reading its state-
ment now.

7.4 Maps of graded rings and maps of projective schemes

As maps of rings correspond to maps of affine schemes in the opposite direc-
tion, maps of graded rings (over a base ring A) sometimes give maps of projective
schemes in the opposite direction. This is an imperfect generalization: not every
map of graded rings gives a map of projective schemes (§7.4.1); not every map of
projective schemes comes from a map of graded rings (later); and different maps
of graded rings can yield the same map of schemes (Exercise 7.4.C).

7.4.A. ESSENTIAL EXERCISE. Suppose that f : S•
$$ R• is a morphism of

finitely-generated graded rings over A. By map of finitely generated graded rings,
we mean a map of rings that preserves the grading as a map of “graded semi-
groups”. In other words, there is a d > 0 such that Sn maps to Rdn for all n. Show
that this induces a morphism of schemes Proj R• \ V(f(S+)) → Proj S•. (Hint: Sup-
pose x is a homogeneous element of S+. Define a map D(f(x)) → D(x). Show that
they glue together (as x runs over all homogeneous elements of S+). Show that
this defines a map from all of Proj R• \ V(f(S+)).) In particular, if

(7.4.0.1) V(f(S+)) = ∅,

then we have a morphism Proj R• → Proj S•.

7.4.B. EXERCISE. Show that if f : S• → R• satisfies
√

(f(S+)) = R+, then hypoth-
esis (7.4.0.1) is satisfied. (Hint: Exercise 5.5.F.) This algebraic formulation of the
more geometric hypothesis can sometimes be easier to verify.
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Let’s see Exercise 7.4.A in action. We will schematically interpret the map of
complex projective manifolds P1 to P2 given by

P1 $$ P2

[s; t] % $$ [s20; s9t11; t20]

Notice first that this is well-defined: [λs; λt] is sent to the same point of P2 as [s; t].
The reason for it to be well-defined is that the three polynomials s20, s9t11, and
t20 are all homogeneous of degree 20.

Algebraically, this corresponds to a map of graded rings in the opposite direc-
tion

C[x, y, z] (→ C[s, t]

given by x (→ s20, y (→ s9t11, z (→ t20. You should interpret this in light of your
solution to Exercise 7.4.A, and compare this to the affine example of §4.2.8.

7.4.1. Notice that there is no map of complex manifolds P2 → P1 given by [x;y; z] →
[x;y], because the map is not defined when x = y = 0. This corresponds to the fact
that the map of graded rings C[s, t] → C[x, y, z] given by s (→ x and t (→ y, doesn’t
satisfy hypothesis (7.4.0.1).

7.4.C. UNIMPORTANT EXERCISE. This exercise shows that different maps of
graded rings can give the same map of schemes. Let R• = k[x, y, z]/(xz, yz, z2)
and S• = k[a, b, c]/(ac, bc, c2), where every variable has degree 1. Show that
Proj R•

∼= Proj S•
∼= P1

k. Show that the maps S• → R• given by (a, b, c) (→ (x, y, z)
and (a, b, c) (→ (x, y, 0) give the same (iso)morphism Proj R• → Proj S•. (The real
reason is that all of these constructions are insensitive to what happens in a finite
number of degrees. This will be made precise in a number of ways later, most
immediately in Exercise 7.4.F.)

7.4.2. Veronese subrings.
Here is a useful construction. Suppose S• is a finitely generated graded ring.

Define the nth Veronese subring of S• by Sn• = ⊕∞
j=0Snj. (The “old degree” n is

“new degree” 1.)

7.4.D. EXERCISE. Show that the map of graded rings Sn• ↪→ S• induces an isomor-
phism Proj S• → Proj Sn•. (Hint: if f ∈ S+ is homogeneous of degree divisible by n,
identify D(f) on Proj S• with D(f) on Proj Sn•. Why do such distinguished open
sets cover Proj S•?)

7.4.E. EXERCISE. If S• is generated in degree 1, show that Sn• is also generated in
degree 1. (You may want to consider the case of the polynomial ring first.)

7.4.F. EXERCISE. Use the previous exercise to show that if R• and S• are the same
finitely generated graded rings except in a finite number of nonzero degrees (make
this precise!), then Proj R•

∼= Proj S•.

7.4.G. EXERCISE. Suppose S• is generated over S0 by f1, . . . , fn. Find a d such
that Sd• is generated in “new” degree 1 (= “old” degree d). (This is surprisingly
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tricky, so here is a hint. Suppose there are generators x1, . . . , xn of degrees d1, . . . ,
dn respectively. Show that any monomial xa1

1 · · · xan
n of degree at least nd1 . . . dn

has ai ≥ (
∏

j dj)/di for some i. Show that the nd1 . . . dnth Veronese subring is
generated by elements in “new” degree 1.)

Exercise 7.4.G, in combination with Exercise 7.4.F, shows that there is little
harm in assuming that finitely generated graded rings are generated in degree 1,
as after a regrading, this is indeed the case. This is handy, as it means that, using
Exercise 7.4.D, we can assume that any finitely-generated graded ring is generated
in degree 1. We will see that as a consequence we can place every Proj in some
projective space via the construction of Exercise 9.2.G.

7.4.H. LESS IMPORTANT EXERCISE. Show that Sn• is a finitely generated graded
ring. (Possible approach: use the previous exercise, or something similar, to show
there is some N such that SnN• is generated in degree 1, so the graded ring SnN•

is finitely generated. Then show that for each 0 < j < N, SnN•+nj is a finitely
generated module over SnN•.)

7.5 Rational maps from reduced schemes

Informally speaking, a “rational map” is a “a morphism defined almost ev-
erywhere”, much as a rational function is a name for a function defined almost
everywhere. We will later see that in good situations, where a rational map is de-
fined, it is uniquely defined (the Reduced-to-separated Theorem 11.2.1), and has
a largest “domain of definition” (§11.2.2). For this section only, we assume X to be
reduced. A key example will be irreducible varieties (§7.5.4), and the language of
rational maps is most often used in this case.

7.5.1. Definition. A rational map from X to Y, denoted X ""# Y, is a morphism on
a dense open set, with the equivalence relation (f : U → Y) ∼ (g : V → Y) if there is
a dense open set Z ⊂ U∩V such that f|Z = g|Z. (In §11.2.2, we will improve this to:
if f|U∩V = g|U∩V in good circumstances — when Y is separated.) People often use
the word “map” for “morphism”, which is quite reasonable, except that a rational
map need not be a map. So to avoid confusion, when one means “rational map”,
one should never just say “map”.

7.5.2. ! Rational maps more generally. Definition 7.5.1 can be extended to where X
is not reduced, as is (using the same name, “rational map”), or in a version that
imposes some control over what happens over the nonreduced locus (pseudomor-
phisms, [Stacks, tag 01RX]). We will see in §11.2 that rational maps from reduced
schemes to separated schemes behave particularly well, which is why they are usu-
ally considered in this context. The reason for the definition of pseudomorphisms
is to extend these results to when X is nonreduced.

7.5.3. An obvious example of a rational map is a morphism. Another important
example is the projection Pn

A ""# Pn−1
A given by [x0; · · · ; xn] → [x0; · · · ; xn−1].

(How precisely is this a rational map in the sense of Definition 7.5.1? What is its
domain of definition?) A third example is the following.
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7.5.A. EASY EXERCISE. Interpret rational functions on an integral scheme (§6.5.2)
as rational maps to A1

Z. (This is analogous to functions corresponding to mor-
phisms to A1

Z, which will be described in §7.6.1.)

A rational map f : X ""# Y is dominant (or in some sources, dominating) if for
some (and hence every) representative U → Y, the image is dense in Y. Equiva-
lently, f is dominant if it sends the generic point of X to the generic point of Y. A
little thought will convince you that you can compose (in a well-defined way) a
dominant map f : X ""# Y with a rational map g : Y ""# Z. Integral schemes and
dominant rational maps between them form a category which is geometrically in-
teresting.

7.5.B. EASY EXERCISE. Show that dominant rational maps of integral schemes
give morphisms of function fields in the opposite direction.

It is not true that morphisms of function fields always give dominant rational
maps, or even rational maps. For example, Spec k[x] and Spec k(x) have the same
function field (k(x)), but there is no rational map Spec k[x] ""# Spec k(x). Reason:
that would correspond to a morphism from an open subset U of Spec k[x], say
Spec k[x, 1/f(x)], to Spec k(x). But there is no map of rings k(x) → k[x, 1/f(x)] for
any one f(x). However, maps of function fields indeed give dominant rational
maps of integral finite type k-schemes (and in particular, irreducible varieties, to
be defined in §11.1.7), see Proposition 7.5.5 below.

(If you want more evidence that the topologically-defined notion of domi-
nance is simultaneously algebraic, you can show that if φ : A → B is a ring
morphism, then the corresponding morphism Spec B → Spec A is dominant if
and only if φ has kernel contained in the nilradical of A.)

A rational map f : X → Y is said to be birational if it is dominant, and there
is another rational map (a “rational inverse”) that is also dominant, such that f ◦ g
is (in the same equivalence class as) the identity on Y, and g ◦ f is (in the same
equivalence class as) the identity on X. This is the notion of isomorphism in
the category of integral schemes and dominant rational maps. We say X and Y
are birational (to each other) if there exists a birational map X ""# Y. Birational
maps induce isomorphisms of function fields. The fact that maps of function fields
correspond to rational maps in the opposite direction for integral finite type k-
schemes, to be proved in Proposition 7.5.5, shows that a map between integral
finite type k-schemes that induces an isomorphism of function fields is birational.
An integral finite type k-scheme is said to be rational if it is birational to An

k for
some k. A morphism is birational if it is birational as a rational map. We will later
see (Proposition 11.2.3) that two integral affine k-varieties X and Y are birational
if there are dense open sets U ⊂ X and V ⊂ Y that are isomorphic (U ∼= V). In
particular, an integral affine k-variety is rational if “it has a big open subset that is
a big open subset of affine space An

k ”’.

7.5.4. Rational maps of irreducible varieties.

7.5.5. Proposition. — Suppose X, Y are integral finite type k-schemes, and we are given
φ! : K(Y) ↪→ K(X). Then there exists a dominant rational map φ : X ""# Y inducing φ!.



September 6, 2011 draft 163

Proof. By replacing Y with an affine open set, we may assume Y is affine, say
Y = Spec k[x1, . . . , xn]/(f1, . . . , fr). Then we have φ!x1, . . . , φ!xn ∈ K(X). Let U be
an open subset of the domains of definition of these rational functions. Then we
get a morphism U → An

k . But this morphism factors through Y ⊂ An, as x1, . . . ,
xn satisfy the relations f1, . . . , fr.

We see that the morphism is dense as follows. If the set-theoretic image is not
dense, it is contained in a proper closed subset. Let f be a function vanishing on
the closed subset. Then the pullback of f to U is 0 (as U is reduced), implying that
φ!(f) = 0, and f doesn’t vanish on all of Y, so f is not the 0-element of K(Y). But
this contradicts the fact that φ! is an inclusion. !

7.5.C. EXERCISE. Let K be a finitely generated field extension of k. (Informal
definition: a field extension K over k is finitely generated if there is a finite “gen-
erating set” x1, . . . , xn in K such that every element of K can be written as a
rational function in x1, . . . , xn with coefficients in k.) Show that there exists
an irreducible affine k-variety with function field K. (Hint: Consider the map
k[t1, . . . , tn] → K given by ti (→ xi, and show that the kernel is a prime ideal
p, and that k[t1, . . . , tn]/p has fraction field K. Interpreted geometrically: consider
the map Spec K → Spec k[t1, . . . , tn] given by the ring map ti (→ xi, and take the
closure of the one-point image.)

7.5.D. EXERCISE. Describe an equivalence of categories between (a) finitely gen-
erated field extensions of k, and inclusions extending the identity on k, and (b)
integral affine k-varieties, and dominant rational maps defined over k.

In particular, an integral affine k-variety X is rational if its function field K(X)
is a purely transcendent extension of k, i.e. K(X) ∼= k(x1, . . . , xn) for some n. (This
needs to be said more precisely: the map k ↪→ K(X) induced by X → Spec k should
agree with the “obvious” map k ↪→ k(x1, . . . , xn) under this isomorphism.)

7.5.6. Definition: degree of a rational map of irreducible varieties. If π : X ""# Y
is a dominant rational map of integral affine k-varieties of the same dimension,
the degree of the field extension K(X)/K(Y) is called the degree of the rational
map. This readily extends if X is reducible: we add up the degrees on each of the
components of X. We will interpret this degree in terms of counting preimages of
points of Y later.

7.5.7. More examples of rational maps.
A recurring theme in these examples is that domains of definition of rational

maps to projective schemes extend over nonsingular codimension one points. We
will make this precise in the Curve-to-projective Extension Theorem 17.5.1, when
we discuss curves.

The first example is the classical formula for Pythagorean triples. Suppose you
are looking for rational points on the circle C given by x2+y2 = 1 (Figure 7.1). One
rational point is p = (1, 0). If q is another rational point, then pq is a line of rational
(non-infinite) slope. This gives a rational map from the conic C to A1, given by
(x, y) (→ y/(x − 1). (Something subtle just happened: we were talking about Q-
points on a circle, and ended up with a rational map of schemes.) Conversely,
given a line of slope m through p, where m is rational, we can recover q by solving



164 Math 216: Foundations of Algebraic Geometry
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C

FIGURE 7.1. Finding primitive Pythagorean triples using geometry

the equations y = m(x − 1), x2 + y2 = 1. We substitute the first equation into the
second, to get a quadratic equation in x. We know that we will have a solution
x = 1 (because the line meets the circle at (x, y) = (1, 0)), so we expect to be able to
factor this out, and find the other factor. This indeed works:

x2 + (m(x − 1))2 = 1

=⇒ (m2 + 1)x2 + (−2m2)x + (m2 − 1) = 0

=⇒ (x − 1)((m2 + 1)x − (m2 − 1)) = 0

The other solution is x = (m2 −1)/(m2 +1), which gives y = −2m/(m2 +1). Thus
we get a birational map between the conic C and A1 with coordinate m, given by
f : (x, y) (→ y/(x − 1) (which is defined for x != 1), and with inverse rational map
given by m (→ ((m2 − 1)/(m2 + 1),−2m/(m2 + 1)) (which is defined away from
m2 + 1 = 0).

We can extend this to a rational map C ""# P1 via the inclusion A1 → P1.
Then f is given by (x, y) (→ [y; x − 1]. We then have an interesting question: what
is the domain of definition of f? It appears to be defined everywhere except for
where y = x − 1 = 0, i.e. everywhere but p. But in fact it can be extended over
p! Note that (x, y) (→ [x + 1;−y] (where (x, y) != (−1, 0)) agrees with f on their
common domains of definition, as [x + 1;−y] = [y; x − 1]. Hence this rational map
can be extended farther than we at first thought. This will be a special case of the
Curve-to-projective Extension Theorem 17.5.1.

(For the curious: we are working with schemes over Q. But this works for any
scheme over a field of characteristic not 2. What goes wrong in characteristic 2?)

7.5.E. EXERCISE. Use the above to find a “formula” yielding all Pythagorean
triples.

7.5.F. EXERCISE. Show that the conic x2 + y2 = z2 in P2
k is isomorphic to P1

k for
any field k of characteristic not 2.
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7.5.8. In fact, any conic in P2
k with a k-valued point (i.e. a point with residue field

k) of rank 3 (after base change to k, so “rank” makes sense, see Exercise 6.4.J) is iso-
morphic to P1

k. (The hypothesis of having a k-valued point is certainly necessary:
x2 + y2 + z2 = 0 over k = R is a conic that is not isomorphic to P1

k.)

7.5.G. EXERCISE. Find all rational solutions to y2 = x3+x2, by finding a birational
map to A1

k, mimicking what worked with the conic. (In Exercise 21.8.K, we will
see that these points form a group, and that this is a degenerate elliptic curve.)

You will obtain a rational map to P1 that is not defined over the node x =
y = 0, and cannot be extended over this codimension 1 set. This is an example of
the limits of our future result, the Curve-to-projective Extension Theorem 17.5.1,
showing how to extend rational maps to projective space over codimension 1 sets:
the codimension 1 sets have to be nonsingular.

7.5.H. EXERCISE. Use a similar idea to find a birational map from the quadric
Q = {x2 + y2 = w2 + z2} to P2. Use this to find all rational points on Q. (This
illustrates a good way of solving Diophantine equations. You will find a dense
open subset of Q that is isomorphic to a dense open subset of P2, where you can
easily find all the rational points. There will be a closed subset of Q where the
rational map is not defined, or not an isomorphism, but you can deal with this
subset in an ad hoc fashion.)

7.5.I. EXERCISE (THE CREMONA TRANSFORMATION, A USEFUL CLASSICAL CON-
STRUCTION). Consider the rational map P2 ""# P2, given by [x;y; z] → [1/x; 1/y; 1/z].
What is the the domain of definition? (It is bigger than the locus where xyz != 0!)
You will observe that you can extend it over codimension 1 sets. This again fore-
shadows the Curve-to-projective Extension Theorem 17.5.1.

7.5.9. ! Complex curves that are not rational (fun but inessential).
We now describe two examples of curves C that do not admit a nonconstant

rational map from P1
C. Both proofs are by Fermat’s method of infinite descent. These

results can be interpreted (as we will see in Theorem 18.4.3) as the fact that these
curves have no “nontrivial” C(t)-valued points, where by “nontrivial” we mean
any such point is secretly a C-valued point. You may notice that if you consider
the same examples with C(t) replaced by Q (and where C is a curve over Q rather
than C), you get two fundamental questions in number theory and geometry. The
analog of Exercise 7.5.K is the question of rational points on elliptic curves, and
you may realize that the analog of Exercise 7.5.J is even more famous. Also, the
arithmetic analogue of Exercise 7.5.K(a) is the “four squares theorem” (there are
not four integer squares in arithmetic progression), first stated by Fermat. These
examples will give you a glimpse of how and why facts over number fields are
often parallelled by facts over function fields of curves. This parallelism is a recur-
ring deep theme in the subject.

7.5.J. EXERCISE. If n > 2, show that P1
C has no dominant rational maps to the

“Fermat curve” xn + yn = zn in P2
C. Hint: reduce this to showing that there is

no “nonconstant” solution (f(t), g(t), h(t)) to f(t)n + g(t)n = h(t)n, where f(t),
g(t), and h(t) are rational functions in t. By clearing denominators, reduce this to
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showing that there is no nonconstant solution where f(t), g(t), and h(t) are rela-
tively prime polynomials. For this, assume there is a solution, and consider one
of the lowest positive degree. Then use the fact that C[t] is a unique factorization
domain, and h(t)n − g(t)n =

∏n
i=1(h(t) − ζig(t)), where ζ is a primitive nth root

of unity. Argue that each h(t) − ζig(t) is an nth power. Then use

(h(t) − g(t)) + α (h(t) − ζg(t)) = β
(
h(t) − ζ2g(t)

)

for suitably chosen α and β to get a solution of smaller degree. (How does this
argument fail for n = 2?)

7.5.K. EXERCISE. Suppose a, b, and c are distinct complex numbers. By the
following steps, show that if x(t) and y(t) are two rational functions of t (elements
of C(t)) such that

(7.5.9.1) y(t)2 = (x(t) − a)(x(t) − b)(x(t) − c),

then x(t) and y(t) are constants (x(t), y(t) ∈ C). (Here C may be replaced by any
field K of characteristic not 2; slight extra care is needed if K is not algebraically
closed.)

(a) Suppose P,Q ∈ C[t] are relatively prime polynomials such that four dis-
tinct linear combinations of them are perfect squares. Show that P and
Q are constant (i.e. P,Q ∈ C). Hint: By renaming P and Q, show that
you may assume that the perfect squares are P, Q, P − Q, P − λQ (for
some λ ∈ C). Define u and v to be square roots of P and Q respectively.
Show that u − v, u + v, u −

√
λv, u +

√
λv are perfect squares, and that

u and v are relatively prime. If P and Q are not both constant, note that
0 < max(deg u, deg v) < max(deg P, deg Q). Assume from the start that P
and Q were chosen as a counterexample with minimal max(deg P, deg Q)
to obtain a contradiction. (Aside: It is possible to have three distinct linear
combinations that are perfect squares. Such examples essentially corre-
spond to primitive Pythagorean triples in C(t) — can you see how?)

(b) Suppose (x, y) = (p/q, r/s) is a solution to (7.5.9.1), where p, q, r, s ∈ C[t],
and p/q and r/s are in lowest terms. Clear denominators to show that
r2q3 = s2(p− aq)(p − bq)(p − cq). Show that s2|q3 and q3|s2, and hence
that s2 = δq3 for some δ ∈ C. From r2 = δ(p−aq)(p−bq)(p− cq), show
that (p − aq), (p − bq), (p − cq) are perfect squares. Show that q is also a
perfect square, and then apply part (a).

7.6 ! Representable functors and group schemes

7.6.1. Maps to A1 correspond to functions. If X is a scheme, there is a bijection
between the maps X → A1 and global sections of the structure sheaf: by Exer-
cise 7.3.F, maps f : X → A1

Z correspond to maps to ring maps f! : Z[t] → Γ(X,OX),
and f!(t) is a function on X; this is reversible.

This map is very natural in an informal sense: you can even picture this map
to A1 as being given by the function. (By analogy, a function on a smooth manifold
is a map to R.) But it is natural in a more precise sense: this bijection is functorial in
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X. We will ponder this example at length, and see that it leads us to two important
advanced notions: representable functors and group schemes.

7.6.A. EASY EXERCISE. Suppose X is a C-scheme. Verify that there is a natural
bijection between maps X → A1

C in the category of C-schemes and functions on X.

7.6.2. Representable functors. We restate the bijection of §7.6.1 as follows. We
have two different contravariant functors from Sch to Sets: maps to A1 (i.e. H : X (→
Mor(X, A1

Z)), and functions on X (F : X (→ Γ(X,OX)). The “naturality” of the bijec-
tion — the functoriality in X — is precisely the statement that the bijection gives a
natural isomorphism of functors (§2.2.21): given any f : X → X ′, the diagram

H(X ′)

%%

$$ H(X)

%%
F(X ′) $$ F(X)

(where the vertical maps are the bijections given in §7.6.1) commutes.
More generally, if Y is an element of a category C (we care about the spe-

cial case C = Sch), recall the contravariant functor hY : C → Sets defined by
hY(X) = Mor(X, Y) (Example 2.2.20). We say a contravariant functor from C to
Sets is represented by Y if it is naturally isomorphic to the representable functor
hY . We say it is representable if it is represented by some Y.

7.6.B. IMPORTANT EASY EXERCISE (REPRESENTING OBJECTS ARE UNIQUE UP TO

UNIQUE ISOMORPHISM). Show that if a contravariant functor F is represented by
Y and by Z, then we have a unique isomorphism Y → Z induced by the natural
isomorphism of functors hY → hZ. Hint: this is a version of the universal property
arguments of §2.3: once again, we are recognizing an object (up to unique isomor-
phism) by maps to that object. This exercise is essentially Exercise 2.3.Y(b). (This
extends readily to Yoneda’s Lemma, Exercise 10.1.D. You are welcome to try that
now.)

You have implicitly seen this notion before: you can interpret the existence of
products and fibered products in a category as examples of representable functors.
(You may wish to work out how a natural isomorphism hY×Z

∼= hY × hZ induces
the projection maps Y × Z → Y and Y × Z → Z.)

7.6.C. EXERCISE. In this exercise, Z may be replaced by any ring.
(a) (affine n-space represents the functor of n functions) Show that the functor X (→
{(f1, . . . , fn) : fi ∈ Γ(X,OX)} is represented by An

Z . Show that A1
Z ×Z A1

Z
∼= A2

Z (i.e.
A2 satisfies the universal property of A1 × A1).
(b) (The functor of invertible functions is representable) Show that the functor taking
X to invertible functions on X is representable by Spec Z[t, t−1]. Definition: This
scheme is called Gm.

7.6.D. LESS IMPORTANT EXERCISE. Fix a ring A. Consider the functor H from the
category of locally ringed spaces to Sets given by H(X) = {A → Γ(X,OX)}. Show
that this functor is representable (by Spec A). This gives another (admittedly odd)
motivation for the definition of Spec A, closely related to that of §7.3.5.
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7.6.3. !! Group schemes (or more generally, group objects in a category).
(The rest of §7.6 should be read only for entertainment.) We return again to

Example 7.6.1. Functions on X are better than a set: they form a group. (Indeed
they even form a ring, but we will worry about this later.) Given a morphism
X → Y, pullback of functions Γ(Y,OY) → Γ(X,OX) is a group homomorphism.
So we should expect A1 to have some group-like structure. This leads us to the
notion of group scheme, or more generally a group object in a category, which we
now define.

Suppose C is a category with a final object and with products. (We know that
Sch has a final object Z = Spec Z, by Exercise 7.3.I. We will later see that it has
products, §10.1. But you can remove this hypothesis from the definition of group
object, so we won’t worry about this.)

A group object in C is an element X along with three morphisms:

• Multiplication: m : X × X → X
• Inverse: i : X → X
• Identity element: e : Z → X (not the identity map)

These morphisms are required to satisfy several conditions.
(i) associativity axiom:

X × X × X
(m,id) $$

(id,m)

%%

X × X

m

%%
X × X

m $$ X

commutes. (Here id means the equality X → X.)

(ii) identity axiom: X
∼ $$ Z × X

e×id $$ X × X
m $$ X and X

∼ $$ X × Z
id×e $$ X × X

m $$ X
are both the identity map X → X. (This corresponds to the group axiom: “multi-
plication by the identity element is the identity map”.)

(iii) inverse axiom: X
i,id $$ X × X

m $$ X and X
id,i $$ X × X

m $$ X are

both the map that is the composition X $$ Z
e $$ X .

As motivation, you can check that a group object in the category of sets is in
fact the same thing as a group. (This is symptomatic of how you take some notion
and make it categorical. You write down its axioms in a categorical way, and if
all goes well, if you specialize to the category of sets, you get your original notion.
You can apply this to the notion of “rings” in an exercise below.)

A group scheme is defined to be a group object in the category of schemes. A
group scheme over a ring A (or a scheme S) is defined to be a group object in the
category of A-schemes (or S-schemes).

7.6.E. EXERCISE. Give A1
Z the structure of a group scheme, by describing the

three structural morphisms, and showing that they satisfy the axioms. (Hint: the
morphisms should not be surprising. For example, inverse is given by t (→ −t.
Note that we know that the product A1

Z × A1
Z exists, by Exercise 7.6.C(a).)

7.6.F. EXERCISE. Show that if G is a group object in a category C , then for any X ∈
C , Mor(X,G) has the structure of a group, and the group structure is preserved by
pullback (i.e. Mor(·, G) is a contravariant functor to Groups).
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7.6.G. EXERCISE. Show that the group structure described by the previous exer-
cise translates the group scheme structure on A1

Z to the group structure on Γ(X,OX),
via the bijection of §7.6.1.

7.6.H. EXERCISE. Define the notion of ring scheme, and abelian group scheme.

The language of S-valued points (Definition 7.3.6) has the following advan-
tage: notice that the points of a group scheme need not themselves form a group
(consider A1

Z). But Exercise 7.6.F shows that the S-valued points of a group indeed
form a group.

7.6.4. Group schemes, more functorially. There was something unsatisfactory about
our discussion of the group scheme nature of the bijection in §7.6.1: we observed
that the right side (functions on X) formed a group, then we developed the axioms
of a group scheme, then we cleverly figured out the maps that made A1

Z into a
group scheme, then we showed that this induced a group structure on the left side
of the bijection (Mor(X, A1)) that precisely corresponded to the group structure on
the right side (functions on X).

The picture is more cleanly explained as follows.

7.6.I. EXERCISE. Suppose we have a contravariant functor F from Sch (or indeed
any category) to Groups. Suppose further that F composed with the forgetful func-
tor Groups → Sets is represented by an object Y. Show that the group operations
on F(X) (as X varies through Sch) uniquely determine m : Y × Y → Y, i : Y → Y,
e : Z → Y satisfying the axioms defining a group scheme, such that the group
operation on Mor(X, Y) is the same as that on F(X).

In particular, the definition of a group object in a category was forced upon
us by the definition of group. More generally, you should expect that any class of
objects that can be interpreted as sets with additional structure should fit into this
picture.

You should apply this exercise to A1
Z, and see how the explicit formulas you

found in Exercise 7.6.E are forced on you.

7.6.J. EXERCISE. Work out the maps m, i, and e in the group schemes of Exer-
cise 7.6.C.

7.6.K. EXERCISE. (a) Define morphism of group schemes.
(b) Define the group scheme GLn, and describe the determinant map det : GLn →
Gm.
(c) Make sense of the statement: (·n) : Gm → Gm given by t (→ tn is a morphism
of group schemes.

7.6.L. EXERCISE (KERNELS OF MAPS OF GROUP SCHEMES). Suppose F : G1 → G2

is a morphism of group schemes. Consider the contravariant functor Sch → Groups
given by X (→ ker(Mor(X,G1) → Mor(X,G2)). If this is representable, by a group
scheme G0, say, show that G0 → G1 is the kernel of F in the category of group
schemes.
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7.6.M. EXERCISE. Show that the kernel of (·n) (Exercise 7.6.K) is representable.
Show that over a field k of characteristic p dividing n, this group scheme is nonre-
duced. (Clarification: Gm over a field k means Spec k[t, t−1], with the same group
operations. Better: it represents the group of invertible functions in the category
of k-schemes. We can similarly define Gm over an arbitrary scheme.)

7.6.N. EXERCISE. Show (as easily as possible) that A1
k is a ring scheme.

7.6.5. Aside: Hopf algebras. Here is a notion that we won’t use, but it is easy enough
to define now. Suppose G = Spec A is an affine group scheme, i.e. a group scheme
that is an affine scheme. The categorical definition of group scheme can be restated
in terms of the ring A. Then these axioms define a Hopf algebra. For example, we
have a “comultiplication map” A → A ⊗ A.

7.6.O. EXERCISE. As A1
k is a group scheme, k[t] has a Hopf algebra structure.

Describe the comultiplication map k[t] → k[t] ⊗k k[t].

7.7 !! The Grassmannian (initial construction)

The Grassmannian is a useful geometric construction that is “the geometric
object underlying linear algebra”. In (classical) geometry over a field K = R or
C, just as projective space parametrizes one-dimensional subspaces of a given
n-dimensional vector space, the Grassmannian parametrizes k-dimensional sub-
spaces of n-dimensional space. The Grassmannian G(k, n) is a manifold of dimen-
sion k(n − k) (over the field). The manifold structure is given as follows. Given a
basis (v1, . . . , vn) of n-space, “most” k-planes can be described as the span of the
k vectors

(7.7.0.1) 〈v1 +
n∑

i=k+1

a1ivi, v2 +
n∑

i=k+1

a2ivi, . . . , vk +
n∑

i=k+1

akivi〉.

(Can you describe which k-planes are not of this form? Hint: row reduced echelon
form. Aside: the stratification of G(k, n) by normal form is the decomposition of
the Grassmannian into Schubert cells. You may be able to show using the normal
form that each Schubert cell is isomorphic to an affine space.) Any k-plane of
this form can be described in such a way uniquely. We use this to identify those k-
planes of this form with the manifold Kk(n−k) (with coordinates aji). This is a large
affine patch on the Grassmannian (called the “open Schubert cell” with respect to
this basis). As the vi vary, these patches cover the Grassmannian (why?), and the
manifold structures agree (a harder fact).

We now define the Grassmannian in algebraic geometry, over a ring A. Sup-
pose v = (v1, . . . , vn) is a basis for An. More precisely: vi ∈ An, and the map
An → An given by (a1, . . . , an) (→ a1v1 + · · · + anvn is an isomorphism.

7.7.A. EXERCISE. Show that any two bases are related by an invertible n × n
matrix over A — a matrix with entries in A whose determinant is an invertible
element of A.
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For each such v, we consider the scheme Uv
∼= Ak(n−k)

A , with coordinates aji

(k + 1 ≤ i ≤ n, 1 ≤ j ≤ k), which we imagine as corresponding to the k-plane
spanned by the vectors (7.7.0.1).

7.7.B. EXERCISE. Given two bases v and w, explain how to glue Uv to Uw along
appropriate open sets. You may find it convenient to work with coordinates aji

where i runs from 1 to n, not just k + 1 to n, but imposing aji = δji (i.e. 1 when
i = j and 0 otherwise). This convention is analogous to coordinates xi/j on the
patches of projective space (§5.4.9). Hint: the relevant open subset of Uv will be
where a certain determinant doesn’t vanish.

7.7.C. EXERCISE/DEFINITION. By checking triple intersections, verify that these
patches (over all possible bases) glue together to a single scheme (Exercise 5.4.A).
This is the Grassmannian G(k, n) over the ring A. Because it can be interpreted as
a space of linear “Pk−1

A ’s” in Pn−1
A , it is often also written G(k − 1, n − 1).

Although this definition is pleasantly explicit (it is immediate that the Grass-
mannian is covered by Ak(n−k)’s), and perhaps more “natural” than our original
definition of projective space in §5.4.9 (we aren’t making a choice of basis; we use
all bases), there are several things unsatisfactory about this definition of the Grass-
mannian. In fact the Grassmannian is always projective; this isn’t obvious with
this definition. Furthermore, the Grassmannian comes with a natural closed im-

mersion into P(n
k)−1 (the Plücker embedding). We will address these issues in §17.6,

by giving a better description, as a moduli space.





CHAPTER 8

Useful classes of morphisms of schemes

We now define an unreasonable number of types of morphisms. Some (often
finiteness properties) are useful because every “reasonable morphism” has such
properties, and they will be used in proofs in obvious ways. Others correspond to
geometric behavior, and you should have a picture of what each means.

One of Grothendieck’s lessons is that things that we often think of as proper-
ties of objects are better understood as properties of morphisms. One way of turning
properties of objects into properties of morphisms is as follows. If P is a property
of schemes, we say that a morphism f : X → Y has P if for every affine open U ⊂ Y,
f−1(U) has P. We will see this for P = quasicompact, quasiseparated, affine, and
more. (As you might hope, in good circumstances, P will satisfy the hypotheses
of the Affine Communication Lemma 6.3.2.) Informally, you can think of such a
morphism as one where all the fibers have P. (You can quickly define the fiber of a
morphism as a topological space, but once we define fiber product, we will define
the scheme-theoretic fiber, and then this discussion will make sense.) But it means
more than that: it means that the “P-ness” is really not just fiber-by-fiber, but be-
haves well as the fiber varies. (For comparison, a smooth morphism of manifolds
means more than that the fibers are smooth.)

8.0.1. What to expect of any “reasonable” type of morphism. You will notice that
essentially all classes of morphisms have three properties.

(i) They are “local on the target”. In other words, to check if a morphism
f : X → Y is in the class, then it suffices to check on an open cover on Y. In
particular, as schemes are built out of rings (i.e. affine schemes), it should
be possible to check on an affine cover, as described in the previous para-
graph.

(ii) They are closed under composition: if f : X → Y and g : Y → Z are both
in this class, then so is g ◦ f.

(iii) They are closed under “base change” or “fibered product”. We will dis-
cuss fibered product of schemes in Chapter 10.

When anyone tells you a new class of morphism, you should immediately ask
yourself (or them) whether these three properties hold. And it is essentially true
that a class of morphism is “reasonable” if and only if it satisfies these three prop-
erties.

8.1 Open immersions

173
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An open immersion of schemes is defined to be an open immersion as ringed
spaces (§7.2.1). In other words, a morphism f : (X,OX) → (Y,OY) of schemes is an
open immersion if f factors as

(X,OX)
g

∼
$$ (U,OY |U) ! " h $$ (Y,OY)

where g is an isomorphism, and U ↪→ Y is an inclusion of an open set. It is imme-
diate that isomorphisms are open immersions. We say that (U,OY |U) is an open
subscheme of (Y,OY), and often sloppily say that (X,OX) is an open subscheme of
(Y,OY). This is a bit confusing, and not too important: at the level of sets, open
subschemes are subsets, while open immersions are bijections onto subsets.

8.1.A. IMPORTANT BUT EASY EXERCISE. Suppose i : U → Z is an open immersion,
and f : Y → Z is any morphism. Show that U ×Z Y exists. (Hint: I’ll even tell
you what it is: (f−1(U),OY |f−1(U)).) In particular, if U ↪→ Z and V ↪→ Z are open
immersions, U ×Z V ∼= U ∩ V .

8.1.B. EASY EXERCISE. Suppose f : X → Y is an open immersion. Show that if
Y is locally Noetherian, then X is too. Show that if Y is Noetherian, then X is too.
However, show that if Y is quasicompact, X need not be. (Hint: let Y be affine but
not Noetherian, see Exercise 4.6.D(b).)

“Open immersions” are scheme-theoretic analogues of open subsets. “Closed
immersions” are scheme-theoretic analogues of closed subsets, but they have a
surprisingly different flavor, as we will see in §9.1.

8.2 Algebraic interlude: Integral morphisms, the Lying Over
Theorem, and Nakayama’s lemma

To set up our discussion in the next section on integral morphisms, we de-
velop some algebraic preliminaries. A clever trick we use can also be used to
show Nakayama’s lemma, so we discuss that as well.

Suppose φ : B → A is a ring homomorphism. We say a ∈ A is integral over B
if a satisfies some monic polynomial

an + ?an−1 + · · · + ? = 0

where the coefficients lie in φ(B). A ring homomorphism φ : B → A is integral
if every element of A is integral over φ(B). An integral ring homomorphism φ
is an integral extension if φ is an inclusion of rings. You should think of integral
homomorphisms and integral extensions as ring-theoretic generalizations of the
notion of algebraic extensions of fields.

8.2.A. EXERCISE. Show that if φ : B → A is a ring homomorphism, (b1, . . . , bn) =
1 in B, and Bbi

→ Aφ(bi) is integral for all i, then φ is integral.

8.2.B. EXERCISE. (a) Show that the property of a homomorphism φ : B → A be-
ing integral is always preserved by localization and quotient of B, and quotient
of A, but not localization of A. More precisely: suppose φ is integral. Show that
the induced maps T−1B → φ(T)−1A, B/J → A/φ(J)A, and B → A/I are integral
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(where T is a multiplicative subset of B, J is an ideal of B, and I is an ideal of A), but
B → S−1A need not be integral (where S is a multiplicative subset of A). (Hint for
the latter: show that k[t] → k[t] is an integral homomorphism, but k[t] → k[t](t) is
not.)
(b) Show that the property of φ being an integral extension is preserved by localiza-
tion of B, but not localization or quotient of A. (Hint for the latter: k[t] → k[t] is an
integral extension, but k[t] → k[t]/(t) is not.)
(c) In fact the property of φ being an integral extension is not preserved by quotient
of B either. (Let B = k[x, y]/(y2) and A = k[x, y, z]/(z2, xz − y). Then B injects into
A, but B/(x) doesn’t inject into A/(x).) But it is in some cases. Suppose φ : B → A
is an integral extension, J ⊂ B is the restriction of an ideal I ⊂ A. (Side remark: you
can show that this holds if J is prime.) Show that the induced map B/J → A/JA is
an integral extension. (Hint: show that the composition B/J → A/JA → A/I is an
injection.)

The following lemma uses a useful but sneaky trick.

8.2.1. Lemma. — Suppose φ : B → A is a ring homomorphism. Then a ∈ A is
integral over B if and only if it is contained in a subalgebra of A that is a finitely generated
B-module.

Proof. If a satisfies a monic polynomial equation of degree n, then the B-submodule
of A generated by 1, a, . . . , an−1 is closed under multiplication, and hence a sub-
algebra of A.

Assume conversely that a is contained in a subalgebra A ′ of A that is a finitely
generated B-module. Choose a finite generating set m1, . . . , mn of A ′ (as a B-
module). Then ami =

∑
bijmj, for some bij ∈ B. Thus

(8.2.1.1) (aIn×n − [bij]ij)




m1

...
mn



 =




0
...
0



 .

We can’t invert the matrix (aIn×n − [bij]ij), but we almost can. Recall that an
n × n matrix M has an adjugate matrix adj(M) such that adj(M)M = det(M)Idn.
(The (i, j)th entry of adj(M) is the determinant of the matrix obtained from M by
deleting the ith column and jth row, times (−1)i+j. You have likely seen this in the
form of a formula for M−1 when there is an inverse; see for example [DF, p. 440].)
The coefficients of adj(M) are polynomials in the coefficients of M. Multiplying
(8.2.1.1) by adj(aIn×n − [bij]ij), we get

det(aIn×n − [bij]ij)




m1

...
mn



 =




0
...
0



 .

So det(aI − [bij]) annihilates every element of A ′, i.e. det(aI − [bij]) = 0. But
expanding the determinant yields an integral equation for a with coefficients in
B. !

8.2.2. Corollary (finite implies integral). — If A is a finite B-algebra (a finitely
generated B-module), then φ is an integral homomorphism.
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The converse is false: integral does not imply finite, as Q ↪→ Q is an integral
homomorphism, but Q is not a finite Q-module. (A field extension is integral if it
is algebraic.)

8.2.C. EXERCISE. Show that if C → B and B → A are both integral homomor-
phisms, then so is their composition.

8.2.D. EXERCISE. Suppose φ : B → A is a ring homomorphism. Show that the
elements of A integral over B form a subalgebra of A.

8.2.3. Remark: transcendence theory. These ideas lead to the main facts about
transcendence theory we will need for a discussion of dimension of varieties, see
Exercise/Definition 12.2.A.

8.2.4. The Lying Over and Going-Up Theorems. The Lying Over Theorem is a
useful property of integral extensions.

8.2.5. The Lying Over Theorem (Cohen-Seidenberg). — Suppose φ : B → A is an
integral extension. Then for any prime ideal q ⊂ B, there is a prime ideal p ⊂ A such
that p ∩ B = q.

8.2.6. Geometric translation: Spec A → Spec B is surjective. (A map of schemes is
surjective if the underlying map of sets is surjective.)

Although this is a theorem in algebra, the name can be interpreted geometri-
cally: the theorem asserts that the corresponding morphism of schemes is surjec-
tive, and that “above” every prime q “downstairs”, there is a prime p “upstairs”,
see Figure 8.1. (For this reason, it is often said that p “lies over” q if p∩B = q.) The
following exercise sets up the proof.

[p]

Spec A

Spec B

[q]

FIGURE 8.1. A picture of the Lying Over Theorem 8.2.5: if φ :
A → B is an integral extension, then Spec A → Spec B is surjective

8.2.E. ! EXERCISE. Show that the special case where A is a field translates to: if
B ⊂ A is a subring with A integral over B, then B is a field. Prove this. (Hint: you
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must show that all nonzero elements in B have inverses in B. Here is the start: If
b ∈ B, then 1/b ∈ A, and this satisfies some integral equation over B.)

! Proof of the Lying Over Theorem 8.2.5. We first make a reduction: by localizing at
q (preserving integrality by Exercise 8.2.B(b)), we can assume that (B, q) is a local
ring. Then let p be any maximal ideal of A. Consider the following diagram.

A $$ $$ A/p field

B
$!

,,

$$ $$ B/(p ∩ B)
$!

,,

The right vertical arrow is an integral extension by Exercise 8.2.B(c). By Exer-
cise 8.2.E, B/(p ∩ B) is a field too, so p ∩ B is a maximal ideal, hence it is q. !

8.2.F. IMPORTANT EXERCISE (THE GOING-UP THEOREM). Suppose φ : B → A
is an integral homomorphism (not necessarily an integral extension). Show that if
q1 ⊂ q2 ⊂ · · · ⊂ qn is a chain of prime ideals of B, and p1 ⊂ · · · ⊂ pm is a chain
of prime ideals of A such that pi “lies over” qi (and m < n), then the second chain
can be extended to p1 ⊂ · · · ⊂ pn so that this remains true. (Hint: reduce to the
case m = 1, n = 2; reduce to the case where q1 = (0) and p1 = (0); use the Lying
Over Theorem.)

There are analogous “Going-Down” results; see for example Theorem 12.2.11
and Exercise 25.5.D.

8.2.7. Nakayama’s lemma.
The trick in the proof of Lemma 8.2.1 can be used to quickly prove Nakayama’s

lemma. This name is used for several different but related results, which we dis-
cuss here. (A geometric interpretation will be given in Exercise 14.7.D.) We may
as well prove it while the trick is fresh in our minds.

8.2.8. Nakayama’s Lemma version 1. — Suppose A is a ring, I is an ideal of A, and
M is a finitely-generated A-module, such that M = IM. Then there exists an a ∈ A with
a ≡ 1 (mod I) with aM = 0.

Proof. Say M is generated by m1, . . . , mn. Then as M = IM, we have mi =∑
j aijmj for some aij ∈ I. Thus

(8.2.8.1) (Idn − Z)




m1

...
mn



 = 0

where Idn is the n× n identity matrix in A, and Z = (aij). Multiplying both sides
of (8.2.8.1) on the left by adj(Idn − Z), we obtain

det(Idn − Z)




m1

...
mn



 = 0.

But when you expand out det(Idn − Z), as Z has entries in I, you get something
that is 1 (mod I). !
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Here is why you care. Suppose I is contained in all maximal ideals of A. (The
intersection of all the maximal ideals is called the Jacobson radical, but we won’t
use this phrase. For comparison, recall that the nilradical was the intersection of
the prime ideals of A.) Then any a ≡ 1 (mod I) is invertible. (We are not using
Nakayama yet!) Reason: otherwise (a) != A, so the ideal (a) is contained in some
maximal ideal m — but a ≡ 1 (mod m), contradiction. As a is invertible, we have
the following.

8.2.9. Nakayama’s Lemma version 2. — Suppose A is a ring, I is an ideal of A
contained in all maximal ideals, and M is a finitely-generated A-module. (The most inter-
esting case is when A is a local ring, and I is the maximal ideal.) Suppose M = IM. Then
M = 0.

8.2.G. EXERCISE (NAKAYAMA’S LEMMA VERSION 3). Suppose A is a ring, and I
is an ideal of A contained in all maximal ideals. Suppose M is a finitely generated
A-module, and N ⊂ M is a submodule. If N/IN → M/IM is surjective,, then
M = N. (This can be useful, although it won’t be relevant for us.)

8.2.H. IMPORTANT EXERCISE (NAKAYAMA’S LEMMA VERSION 4: GENERATORS OF

M/mM LIFT TO GENERATORS OF M). Suppose (A,m) is a local ring. Suppose M is
a finitely-generated A-module, and f1, . . . , fn ∈ M, with (the images of) f1, . . . , fn

generating M/mM. Then f1, . . . , fn generate M. (In particular, taking M = m, if
we have generators of m/m2, they also generate m.)

8.2.I. UNIMPORTANT AND EASY EXERCISE (NAKAYAMA’S LEMMA VERSION 5, SOME-
TIMES CALLED “ARTINIAN NAKAYAMA”). Prove Nakayama version 1 (Lemma 8.2.8)
without the hypothesis that M is finitely generated, but with the hypothesis that
In = 0 for some n. (This argument does not use the trick.) This result is quite
useful, although we won’t use it.

8.2.J. IMPORTANT EXERCISE GENERALIZING LEMMA 8.2.1. Suppose S is a subring
of a ring A, and r ∈ A. Suppose there is a faithful S[r]-module M that is finitely
generated as an S-module. Show that r is integral over S. (Hint: change a few
words in the proof of Nakayama’s Lemma version 1.)

8.2.K. EXERCISE. Suppose A is an integral domain, and Ã is the integral closure
of A in K(A), i.e. those elements of K(A) integral over A, which form a subalgebra
by Exercise 8.2.D. Show that Ã is integrally closed in K(Ã) = K(A).

8.3 Finiteness conditions on morphisms

8.3.1. Quasicompact and quasiseparated morphisms.
A morphism f : X → Y of schemes is quasicompact if for every open affine

subset U of Y, f−1(U) is quasicompact. (Equivalently, the preimage of any quasi-
compact open subset is quasicompact.)

We will like this notion because (i) we know how to take the maximum of a
finite set of numbers, and (ii) most reasonable schemes will be quasicompact.
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Along with quasicompactness comes the weird notion of quasiseparatedness.
A morphism f : X → Y is quasiseparated if for every affine open subset U of
Y, f−1(U) is a quasiseparated scheme (§6.1.1). This will be a useful hypothesis
in theorems (in conjunction with quasicompactness). Various interesting kinds
of morphisms (locally Noetherian source, affine, separated, see Exercises 8.3.B(b),
8.3.D, and 11.1.H resp.) are quasiseparated, and this will allow us to state theorems
more succinctly.

8.3.A. EASY EXERCISE. Show that the composition of two quasicompact mor-
phisms is quasicompact. (It is also true that the composition of two quasiseparated
morphisms is quasiseparated. This is not easy to show directly, but will follow eas-
ily once we understand it in a more sophisticated way, see Exercise 11.1.13(b).)

8.3.B. EASY EXERCISE.
(a) Show that any morphism from a Noetherian scheme is quasicompact.
(b) Show that any morphism from a locally Noetherian scheme is quasiseparated.
(Hint: Exercise 6.3.C.) Thus those readers working only with locally Noetherian
schemes may take quasiseparatedness as a standing hypothesis.

8.3.C. EXERCISE. (Obvious hint for both parts: the Affine Communication Lemma 6.3.2.)
(a) (quasicompactness is affine-local on the target) Show that a morphism f : X → Y
is quasicompact if there is a cover of Y by open affine sets Ui such that f−1(Ui) is
quasicompact.
(b) (quasiseparatedness is affine-local on the target) Show that a morphism f : X → Y
is quasiseparated if there is cover of Y by open affine sets Ui such that f−1(Ui) is
quasiseparated.

Following Grothendieck’s philosophy of thinking that the important notions
are properties of morphisms, not of objects, we can restate the definition of qua-
sicompact (resp. quasiseparated) scheme as a scheme that is quasicompact (resp.
quasiseparated) over the final object Spec Z in the category of schemes (Exercise 7.3.I).

8.3.2. Affine morphisms.
A morphism f : X → Y is affine if for every affine open set U of Y, f−1(U)

(interpreted as an open subscheme of X) is an affine scheme.

8.3.D. FAST EXERCISE. Show that affine morphisms are quasicompact and qua-
siseparated. (Hint for the second: Exercise 6.1.G.)

8.3.E. EXERCISE (A NONQUASISEPARATED SCHEME). Let X = Spec k[x1, x2, . . . ],
and let U be X − [m] where m is the maximal ideal (x1, x2, . . . ). Take two copies
of X, glued along U. Show that the result is not quasiseparated. Hint: This open
immersion U ⊂ X came up earlier in Exercise 4.6.D(b) as an example of a nonqua-
sicompact open subset of an affine scheme.

8.3.3. Proposition (the property of “affineness” is affine-local on the target). —
A morphism f : X → Y is affine if there is a cover of Y by affine open sets U such that
f−1(U) is affine.

This proof is the hardest part of this section. For part of the proof (which will
start in §8.3.5), it will be handy to have a lemma.
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8.3.4. Qcqs Lemma. — If X is a quasicompact quasiseparated scheme and s ∈ Γ(X,OX),
then the natural map Γ(X,OX)s → Γ(Xs,OX) is an isomorphism.

Here Xs means the locus on X where s doesn’t vanish. We avoid the notation
D(s) to avoid any suggestion that X is affine.

To repeat the brief reassuring comment on the “quasicompact quasiseparated”
hypothesis: this just means that X can be covered by a finite number of affine open
subsets, any two of which have intersection also covered by a finite number of
affine open subsets (Exercise 6.1.H). The hypothesis applies in lots of interesting
situations, such as if X is affine (Exercise 6.1.G) or Noetherian (Exercise 6.3.C). And
conversely, whenever you see quasicompact quasiseparated hypotheses (e.g. Exer-
cises 14.3.E, 14.3.H), they are most likely there because of this lemma. To remind
ourselves of this fact, we call it the Qcqs Lemma.

Proof. Cover X with finitely many affine open sets Ui = Spec Ai. Let Uij = Ui ∩Uj.
Then

0 → Γ(X,OX) →
∏

i

Ai →
∏

i,j

Γ(Uij,OX)

is exact. By the quasiseparated hypotheses, we can cover each Uij with a finite
number of affines Uijk = Spec Aijk, so we have that

0 → Γ(X,OX) →
∏

i

Ai →
∏

i,j,k

Aijk

is exact. Localizing at s (an exact functor, Exercise 2.6.F(a)) gives

0 → Γ(X,OX)s →

(
∏

i

Ai

)

s

→




∏

i,j,k

Aijk





s

As localization commutes with finite products (Exercise 2.3.L(b)),

(8.3.4.1) 0 → Γ(X,OX)s →
∏

i

(Ai)si
→

∏

i,j,k

(Aijk)sijk

is exact, where the global function s induces functions si ∈ Ai and sijk ∈ Aijk.
But similarly, the scheme Xs can be covered by affine opens Spec(Ai)si

, and
Spec(Ai)si

∩Spec(Aj)sj
are covered by a finite number of affine opens Spec(Aijk)sijk

,
so we have

(8.3.4.2) 0 → Γ(Xs,OX) →
∏

i

(Ai)si
→

∏

i,j,k

(Aijk)sijk
.

Notice that the maps
∏

i (Ai)si
→

∏
i,j,k (Aijk)sijk

in (8.3.4.1) and (8.3.4.2) are the

same, and we have described the kernel of the map in two ways, so Γ(X,OX)s →
Γ(Xs,OX) is indeed an isomorphism. (Notice how the quasicompact and quasisep-
arated hypotheses were used in an easy way: to obtain finite products, which
would commute with localization.) !

8.3.5. Proof of Proposition 8.3.3. As usual, we use the Affine Communication
Lemma 6.3.2. We check our two criteria. First, suppose f : X → Y is affine over
Spec B, i.e. f−1(Spec B) = Spec A. Then f−1(Spec Bs) = Spec Af!s.
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Second, suppose we are given f : X → Spec B and (s1, . . . , sn) = B with Xsi

affine (Spec Ai, say). We wish to show that X is affine too. Let A = Γ(X,OX). Then
X → Spec B factors through the tautological map g : X → Spec A (arising from the
(iso)morphism A → Γ(X,OX), Exercise 7.3.F).

∪iXf!si
= X

g $$

f ""==
==

==
==

==
==

=
Spec A

h<<>>>
>>
>>
>>
>>

∪iD(si) = Spec B

Then h−1D(si) = D(h!si) ∼= Spec Ah!si
(the preimage of a distinguished open set

is a distinguished open se1t), and f−1D(si) = Spec Ai. Now X is quasicompact
and quasiseparated by the affine-locality of these notions (Exercise 8.3.C), so the
hypotheses of the Qcqs Lemma 8.3.4 are satisfied. Hence we have an induced iso-
morphism of Ah!si

= Γ(X,OX)h!si
∼= Γ(Xsi

,OX) = Ai. Thus g induces an isomor-
phism Spec Ai → Spec Ah!si

(an isomorphism of rings induces an isomorphism of
affine schemes, by strangely confusing exercise 5.3.A). Thus g is an isomorphism
over each Spec Ah!si

, which cover Spec A, and thus g is an isomorphism. Hence
X ∼= Spec A, so is affine as desired. !

The affine-locality of affine morphisms (Proposition 8.3.3) has some nonobvi-
ous consequences, as shown in the next exercise.

8.3.F. USEFUL EXERCISE. Suppose Z is a closed subset of an affine scheme X
locally cut out by one equation. (In other words, Spec A can be covered by smaller
open sets, and on each such set Z is cut out by one equation.) Show that the
complement Y of Z is affine. (This is clear if Y is globally cut out by one equation
f; then if X = Spec A then Y = Spec Af. However, Y is not always of this form, see
Exercise 6.4.M.)

8.3.6. Finite and integral morphisms.
Before defining finite and integral morphisms, we give an example to keep in

mind. If L/K is a field extension, then Spec L → Spec K (i) is always affine; (ii) is
integral if L/K is algebraic; and (iii) is finite if L/K is finite.

An affine morphism f : X → Y is finite if for every affine open set Spec B of
Y, f−1(Spec B) is the spectrum of a B-algebra that is a finitely-generated B-module.
Warning about terminology (finite vs. finitely-generated): Recall that if we have
a ring homomorphism A → B such that B is a finitely-generated A-module then
we say that B is a finite A-algebra. This is stronger than being a finitely-generated
A-algebra.

By definition, finite morphisms are affine.

8.3.G. EXERCISE (THE PROPERTY OF FINITENESS IS AFFINE-LOCAL ON THE TAR-
GET). Show that a morphism f : X → Y is finite if there is a cover of Y by affine
open sets Spec A such that f−1(Spec A) is the spectrum of a finite A-algebra.

The following four examples will give you some feeling for finite morphisms.
In each example, you will notice two things. In each case, the maps are always
finite-to-one (as maps of sets). We will verify this in general in Exercise 8.3.K. You
will also notice that the morphisms are closed as maps of topological spaces, i.e.
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the images of closed sets are closed. We will show that finite morphisms are always
closed in Exercise 8.3.M (and give a second proof in §9.2.5). Intuitively, you should
think of finite as being closed plus finite fibers, although this isn’t quite true. We
will make this precise later.

Example 1: Branched covers. Consider the morphism Spec k[t] → Spec k[u]
given by u (→ p(t), where p(t) ∈ k[t] is a degree n polynomial (see Figure 8.2).
This is finite: k[t] is generated as a k[u]-module by 1, t, t2, . . . , tn−1.

FIGURE 8.2. The “branched cover” A1
k → A1

k of the “u-line” by
the “t-line” given by u (→ p(t) is finite

Example 2: Closed immersions (to be defined soon, in §9.1). If I is an ideal of a ring
A, consider the morphism Spec A/I → Spec A given by the obvious map A → A/I
(see Figure 8.3 for an example, with A = k[t], I = (t)). This is a finite morphism
(A/I is generated as a A-module by the element 1 ∈ A/I).

0

FIGURE 8.3. The “closed immersion” Spec k → Spec k[t] is finite

Example 3: Normalization (to be defined in §10.6). Consider the morphism Spec k[t] →
Spec k[x, y]/(y2 − x2 − x3) corresponding to k[x, y]/(y2 − x2 − x3) → k[t] given by
(x, y) (→ (t2 − 1, t3 − t) (check that this is a well-defined ring map!), see Figure 8.4.
This is a finite morphism, as k[t] is generated as a (k[x, y]/(y2 − x2 − x3))-module
by 1 and t. (The figure suggests that this is an isomorphism away from the “node”
of the target. You can verify this, by checking that it induces an isomorphism be-
tween D(t2 − 1) in the source and D(x) in the target. We will meet this example
again!)

8.3.H. IMPORTANT EXERCISE (EXAMPLE 4, FINITE MORPHISMS TO Spec k). Show
that if X → Spec k is a finite morphism, then X is a finite union of points with
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FIGURE 8.4. The “normalization” Spec k[t] → Spec k[x, y]/(y2 −
x2 − x3) given by (x, y) (→ (t2 − 1, t3 − t) is finite

the discrete topology, each point with residue field a finite extension of k, see Fig-
ure 8.5. (An example is Spec F8 × F4[x, y]/(x2, y4) × F4[t]/(t9) × F2 → Spec F2.)
Do not just quote some fancy theorem! Possible approach: Show that any integral
domain A which is a finite k-algebra must be a field. Show that every prime p of
A is maximal. Show that the irreducible components of Spec A are closed points.
Show Spec A is discrete and hence finite. Show that the residue fields K(A/p) of
A are finite field extensions of k. (See Exercise 8.4.C for an extension to quasifinite
morphisms.)

FIGURE 8.5. A picture of a finite morphism to Spec k. Bigger
fields are depicted as bigger points.

8.3.I. EASY EXERCISE (CF. EXERCISE 8.2.C). Show that the composition of two
finite morphisms is also finite.

8.3.J. EXERCISE: FINITE MORPHISMS TO Spec A ARE PROJECTIVE. If B is a finite
A-algebra, define a graded ring S• by S0 = A, and Sn = B for n > 0. (What is the
multiplicative structure? Hint: you know how to multiply elements of B together,
and how to multiply elements of A with elements of B.) Describe an isomorphism
Proj S•

∼= Spec B.
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8.3.K. IMPORTANT EXERCISE. Show that finite morphisms have finite fibers. (This
is a useful exercise, because you will have to figure out how to get at points in a
fiber of a morphism: given π : X → Y, and y ∈ Y, what are the points of π−1(y)?
This will be easier to do once we discuss fibers in greater detail, see Remark 10.3.4,
but it will be enlightening to do it now.) Hint: if X = Spec A and Y = Spec B
are both affine, and y = [q], then we can throw out everything in B outside y by
modding out by q; show that the preimage is A/qA. Then you have reduced to
the case where Y is the Spec of an integral domain A, and [q] = [(0)] is the generic
point. We can throw out the rest of the points of B by localizing at (0). Show
that the preimage is A localized at π!B×. Show that the condition of finiteness is
preserved by the constructions you have done, and thus reduce the problem to
Exercise 8.3.H.

8.3.7. Example. The open immersion A2 − {(0, 0)} → A2 has finite fibers, but is not
affine (as A2 − {(0, 0)} isn’t affine, §5.4.1) and hence not finite.

8.3.L. EASY EXERCISE. Show that the open immersion A1 − {0} → A1 has finite
fibers and is affine, but is not finite.

8.3.8. Definition. A morphism π : X → Y of schemes is integral if π is affine, and
for every affine open subset Spec B ⊂ Y, with π−1(Spec B) = Spec A, the induced
map B → A is an integral homomorphism of rings. This is an affine-local con-
dition by Exercises 8.2.A and 8.2.B, and the Affine Communication Lemma 6.3.2.
It is closed under composition by Exercise 8.2.C. Integral morphisms are mostly
useful because finite morphisms are integral by Corollary 8.2.2. Note that the con-
verse implication doesn’t hold (witness Spec Q → Spec Q, as discussed after the
statement of Corollary 8.2.2).

8.3.M. EXERCISE. Prove that integral morphisms are closed, i.e. that the image
of closed subsets are closed. (Hence finite morphisms are closed. A second proof
will be given in §9.2.5.) Hint: Reduce to the affine case. If f∗ : B → A is a ring
map, inducing finite f : Spec A → Spec B, then suppose I ⊂ A cuts out a closed set
of Spec A, and J = (f∗)−1(I), then note that B/J ⊂ A/I, and apply the Lying Over
Theorem 8.2.5 here.

8.3.N. UNIMPORTANT EXERCISE. Suppose f : B → A is integral. Show that for
any ring homomorphism B → C, C → A ⊗B C is integral. (Hint: We wish to show
that any

∑n
i=1 ai ⊗ ci ∈ A ⊗B C is integral over C. Use the fact that each of the

finitely many ai are integral over B, and then Exercise 8.2.D.) Once we know what
“base change” is, this will imply that the property of integrality of a morphism is
preserved by base change, Exercise 10.4.B(e).

8.3.9. Fibers of integral morphisms. Unlike finite morphisms (Exercise 8.3.K), inte-
gral morphisms don’t always have finite fibers. (Can you think of an example?)
However, once we make sense of fibers as topological spaces (or even schemes) in
§10.3.2, you can check (Exercise 12.1.B) that the fibers have the property that no
point is in the closure of any other point.

8.3.10. Morphisms (locally) of finite type.
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A morphism f : X → Y is locally of finite type if for every affine open
set Spec B of Y, and every affine open subset Spec A of f−1(Spec B), the induced
morphism B → A expresses A as a finitely generated B-algebra. By the affine-
locality of finite-typeness of B-schemes (Proposition 6.3.3(c)), this is equivalent to:
f−1(Spec B) can be covered by affine open subsets Spec Ai so that each Ai is a
finitely generated B-algebra.

A morphism is of finite type if it is locally of finite type and quasicompact.
Translation: for every affine open set Spec B of Y, f−1(Spec B) can be covered with
a finite number of open sets Spec Ai so that the induced morphism B → Ai expresses
Ai as a finitely generated B-algebra.

8.3.11. Side remark. It is a common practice to name properties as follows: P=
locally P plus quasicompact. Two exceptions are “ringed space” (§7.3) and “finite
presentation” (§8.3.14).

8.3.O. EXERCISE (THE NOTIONS “LOCALLY OF FINITE TYPE” AND “FINITE TYPE”
ARE AFFINE-LOCAL ON THE TARGET). Show that a morphism f : X → Y is lo-
cally of finite type if there is a cover of Y by affine open sets Spec Bi such that
f−1(Spec Bi) is locally of finite type over Bi.

Example: the “structure morphism” Pn
A → Spec A is of finite type, as Pn

A is
covered by n + 1 open sets of the form Spec A[x1, . . . , xn].

Our earlier definition of schemes of “finite type over k” (or “finite-type k-
schemes”) from §6.3.5 is now a special case of this more general notion: the phrase
“a scheme X is of finite type over k” means that we are given a morphism X →
Spec k (the “structure morphism”) that is of finite type.

Here are some properties enjoyed by morphisms of finite type.

8.3.P. EXERCISE (FINITE = INTEGRAL + FINITE TYPE). (a) (easier) Show that finite
morphisms are of finite type.
(b) Show that a morphism is finite if and only if it is integral and of finite type.

8.3.Q. EXERCISES (NOT HARD, BUT IMPORTANT).

(a) Show that every open immersion is locally of finite type, and hence that
every quasicompact open immersion is of finite type. Show that every
open immersion into a locally Noetherian scheme is of finite type.

(b) Show that the composition of two morphisms locally of finite type is lo-
cally of finite type. (Hence as the composition of two quasicompact mor-
phisms is quasicompact, the composition of two morphisms of finite type
is of finite type.)

(c) Suppose f : X → Y is locally of finite type, and Y is locally Noetherian.
Show that X is also locally Noetherian. If X → Y is a morphism of finite
type, and Y is Noetherian, show that X is Noetherian.

8.3.12. Definition. A morphism f is quasifinite if it is of finite type, and for all y ∈
Y, f−1(y) is a finite set. The main point of this definition is the “finite fiber” part;
the “finite type” hypothesis will ensure that this notion is “preserved by fibered
product,” Exercise 10.4.C.

Combining Exercise 8.3.K with Exercise 8.3.P(a), we see that finite morphisms
are quasifinite. There are quasifinite morphisms which are not finite, such as A2 −
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{(0, 0)} → A2 (Example 8.3.7). A key example of a morphism with finite fibers that
is not quasifinite is Spec C(t) → Spec C. Another is Spec Q → Spec Q.

8.3.13. How to picture quasifinite morphisms. If X → Y is a finite morphism, then any
quasi-compact open subset U ⊂ X is quasi-finite over Y. In fact every reasonable
quasifinite morphism arises in this way. (This simple-sounding statement is in
fact a deep and important result — Zariski’s Main Theorem.) Thus the right way
to visualize quasifiniteness is as a finite map with some (closed locus of) points
removed.

8.3.14. !! Morphisms (locally) of finite presentation.
There is a variant often useful to non-Noetherian people. A ring A is a finitely

presented B-algebra (or B → A is finitely presented) if

A = B[x1, . . . , xn]/(r1(x1, . . . , xn), . . . , rj(x1, . . . , xn))

(“A has a finite number of generators and a finite number of relations over B”). If
A is Noetherian, then finitely presented is the same as finite type, as the “finite
number of relations” comes for free, so most of you will not care. A morphism
f : X → Y is locally of finite presentation (or locally finitely presented) if for
each affine open set Spec B of Y, f−1(Spec B) = ∪i Spec Ai with B → Ai finitely
presented. A morphism is of finite presentation (or finitely presented) if it is
locally of finite presentation and quasiseparated and quasicompact. If X is locally
Noetherian, then locally of finite presentation is the same as locally of finite type,
and finite presentation is the same as finite type. So if you are a Noetherian person,
you don’t need to worry about this notion.

This definition is a violation of the general principle that erasing “locally” is
the same as adding “quasicompact and” (Remark 8.3.11). But it is well motivated:
finite presentation means “finite in all possible ways” (the ring corresponding to
each affine open set has a finite number of generators, and a finite number of
relations, and a finite number of such affine open sets cover, and their intersections
are also covered by a finite number affine open sets) — it is all you would hope
for in a scheme without it actually being Noetherian. Exercise 10.4.G makes this
precise, and explains how this notion often arises in practice.

8.3.R. EXERCISE. Show that the notion of “locally of finite presentation” is affine-
local on the target.

8.3.S. EXERCISE. Show that the notion of “locally of finite presentation” is affine-
local on the source.

8.3.T. EXERCISE. Show that the composition of two finitely presented morphisms
is finitely presented.

8.4 Images of morphisms: Chevalley’s theorem and elimination
theory

In this section, we will answer a question that you may have wondered about
long before hearing the phrase “algebraic geometry”. If you have a number of
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polynomial equations in a number of variables with indeterminate coefficients,
you would reasonably ask what conditions there are on the coefficients for a (com-
mon) solution to exist. Given the algebraic nature of the problem, you might hope
that the answer should be purely algebraic in nature — it shouldn’t be “random”,
or involve bizarre functions like exponentials or cosines. This is indeed the case,
and it can be profitably interpreted as a question about images of maps of varieties
or schemes, in which guise it is answered by Chevalley’s Theorem 8.4.2. This will
lead immediately to a proof of the Nullstellensatz 4.2.3 (§8.4.3).

In special cases, the image is nicer still. For example, we have seen that finite
morphisms are closed (the image of closed subsets under finite morphisms are
closed, Exercise 8.3.M). We will prove a classical result, the Fundamental Theo-
rem of Elimination Theory 8.4.7, which essentially generalizes this (as explained
in §9.2.5) to maps from projective space. We will use it repeatedly.

8.4.1. Chevalley’s theorem.
If f : X → Y is a morphism of schemes, the notion of the image of f as sets

is clear: we just take the points in Y that are the image of points in X. We know
that the image can be open (open immersions), and we will soon see that it can be
closed (closed immersions), and hence locally closed (locally closed immersions).
But it can be weirder still: consider the morphism A2

k → A2
k given by (x, y) (→

(x, xy). The image is the plane, with the y-axis removed, but the origin put back
in. This isn’t so horrible. We make a definition to capture this phenomenon. A
constructible subset of a Noetherian topological space is a subset which belongs
to the smallest family of subsets such that (i) every open set is in the family, (ii) a
finite intersection of family members is in the family, and (iii) the complement of
a family member is also in the family. For example the image of (x, y) (→ (x, xy)
is constructible. (A generalization of the notion of constructibility to more general
topological spaces is mentioned in Exercise 8.4.O.)

8.4.A. EXERCISE: CONSTRUCTIBLE SUBSETS ARE FINITE UNIONS OF LOCALLY CLOSED

SUBSETS. Recall that a subset of a topological space X is locally closed if it is the
intersection of an open subset and a closed subset. (Equivalently, it is an open
subset of a closed subset, or a closed subset of an open subset. We will later have
trouble extending this to open and closed and locally closed subschemes, see Exer-
cise 9.1.L.) Show that a subset of a Noetherian topological space X is constructible
if and only if it is the finite disjoint union of locally closed subsets. As a conse-
quence, if X → Y is a continuous map of Noetherian topological spaces, then the
preimage of a constructible set is a constructible set.

8.4.B. EXERCISE (USED IN EXERCISE 25.5.E).
(a) Show that a constructible subset of a Noetherian scheme is closed if and only if
it is “stable under specialization”. More precisely, if Z is a constructible subset of a
Noetherian scheme X, then Z is closed if and only if for every pair of points y1 and
y2 with y1 ∈ y2, if y2 ∈ Z, then y1 ∈ Z. Hint for the “if” implication: show that Z
can be written as

∐n
i=1 Ui ∩ Zi where Ui ⊂ X is open and Zi ⊂ X is closed. Show

that Z can be written as
∐n

i=1 Ui ∩ Zi (with possibly different n, Ui, Zi) where
each Zi is irreducible and meets Ui. Now use “stability under specialization” and
the generic point of Zi to show that Zi ⊂ Z for all i, so Z = ∪Zi.)
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(b) Show that a constructible subset of a Noetherian scheme is open if and only if
it is “stable under generization”. (Hint: this follows in one line from (a).)

The image of a morphism of schemes can be stranger than constructible. In-
deed if S is any subset of a scheme Y, it can be the image of a morphism: let X
be the disjoint union of spectra of the residue fields of all the points of S, and let
f : X → Y be the natural map. This is quite pathological, but in any reasonable
situation, the image is essentially no worse than arose in the previous example of
(x, y) (→ (x, xy). This is made precise by Chevalley’s theorem.

8.4.2. Chevalley’s Theorem. — If π : X → Y is a finite type morphism of Noetherian
schemes, the image of any constructible set is constructible. In particular, the image of π
is constructible.

We discuss the proof after giving some important consequences that may seem
surprising, in that they are algebraic corollaries of a seemingly quite geometric and
topological theorem.

8.4.3. Proof of the Nullstellensatz 4.2.3. The first is a proof of the Nullstellensatz. We
wish to show that if K is a field extension of k that is finitely generated as a ring,
say by x1, . . . , xn, then it is a finite field extension. It suffices to show that each xi

is algebraic over k. But if xi is not algebraic over k, then we have an inclusion of
rings k[x] → K, corresponding to a dominant morphism Spec K → A1

k of finite type
k-schemes. Of course Spec K is a single point, so the image of π is one point. But
Chevalley’s Theorem 8.4.2 implies that the image of π contains a dense open subset
of A1

k, and hence an infinite number of points (see Exercises 4.2.D and 4.4.G). !

A similar idea can be used in the following exercise.

8.4.C. EXERCISE (QUASIFINITE MORPHISMS TO A FIELD ARE FINITE). Suppose
π : X → Spec k is a quasifinite morphism. Show that π is finite. (Hint: deal first
with the affine case, X = Spec K, where K is finitely generated over k. Suppose
K contains an element x that is not algebraic over k, i.e. we have an inclusion
k[x] ↪→ K. Exercise 8.3.H may help.)

8.4.D. EXERCISE (FOR MAPS OF VARIETIES, SURJECTIVITY CAN BE CHECKED ON

CLOSED POINTS). Show that a morphism of k-varieties π : X → Y is surjective
if and only if it is surjective on closed points (i.e. if every closed point of Y is the
image of a closed point of X).

In order to prove Chevalley’s Theorem 8.4.2 (in Exercise 8.4.N), we introduce
a useful idea of Grothendieck’s. Let B be a Noetherian integral domain. For the
purposes of this discussion only, we say an B-algebra A satisfies (†) if for each
finitely generated A-module M, there exists a nonzero f ∈ B such that Mf is a free
Bf-module.

8.4.4. Grothendieck’s Generic Freeness Lemma. — Every finitely generated B-
algebra satisfies (†).

Proof. We prove the Generic Freeness Lemma 8.4.4 in a series of exercises.

8.4.E. EXERCISE. Show that B itself satisfies (†).
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8.4.F. EXERCISE. Reduce the proof of Lemma 8.4.4 to the following statement: if
A is a Noetherian B-algebra satisfying (†), then A[T ] does too. (Hint: induct on the
number of generators of A as an B-algebra.)

We now prove this statement. Suppose A satisfies (†), and let M be a finitely
generated A[T ]-module, generated by the finite set S. Let M1 be the sub-A-module
of M generated by S. Inductively define

Mn+1 = Mn + TMn,

a sub A-module of M. Note that M is the increasing union of the A-modules Mn.

8.4.G. EXERCISE. Show that multiplication by T induces a surjection

ψn : Mn/Mn−1 → Mn+1/Mn.

8.4.H. EXERCISE. Show that for n . 0, ψn is an isomorphism. Hint: use the
ascending chain condition on M1.

8.4.I. EXERCISE. Show that there is a nonzero f ∈ B such that (Mn+1/Mn)f is
free as an Bf-module, for all n. Hint: as n varies, Mn+1/Mn passes through only
finitely many isomorphism classes.

The following result concludes the proof of the Generic Freeness Lemma 8.4.4.

8.4.J. EXERCISE (NOT REQUIRING NOETHERIAN HYPOTHESES). Suppose M is an
B-module that is an increasing union of submodules Mn, with M0 = 0, and that
Mn/Mn−1 is free. Show that M is free. Hint: first construct compatible isomor-
phisms φn : ⊕n

i=1Mi/Mi−1 → Mi by induction on n. Then show that the limit
φ := lim−→φn : ⊕∞

i=1Mi/Mi−1 → M is an isomorphism. More generally, your argu-
ment will show that if the Mi/Mi−1 are all projective, then M is (non-naturally)
isomorphic to their direct sum.

!

We now set up the proof of Chevalley’s Theorem 8.4.2.

8.4.K. EXERCISE. Suppose π : X → Y is a finite type morphism of Noetherian
schemes, and Y is irreducible. Show that there is a dense open subset U of Y such
that the image of π either contains U or else does not meet U. (Hint: suppose π :
Spec A → Spec B is such a morphism. Then by the Generic Freeness Lemma 8.4.4,
there is a nonzero f ∈ B such that Af is a free Bf-module. It must have zero
rank or positive rank. In the first case, show that the image of π does not meet
D(f) ⊂ Spec B. In the second case, show that the image of π contains D(f).)

We remark here that there are more direct ways of showing the content of the
above hint. For example, another proof in the case of varieties will turn up in the
proof of Proposition 12.4.1. We use the Generic Freeness Lemma because we will
use it again in the future.

8.4.L. EXERCISE. Show that to prove Chevalley’s Theorem, it suffices to prove
that if π : X → Y is a finite type morphism of Noetherian schemes, the image of π
is constructible.
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8.4.M. EXERCISE. Reduce further to the case where Y is affine, say Y = Spec B.
Reduce further to the case where X is affine.

We now give the rest of the proof by waving our hands, and leave it to you
to make it precise. The idea is to use Noetherian induction, and to reduce the
problem to Exercise 8.4.K.

We can deal with each of the components of Y separately, so we may assume
that Y is irreducible. We can then take B to be an integral domain. By Exercise 8.4.L,
there is a dense open subset U of Y where either the image of π includes it, or is
disjoint from it. If U = Y, we are done. Otherwise, it suffices to deal with the
complement of U. Renaming this complement Y, we return to the start of the
paragraph.

8.4.N. EXERCISE. Complete the proof of Chevalley’s Theorem 8.4.2, by making
the above argument precise.

8.4.O. !! EXERCISE (CHEVALLEY’S THEOREM FOR LOCALLY FINITELY PRESENTED

MORPHISMS). If you are macho and are embarrassed by Noetherian rings, the
following extension of Chevalley’s theorem will give you a sense of one of the
standard ways of removing Noetherian hypotheses.
(a) Suppose that A is a finitely presented B-algebra (B not necessarily Noetherian),
so A = B[x1, . . . , xn]/(f1, . . . , fr). Show that the image of Spec A → Spec B is a
finite union of locally closed subsets of Spec B. Hint: describe Spec A → Spec B as
the base change of

Spec Z[x1, . . . , xn, a1, . . . , aN]/(g1, . . . , gn) → Spec Z[a1, . . . , aN],

where the images of ai in Spec B are the coefficients of the fj (there is one ai for
each coefficient of each fj), and gi (→ fi.
(b) Show that if π : X → Y is a quasicompact locally finitely presented morphism,
and Y is quasicompact, then π(X) is a finite union of locally closed subsets. (For
hardened experts only: [EGA, 0III.9.1] gives a definition of constructibility, and
local constructability, in more generality. The general form of Chevalley’s con-
structibility theorem [EGA, IV1.1.8.4] is that the image of a locally constructible
set, under a finitely presented map, is also locally constructible.)

8.4.5. ! Elimination of quantifiers. A basic sort of question that arises in any
number of contexts is when a system of equations has a solution. Suppose for
example you have some polynomials in variables x1, . . . , xn over an algebraically
closed field k, some of which you set to be zero, and some of which you set to
be nonzero. (This question is of fundamental interest even before you know any
scheme theory!) Then there is an algebraic condition on the coefficients which will

tell you if this is the case. Define the Zariski topology on k
n

in the obvious way:
closed subsets are cut out by equations.

8.4.P. EXERCISE (ELIMINATION OF QUANTIFIERS, OVER AN ALGEBRAICALLY CLOSED

FIELD). Fix an algebraically closed field k. Suppose

f1, . . . , fp, g1, . . . , gq ∈ k[A1, . . . , Am, X1, . . . Xn]

are given. Show that there is a Zariski-constructible subset Y of k
m

such that

(8.4.5.1) f1(a1, . . . , am, X1, . . . , Xn) = · · · = fp(a1, . . . , am, X1, . . . , Xn) = 0
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and

(8.4.5.2) g1(a1, . . . , am, X1, . . . , Xn) != 0 · · · gp(a1, . . . , am, X1, . . . , Xn) != 0

has a solution (X1, . . . , Xn) = (x1, . . . , xn) ∈ k
n

if and only if (a1, . . . , am) ∈ Y.
Hints: if Z is a finite type scheme over k, and the closed points are denoted Zcl

(“cl” is for either “closed” or “classical”), then under the inclusion of topological
spaces Zcl ↪→ Z, the Zariski topology on Z induces the Zariski topology on Zcl.

Note that we can identify (Ap

k
)cl with k

p
by the Nullstellensatz (Exercise 6.3.F). If

X is the locally closed subset of Am+n cut out by the equalities and inequalities
(8.4.5.1) and (8.4.5.2), we have the diagram

Xcl

πcl

%%

! " $$ X

π

%%

! " loc. cl.$$ Am+n

5555
55
55
55
5

k
m ! " $$ Am

where Y = imπcl. By Chevalley’s theorem 8.4.2, imπ is constructible, and hence

so is (imπ) ∩ k
m

. It remains to show that (imπ) ∩ k
m

= Y (= imπcl). You might
use the Nullstellensatz.

This is called “elimination of quantifiers” because it gets rid of the quantifier
“there exists a solution”. The analogous statement for real numbers, where inequal-
ities are also allowed, is a special case of Tarski’s celebrated theorem of elimination
of quantifiers for real closed fields.

8.4.6. The Fundamental Theorem of Elimination Theory.

8.4.7. Theorem (Fundamental Theorem of Elimination Theory). — The morphism
π : Pn

A → Spec A is closed (sends closed sets to closed sets).

A great deal of classical algebra and geometry is contained in this theorem as
special cases. Here are some examples.

First, let A = k[a, b, c, . . . , i], and consider the closed subscheme of P2
A (taken

with coordinates x, y, z) corresponding to ax + by + cz = 0, dx + ey + fz =
0, gx + hy + iz = 0. Then we are looking for the locus in Spec A where these
equations have a non-trivial solution. This indeed corresponds to a Zariski-closed
set — where

det




a b c
d e f
g h i



 = 0.

Thus the idea of the determinant is embedded in elimination theory.
As a second example, let A = k[a0, a1, . . . , am, b0, b1, . . . , bn]. Now consider

the closed subscheme of P1
A (taken with coordinates x and y) corresponding to

a0xm + a1xm−1y + · · · + amym = 0 and b0xn + b1xm−1y + · · · + bnyn = 0.
Then there is a polynomial in the coefficients a0, . . . , bn (an element of A) which
vanishes if and only if these two polynomials have a common non-zero root — this
polynomial is called the resultant.
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More generally, this question boils down to the following question. Given a
number of homogeneous equations in n + 1 variables with indeterminate coeffi-
cients, Theorem 8.4.7 implies that one can write down equations in the coefficients
that will precisely determine when the equations have a nontrivial solution.

Proof of the Fundamental Theorem of Elimination Theory 8.4.7. Suppose Z ↪→ Pn
A is a

closed subset. We wish to show that π(Z) is closed. (See Figure 8.6.)

Spec A

y

D(f)

π

Z π−1y Pn
A

FIGURE 8.6.

Suppose y /∈ π(Z) is a closed point of Spec A. We will check that there is a
distinguished open neighborhood D(f) of y in Spec A such that D(f) doesn’t meet
π(Z). (If we could show this for all points of Spec A, we would be done. But I
prefer to concentrate on closed points first for simplicity.) Suppose y corresponds
to the maximal ideal m of A. We seek f ∈ A − m such that π∗f vanishes on Z.

Let U0, . . . , Un be the usual affine open cover of Pn
A. The closed subsets π−1y

and Z do not intersect. On the affine open set Ui, we have two closed subsets
Z ∩ Ui and π−1y ∩ Ui that do not intersect, which means that the ideals corre-
sponding to the two closed sets generate the unit ideal, so in the ring of functions
A[x0/i, x1/i, . . . , xn/i]/(xi/i − 1) on Ui, we can write

1 = ai +
∑

mijgij

where mij ∈ m, and ai vanishes on Z. Note that ai, gij ∈ A[x0/i, . . . , xn/i]/(xi/i −

1), so by multiplying by a sufficiently high power xN
i of xi, we have an equality

xN
i = a ′

i +
∑

mijg
′
ij

in S• = A[x0, . . . , xn]. We may take N large enough so that it works for all i. Thus
for N ′ sufficiently large, we can write any monomial in x1, . . . , xn of degree N ′ as
something vanishing on Z plus a linear combination of elements of m times other
polynomials. Hence

SN ′ = I(Z)N ′ + mSN ′
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where I(Z)• is the graded ideal of functions vanishing on Z. By Nakayama’s
lemma (version 1, Lemma 8.2.8), taking M = SN ′/I(Z)N ′ , we see that there ex-
ists f ∈ A − m such that

fSN ′ ⊂ I(Z)N ′ .

Thus we have found our desired f.
We now tackle Theorem 8.4.7 in general, by simply extending the above argu-

ment so that y need not be a closed point. Suppose y = [p] not in the image of
Z. Applying the above argument in Spec Ap, we find SN ′ ⊗ Ap = I(Z)N ′ ⊗ Ap +
mSN ′ ⊗ Ap, from which g(SN ′/I(Z)N ′) ⊗ Ap = 0 for some g ∈ Ap − pAp, from
which (SN ′/I(Z)N ′) ⊗ Ap = 0. As SN ′ is a finitely generated A-module, there
is some f ∈ A − p with fSN ⊂ I(Z) (if the module-generators of SN ′ are h1, . . . ,
ha, and f1, . . . , fa are annihilate the generators h1, . . . , ha, respectively, then take
f =

∏
fi), so once again we have found D(f) containing p, with (the pullback of) f

vanishing on Z. !

Notice that projectivity was crucial to the proof: we used graded rings in an
essential way.





CHAPTER 9

Closed immersions and related notions

9.1 Closed immersions and closed subschemes

Just as open immersions (the scheme-theoretic version of open set) are locally
modeled on open sets U ⊂ Y, the analogue of closed subsets also has a local
model. This was foreshadowed by our understanding of closed subsets of Spec B
as roughly corresponding to ideals. If I ⊂ B is an ideal, then Spec B/I ↪→ Spec B
is a morphism of schemes, and we have checked that on the level of topologi-
cal spaces, this describes Spec B/I as a closed subset of Spec B, with the subspace
topology (Exercise 4.4.I). This morphism is our “local model” of a closed immer-
sion.

9.1.1. Definition. A morphism f : X → Y is a closed immersion if it is an affine mor-
phism, and for each open subset Spec B ⊂ Y, with f−1(Spec B) ∼= Spec A, the map
B → A is surjective (i.e. of the form B → B/I, our desired local model). If X is a
subset of Y (and f on the level of sets is the inclusion), we say that X is a closed sub-
scheme of Y. The difference between a closed immersion and a closed subscheme
is confusing and unimportant; the same issue for open immersions/subschemes
was discussed in §8.1.

9.1.A. EASY EXERCISE. Show that closed immersions are finite, hence of finite
type.

9.1.B. EASY EXERCISE. Show that the composition of two closed immersions is a
closed immersion.

9.1.C. EXERCISE. Show that the property of being a closed immersion is affine-
local on the target.

A closed immersion f : X ↪→ Y determines an ideal sheaf on Y, as the kernel
IX/Y of the map of OY-modules

OY → f∗OX

(An ideal sheaf on Y is what it sounds like: it is a sheaf of ideals. It is a sub-OY-
module I ↪→ OY . On each open subset, it gives an ideal I (U) ↪→ OY(U).) We
thus have an exact sequence (of OY-modules) 0 → IX/Y → OY → f∗OX → 0.

Thus for each affine open subset Spec B ↪→ Y, we have an ideal IB ⊂ B, and
we can recover X from this information: the IB (as Spec B ↪→ Y varies over the
affine opens) defines an O-module on the base, hence an OY-module on Y, and the
cokernel of I ↪→ OY is OX. It will be useful to understand when the information
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of the IB (for all affine opens Spec B ↪→ Y) actually determines a closed subscheme.
Our life is complicated by the fact that the answer is “not always”, as shown by
the following example.

9.1.D. UNIMPORTANT EXERCISE. Let X = Spec k[x](x), the germ of the affine
line at the origin, which has two points, the closed point and the generic point η.
Define I (X) = {0} ⊂ OX(X) = k[x](x), and I (η) = k(x) = OX(η). Show that this
sheaf of ideals does not correspond to a closed subscheme. (Possible hint: do the
next exercise first.)

The next exercise gives a necessary condition.

9.1.E. EXERCISE. Suppose IX/Y is a sheaf of ideals corresponding to a closed
immersion X ↪→ Y. Suppose Spec Bf is a distinguished open of the affine open
Spec B ↪→ Y. Show that the natural map (IB)f → I(Bf) is an isomorphism.

It is an important and useful fact that this is sufficient:

9.1.F. ESSENTIAL (HARD) EXERCISE: A USEFUL CRITERION FOR WHEN IDEALS IN

AFFINE OPEN SETS DEFINE A CLOSED SUBSCHEME. Suppose Y is a scheme, and
for each affine open subset Spec B of Y, IB ⊂ B is an ideal. Suppose further that for
each affine open subset Spec B ↪→ Y and each f ∈ B, restriction of functions from
B → Bf induces an isomorphism I(Bf) = (IB)f. Show that this data arises from a
(unique) closed subscheme X ↪→ Y by the above construction. In other words, the
closed immersions Spec B/I ↪→ Spec B glue together in a well-defined manner to
obtain a closed immersion X ↪→ Y.

This is a hard exercise, so as a hint, here are three different ways of proceed-
ing; some combination of them may work for you. Approach 1. For each affine
open Spec B, we have a closed subscheme Spec B/I ↪→ Spec B. (i) For any two
affine open subschemes Spec A and Spec B, show that the two closed subschemes
Spec A/IA ↪→ Spec A and Spec B/IB ↪→ Spec B restrict to the same closed sub-
scheme of their intersection. (Hint: cover their intersection with open sets simulta-
neously distinguished in both affine open sets, Proposition 6.3.1.) Thus for exam-
ple we can glue these two closed subschemes together to get a closed subscheme of
Spec A∪ Spec B. (ii) Use Exercise 5.4.A on gluing schemes (or the ideas therein) to
glue together the closed immersions in all affine open subschemes simultaneously.
You will only need to worry about triple intersections. Approach 2. (i) Use the data
of the ideals IB to define a sheaf of ideals I ↪→ O . (ii) For each affine open sub-
scheme Spec B, show that I (Spec B) is indeed IB, and (O/I )(Spec B) is indeed
B/IB, so the data of I recovers the closed subscheme on each Spec B as desired.
Approach 3. (i) Describe X first as a subset of Y. (ii) Check that X is closed. (iii)
Define the sheaf of functions OX on this subset, perhaps using compatible stalks.
(iv) Check that this resulting ringed space is indeed locally the closed subscheme
given by Spec B/I ↪→ Spec B.)

We will see later (§14.5.5) that closed subschemes correspond to quasicoherent
sheaves of ideals; the mathematical content of this statement will turn out to be
precisely Exercise 9.1.F.

9.1.G. IMPORTANT EXERCISE. (a) In analogy with closed subsets, define the notion
of a finite union of closed subschemes of X, and an arbitrary (not necessarily finite)
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intersection of closed subschemes of X.
(b) Describe the scheme-theoretic intersection of V(y − x2) and V(y) in A2. See
Figure 5.3 for a picture. (For example, explain informally how this corresponds
to two curves meeting at a single point with multiplicity 2 — notice how the 2 is
visible in your answer. Alternatively, what is the nonreducedness telling you —
both its “size” and its “direction”?) Describe their scheme-theoretic union.
(c) Show that the underlying set of a finite union of closed subschemes is the finite
union of the underlying sets, and similarly for arbitrary intersections.
(d) Describe the scheme-theoretic intersection of V(y2 − x2) and V(y) in A2. Draw
a picture. (Did you expect the intersection to have multiplicity one or multiplicity
two?) Hence show that if X, Y, and Z are closed subschemes of W, then (X ∩ Z) ∪
(Y ∩ Z) != (X ∪ Y) ∩ Z in general.

9.1.H. IMPORTANT EXERCISE/DEFINITION: THE VANISHING SCHEME. (a) Sup-
pose Y is a scheme, and s ∈ Γ(OY , Y). Define the closed scheme cut out by s. We
call this the vanishing scheme V(s) of s, as it is the scheme theoretical version of
our earlier (set-theoretical) version of V(s). (Hint: on affine open Spec B, we just
take Spec B/(sB), where sB is the restriction of s to Spec B. Use Exercise 9.1.F to
show that this yields a well-defined closed subscheme.)
(b) If u is an invertible function, show that V(s) = V(su).
(c) If S is a set of functions, define V(S). In Exercise 9.1.G(b), you are computing
V(y − x2, y).

9.1.2. Locally principal closed subschemes, and effective Cartier divisors. (This section
is just an excuse to introduce some notation, and is not essential to the current
discussion.) A closed subscheme is locally principal if on each open set in a small
enough open cover it is cut out by a single equation. Thus each homogeneous
polynomial in n + 1 variables defines a locally principal closed subscheme of Pn.
(Warning: this is not an affine-local condition, see Exercise 6.4.M! Also, the exam-
ple of a projective hypersurface given soon in §9.2.1 shows that a locally principal
closed subscheme need not be cut out by a (global) function.) A case that will be
important repeatedly later is when the ideal sheaf is not just locally generated by
a function, but is generated by a function that is not a zerodivisor. For reasons that
may become clearer later, we call such a closed subscheme an effective Cartier
divisor. (To see how useful this notion is, see how often it appears in the index.)
Warning: We will use this terminology before we explain where it came from!

9.1.I. EXERCISE (FOR THOSE FUZZILY VISUALIZING SCHEMES, CF. §6.5). Suppose
X is a locally Noetherian scheme, and t ∈ Γ(X,OX) is a function on it. Show that
t (or more precisely V(t)) is an effective Cartier divisor if and only if it doesn’t
vanish on any associated point of X.

9.1.J. UNIMPORTANT EXERCISE. Suppose V(s) = V(s ′) ⊂ Spec A is an effective
Cartier divisor, with s and s ′ non-zerodivisors in A. Show that s is a unit times s ′.

9.1.K. ! HARD EXERCISE (NOT USED LATER). In the literature, the usual defini-
tion of a closed immersion is a morphism f : X → Y such that f induces a home-
omorphism of the underlying topological space of X onto a closed subset of the
topological space of Y, and the induced map f! : OY → f∗OX of sheaves on Y is
surjective. Show that this definition agrees with the one given above. (To show
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that our definition involving surjectivity on the level of affine open sets implies
this definition, you can use the fact that surjectivity of a morphism of sheaves can
be checked on a base, Exercise 3.7.E.)

We have now defined the analogue of open subsets and closed subsets in the
land of schemes. Their definition is slightly less “symmetric” than in the classical
topological setting: the “complement” of a closed subscheme is a unique open
subscheme, but there are many “complementary” closed subschemes to a given
open subscheme in general. (We will soon define one that is “best”, that has a
reduced structure, §9.3.8.)

9.1.3. Locally closed immersions and locally closed subschemes.
Now that we have defined analogues of open and closed subsets, it is natural

to define the analogue of locally closed subsets. Recall that locally closed subsets
are intersections of open subsets and closed subsets. Hence they are closed subsets
of open subsets, or equivalently open subsets of closed subsets. The analog of
these equivalences will be a little problematic in the land of schemes.

We say a morphism h : X → Y is a locally closed immersion if h can factored

into X
f $$ Z

g $$ Y where f is a closed immersion and g is an open immersion.
If X is a subset of Y (and h on the level of sets is the inclusion), we say X is a locally
closed subscheme of Y. (Warning: The term immersion is often used instead of
locally closed immersion, but this is unwise terminology. The differential geometric
notion of immersion is closer to what algebraic geometers call unramified, which
we will define in §23.4.5. The algebro-geometric notion of locally closed immersion
is closer to the differential geometric notion of embedding.)

For example, Spec k[t, t−1] → Spec k[x, y] where (x, y) (→ (t, 0) is a locally
closed immersion (see Figure 9.1).

FIGURE 9.1. The locally closed immersion Spec k[t, t−1] →
Spec k[x, y] (t (→ (t, 0) = (x, y), i.e. (x, y) → (t, 0))

At this point, you could define the intersection of two locally closed immer-
sions in a scheme X (which will also be a locally closed immersion in X). But it
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would be awkward, as you would have to show that your construction is indepen-
dent of the factorizations of each locally closed immersion into a closed immersion
and an open immersion. Instead, we wait until Exercise 10.2.C, when recognizing
the intersection as a fibered product will make this easier.

Clearly an open subscheme U of a closed subscheme V of X can be interpreted
as a closed subscheme of an open subscheme: as the topology on V is induced
from the topology on X, the underlying set of U is the intersection of some open
subset U ′ on X with V . We can take V ′ = V ∩ U, and then V ′ → U ′ is a closed
immersion, and U ′ → X is an open immersion.

It is not clear that a closed subscheme V ′ of an open subscheme U ′ can be
expressed as an open subscheme U of a closed subscheme V . In the category of
topological spaces, we would take V as the closure of V ′, so we are now motivated
to define the analogous construction, which will give us an excuse to introduce
several related ideas, in §9.3. We will then resolve this issue in good cases (e.g. if X
is Noetherian) in Exercise 9.3.C.

We formalize our discussion in an exercise.

9.1.L. EXERCISE. Suppose V → X is a morphism. Consider three conditions:

(i) V is an open subscheme of X intersect a closed subscheme of X (which
you will have to define, see Exercise 8.1.A, or else see below).

(ii) V is an open subscheme of a closed subscheme of X (i.e. it factors into an
open immersion followed by a closed immersion).

(iii) V is a closed subscheme of an open subscheme of X, i.e. V is a locally
closed immersion.

Show that (i) and (ii) are equivalent, and both imply (iii). (Remark: (iii) does not
always imply (i) and (ii), see [Stacks, tag 01QW].) Hint: It may be helpful to think
of the problem as follows. You might hope to think of a locally closed immersion
as a fibered diagram

V
! " open imm.

$$" #

closed imm.
%%

Y " #

closed imm.
%%

K
! "

open imm.
$$ X.

Interpret (i) as the existence of the diagram. Interpret (ii) as this diagram minus
the lower left corner. Interpret (iii) as the diagram minus the upper right corner.

9.1.M. EXERCISE. Show that the composition of two locally closed immersions is
a locally closed immersion. (Hint: you might use (ii) implies (iii) in the previous
exercise.)

9.1.4. Unimportant remark. It may feel odd that in the definition of a locally closed
immersions, we had to make a choice (as a composition of a closed followed by
an open, rather than vice versa), but this type of issue comes up earlier: a subquo-
tient of a group can be defined as the quotient of a subgroup, or a subgroup of a
quotient. Which is the right definition? Or are they the same? (Hint: compositions
of two subquotients should certainly be a subquotient, cf. Exercise 9.1.M.)
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9.2 Closed immersions of projective schemes, and more projective
geometry

9.2.1. Example: Closed immersions in projective space Pn
A. Recall the definition

of projective space Pn
A given in §5.4.10 (and the terminology defined there). Any

homogeneous polynomial f in x0, . . . , xn defines a closed subscheme. (Thus even if
f doesn’t make sense as a function, its vanishing scheme still makes sense.) On
the open set Ui, the closed subscheme is V(f(x0/i, . . . , xn/i)), which we think of as

V(f(x0, . . . , xn)/x
deg f
i ). On the overlap

Ui ∩ Uj = Spec A[x0/i, . . . , xn/i, x
−1
j/i]/(xi/i − 1),

these functions on Ui and Uj don’t exactly agree, but they agree up to a non-
vanishing scalar, and hence cut out the same closed subscheme of Ui ∩ Uj (Ex-
ercise 9.1.H(b)):

f(x0/i, . . . , fn/i) = x
deg f

j/i f(x0/j, . . . , xn/j).

Similarly, a collection of homogeneous polynomials in A[x0, . . . , xn] cuts out a
closed subscheme of Pn

A.

9.2.2. Definition. A closed subscheme cut out by a single (homogeneous) equation
is called a hypersurface in Pn

A. A hypersurface is locally principal. Notice that
a hypersurface is not in general cut out by a single global function on Pn

A. For
example, if A = k, there are no nonconstant global functions (Exercise 5.4.E). The
degree of a hypersurface is the degree of the polynomial. (Implicit in this is that
this notion can be determined from the subscheme itself; we won’t really know
this until Exercise 20.5.J.) A hypersurface of degree 1 (resp. degree 2, 3, . . . ) is
called a hyperplane (resp. quadric, cubic, quartic, quintic, sextic, septic, octic,
. . . hypersurface). If n = 2, a degree 1 hypersurface is called a line, and a degree 2
hypersurface is called a conic curve, or a conic for short. If n = 3, a hypersurface
is called a surface. (In Chapter 12, we will justify the terms curve and surface.)

9.2.A. EXERCISE. (a) Show that wz = xy, x2 = wy, y2 = xz describes an irre-
ducible subscheme in P3

k. In fact it is a curve, a notion we will define once we
know what dimension is. This curve is called the twisted cubic. (The twisted cu-
bic is a good non-trivial example of many things, so you should make friends with
it as soon as possible. It implicitly appeared earlier in Exercise 4.6.H.)
(b) Show that the twisted cubic is isomorphic to P1

k.

We now extend this discussion to projective schemes in general.

9.2.B. EXERCISE. Suppose that S•
$$ $$ R• is a surjection of finitely-generated

graded rings. Show that the induced morphism Proj R• → Proj S• (Exercise 7.4.A)
is a closed immersion.

9.2.C. EXERCISE. Suppose X ↪→ Proj S• is a closed immersion in a projective
A-scheme. Show that X is projective by describing it as Proj S•/I, where I is a
homogeneous prime ideal, of “projective functions” vanishing on X.
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9.2.D. EXERCISE. Show that an injective linear map of k-vector spaces V ↪→
W induces a closed immersion PV ↪→ PW. (This is another justification for the
definition of PV in Example 5.5.8 in terms of the dual of V .)

9.2.3. Definition. This closed subscheme is called a linear space. Once we know
about dimension, we will call this a linear space of dimension dim V −1 = dim PV .
A linear space of dimension 1 (resp. 2, n, dim PW − 1) is called a line (resp. plane,
n-plane, hyperplane). (If the linear map in the previous exercise is not injective,
then the hypothesis (7.4.0.1) of Exercise 7.4.A fails.)

9.2.E. EXERCISE (A SPECIAL CASE OF BÉZOUT’S THEOREM). Suppose X ⊂ Pn
k is a

degree d hypersurface cut out by f = 0, and L is a line not contained in X. A very
special case of Bézout’s theorem (Exercise 20.5.M) implies that X and L meet with
multiplicity d, “counted correctly”. Make sense of this, by restricting the degree
d form f to the line L, and using the fact that a degree d polynomial in k[x] has d
roots, counted properly.

9.2.F. EXERCISE. Show that the map of graded rings k[w, x, y, z] → k[s, t] given by
w (→ s3, x (→ s2t, y (→ st2, z (→ t3 induces a closed immersion P1

k ↪→ P3
k, which

yields an isomorphism of P1
k with the twisted cubic (defined in Exercise 9.2.A —

in fact, this will solve Exercise 9.2.A(b)).

9.2.4. A particularly nice case: when S• is generated in degree 1.
Suppose S• is a finitely generated graded ring generated in degree 1. Then

S1 is a finitely-generated S0-module, and the irrelevant ideal S+ is generated in
degree 1 (cf. Exercise 5.5.A(a)).

9.2.G. EXERCISE. Show that if S• is generated (as an A-algebra) in degree 1 by n+1
elements x0, . . . , xn, then Proj S• may be described as a closed subscheme of Pn

A as
follows. Consider An+1 as a free module with generators t0, . . . , tn associated to
x0, . . . , xn. The surjection of

Sym• An+1 = A[t0, t1, . . . , tn] $$ $$ S•

ti
% $$ xi

implies S• = A[t0, t1, . . . tn]/I, where I is a homogeneous ideal. (In particular, by
Exercise 7.4.G, Proj S• can always be interpreted as a closed subscheme of some
Pn

A.)

This is analogous to the fact that if R is a finitely-generated A-algebra, then
choosing n generators of R as an algebra is the same as describing Spec R as a
closed subscheme of An

A. In the affine case this is “choosing coordinates”; in the
projective case this is “choosing projective coordinates”.

For example, Proj k[x, y, z]/(z2 − x2 − y2) is a closed subscheme of P2
k. (A

picture is shown in Figure 9.3.)
Recall (Exercise 5.4.F) that if k is algebraically closed, then we can interpret the

closed points of Pn as the lines through the origin in (n + 1)-space. The following
exercise states this more generally.
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9.2.H. EXERCISE. Suppose S• is a finitely-generated graded ring over an alge-
braically closed field k, generated in degree 1 by x0, . . . , xn, inducing closed im-
mersions Proj S• ↪→ Pn and Spec S• ↪→ An+1. Give a bijection between the closed
points of Proj S• and the “lines through the origin” in Spec S• ⊂ An+1.

9.2.5. A second proof that finite morphisms are closed. This interpretation of Proj S• as
a closed subscheme of projective space (when it is generated in degree 1) yields the
following second proof of the fact (shown in Exercise 8.3.M) that finite morphisms
are closed. Suppose φ : X → Y is a finite morphism. The question is local on the
target, so it suffices to consider the affine case Y = Spec B. It suffices to show that
φ(X) is closed. Then by Exercise 8.3.J, X is a projective B-scheme, and hence by the
Fundamental Theorem of Elimination Theory 8.4.7, its image is closed.

9.2.6. The Veronese embedding.
Suppose S• = k[x, y], so Proj S• = P1

k. Then S2• = k[x2, xy, y2] ⊂ k[x, y] (see
§7.4.2 on the Veronese subring). We identify this subring as follows.

9.2.I. EXERCISE. Let u = x2, v = xy, w = y2. Show that S2• = k[u, v,w]/(uw−v2).

We have a graded ring generated by three elements in degree 1. Thus we think
of it as sitting “in” P2, via the construction of §9.2.G. This can be interpreted as “P1

as a conic in P2”.

9.2.7. Thus if k is algebraically closed of characteristic not 2, using the fact that we
can diagonalize quadrics (Exercise 6.4.J), the conics in P2, up to change of coordi-
nates, come in only a few flavors: sums of 3 squares (e.g. our conic of the previous
exercise), sums of 2 squares (e.g. y2 − x2 = 0, the union of 2 lines), a single square
(e.g. x2 = 0, which looks set-theoretically like a line, and is nonreduced), and 0
(perhaps not a conic at all). Thus we have proved: any plane conic (over an alge-
braically closed field of characteristic not 2) that can be written as the sum of three
squares is isomorphic to P1. (See Exercise 7.5.F for a closely related fact.)

We now soup up this example.

9.2.J. EXERCISE. Show that Proj Sd• is given by the equations that

(
y0 y1 · · · yd−1

y1 y2 · · · yd

)

is rank 1 (i.e. that all the 2 × 2 minors vanish). This is called the degree d rational
normal curve “in” Pd. You did the twisted cubic case d = 3 in Exercises 9.2.A and
9.2.F.

9.2.8. Remark. More generally, if S• = k[x0, . . . , xn], then Proj Sd• ⊂ PN−1 (where
N is the number of degree d polynomials in x0, . . . , xn) is called the d-uple em-
bedding or d-uple Veronese embedding. The reason for the word “embedding”
is historical; we really mean closed immersion. (Combining Exercise 7.4.E with
Exercise 9.2.G shows that Proj S• → PN−1 is a closed immersion.)

9.2.K. COMBINATORIAL EXERCISE. Show that N =
(
n+d

d

)
.
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9.2.L. UNIMPORTANT EXERCISE. Find five linearly independent quadric equa-
tions vanishing on the Veronese surface Proj S2• where S• = k[x0, x1, x2], which
sits naturally in P5. (You needn’t show that these equations generate all the equa-
tions cutting out the Veronese surface, although this is in fact true.)

9.2.9. Rulings on the quadric surface. We return to rulings on the quadric surface,
which first appeared in the optional section §5.4.12.

9.2.M. USEFUL GEOMETRIC EXERCISE: THE RULINGS ON THE QUADRIC SURFACE

wz = xy. This exercise is about the lines on the quadric surface wz − xy = 0
in P3

k (where the ordering of the coordinates in P3
k is are ordered [w; x;y; z]). This

construction arises all over the place in nature.
(a) Suppose a0 and b0 are elements of k, not both zero. Make sense of the state-
ment: as [c;d] varies in P1, [a0c;b0c;a0d;b0d] is a line in the quadric surface. (This
describes “a family of lines parametrized by P1”, although we can’t yet make this
precise.) Find another family of lines. These are the two rulings of the quadric
surface.
(b) Show there are no other lines. (There are many ways of proceeding. At risk
of predisposing you to one approach, here is a germ of an idea. Suppose L is a
line on the quadric surface, and [1; x;y; z] and [1; x ′;y ′; z ′] are distinct points on
it. Because they are both on the quadric, z = xy and z ′ = x ′y ′. Because all of L
is on the quadric, (1 + t)(z + tz ′) − (x + tx ′)(y + ty ′) = 0 for all t. After some
algebraic manipulation, this translates into (x − x ′)(y − y ′) = 0. How can this be
made watertight? Another possible approach uses Bézout’s theorem, in the form
of Exercise 9.2.E.)

FIGURE 9.2. The two rulings on the quadric surface V(wz−xy) ⊂
P3. One ruling contains the line V(w, x) and the other contains the
line V(w,y).

Hence by Exercise 6.4.J, if we are working over an algebraically closed field
of characteristic not 2, we have shown that all rank 4 quadric surfaces have two
rulings of lines. (In Example 10.5.2, we will recognize this quadric as P1 × P1.)
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9.2.10. Weighted projective space. If we put a non-standard weighting on the
variables of k[x1, . . . , xn] — say we give xi degree di — then Proj k[x1, . . . , xn] is
called weighted projective space P(d1, d2, . . . , dn).

9.2.N. EXERCISE. Show that P(m,n) is isomorphic to P1. Show that P(1, 1, 2) ∼=
Proj k[u, v,w, z]/(uw − v2). Hint: do this by looking at the even-graded parts of
k[x0, x1, x2], cf. Exercise 7.4.D. (This is a projective cone over a conic curve. Over
an algebraically closed field of characteristic not 2, it is isomorphic to the tradi-
tional cone x2 + y2 = z2 in P3, Figure 9.3.)

9.2.11. Affine and projective cones.
If S• is a finitely-generated graded ring, then the affine cone of Proj S• is

Spec S•. Note that this construction depends on S•, not just of Proj S•. As mo-
tivation, consider the graded ring S• = C[x, y, z]/(z2 − x2 − y2). Figure 9.3 is a
sketch of Spec S•. (Here we draw the “real picture” of z2 = x2 + y2 in R3.) It is a
cone in the traditional sense; the origin (0, 0, 0) is the “cone point”.

FIGURE 9.3. The cone Spec k[x, y, z]/(z2 − x2 − y2).

This gives a useful way of picturing Proj (even over arbitrary rings, not just
C). Intuitively, you could imagine that if you discarded the origin, you would
get something that would project onto Proj S•. The following exercise makes that
precise.

9.2.O. EXERCISE (CF. EXERCISE 7.3.E). If Proj S• is a projective scheme over a
field k, describe a natural morphism Spec S• \ V(S+) → Proj S•. (Can you see why
V(S+) is a single point, and should reasonably be called the origin?)

This readily generalizes to the following exercise, which again motivates the
terminology “irrelevant”.

9.2.P. EXERCISE. If S• is a finitely generated graded ring, describe a natural mor-
phism Spec S• \ V(S+) → Proj S•.

In fact, it can be made precise that Proj S• is the quotient (by the multiplicative
group of scalars) of the affine cone minus the origin.

9.2.12. Definition. The projective cone of Proj S• is Proj S•[T ], where T is a new vari-
able of degree 1. For example, the cone corresponding to the conic Proj k[x, y, z]/(z2−
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x2 − y2) is Proj k[x, y, z, T ]/(z2 − x2 − y2). The projective cone is sometimes called
the projective completion of Spec S•.

9.2.Q. EXERCISE (CF. §5.5.1). Show that the projective cone of Proj S•[T ] has
a closed subscheme isomorphic to Proj S• (informally, corresponding to T = 0),
whose complement (the distinguished open set D(T)) is isomorphic to the affine
cone Spec S•.

You can also check that Proj S• is a locally principal closed subscheme of the
projective cone Proj S•[T ], and is also locally not a zerodivisor (an effective Cartier
divisor, §9.1.2).

This construction can be usefully pictured as the affine cone union some points
“at infinity”, and the points at infinity form the Proj. The reader may wish to
ponder Figure 9.3, and try to visualize the conic curve “at infinity”.

We have thus completely described the algebraic analogue of the classical pic-
ture of 5.5.1.

9.3 “Smallest closed subschemes such that ...”

We now define a series of notions that are all of the form “the smallest closed
subscheme such that something or other is true”. One example will be the no-
tion of scheme-theoretic closure of a locally closed immersion, which will allow us
to interpret locally closed immersions in three equivalent ways (open subscheme
intersect closed subscheme; open subscheme of closed subscheme; and closed sub-
scheme of open subscheme).

9.3.1. Scheme-theoretic image.
We start with the notion of scheme-theoretic image. Set-theoretic images are

badly behaved in general (§8.4.1), and even with reasonable hypotheses such as
those in Chevalley’s theorem 8.4.2, things can be confusing. For example, there
is no reasonable way to impose a scheme structure on the image of A2

k → A2
k

given by (x, y) (→ (x, xy). It will be useful (e.g. Exercise 9.3.C) to define a notion
of a closed subscheme of the target that “best approximates” the image. This will
incorporate the notion that the image of something with nonreduced structure
(“fuzz”) can also have nonreduced structure. As usual, we will need to impose
reasonable hypotheses to make this notion behave well (see Theorem 9.3.4 and
Corollary 9.3.5).

9.3.2. Definition. Suppose i : Z ↪→ Y is a closed subscheme, giving an exact
sequence 0 → IZ/Y → OY → i∗OZ → 0. We say that the image of f : X → Y lies
in Z if the composition IZ/Y → OY → f∗OX is zero. Informally, locally functions
vanishing on Z pull back to the zero function on X. If the image of f lies in some
subschemes Zi (as i runs over some index set), it clearly lies in their intersection
(cf. Exercise 9.1.G(a) on intersections of closed subschemes). We then define the
scheme-theoretic image of f, a closed subscheme of Y, as the “smallest closed
subscheme containing the image”, i.e. the intersection of all closed subschemes
containing the image.
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Example 1. Consider Spec k[ε]/ε2 → Spec k[x] = A1
k given by x (→ ε. Then the

scheme-theoretic image is given by k[x]/x2 (the polynomials pulling back to 0 are
precisely multiples of x2). Thus the image of the fuzzy point still has some fuzz.

Example 2. Consider f : Spec k[ε]/ε2 → Spec k[x] = A1
k given by x (→ 0. Then

the scheme-theoretic image is given by k[x]/x: the image is reduced. In this picture,
the fuzz is “collapsed” by f.

Example 3. Consider f : Spec k[t, t−1] = A1 − {0} → A1 = Spec k[u] given by
u (→ t. Any function g(u) which pulls back to 0 as a function of t must be the
zero-function. Thus the scheme-theoretic image is everything. The set-theoretic
image, on the other hand, is the distinguished open set A1 − {0}. Thus in not-too-
pathological cases, the underlying set of the scheme-theoretic image is not the set-
theoretic image. But the situation isn’t terrible: the underlying set of the scheme-
theoretic image must be closed, and indeed it is the closure of the set-theoretic
image. We might imagine that in reasonable cases this will be true, and in even
nicer cases, the underlying set of the scheme-theoretic image will be set-theoretic
image. We will later see that this is indeed the case (§9.3.6).

But sadly pathologies can sometimes happen.

Example 4. Let X =
∐

Spec k[εn]/((εn)n) and Y = Spec k[x], and define X → Y
by x → εn on the nth component of X. Then if a function g(x) on Y pulls back to
0 on X, then its Taylor expansion is 0 to order n (by examining the pullback to the
nth component of X) for all n, so g(x) must be 0. Thus the scheme-theoretic image
is V(0) on Y, i.e. Y itself, while the set-theoretic image is easily seen to be just the
origin.

9.3.3. Criteria for computing scheme-theoretic images affine-locally. Example 4 clearly
is weird though, and we can show that in “reasonable circumstances” such pathol-
ogy doesn’t occur. It would be great to compute the scheme-theoretic image affine-
locally. On the affine open set Spec B ⊂ Y, define the ideal IB ⊂ B of functions
which pull back to 0 on X. Formally, IB := ker(B → Γ(Spec B, f∗(OX)). Then if for
each such B, and each g ∈ B, IB⊗BBg → IBg

is an isomorphism, then we will have
defined the scheme-theoretic image as a closed subscheme (see Exercise 9.1.F).
Clearly each function on Spec B that vanishes when pulled back to f−1(Spec B)
also vanishes when restricted to D(g) and then pulled back to f−1(D(g)). So the
question is: given a function r/gn on D(g) that pulls back to zero on f−1(D(g)),
is it true that for some m, rgm = 0 when pulled back to f−1(Spec B)? Here are
three cases where the answer is “yes”. (I would like to add a picture here, but I
can’t think of one that would enlighten more people than it would confuse. So you
should try to draw one that suits you.) In a nutshell, for each affine in the source,
there is an m which works. There is one that works for all affines in a cover (i) if
m = 1 always works, or (ii) or (iii) if there are only a finite number of affines in the
cover.

(i) The answer is yes if f−1(Spec B) is reduced: we simply take m = 1 (as r
vanishes on Spec Bg and g vanishes on V(g), so rg vanishes on Spec B = Spec Bg ∪
V(g).)

(ii) The answer is also yes if f−1(Spec B) is affine, say Spec A: if r ′ = f!r and
g ′ = f!g in A, then if r ′ = 0 on D(g ′), then there is an m such that r ′(g ′)m = 0 (as
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the statement r ′ = 0 in D(g ′) means precisely this fact — the functions on D(g ′)
are Ag ′ ).

(iii) More generally, the answer is yes if f−1(Spec B) is quasicompact: cover
f−1(Spec B) with finitely many affine open sets. For each one there will be some
mi so that rgmi = 0 when pulled back to this open set. Then let m = max(mi).
(We see again that quasicompactness is our friend!)

In conclusion, we have proved the following (subtle) theorem.

9.3.4. Theorem. — Suppose f : X → Y is a morphism of schemes. If X is reduced or f
is quasicompact, then the scheme-theoretic image of f may be computed affine-locally: on
Spec A, it is cut out by the functions that pull back to 0.

9.3.5. Corollary. — Under the hypotheses of Theorem 9.3.4, the closure of the set-
theoretic image of f is the underlying set of the scheme-theoretic image.

(Example 4 above shows that we cannot excise these hypotheses.)

9.3.6. In particular, if the set-theoretic image is closed (e.g. if f is finite or projec-
tive), the set-theoretic image is the underlying set of the scheme-theoretic image,
as promised in Example 3 above.

Proof. The set-theoretic image is in the underlying set of the scheme-theoretic im-
age. (Check this!) The underlying set of the scheme-theoretic image is closed, so
the closure of the set-theoretic image is contained in underlying set of the scheme-
theoretic image. On the other hand, if U is the complement of the closure of the
set-theoretic image, f−1(U) = ∅. As under these hypotheses, the scheme theoretic
image can be computed locally, the scheme-theoretic image is the empty set on
U. !

We conclude with a few stray remarks.

9.3.A. EASY EXERCISE. If X is reduced, show that the scheme-theoretic image of
f : X → Y is also reduced.

More generally, you might expect there to be no unnecessary nonreduced
structure on the image not forced by nonreduced structure on the source. We
make this precise in the locally Noetherian case, when we can talk about associ-
ated points.

9.3.B. ! UNIMPORTANT EXERCISE. If f : X → Y is a quasicompact morphism
of locally Noetherian schemes, show that the associated points of the image sub-
scheme are a subset of the image of the associated points of X. (The example of∐

a∈C Spec C[t]/(t − a) → Spec C[t] shows what can go wrong if you give up qua-
sicompactness — note that reducedness of the source doesn’t help.) Hint: reduce
to the case where X and Y are affine. (Can you develop your geometric intuition
so that this is geometrically plausible?)

9.3.7. Scheme-theoretic closure of a locally closed subscheme.
We define the scheme-theoretic closure of a locally closed immersion f : X →

Y as the scheme-theoretic image of X.
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9.3.C. EXERCISE. If V → X is quasicompact (e.g. if V is Noetherian, Exercise 8.3.B(a)),
or if V is reduced, show that (iii) implies (i) and (ii) in Exercise 9.1.L. Thus in this
fortunate situation, a locally closed immersion can be thought of in three different
ways, whichever is convenient.

9.3.D. UNIMPORTANT EXERCISE, USEFUL FOR INTUITION. If f : X → Y is a locally
closed immersion into a locally Noetherian scheme (so X is also locally Noether-
ian), then the associated points of the scheme-theoretic closure are (naturally in
bijection with) the associated points of X. (Hint: Exercise 9.3.B.) Informally, we get
no nonreduced structure on the scheme-theoretic closure not “forced by” that on
X.

9.3.8. The (reduced) subscheme structure on a closed subset.
Suppose Xset is a closed subset of a scheme Y. Then we can define a canonical

scheme structure X on Xset that is reduced. We could describe it as being cut out
by those functions whose values are zero at all the points of Xset. On the affine
open set Spec B of Y, if the set Xset corresponds to the radical ideal I = I(Xset)
(recall the I(·) function from §4.7), the scheme X corresponds to Spec B/I. You can
quickly check that this behaves well with respect to any distinguished inclusion
Spec Bf ↪→ Spec B. We could also consider this construction as an example of a
scheme-theoretic image in the following crazy way: let W be the scheme that is a
disjoint union of all the points of Xset, where the point corresponding to p in Xset

is Spec of the residue field of OY,p. Let f : W → Y be the “canonical” map sending
“p to p”, and giving an isomorphism on residue fields. Then the scheme structure
on X is the scheme-theoretic image of f. A third definition: it is the smallest closed
subscheme whose underlying set contains Xset.

This construction is called the (induced) reduced subscheme structure on the
closed subset Xset. (Vague exercise: Make a definition of the reduced subscheme
structure precise and rigorous to your satisfaction.)

9.3.E. EXERCISE. Show that the underlying set of the induced reduced subscheme
X → Y is indeed the closed subset Xset. Show that X is reduced.

9.3.9. Reduced version of a scheme.
In the main interesting case where Xset is all of Y, we obtain a reduced closed

subscheme Yred → Y, called the reduction of Y. On the affine open subset Spec B ↪→
Y, Yred ↪→ Y corresponds to the nilradical N(B) of B. The reduction of a scheme is
the “reduced version” of the scheme, and informally corresponds to “shearing off
the fuzz”.

An alternative equivalent definition: on the affine open subset Spec B ↪→ Y, the
reduction of Y corresponds to the ideal N(B) ⊂ Y. As for any f ∈ B, N(B)f = N(Bf),
by Exercise 9.1.F this defines a closed subscheme.

9.3.F. EXERCISE (USEFUL FOR VISUALIZATION). Show that if Y is a locally Noe-
therian scheme, the “reduced locus” of Y (the points of Y where Yred → Y induces
an isomorphism of stalks of the structure sheaves) is an open subset of Y. (Hint:
show that it is the complement of certain associated points.)
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9.3.10. Scheme-theoretic support of a quasicoherent sheaf. Similar ideas are
used in the definition of the scheme-theoretic support of a quasicoherent sheaf,
see Exercise 20.8.B.





CHAPTER 10

Fibered products of schemes

10.1 They exist

Before we get to products, we note that coproducts exist in the category of
schemes: just as with the category of sets (Exercise 2.3.S), coproduct is disjoint
union. The next exercise makes this precise (and directly extends to coproducts of
an infinite number of schemes).

10.1.A. EASY EXERCISE. Suppose X and Y are schemes. Let X
∐

Y be the scheme
whose underlying topological space is the disjoint union of the topological spaces
of X and Y, and with structure sheaf on (the part corresponding to) X given by OX,
and similarly for Y. Show that X

∐
Y is the coproduct of X and Y (justifying the

use of the symbol
∐

).

We will now construct the fibered product in the category of schemes.

10.1.1. Theorem: Fibered products exist. — Suppose f : X → Z and g : Y → Z are
morphisms of schemes. Then the fibered product

X ×Z Y
f ′

$$

g ′

%%

Y

g

%%
X

f $$ Z

exists in the category of schemes.

Note: if A is a ring, people often write ×A for ×Spec A. If B is an A-algebra, and
X is an A-scheme, people often write XB or X ×A B for X ×Spec A Spec B.

10.1.2. Warning: products of schemes aren’t products of sets. Before showing exis-
tence, here is a warning: the product of schemes isn’t a product of sets (and more
generally for fibered products). We have made a big deal about schemes being
sets, endowed with a topology, upon which we have a structure sheaf. So you might
think that we will construct the product in this order. But we won’t, because prod-
ucts behave oddly on the level of sets. You may have checked (Exercise 7.6.C(a))
that the product of two affine lines over your favorite algebraically closed field k
is the affine plane: A1

k
×k A1

k
∼= A2

k
. But the underlying set of the latter is not the

underlying set of the former —- we get additional points, corresponding to curves
in A2 that are not lines parallel to the axes!

211
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10.1.3. On the other hand, S-valued points (where S is a scheme, Definition 7.3.6) do
behave well under (fibered) products. This is just the definition of fibered product:
an S-valued point of a scheme X is defined as Hom(S, X), and the fibered product
is defined by

(10.1.3.1) Hom(S, X ×Z Y) = Hom(S, X) ×Hom(S,Z) Hom(S, Y).

This is one justification for making the definition of S-valued point. For this reason,
those classical people preferring to think only about varieties over an algebraically
closed field k (or more generally, finite-type schemes over k), and preferring to un-
derstand them through their closed points — or equivalently, the k-valued points,
by the Nullstellensatz (Exercise 6.3.F) — needn’t worry: the closed points of the
product of two finite type k-schemes over k are (naturally identified with) the
product of the closed points of the factors. This will follow from the fact that the
product is also finite type over k, which we verify in Exercise 10.2.D. This is one
of the reasons that varieties over algebraically closed fields can be easier to work
with. But over a nonalgebraically closed field, things become even more interest-
ing; Example 10.2.2 is a first glimpse.

(Fancy remark: You may feel that (i) “products of topological spaces are prod-
ucts on the underlying sets” is natural, while (ii) “products of schemes are not
necessarily products on the underlying sets” is weird. But really (i) is the lucky
consequence of the fact that the underlying set of a topological space can be in-
terpreted as set of p-valued points, where p is a point, so it is best seen as a con-
sequence of paragraph 10.1.3, which is the “more correct” — i.e. more general —
fact.)

10.1.B. EXERCISE (TO GET PRACTICE WITH THE CONCEPT). Suppose K ⊂ L is a
field extension, and X is a K-scheme. Assume XL := X ×Spec K Spec L exists (which
it does by as-yet unproved Theorem 10.1.1). Show that the L-valued points of X
are in natural bijection with the L-valued points of XL.

10.1.4. Philosophy behind the proof of Theorem 10.1.1. The proof of Theo-
rem 10.1.1 can be confusing. The following comments may help a little.

We already basically know existence of fibered products in two cases: the case
where X, Y, and Z is affine (stated explicitly below), and the case where Y → Z is
an open immersion (Exercise 8.1.A).

10.1.C. EXERCISE. Use Exercise 7.3.F (that HomSch(W, Spec A) = HomRings(A, Γ(W,OW)))
to show that given ring maps C → B and C → A,

Spec(A ⊗C B) ∼= Spec A ×Spec C Spec B.

(Interpret tensor product as the “cofibered product” in the category of rings.) Hence
the fibered product of affine schemes exists (in the category of schemes). (This gen-
eralizes the fact that the product of affine lines exist, Exercise 7.6.C(a).)

The main theme of the proof of Theorem 10.1.1 is that because schemes are
built by gluing affine schemes along open subsets, these two special cases will be
all that we need. The argument will repeatedly use the same ideas — roughly,
that schemes glue (Exercise 5.4.A), and that morphisms of schemes glue (Exer-
cise 7.3.A). This is a sign that something more structural is going on; §10.1.5 de-
scribes this for experts.
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Proof of Theorem 10.1.1. The key idea is this: we cut everything up into affine open
sets, do fibered products there, and show that everything glues nicely. The concep-
tually difficult part of the proof comes from the gluing, and the realization that we
have to check almost nothing. We divide the proof up into a number of bite-sized
pieces.

Step 1: fibered products of affine with almost-affine over affine. We begin by com-
bining the affine case with the open immersion case as follows. Suppose X and Z

are affine, and Y → Z factors as Y
! " i $$ Y ′ g $$ Z where i is an open immersion

and Y ′ is affine. Then X ×Z Y exists. This is because if the two small squares of

W $$" #

%%

Y " #

%%
W ′ $$

%%

Y ′

%%
X $$ Z

are fibered diagrams, then the “outside rectangle” is also a fibered diagram. (This
was Exercise 2.3.P, although you should be able to see this on the spot.) It will be
important to remember that “open immersions” are “preserved by fibered prod-
uct”: the fact that Y → Y ′ is an open immersion implies that W → W ′ is an open
immersion.

Key Step 2: fibered product of affine with arbitrary over affine exists. We now come
to the key part of the argument: if X and Z are affine, and Y is arbitrary. This is
confusing when you first see it, so we first deal with a special case, when Y is the
union of two affine open sets Y1 ∪ Y2. Let Y12 = Y1 ∩ Y2.

Now for i = 1, 2, X×Z Yi exists by the affine case, Exercise 10.1.C. Call this Wi.
Also, X×Z Y12 exists by Step 1 (call it W12), and comes with open immersions into
W1 and W2 (by construction of fibered products with open immersion). Thus we
can glue W1 to W2 along W12; call this resulting scheme W.

We check that this is the fibered product by verifying that it satisfies the uni-
versal property. Suppose we have maps f ′′ : V → X, g ′′ : V → Y that compose
(with f and g respectively) to the same map V → Z. We need to construct a unique
map h : V → W, so that f ′ ◦ h = g ′′ and g ′ ◦ h = f ′′.

(10.1.4.1) V

∃!?
##
##

!!#
##

g ′′

&&!!
!!

!!
!!

!!
!!

!!
!

f ′′

=="
"
"
"
"
"
"
"
"
"
"
"
"
"

W

g ′

%%

f ′
$$ Y

g

%%
X

f
$$ Z

For i = 1, 2, define Vi := (g ′′)−1(Yi). Define V12 := (g ′′)−1(Y12) = V1 ∩ V2. Then
there is a unique map Vi → Wi such that the composed maps Vi → X and Vi → Yi

are as desired (by the universal product of the fibered product X ×Z Yi = Wi),
hence a unique map hi : Vi → W. Similarly, there is a unique map h12 : V12 → W
such that the composed maps V12 → X and V12 → Y are as desired. But the
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restriction of hi to V12 is one such map, so it must be h12. Thus the maps h1 and
h2 agree on V12, and glue together to a unique map h : V → W. We have shown
existence and uniqueness of the desired h.

We have thus shown that if Y is the union of two affine open sets, and X and
Z are affine, then X ×Z Y exists.

We now tackle the general case. (You may prefer to first think through the
case where “two” is replaced by “three”.) We now cover Y with open sets Yi, as
i runs over some index set (not necessarily finite!). As before, we define Wi and
Wij. We can glue these together to produce a scheme W along with open sets
we identify with Wi (Exercise 5.4.A — you should check the triple intersection
“cocycle” condition).

As in the two-affine case, we show that W is the fibered product by showing
that it satisfies the universal property. Suppose we have maps f ′′ : V → X, g ′′ :
V → Y that compose to the same map V → Z. We construct a unique map h :
V → W, so that f ′ ◦ h = g ′′ and g ′ ◦ h = f ′′. Define Vi = (g ′′)−1(Yi) and Vij :=
(g ′′)−1(Yij) = Vi∩Vj. Then there is a unique map Vi → Wi such that the composed
maps Vi → X and Vi → Yi are as desired, hence a unique map hi : Vi → W.
Similarly, there is a unique map hij : Vij → W such that the composed maps
Vij → X and Vij → Y are as desired. But the restriction of hi to Vij is one such
map, so it must be hij. Thus the maps hi and hj agree on Vij. Thus the hi glue
together to a unique map h : V → W. We have shown existence and uniqueness
of the desired h, completing this step.

Step 3: Z affine, X and Y arbitrary. We next show that if Z is affine, and X and
Y are arbitrary schemes, then X ×Z Y exists. We just follow Step 2, with the roles
of X and Y reversed, using the fact that by the previous step, we can assume that
the fibered product with an affine scheme with an arbitrary scheme over an affine
scheme exists.

Step 4: Z admits an open immersion into an affine scheme Z ′, X and Y arbitrary. This
is akin to Step 1: X ×Z Y satisfies the universal property of X ×Z ′ Y.

Step 5: the general case. We again employ the trick from Step 4. Say f : X → Z,
g : Y → Z are two morphisms of schemes. Cover Z with affine open subsets Zi.
Let Xi = f−1Zi and Yi = g−1Zi. Define Zij = Zi ∩Zj, and Xij and Yij analogously.
Then Wi := Xi ×Zi

Yi exists for all i, and has as open sets Wij := Xij ×Zij
Yij along

with gluing information satisfying the cocycle condition (arising from the gluing
information for Z from the Zi and Zij). Once again, we show that this satisfies
the universal property. Suppose V is any scheme, along with maps to X and Y
that agree when they are composed to Z. We need to show that there is a unique
morphism V → W completing the diagram (10.1.4.1). Now break V up into open

sets Vi = g ′′ ◦ f
−1(Zi). Then by the universal property for Wi, there is a unique

map Vi → Wi (which we can interpret as Vi → W). Thus we have already shown
uniqueness of V → W. These must agree on Vi∩Vj, because there is only one map
Vi ∩ Vj to W making the diagram commute. Thus all of these morphisms Vi → W
glue together, so we are done. !

10.1.5. !! Describing the existence of fibered products using the high-falutin’
language of representable functors. The proof above can be described more
cleanly in the language of representable functors (§7.6). This will be enlightening
only after you have absorbed the above argument and meditated on it for a long
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time. It may be most useful to shed light on representable functors, rather than on
the existence of the fibered product.

Until the end of §10.1 only, by functor, we mean contravariant functor from the
category Sch of schemes to the category of Sets. For each scheme X, we have a functor
hX, taking a scheme Y to Mor(Y, X) (§2.2.20). Recall (§2.3.10, §7.6) that a functor is
representable if it is naturally isomorphic to some hX. The existence of the fibered
product can be reinterpreted as follows. Consider the functor hX×ZY defined by
hX×ZY(W) = hX(W) ×hZ(W) hY(W). (This isn’t quite enough to define a functor;
we have only described where objects go. You should work out where morphisms
go too.) Then “X ×Z Y exists” translates to “hX×ZY is representable”.

If a functor is representable, then the representing scheme is unique up to
unique isomorphism (Exercise 7.6.B). This can be usefully extended as follows:

10.1.D. EXERCISE (YONEDA’S LEMMA). If X and Y are schemes, describe a bi-
jection between morphisms of schemes X → Y and natural transformations of
functors hX → hY . Hence show that the category of schemes is a fully faithful sub-
category of the “functor category” of all functors (contravariant, Sch → Sets). Hint:
this has nothing to do with schemes; your argument will work in any category.
This is the contravariant version of Exercise 2.3.Y(c).

One of Grothendieck’s insights is that we should try to treat such functors as
“geometric spaces”, without worrying about representability. Many notions carry
over to this more general setting without change, and some notions are easier. For
example, fibered products of functors always exist: h ×h ′′ h ′ may be defined by

(h ×h ′′ h ′)(W) = h(W) ×h ′′(W) h ′(W)

(where the fibered product on the right is a fibered product of sets, which always
exists). We didn’t use anything about schemes; this works with Sch replaced by
any category.

10.1.6. Representable functors are Zariski sheaves. Because “morphisms to schemes
glue” (Exercise 7.3.A), we have a necessary condition for a functor to be repre-
sentable. We know that if {Ui} is an open cover of Y, a morphism Y → X is deter-
mined by its restrictions Ui → X, and given morphisms Ui → X that agree on the
overlap Ui ∩ Uj → X, we can glue them together to get a morphism Y → X. In the
language of equalizer exact sequences (§3.2.7),

· $$ Hom(Y, X) $$
∏

Hom(Ui, X) $$$$
∏

Hom(Ui ∩ Uj, X)

is exact. Thus morphisms to X (i.e. the functor hX) form a sheaf on every scheme
Y. If this holds, we say that the functor is a Zariski sheaf. (You can impress your
friends by telling them that this is a sheaf on the big Zariski site.) We can repeat this
discussion with Sch replaced by the category SchS of schemes over a given base
scheme S. We have proved (or observed) that in order for a functor to be representable,
it is necessary for it to be a Zariski sheaf.

The fiber product passes this test:

10.1.E. EXERCISE. If X, Y → Z are schemes, show that hX×ZY is a Zariski sheaf.
(Do not use the fact that X ×Z Y is representable! The point of this section is to
recover representability from a more sophisticated perspective.)
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We can make some other definitions that extend notions from schemes to func-
tors. We say that a map (i.e. natural transformation) of functors h → h ′ expresses h
as an open subfunctor of h ′ if for all representable functors hX and maps hX → h ′,
the fibered product hX ×h ′ h is representable, by U say, and hU → hX corresponds
to an open immersion of schemes U → X. The following fibered square may help.

hU
$$

open

%%

h

%%
hX

$$ h ′

Notice that a map of representable functors hW → hZ is an open subfunctor if and
only if W → Z is an open immersion, so this indeed extends the notion of open
immersion to (contravariant) functors (Sch → Sets).

10.1.F. EXERCISE. Suppose h → h ′′ and h ′ → h ′′ are two open subfunctors of
h ′′. Define the intersection of these two open subfunctors, which should also be
an open subfunctor of h ′′.

10.1.G. EXERCISE. Suppose X, Y → Z are schemes, and U ⊂ X, V ⊂ Y, W ⊂ Z are
open subsets, where U and V map to W. Interpret U×WV as an open subfunctor of
X×ZY. (Hint: given a map hT → hX×ZY , what open subset of T should correspond
to U ×W V?)

A collection hi of open subfunctors of h ′ is said to cover h ′ if for every map
hX → h ′ from a representable subfunctor, the corresponding open subsets Ui ↪→ X
cover X.

Given that functors do not have an obvious underlying set (let alone a topol-
ogy), it is rather amazing that we are talking about when one is an “open subset”
of another, or when some functors “cover” another!

10.1.H. EXERCISE. Suppose {Zi}i is an affine cover of Z, {Xij}j is an affine cover
of the preimage of Zi in X, and {Yik}k is an affine cover of the preimage of Zi in Y.
Show that {hXij×Zi

Yik
}ijk is an open cover of the functor hX×ZY . (Hint: consider a

map hT → hX×ZY , and extend your solution to the Exercise 10.1.G.)

We now come to a key point: a Zariski sheaf that is “locally representable”
must be representable:

10.1.I. KEY EXERCISE. If a functor h is a Zariski sheaf that has an open cover by
representable functors (“is covered by schemes”), then h is representable. (Hint:
use Exercise 5.4.A to glue together the schemes representing the open subfunctors.)

This immediately leads to the existence of fibered products as follows. Exer-
cise 10.1.E shows that hX×ZY is a Zariski sheaf. But (hXij×Zi

Yik
)ijk is representable

(fibered products of affines over an affine exist, Exercise 10.1.C), and these functors
are an open cover of hX×ZY by Exercise 10.1.H, so by Key Exercise 10.1.I we are
done.
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10.2 Computing fibered products in practice

Before giving some examples, we first see how to compute fibered products
in practice. There are four types of morphisms (1)–(4) that it is particularly easy to
take fibered products with, and all morphisms can be built from these four atomic
components (see the last paragraph of (1)).

(1) Base change by open immersions.
We have already done this (Exercise 8.1.A), and we used it in the proof that

fibered products of schemes exist.
I will describe the remaining three on the level of affine open sets, because

we obtain general fibered products by gluing. Theoretically, only (2) and (3) are
necessary, as any map of rings φ : B → A can be interpreted by adding variables
(perhaps infinitely many) to A, and then imposing relations. But in practice (4) is
useful, as we will see in examples.

(2) Adding an extra variable.

10.2.A. EASY ALGEBRA EXERCISE. Show that B ⊗A A[t] ∼= B[t], so the following is
a fibered diagram. (Your argument might naturally extend to allow the addition
of infinitely many variables, but we won’t need this generality.) Hint: show that
B[t] satisfies an appropriate universal property.

Spec B[t]

%%

$$ Spec A[t]

%%
Spec B $$ Spec A

(3) Base change by closed immersions

10.2.B. EXERCISE. Suppose φ : A → B is a ring homomorphism, and I ⊂ A is
an ideal. Let Ie := 〈φ(i)〉i∈I ⊂ B be the extension of I to B. Describe a natural
isomorphism B/Ie ∼= B ⊗A (A/I). (Hint: consider I → A → A/I → 0, and use the
right-exactness of ⊗AB, Exercise 2.3.H.)

10.2.1. As an immediate consequence: the fibered product with a closed sub-
scheme is a closed subscheme of the fibered product in the obvious way. We say
that “closed immersions are preserved by base change”.

10.2.C. EXERCISE. (a) Interpret the intersection of two closed immersions into X
(cf. Exercise 9.1.G) as their fibered product over X.
(b) Show that “locally closed immersions” are preserved by base change.
(c) Define the intersection of a finite number of locally closed immersions in X.

As an application of Exercise 10.2.B, we can compute tensor products of finitely
generated k algebras over k. For example, we have a canonical isomorphism

k[x1, x2]/(x2
1 − x2) ⊗k k[y1, y2]/(y3

1 + y3
2) ∼= k[x1, x2, y1, y2]/(x2

1 − x2, y3
1 + y3

2).

10.2.D. EXERCISE. Suppose X and Y are locally finite type k-schemes. Show that
X ×k Y is also locally of finite type over k. Prove the same thing with “locally”
removed from both the hypothesis and conclusion.
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10.2.2. Example. We can use Exercise 10.2.B to compute C ⊗R C:

C ⊗R C ∼= C ⊗R (R[x]/(x2 + 1))
∼= (C ⊗R R[x])/(x2 + 1) by 10.2(3)
∼= C[x]/(x2 + 1) by 10.2(2)
∼= C[x]/ ((x − i)(x + i))
∼= C[x]/(x − i) × C[x]/(x + i) by the Chinese Remainder Theorem
∼= C × C

Thus Spec C ×R Spec C ∼= Spec C
∐

Spec C. This example is the first example of
many different behaviors. Notice for example that two points somehow corre-
spond to the Galois group of C over R; for one of them, x (the “i” in one of the
copies of C) equals i (the “i” in the other copy of C), and in the other, x = −i.

10.2.3. ! Remark. Here is a clue that there is more going on. If L/K is a Galois
extension with Galois group G, then L ⊗K L is isomorphic to LG (the product of
|G| copies of L). This turns out to be a restatement of the classical form of linear
independence of characters! In the language of schemes, Spec L ×K Spec L is a
union of a number of copies of L that naturally form a torsor over the Galois group
G.

10.2.E. ! HARD BUT FASCINATING EXERCISE FOR THOSE FAMILIAR WITH Gal(Q/Q).
Show that the points of Spec Q ⊗Q Q are in natural bijection with Gal(Q/Q), and
the Zariski topology on the former agrees with the profinite topology on the latter.
(Some hints: first do the case of finite Galois extensions. Relate the topology on
Spec of a direct limit of rings to the inverse limit of Specs. Can you see which point
corresponds to the identity of the Galois group?)

(4) Base change of affine schemes by localization.

10.2.F. EXERCISE. Suppose φ : A → B is a ring homomorphism, and S ⊂ A is a
multiplicative subset of A, which implies that φ(S) is a multiplicative subset of B.
Describe a natural isomorphism φ(S)−1B ∼= B ⊗A (S−1A).

Translation: the fibered product with a localization is the localization of the
fibered product in the obvious way. We say that “localizations are preserved by
base change”. This is handy if the localization is of the form A ↪→ Af (correspond-
ing to taking distinguished open sets) or A ↪→ K(A) (from A to the fraction field of
A, corresponding to taking generic points), and various things in between.

These four facts let you calculate lots of things in practice, and we will use
them freely.

10.2.G. EXERCISE: THE THREE IMPORTANT TYPES OF MONOMORPHISMS OF SCHEMES.
Show that the following are monomorphisms (Definition 2.3.9): open immersions,
closed immersions, and localization of affine schemes. As monomorphisms are
closed under composition, Exercise 2.3.U, compositions of the above are also monomor-
phisms (e.g. locally closed immersions, or maps from “Spec of stalks at points of
X” to X).

10.2.H. EXERCISE. If X, Y ↪→ Z are two locally closed immersions, show that
X ×Z Y is canonically isomorphic to X ∩ Y.
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10.2.I. EXERCISE. Prove that An
A

∼= An
Z ×Spec Z Spec A. Prove that Pn

A
∼= Pn

Z ×Spec Z

Spec A. Thus affine space and projective space are pulled back from their universal
manifestation over the final object Spec Z.

10.2.4. Extending the base field. One special case of base change is called extending
the base field: if X is a k-scheme, and k ′ is a field extension (often k ′ is the alge-
braic closure of k), then X ×Spec k Spec k ′ (sometimes informally written X ×k k ′

or Xk ′ ) is a k ′-scheme. Often properties of X can be checked by verifying them
instead on Xk ′ . This is the subject of descent — certain properties “descend” from
Xk ′ to X. We have already seen that the property of being normal descends in
this way in characteristic 0 (Exercise 6.4.L — but note that this holds even in pos-
itive characteristic). The following two exercises is another example of this: the
property of two morphisms being equal, and the property of a(n affine) morphism
begin a closed immersion, both descend in this way. Those interested in schemes
over non-algebraically closed fields will use this repeatedly, to reduce results to
the algebraically closed case.

10.2.J. EXERCISE. Suppose π : X → Y and ρ : X → Y are morphisms of k-
schemes, (/k is a field extension, and π% : X ×Spec k Spec ( → Y ×Spec k Spec ( and
ρ% : X×Spec k Spec ( → Y ×Spec k Spec ( are the induced maps of (-schemes. (Be sure
you understand what this means!) Show that if π% = ρ% then π = ρ. (Hint: show
that π and ρ are the same on the level of sets. Then reduce to the case where X and
Y are affine.)

10.2.K. EASY EXERCISE. Suppose f : X → Y is an affine morphism over k. Show
that f is a closed immersion if and only if f ×k k : X ×k k → Y ×k k is. (The affine
hypothesis is not necessary for this result, but it makes the proof easier, and this is
the situation in which we will most need it.)

10.2.L. UNIMPORTANT BUT FUN EXERCISE. Show that Spec Q(t) ⊗Q C has closed
points in natural correspondence with the transcendental complex numbers. (If
the description Spec Q(t)⊗Q[t] C[t] is more striking, you can use that instead.) This
scheme doesn’t come up in nature, but it is certainly neat! A related idea comes
up in the remark at the end of Exercise 12.1.E.

10.2.5. A first view of a blow-up.

10.2.M. IMPORTANT CONCRETE EXERCISE. (The discussion here immediately
generalizes to An

A.) Define a closed subscheme Bl(0,0) A2
k of A2

k×P1
k as follows (see

Figure 10.1). If the coordinates on A2
k are x, y, and the projective coordinates on P1

k

are u, v, this subscheme is cut out in A2
k × P1

k by the single equation xv = yu. (You
may wish to interpret Bl(0,0) A2

k as follows. The P1
k parametrizes lines through

the origin. The blow-up corresponds to ordered pairs of (point p, line () such that
(0, 0), p ∈ (.) Describe the fiber of the morphism Bl(0,0) A2

k → P1
k over each closed

point of P1
k. Show that the morphism Bl(0,0) A2

k → A2
k is an isomorphism away

from (0, 0) ∈ A2
k. Show that the fiber over (0, 0) is a closed subscheme that is locally

principal and not locally a zerodivisor (an effective Cartier divisor, §9.1.2). It is called
the exceptional divisor. We will discuss blow-ups in Chapter 19. This particular
example will come up in the motivating example of §19.1, and in Exercise 22.2.D.
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FIGURE 10.1. A first example of a blow-up

We haven’t yet discussed nonsingularity, but here is a hand-waving argument
suggesting that the Bl(0,0) A2

k is “smooth”: the preimage above either standard
open set Ui ⊂ P1 is isomorphic to A2. Thus “the blow-up is a surgery that takes
the smooth surface A2

k, cuts out a point, and glues back in a P1, in such a way that
the outcome is another smooth surface.”

10.3 Pulling back families and fibers of morphisms

10.3.1. Pulling back families.
We can informally interpret fibered product in the following geometric way.

Suppose Y → Z is a morphism. We interpret this as a “family of schemes parametrized
by a base scheme (or just plain base) Z.” Then if we have another morphism
f : X → Z, we interpret the induced map X ×Z Y → X as the “pulled back family”
(see Figure 10.2).

X ×Z Y $$

pulled back family

%%

Y

family

%%
X

f $$ Z

We sometimes say that X ×Z Y is the scheme-theoretic pullback of Y, scheme-
theoretic inverse image, or inverse image scheme of Y. (Our forthcoming discus-
sion of fibers may give some motivation for this.) For this reason, fibered product
is often called base change or change of base or pullback. In addition to the vari-
ous names for a Cartesian diagram given in §2.3.6, in algebraic geometry it is often
called a base change diagram or a pullback diagram, and X ×Z Y → X is called
the pullback of Y → Z by f, and X ×Z Y is called the pullback of Y by f. (Random
side remark: scheme-theoretic pullback always makes sense, while the notion of
scheme-theoretic image is somehow problematic, as discussed in §9.3.1.)

Before making any definitions, we give a motivating informal example. Con-
sider the “family of curves” y2 = x3 + tx in the xy-plane parametrized by t. Trans-
lation: consider Spec k[x, y, t]/(y2 − x3 − tx) → Spec k[t]. If we pull back to a fam-
ily parametrized by the uv-plane via uv = t (i.e. Spec k[u, v] → Spec k[t] given by
t (→ uv), we get y2 = x3 + uvx, i.e. Spec k[x, y, u, v]/(y2 − x3 − uvx) → Spec k[u, v].
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FIGURE 10.2. A picture of a pulled back family

If instead we set t to 3 (i.e. pull back by Spec k[t]/(t − 3) → Spec k[t], we get the
curve y2 = x3 + 3x (i.e. Spec k[x, y]/(y2 − x3 − 3x) → Spec k), which we interpret
as the fiber of the original family above t = 3. We will soon be able to interpret
these constructions in terms of fiber products.

10.3.2. Fibers of morphisms.
A special case of pullback is the notion of a fiber of a morphism. We motivate

this with the notion of fiber in the category of topological spaces.

10.3.A. EXERCISE. Show that if Y → Z is a continuous map of topological spaces,
and X is a point p of Z, then the fiber of Y over p (the set-theoretic fiber, with the
induced topology) is naturally identified with X ×Z Y.

More generally, for general X → Z, the fiber of X×Z Y → X over a point p of X
is naturally identified with the fiber of Y → Z over f(p).

Motivated by topology, we return to the category of schemes. Suppose p → Z
is the inclusion of a point (not necessarily closed). More precisely, if p is a K-
valued point, consider the map Spec K → Z sending Spec K to p, with the natural
isomorphism of residue fields. Then if g : Y → Z is any morphism, the base change
with p → Z is called the (scheme-theoretic) fiber of g above p or the (scheme-
theoretic) preimage of p, and is denoted g−1(p). If Z is irreducible, the fiber above
the generic point is called the generic fiber. In an affine open subscheme Spec A
containing p, p corresponds to some prime ideal p, and the morphism Spec K → Z
corresponds to the ring map A → Ap/pAp. This is the composition of localization
and closed immersion, and thus can be computed by the tricks above. (Note that
p → Z is a monomorphism, by Exercise 10.2.G.)
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10.3.B. EXERCISE. Show that the underlying topological space of the (scheme-
theoretic) fiber X → Y above a point p is naturally identified with the topological
fiber of X → Y above p.

10.3.C. EXERCISE (ANALOG OF EXERCISE 10.3.A). Suppose that π : Y → Z and
f : X → Z are morphisms, and x ∈ X is a point. Show that the fiber of X ×Z Y → X
over x is (isomorphic to) the base change to x of the fiber of π : Y → Z over f(x).

10.3.3. Example (enlightening in several ways). Consider the projection of the
parabola y2 = x to the x-axis over Q, corresponding to the map of rings Q[x] →
Q[y], with x (→ y2. If Q alarms you, replace it with your favorite field and see
what happens. (You should look at Figure 4.6, and figure out how to edit it to
reflect what we glean here.) Writing Q[y] as Q[x, y]/(y2 − x) helps us interpret the
morphism conveniently.

(i) Then the preimage of 1 is two points:

Spec Q[x, y]/(y2 − x) ⊗Q[x] Q[x]/(x − 1) ∼= Spec Q[x, y]/(y2 − x, x − 1)

∼= Spec Q[y]/(y2 − 1)

∼= Spec Q[y]/(y − 1)
∐

Spec Q[y]/(y + 1).

(ii) The preimage of 0 is one nonreduced point:

Spec Q[x, y]/(y2 − x, x) ∼= Spec Q[y]/(y2).

(iii) The preimage of −1 is one reduced point, but of “size 2 over the base
field”.

Spec Q[x, y]/(y2 − x, x + 1) ∼= Spec Q[y]/(y2 + 1) ∼= Spec Q[i] = Spec Q(i).

(iv) The preimage of the generic point is again one reduced point, but of “size
2 over the residue field”, as we verify now.

Spec Q[x, y]/(y2 − x) ⊗Q[x] Q(x) ∼= Spec Q[y] ⊗ Q(y2)

i.e. (informally) the Spec of the ring of polynomials in y divided by polynomials
in y2. A little thought shows you that in this ring you may invert any polynomial
in y, as if f(y) is any polynomial in y, then

1

f(y)
=

f(−y)

f(y)f(−y)
,

and the latter denominator is a polynomial in y2. Thus

Q[x, y]/(y2 − x) ⊗ Q(x) ∼= Q(y)

which is a degree 2 field extension of Q(x) (note that Q(x) = Q(y2)).
Notice the following interesting fact: in each of the four cases, the number of

preimages can be interpreted as 2, where you count to two in several ways: you
can count points (as in the case of the preimage of 1); you can get nonreduced
behavior (as in the case of the preimage of 0); or you can have a field extension of
degree 2 (as in the case of the preimage of −1 or the generic point). In each case, the
fiber is an affine scheme whose dimension as a vector space over the residue field
of the point is 2. Number theoretic readers may have seen this behavior before.
We will discuss this example again in §18.4.8. This is going to be symptomatic of a
very special and important kind of morphism (a finite flat morphism).
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Try to draw a picture of this morphism if you can, so you can develop a pic-
toral shorthand for what is going on. A good first approximation is the parabola
of Figure 4.6, but you will want to somehow depict the peculiarities of (iii) and
(iv).

10.3.4. Remark: Finite morphisms have finite fibers. If you haven’t done Exercise 8.3.K,
that finite morphisms have finite fibers, now would be a good time to do it, as you
will find it more straight forward given what you know now.

10.3.D. EXERCISE (IMPORTANT FOR THOSE WITH MORE ARITHMETIC BACKGROUND).
What is the scheme-theoretic fiber of Spec Z[i] → Spec Z over the prime (p)? Your
answer will depend on p, and there are four cases, corresponding to the four cases
of Example 10.3.3. (Can you draw a picture?)

10.3.E. EXERCISE. Consider the morphism of schemes X = Spec k[t] → Y =
Spec k[u] corresponding to k[u] → k[t], u (→ t2, where char k != 2. Show that
X ×Y X has two irreducible components. (This exercise will give you practice in
computing a fibered product over something that is not a field.)

(What happens if char k = 2? See Exercise 10.4.H for a clue.)

10.4 Properties preserved by base change

All reasonable properties of morphisms are preserved under base change. (In
fact, one might say that a property of morphisms cannot be reasonable if it is not
preserved by base change!) We discuss this, and explain how to fix those that don’t
fit this pattern.

We have already shown that the notion of “open immersion” is preserved by
base change (Exercise 8.1.A). We did this by explicitly describing what the fibered
product of an open immersion is: if Y ↪→ Z is an open immersion, and f : X → Z is
any morphism, then we checked that the open subscheme f−1(Y) of X satisfies the
universal property of fibered products.

We have also shown that the notion of “closed immersion” is preserved by
base change (§10.2 (3)). In other words, given a fiber diagram

W $$

%%

X

%%
Y

! "cl. imm. $$ Z

where Y ↪→ Z is a closed immersion, W → X is as well.

10.4.A. EASY EXERCISE. Show that locally principal closed subschemes pull back
to locally principal closed subschemes.

Similarly, other important properties are preserved by base change.

10.4.B. EXERCISE. Show that the following properties of morphisms are preserved
by base change.

(a) quasicompact
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(b) quasiseparated
(c) affine morphism
(d) finite
(e) integral
(f) locally of finite type
(g) finite type

!! (h) locally of finite presentation
!! (i) finite presentation

10.4.C. ! HARD EXERCISE. Show that the notion of “quasifinite morphism” (finite
type + finite fibers, Definition 8.3.12) is preserved by base change. (Warning: the
notion of “finite fibers” is not preserved by base change. Spec Q → Spec Q has
finite fibers, but Spec Q⊗QQ → Spec Q has one point for each element of Gal(Q/Q),
see Exercise 10.2.E.) Hint: reduce to the case Spec A → Spec B. Reduce to the case
φ : Spec A → Spec k. Show that if φ is quasifinite then φ is finite.

10.4.D. EXERCISE. Show that surjectivity is preserved by base change. (Surjectiv-
ity has its usual meaning: surjective as a map of sets.) You may end up showing
that for any fields k1 and k2 containing k3, k1 ⊗k3

k2 is non-zero, and using the
axiom of choice to find a maximal ideal in k1 ⊗k3

k2.

10.4.1. On the other hand, injectivity is not preserved by base change — witness the
bijection Spec C → Spec R, which loses injectivity upon base change by Spec C →
Spec R (see Example 10.2.2). This can be rectified (§10.4.5).

10.4.E. EXERCISE. Suppose X and Y are integral finite type k-schemes. Show
that X ×k Y is an integral finite type k-scheme. (Once we define “variety”, this
will become the important fact that the product of irreducible varieties over an
algebraically closed field is an irreducible variety, Exercise 11.1.E. The hypothesis
that k is algebraically closed is essential, see §10.4.2.) Hint: reduce to the case
where X and Y are both affine, say X = Spec A and Y = Spec B with A and B
integral domains. Suppose (

∑
ai ⊗ bi)

(∑
a ′

j ⊗ b ′
j

)
= 0 in A ⊗k B with ai, a

′
j ∈

A, bi, b
′
j ∈ B, where both {bi} and {b ′

j} are linearly independent over k, and a1

and a ′
1 are nonzero. Show that D(a1a ′

1) ⊂ Spec A is nonempty. By the Weak
Nullstellensatz 4.2.2, there is a maximal m ⊂ A in D(a1a ′

1) with A/m = k. By
reducing modulo m, deduce (

∑
ai ⊗ bi)

(∑
a ′

j ⊗ b ′
j

)
= 0 in B, where the overline

indicates residue modulo m. Show that this contradicts the fact that B is a domain.

10.4.F. EXERCISE. If P is a property of morphisms preserved by base change and
composition, and X → Y and X ′ → Y ′ are two morphisms of S-schemes with
property P, show that X ×S X ′ → Y ×S Y ′ has property P as well.

10.4.G. !! EXERCISE. Suppose π : X → Spec B is a finitely presented morphism.
Show that there exists a base change diagram of the form

X

π

%%

$$ X ′

π ′

%%
Spec B

ρ $$ Spec Z[x1, . . . , xN]
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where N is some integer, I ⊂ Z[x1, . . . , xN], and π ′ is finitely presented (= finite
type as the target is Noetherian, see §8.3.14). Thus each finitely presented mor-
phism is locally (on the base) a pullback of a finite type morphism to a Noether-
ian scheme. Hence any result proved for Noetherian schemes and stable under
base change is automatically proved for finitely presented morphisms to arbi-
trary schemes. (One example will be the Cohomology and Base Change Theo-
rem 25.8.5.) Hint: think about the case where X is affine first. If X = Spec A,
then A = B[y1, . . . , yn]/(f1, . . . , fr). Choose one variable xi for each coefficient of
fi ∈ B[y1, . . . , yn]. What is X ′ in this case? Then consider the case where X is the
union of two affine open sets, that intersect in an affine open set. Then consider
more general cases until you solve the full problem. You will need to use every
part of the definition of finite presentation.

10.4.2. ! Properties not preserved by base change, and how to fix (some of) them.
There are some notions that you should reasonably expect to be preserved by

pullback based on your geometric intuition. Given a family in the topological cate-
gory, fibers pull back in reasonable ways. So for example, any pullback of a family
in which all the fibers are irreducible will also have this property; ditto for con-
nected. Unfortunately, both of these fail in algebraic geometry, as Example 10.2.2
shows:

Spec C
∐

Spec C $$

%%

Spec C

%%
Spec C $$ Spec R

The family on the right (the vertical map) has irreducible and connected fibers, and
the one on the left doesn’t. The same example shows that the notion of “integral
fibers” also doesn’t behave well under pullback.

10.4.H. EXERCISE. Suppose k is a field of characteristic p, so k(u)/k(up) is an
inseparable extension. By considering k(u) ⊗k(up) k(u), show that the notion of
“reduced fibers” does not necessarily behave well under pullback. (The fact that I
am giving you this example should show that this happens only in characteristic
p, in the presence of something as strange as inseparability.)

We rectify this problem as follows.

10.4.3. A geometric point of a scheme X is defined to be a morphism Spec k → X
where k is an algebraically closed field. Awkwardly, this is now the third kind
of “point” of a scheme! There are just plain points, which are elements of the
underlying set; there are S-valued points, which are maps S → X, §7.3.6; and there
are geometric points. Geometric points are clearly a flavor of an S-valued point,
but they are also an enriched version of a (plain) point: they are the data of a point
with an inclusion of the residue field of the point in an algebraically closed field.

A geometric fiber of a morphism X → Y is defined to be the fiber over a
geometric point of Y. A morphism has connected (resp. irreducible, integral, re-
duced) geometric fibers if all its geometric fibers are connected (resp. irreducible,
integral, reduced). One usually says that the morphism has geometrically con-
nected (resp. irreducible, integral, reduced) fibers. A k-scheme X is geometrically
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connected (resp. irreducible, integral, reduced) if the structure morphism X →
Spec k has geometrically connected (resp. irreducible, integral, reduced) fibers.

10.4.I. EXERCISE. Show that the notion of “connected (resp. irreducible, integral,
reduced) geometric fibers” behaves well under base change.

10.4.J. EXERCISE FOR THE ARITHMETICALLY-MINDED. Show that for the mor-
phism Spec C → Spec R, all geometric fibers consist of two reduced points. (Cf.
Example 10.2.2.) Thus Spec C is a geometrically reduced but not geometrically
irreducible R-scheme.

10.4.K. EXERCISE. Recall Example 10.3.3, the projection of the parabola y2 = x to
the x-axis, corresponding to the map of rings Q[x] → Q[y], with x (→ y2. Show that
the geometric fibers of this map are always two points, except for those geometric
fibers “over 0 = [(x)]”. (Note that Spec C → Q[x] and Spec Q → Q[x], both with
x (→ 0, are both geometric points “above 0”.)

Checking whether a k-scheme is geometrically connected etc. seems annoying:
you need to check every single algebraically closed field containing k. However, in
each of these four cases, the failure of nice behavior of geometric fibers can already
be detected after a finite field extension. For example, Spec Q(i) → Spec Q is not
geometrically connected, and in fact you only need to base change by Spec Q(i) to
see this. We make this precise as follows.

Suppose X is a k-scheme. If K/k is a field extension, define XK = X ×k Spec K.
Consider the following twelve statements.

• XK is reduced:
(Ra) for all fields K,
(Rb) for all algebraically closed fields K (X is geometrically reduced),
(Rc) for K = k,
(Rd) for K = kp (kp is the perfect closure of k)

• XK is irreducible:
(Ia) for all fields K,
(Ib) for all algebraically closed fields K (X is geometrically irreducible),
(Ic) for K = k,
(Id) for K = ks (ks is the separable closure of k).

• XK is connected:
(Ca) for all fields K,
(Cb) for all algebraically closed fields K (X is geometrically connected),
(Cc) for K = k,
(Cd) for K = ks.

Trivially (Ra) implies (Rb) implies (Rc), and (Ra) implies (Rd), and similarly with
“reduced” replaced by “irreducible” and “connected”.

10.4.L. EXERCISE. (a) Suppose that E/F is a field extension, and A is an F-algebra.
Show that A is a subalgebra of A ⊗F E. (Hint: think of these as vector spaces over
F.)
(b) Show that: (Rb) implies (Ra) and (Rc) implies (Rd).
(c) Show that: (Ib) implies (Ia) and (Ic) implies (Id).
(d) Show that: (Cb) implies (Ca) and (Cc) implies (Cd).
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Notice: you may use the fact that if Y is a nonempty F-scheme, then Y ×F Spec E is
nonempty, cf. Exercise 10.4.D.

Thus for example a k-scheme is geometrically integral if and only if it remains
integral under any field extension.

10.4.4. !! Hard fact. In fact, (Rd) implies (Ra), and thus (Ra) through (Rd) are all
equivalent, and similarly for the other two rows.

10.4.5. ! Universally injective (radicial) morphisms. As remarked in §10.4.1,
injectivity is not preserved by base change. A better notion is that of universally
injective morphisms: morphisms that are injections of sets after any base change.
In keeping with the traditional agricultural terminology (sheaves, germs, ..., cf. Re-
mark 3.4.3), these morphisms were named radicial after one of the lesser vegeta-
bles. This notion is more useful in positive characteristic, as the following exercise
makes clear.

10.4.M. EXERCISE. (a) Show that locally closed immersions (and in particular
open and closed immersions) are universally injective. (a) Show that f : X → Y is
universally injective only if f is injective, and for each x ∈ X, the field extension
κ(x)/κ(f(x)) is purely inseparable.
(b) Show that the class of universally injective morphisms are stable under compo-
sition, products, and base change.
(c) If g : Y → Z is another morphism, show that if g◦f is radicial, then f is radicial.

10.5 Products of projective schemes: The Segre embedding

We next describe products of projective A-schemes over A. (The case of great-
est initial interest is if A = k.) To do this, we need only describe Pm

A ×A Pn
A,

because any projective A-scheme has a closed immersion in some Pm
A , and closed

immersions behave well under base change, so if X ↪→ Pm
A and Y ↪→ Pn

A are closed
immersions, then X ×A Y ↪→ Pm

A ×A Pn
A is also a closed immersion, cut out by the

equations of X and Y (§10.2(3)). We will describe Pm
A ×A Pn

A, and see that it too
is a projective A-scheme. (Hence if X and Y are projective A-schemes, then their
product X ×A Y over A is also a projective A-scheme.)

Before we do this, we will get some motivation from classical projective spaces
(non-zero vectors modulo non-zero scalars, Exercise 5.4.F) in a special case. Our
map will send [x0, x1, x2]× [y0, y1] to a point in P5, whose coordinates we think of
as being entries in the “multiplication table”

[ x0y0, x1y0, x2y0,
x0y1, x1y1, x2y1 ].

This is indeed a well-defined map of sets. Notice that the resulting matrix is rank
one, and from the matrix, we can read off [x0; x1; x2] and [y0;y1] up to scalars. For
example, to read off the point [x0; x1; x2] ∈ P2, we take the first row, unless it is
all zero, in which case we take the second row. (They can’t both be all zero.) In
conclusion: in classical projective geometry, given a point of Pm and Pn, we have
produced a point in Pmn+m+n, and from this point in Pmn+m+n, we can recover
the points of Pm and Pn.
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Suitably motivated, we return to algebraic geometry. We define a map

Pm
A ×A Pn

A → Pmn+m+n
A

by

([x0; . . . ; xm], [y0; . . . ;yn]) (→ [z00; z01; · · · ; zij; · · · ; zmn]

= [x0y0; x0y1; · · · ; xiyj; · · · xmyn].

More explicitly, we consider the map from the affine open set Ui ×Vj (where Ui =
D(xi) and Vj = D(yj) to the affine open set Wij = D(zij) by

(x0/i, . . . , xm/i, y0/j, . . . , yn/j) (→ (x0/iy0/j, . . . , xi/iyj/j, . . . , xm/iyn/j)

or, in terms of algebras, zab/ij (→ xa/iyb/j.

10.5.A. EXERCISE. Check that these maps glue to give a well-defined morphism
Pm

A ×A Pn
A → Pmn+m+n

A .

10.5.1. We next show that this morphism is a closed immersion. We can check this
on an open cover of the target (the notion of being a closed immersion is affine-
local, Exercise 9.1.C). Let’s check this on the open set where zij != 0. The preimage
of this open set in Pm

A × Pn
A is the locus where xi != 0 and yj != 0, i.e. Ui × Vj. As

described above, the map of rings is given by zab/ij (→ xa/iyb/j; this is clearly a
surjection, as zaj/ij (→ xa/i and zib/ij (→ yb/j. (A generalization of this ad hoc
description will be given in Exercise 17.4.D.)

This map is called the Segre morphism or Segre embedding. If A is a field,
the image is called the Segre variety.

10.5.B. EXERCISE. Show that the Segre scheme (the image of the Segre morphism)
is cut out (scheme-theoretically) by the equations corresponding to

rank




a00 · · · a0n

...
. . .

...
am0 · · · amn



 = 1,

i.e. that all 2 × 2 minors vanish. Hint: suppose you have a polynomial in the aij

that becomes zero upon the substitution aij = xiyj. Give a recipe for subtracting
polynomials of the form “monomial times 2 × 2 minor” so that the end result is 0.
(The analogous question for the Veronese embedding in special cases is the content
of Exercises 9.2.J and 9.2.L.)

10.5.2. Important Example. Let’s consider the first non-trivial example, when m =
n = 1. We get P1 × P1 ↪→ P3. We get a single equation

rank

(
a00 a01

a10 a11

)
= 1,

i.e. a00a11−a01a10 = 0. We again meet our old friend, the quadric surface (§9.2.9)!
Hence: the nonsingular quadric surface wz − xy = 0 (Figure 9.2) is isomorphic to
P1 × P1. Recall from Exercise 9.2.M that the quadric has two families of lines. You
may wish to check that one family of lines corresponds to the image of {x} × P1 as
x varies, and the other corresponds to the image P1 × {y} as y varies.
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If we are working over an algebraically closed field of characteristic not 2, then
by diagonalizability of quadratics (Exercise 6.4.J), all rank 4 (“full rank”) quadrat-
ics are isomorphic, so all rank 4 quadric surfaces over an algebraically closed field
of characteristic not 2 are isomorphic to P1 × P1.

Note that this is not true over a field that is not algebraically closed. For ex-
ample, over R, w2 + x2 + y2 + z2 = 0 is not isomorphic to P1

R ×R P1
R. Reason: the

former has no real points, while the latter has lots of real points.
You may wish to do the next two exercises in either order. The second can be

used to show the first, but the first may give you insight into the second.

10.5.C. EXERCISE: A COORDINATE-FREE DESCRIPTION OF THE SEGRE EMBEDDING.
Show that the Segre embedding can be interpreted as PV × PW → P(V ⊗ W) via
the surjective map of graded rings

Sym•(V∨ ⊗ W∨) $$ $$
∑∞

i=0

(
Symi V∨

)
⊗

(
Symi W∨

)

“in the opposite direction”.

10.5.D. EXERCISE: A COORDINATE-FREE DESCRIPTION OF PRODUCTS OF PROJEC-
TIVE A-SCHEMES IN GENERAL. Suppose that S• and T• are finitely-generated
graded rings over A. Describe an isomorphism

(Proj S•) ×A (Proj T•) ∼= Proj⊕∞
n=0 (Sn ⊗A Tn)

(where hopefully the definition of multiplication in the graded ring ⊕∞
n=0Sn⊗A Tn

is clear).

10.6 Normalization

Normalization is a means of turning a reduced scheme into a normal scheme.
A normalization of a reduced scheme X is a morphism ν : X̃ → X from a normal
scheme, where ν induces a bijection of irreducible components of X̃ and X, and ν
gives a birational morphism on each of the irreducible components. It will satisfy
a universal property, and hence it is unique up to unique isomorphism. Figure 8.4
is an example of a normalization. We discuss normalization now because the ar-
gument for its existence follows that for the existence of the fibered product.

We begin with the case where X is irreducible, and hence integral. (We will
then deal with a more general case, and also discuss normalization in a function
field extension.) In this case of irreducible X, the normalization ν : X̃ → X is a
dominant morphism from an irreducible normal scheme to X, such that any other
such morphism factors through ν:

normal Y

f dominant >>?
??

??
??

?
∃! $$ X̃

ν dominant??@@
@@
@@
@@

normal

X

Thus if the normalization exists, then it is unique up to unique isomorphism.
We now have to show that it exists, and we do this in a way that will look familiar.
We deal first with the case where X is affine, say X = Spec A, where A is an integral
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domain. Then let Ã be the integral closure of A in its fraction field K(A). (Recall that
the integral closure of A in its fraction field consists of those elements of K(A) that
are solutions to monic polynomials in A[x]. It is a ring extension by Exercise 8.2.D,
and integrally closed by Exercise 8.2.K.)

10.6.A. EXERCISE. Show that ν : Spec Ã → Spec A satisfies the universal property.
(En route, you might show that the global sections of a normal scheme are also
normal.)

10.6.B. IMPORTANT (BUT SURPRISINGLY EASY) EXERCISE. Show that normaliza-
tions of integral schemes exist in general. (Hint: Ideas from the existence of fiber
products, §10.1, may help.)

10.6.C. EASY EXERCISE. Show that normalizations are integral and surjective.
(Hint for surjectivity: the Lying Over Theorem, see §8.2.6.)

10.6.D. EXERCISE. Explain (by defining a universal property) how to extend the
notion of normalization to the case where X is a reduced scheme, with possibly
more than one component, but under the hypothesis that every affine open subset
of X has finitely many irreducible components. (If you wish, you can show that
the normalization exists in this case. See [Stacks, tag 035Q] for more.)

Here are some examples.

10.6.E. EXERCISE. Show that Spec k[t] → Spec k[x, y]/(y2 − x2(x + 1)) given by
(x, y) (→ (t2 − 1, t(t2 − 1)) (see Figure 8.4) is a normalization. (Hint: show that k[t]
and k[x, y]/(y2 −x2(x+1)) have the same fraction field. Show that k[t] is integrally
closed. Show that k[t] is contained in the integral closure of k[x, y]/(y2−x2(x+1)).)

You will see from the previous exercise that once we guess what the normal-
ization is, it isn’t hard to verify that it is indeed the normalization. Perhaps a few
words are in order as to where the polynomials t2 − 1 and t(t2 − 1) arose in the
previous exercise. The key idea is to guess t = y/x. (Then t2 = x + 1 and y = xt
quickly.) This idea comes from three possible places. We begin by sketching the
curve, and noticing the node at the origin. (a) The function y/x is well-defined
away from the node, and at the node, the two branches have “values” y/x = 1
and y/x = −1. (b) We can also note that if t = y/x, then t2 is a polynomial, so
we will need to adjoin t in order to obtain the normalization. (c) The curve is cu-
bic, so we expect a general line to meet the cubic in three points, counted with
multiplicity. (We will make this precise when we discuss Bézout’s Theorem, Exer-
cise 20.5.M, but in this case we have already gotten a hint of this in Exercise 7.5.G.)
There is a P1 parametrizing lines through the origin (with coordinate equal to the
slope of the line, y/x), and most such lines meet the curve with multiplicity two at
the origin, and hence meet the curve at precisely one other point of the curve. So
this “co-ordinatizes” most of the curve, and we try adding in this coordinate.

10.6.F. EXERCISE. Find the normalization of the cusp y2 = x3 (see Figure 10.3).

10.6.G. EXERCISE. Find the normalization of the tacnode y2 = x4, and draw a
picture analogous to Figure 10.3.
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FIGURE 10.3. Normalization of a cusp

(Although we haven’t defined “singularity”, “smooth”, “curve”, or “dimen-
sion”, you should still read this.) Notice that in the previous examples, normal-
ization “resolves” the singularities (“non-smooth” points) of the curve. In general,
it will do so in dimension one (in reasonable Noetherian circumstances, as nor-
mal Noetherian integral domains of dimension one are all discrete valuation rings,
§13.4), but won’t do so in higher dimension (the cone z2 = x2 + y2 over a field k
of characteristic not 2 is normal, Exercise 6.4.I(b)).

10.6.H. EXERCISE. Suppose X = Spec Z[15i]. Describe the normalization X̃ →
X. (Hint: Z[i] is a unique factorization domain, §6.4.5(0), and hence is integrally
closed by Exercise 6.4.F.) Over what points of X is the normalization not an iso-
morphism?

Another exercise in a similar vein is the normalization of the “knotted plane”,
Exercise 13.4.I.

10.6.I. EXERCISE (NORMALIZATION IN A FUNCTION FIELD EXTENSION, AN IMPOR-
TANT GENERALIZATION). Suppose X is an integral scheme. The normalization of
X, ν : X̃ → X, in a given finite field extension L of the function field K(X) of X is
a dominant morphism from a normal scheme X̃ with function field L, such that ν
induces the inclusion K(X) ↪→ L, and that is universal with respect to this property.

Spec L = K(Y) $$

%%

Y

∃!
%%

((

normal

Spec L = K(X̃) $$

%%

X̃

%%

normal

K(X) $$ X

Show that the normalization in a finite field extension exists.

The following two examples, one arithmetic and one geometric, show that this
is an interesting construction.
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10.6.J. EXERCISE. Suppose X = Spec Z (with function field Q). Find its integral clo-
sure in the field extension Q(i). (There is no “geometric” way to do this; it is purely
an algebraic problem, although the answer should be understood geometrically.)

10.6.1. Remark: rings of integers in number fields. A finite extension K of Q is called a
number field, and the integral closure of Z in K the ring of integers in K, denoted
OK. (This notation is awkward given our other use of the symbol O .)

Spec K

%%

$$ Spec OK

%%
Spec Q $$ Spec Z

By the previous exercises, Spec OK is a Noetherian normal integral domain, and
we will later see (Exercise 12.1.D) that it has “dimension 1”. This is an example of
a Dedekind domain, see §13.4.15. We will think of it as a “smooth” curve as soon as
we define what “smooth” (really, nonsingular) and “curve” mean.

10.6.K. EXERCISE. (a) Suppose X = Spec k[x] (with function field k(x)). Find its
integral closure in the field extension k(y), where y2 = x2 + x. (Again we get a
Dedekind domain.) Hint: this can be done without too much pain. Show that
Spec k[x, y]/(x2 + x − y2) is normal, possibly by identifying it as an open subset of
P1

k, or possibly using Exercise 6.4.H.
(b) Suppose X = P1, with distinguished open Spec k[x]. Find its integral closure
in the field extension k(y), where y2 = x2 + x. (Part (a) involves computing the
normalization over one affine open set; now figure out what happens over the
“other” affine open set.)

10.6.2. Fancy fact: finiteness of integral closure.
The following fact is useful.

10.6.3. Theorem (finiteness of integral closure). — Suppose A is a Noetherian
integral domain, K = K(A), L/K is a finite field extension, and B is the integral closure
of A in L (“the integral closure of A in the field extension L/K”, i.e. those elements of L
integral over A).
(a) If A is integrally closed and L/K is separable, then B is a finitely generated A-module.
(b) If A is a finitely generated k-algebra, then B is a finitely generated A-module.

Eisenbud gives a proof in a page and a half: (a) is [E, Prop. 13.14] and (b) is [E,
Cor. 13.13]. A sketch is given in §10.6.4.

Warning: (b) does not hold for Noetherian A in general. In fact, the integral
closure of a Noetherian ring need not be Noetherian (see [E, p. 299] for some dis-
cussion). This is alarming. The existence of such an example is a sign that Theo-
rem 10.6.3 is not easy.

10.6.L. EXERCISE. (a) Show that if X is an integral finite-type k-scheme, then its
normalization ν : X̃ → X is a finite morphism.
(b) Suppose X is an integral scheme. Show that if X is normal, then the normal-
ization in a finite separable field extension is a finite morphism. Show that if X is
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a finite type k-scheme, then the normalization in a finite field extension is a finite
morphism. In particular, the normalization of a variety (including in a finite field
extension) is a variety.

10.6.M. EXERCISE. Suppose that if X is an integral finite type k-scheme. Show that
the normalization map of X is an isomorphism on an open dense subset of X. Hint:
reduce to the case X = Spec A. By Theorem 10.6.3, Ã is generated over A by a finite
number of elements of K(A). Let I be the ideal generated by their denominators.
Show that Spec Ã → Spec A is an isomorphism away from V(I). (Alternatively,
the ideas of Proposition 11.2.3 can also be applied.)

10.6.4. !! Sketch of proof of finiteness of integral closure, Theorem 10.6.3. Here is a
sketch to show the structure of the argument. It uses commutative algebra ideas
from Chapter 12, so you should only glance at this to see that nothing fancy is
going on. Part (a): reduce to the case where L/K is Galois, with group {σ1, . . . ,σn}.
Choose b1, . . . , bn ∈ B forming a K-vector space basis of L. Let M be the matrix
(familiar from Galois theory) with ijth entry σibj, and let d = det M. Show that
the entries of M lie in B, and that d2 ∈ K (as d2 is Galois-fixed). Show that d != 0
using linear independence of characters. Then complete the proof by showing
that B ⊂ d−2(Ab1 + · · · + Abn) (submodules of finitely generated modules over
Noetherian rings are also Noetherian, Exercise 4.6.Y) as follows. Suppose b ∈ B,
and write b =

∑
cibi (ci ∈ K). If c is the column vector with entries ci, show

that the ith entry of the column vector Mc is σib ∈ B. Multiplying Mc on the
left by adj M (see the trick of the proof of Lemma 8.2.1), show that dci ∈ B. Thus
d2ci ∈ B ∩ K = A (as A is integrally closed), as desired.

For (b), use the Noether Normalization Lemma 12.2.3 to reduce to the case
A = k[x1, . . . , xn]. Reduce to the case where L is normally closed over K. Let L ′ be
the subextension of L/K so that L/L ′ is Galois and L ′/K is purely inseparable. Use
part (a) to reduce to the case L = L ′. If L ′ != K, then for some q, L ′ is generated
over K by the qth root of a finite set of rational functions. Reduce to the case

L ′ = k ′(x
1/q
1 , . . . , x

1/q
n ) where k ′/k is a finite purely inseparable extension. In this

case, show that B = k ′[x
1/q
1 , . . . , x

1/q
n ], which is indeed finite over k[x1, . . . , xn].





CHAPTER 11

Separated and proper morphisms, and (finally!)
varieties

11.1 Separated morphisms (and quasiseparatedness done
properly)

Separatedness is a fundamental notion. It is the analogue of the Hausdorff condi-
tion for manifolds (see Exercise 11.1.A), and as with Hausdorffness, this geomet-
rically intuitive notion ends up being just the right hypothesis to make theorems
work. Although the definition initially looks odd, in retrospect it is just perfect.

11.1.1. Motivation. Let’s review why we like Hausdorffness. Recall that a topo-
logical space is Hausdorff if for every two points x and y, there are disjoint open
neighborhoods of x and y. The real line is Hausdorff, but the “real line with dou-
bled origin” is not (of which Figure 5.4 may be taken as a sketch). Many proofs and
results about manifolds use Hausdorffness in an essential way. For example, the
classification of compact one-dimensional smooth manifolds is very simple, but if
the Hausdorff condition were removed, we would have a very wild set.

So once armed with this definition, we can cheerfully exclude the line with
doubled origin from civilized discussion, and we can (finally) define the notion of
a variety, in a way that corresponds to the classical definition.

With our motivation from manifolds, we shouldn’t be surprised that all of our
affine and projective schemes are separated: certainly, in the land of smooth man-
ifolds, the Hausdorff condition comes for free for “subsets” of manifolds. (More
precisely, if Y is a manifold, and X is a subset that satisfies all the hypotheses of a
manifold except possibly Hausdorffness, then Hausdorffness comes for free. Sim-
ilarly, locally closed immersions in something separated are also separated: com-
bine Exercise 11.1.B and Proposition 11.1.13(a).)

As an unexpected added bonus, a separated morphism to an affine scheme
has the property that the intersection of two affine open sets in the source is affine
(Proposition 11.1.8). This will make Čech cohomology work very easily on (qua-
sicompact) schemes (Chapter 20). You might consider this an analogue of the fact
that in Rn, the intersection of two convex sets is also convex. As affine schemes
are trivial from the point of view of quasicoherent cohomology, just as convex sets
in Rn have no cohomology, this metaphor is apt.

A lesson arising from the construction is the importance of the diagonal mor-
phism. More precisely, given a morphism X → Y, good consequences can be lever-
aged from good behavior of the diagonal morphism δ : X → X ×Y X (the product

235
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of the identity morphism X → X with itself), usually through fun diagram chases.
This lesson applies across many fields of geometry. (Another nice gift of the di-
agonal morphism: it will give us a good algebraic definition of differentials, in
Chapter 23.)

Grothendieck taught us that one should try to define properties of morphisms,
not of objects; then we can say that an object has that property if its morphism to
the final object has that property. We discussed this briefly at the start of Chapter 8.
In this spirit, separatedness will be a property of morphisms, not schemes.

11.1.2. Defining separatedness. Before we define separatedness, we make an
observation about all diagonal morphisms.

11.1.3. Proposition. — Let π : X → Y be a morphism of schemes. Then the diagonal
morphism δ : X → X ×Y X is a locally closed immersion.

We will often use δ to denote a diagonal morphism. This locally closed sub-
scheme of X ×Y X (which we also call the diagonal) will be denoted ∆.

Proof. We will describe a union of open subsets of X ×Y X covering the image of X,
such that the image of X is a closed immersion in this union.

Say Y is covered with affine open sets Vi and X is covered with affine open
sets Uij, with π : Uij → Vi. Note that Uij ×Vi

Uij is an affine open subscheme of
the product X ×Y X (basically this is how we constructed the product, by gluing
together affine building blocks). Then the diagonal is covered by these affine open
subsets Uij ×Vi

Uij. (Any point p ∈ X lies in some Uij; then δ(p) ∈ Uij ×Vi
Uij.

Figure 11.1 may be helpful.) Note that δ−1(Uij ×Vi
Uij) = Uij: clearly Uij ⊂

δ−1(Uij ×Vi
Uij), and because pr1 ◦ δ = idX (where pr1 is the first projection),

δ−1(Uij ×Vi
Uij) ⊂ Uij. Finally, we check that Uij → Uij ×Vi

Uij is a closed
immersion. Say Vi = Spec B and Uij = Spec A. Then this corresponds to the
natural ring map A⊗BA → A (a1⊗a2 (→ a1a2), which is obviously surjective. !

The open subsets we described may not cover X ×Y X, so we have not shown
that δ is a closed immersion.

11.1.4. Definition. A morphism X → Y is separated if the diagonal morphism
δ : X → X ×Y X is a closed immersion. An A-scheme X is said to be separated
over A if the structure morphism X → Spec A is separated. When people say
that a scheme (rather than a morphism) X is separated, they mean implicitly that
some “structure morphism” is separated. For example, if they are talking about
A-schemes, they mean that X is separated over A.

Thanks to Proposition 11.1.3, a morphism is separated if and only if the diag-
onal ∆ is a closed subset — a purely topological condition on the diagonal. This is
reminiscent of a definition of Hausdorff, as the next exercise shows.

11.1.A. UNIMPORTANT EXERCISE (FOR THOSE SEEKING TOPOLOGICAL MOTIVA-
TION). Show that a topological space X is Hausdorff if and only if the diagonal
is a closed subset of X × X. (The reason separatedness of schemes doesn’t give
Hausdorffness — i.e. that for any two open points x and y there aren’t necessarily
disjoint open neighborhoods — is that in the category of schemes, the topological
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X

X

X ×Y X

FIGURE 11.1. A neighborhood of the diagonal is covered by
Uij ×Vj

Uij

space X× X is not in general the product of the topological space X with itself, see
§10.1.2.)

11.1.B. IMPORTANT EASY EXERCISE. Show locally closed immersions (and in par-
ticular open and closed immersions) are separated. (Hint: Do this by hand. Alter-
natively, show that monomorphisms are separated. Open and closed immersions
are monomorphisms, by Exercise 10.2.G.)

11.1.C. IMPORTANT EASY EXERCISE. Show that every morphism of affine schemes
is separated. (Hint: this was essentially done in the proof of Proposition 11.1.3.)

11.1.D. EXERCISE. Show that the line with doubled origin X (Example 5.4.5) is
not separated, by verifying that the image of the diagonal morphism is not closed.
(Another argument is given below, in Exercise 11.1.N. A fancy argument is given
in Exercise 13.5.C.)

We next come to our first example of something separated but not affine. The
following single calculation will imply that all quasiprojective A-schemes are sep-
arated (once we know that the composition of separated morphisms are separated,
Proposition 11.1.13).

11.1.5. Proposition. — Pn
A → Spec A is separated.

We give two proofs. The first is by direct calculation. The second requires
no calculation, and just requires that you remember some classical constructions
described earlier.

Proof 1: direct calculation. We cover Pn
A ×A Pn

A with open sets of the form Ui ×A Uj,
where U0, . . . , Un form the “usual” affine open cover. The case i = j was taken
care of before, in the proof of Proposition 11.1.3. If i != j then

Ui ×A Uj
∼= Spec A[x0/i, . . . , xn/i, y0/j, . . . , yn/j]/(xi/i − 1, yj/j − 1).
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Now the restriction of the diagonal ∆ is contained in Ui (as the diagonal morphism
composed with projection to the first factor is the identity), and similarly is con-
tained in Uj. Thus the diagonal morphism over Ui ×A Uj is Ui ∩ Uj → Ui ×A Uj.
This is a closed immersion, as the corresponding map of rings

A[x0/i, . . . , xn/i, y0/j, . . . , yn/j] → A[x0/i, . . . , xn/i, x
−1
j/i]/(xi/i − 1)

(given by xk/i (→ xk/i, yk/j (→ xk/i/xj/i) is clearly a surjection (as each generator
of the ring on the right is clearly in the image — note that x−1

j/i is the image of

yi/j). !

Proof 2: classical geometry. Note that the diagonal morphism δ : Pn
A → Pn

A ×A

Pn
A followed by the Segre embedding S : Pn

A ×A Pn
A → Pn2+2n (§10.5, a closed

immersion) can also be factored as the second Veronese embedding ν2 : Pn
A →

P(n+2
2 )−1 (§9.2.6) followed by a linear map L : P(n+2

2 )−1 → Pn2+2n (another closed
immersion, Exercise 9.2.D), both of which are closed immersions.

Pn
A ×A Pn

A

S

44A
AA

AA
AA

AA

Pn
A

δ

@@BBBBBBBBBB

ν2

664
44

44
44

44
Pn2+2n

P(n+2
2 )−1

L

AACCCCCCCCCC

Informally, in coordinates:

([x0, x1, · · · , xn], [x0, x1, · · · , xn])

S

44;
;;

;;
;;

;;
;

[x0, x1, · · · , xn]

δ

BB
::::::::::::::

ν2

--)
))

))
))

))
))

))
)





x2
0, x0x1, · · · x0xn,

x1x0, x2
1, · · · x1xn,

...
...

. . .
...

xnx0, xnx1, · · · x2
n





[x2
0, x0x1, · · · , xn−1xn, x2

n]

L

AADDDDDDDDD

The composed map Pn
A may be written as [x0, · · · , xn] (→ [x2

0, x0x1, x0x2 · · · , x2
n],

where the subscripts on the right run over all ordered pairs (i, j) where 0 ≤ i, j ≤
n.) This forces δ to send closed sets to closed sets (or else S ◦ δ won’t, but L ◦ ν2

does). !

We note for future reference a minor result proved in the course of Proof 1.

11.1.6. Small Proposition. — If U and V are open subsets of an A-scheme X, then
∆ ∩ (U ×A V) ∼= U ∩ V .
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Figure 11.2 may help show why this is natural. You could also interpret this
statement as

X ×(X×AX) (U ×A V) ∼= U ×X V

which follows from the magic diagram, Exercise 2.3.R.

U ∩ V ∼= (U × V) ∩ ∆

U × X

X × V

∆ U × V

FIGURE 11.2. Small Proposition 11.1.6

We finally define variety!

11.1.7. Definition. A variety over a field k, or k-variety, is a reduced, separated
scheme of finite type over k. For example, a reduced finite-type affine k-scheme
is a variety. We will soon know that the composition of separated morphisms is
separated (Exercise 11.1.13(a)), and then to check if Spec k[x1, . . . , xn]/(f1, . . . , fr)
is a variety, you need only check reducedness. This generalizes our earlier no-
tion of affine variety (§6.3.6) and projective variety (§6.3.6, see Proposition 11.1.14).
(Notational caution: In some sources, the additional condition of irreducibility is
imposed. Also, it is often assumed that k is algebraically closed.)

11.1.E. EXERCISE (PRODUCTS OF IRREDUCIBLE VARIETIES OVER k ARE IRREDUCIBLE

VARIETIES). Use Exercise 10.4.E and properties of separatedness to show that the
product of two irreducible k-varieties is an irreducible k-variety.

11.1.F. !! EXERCISE (COMPLEX ALGEBRAIC VARIETIES YIELD COMPLEX ANALYTIC

VARIETIES; FOR THOSE WITH SUFFICIENT BACKGROUND). Show that the ana-
lytification (Exercises 6.3.7 and 7.3.J) of a complex algebraic variety is a complex
analytic variety.

Here is a very handy consequence of separatedness.

11.1.8. Proposition. — Suppose X → Spec A is a separated morphism to an affine
scheme, and U and V are affine open subsets of X. Then U ∩ V is an affine open subset of
X.
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Before proving this, we state a consequence that is otherwise nonobvious. If
X = Spec A, then the intersection of any two affine open subsets is an affine open
subset (just take A = Z in the above proposition). This is certainly not an obvious
fact! We know the intersection of two distinguished affine open sets is affine (from
D(f) ∩ D(g) = D(fg)), but we have little handle on affine open sets in general.

Warning: this property does not characterize separatedness. For example, if
A = Spec k and X is the line with doubled origin over k, then X also has this
property.

Proof. By Proposition 11.1.6, (U ×A V) ∩ ∆ ∼= U ∩ V , where ∆ is the diagonal. But
U ×A V is affine (the fibered product of two affine schemes over an affine scheme
is affine, Step 1 of our construction of fibered products, Theorem 10.1.1), and ∆ is
a closed subscheme of an affine scheme, and hence U ∩ V is affine. !

11.1.9. Redefinition: Quasiseparated morphisms.
We say a morphism f : X → Y is quasiseparated if the diagonal morphism

δ : X → X ×Y X is quasicompact.

11.1.G. EXERCISE. Show that this agrees with our earlier definition of quasisepa-
rated (§8.3.1): show that f : X → Y is quasiseparated if and only if for any affine
open Spec A of Y, and two affine open subsets U and V of X mapping to Spec A,
U ∩ V is a finite union of affine open sets. (Possible hint: compare this to Proposi-
tion 11.1.8. Another possible hint: the magic diagram, Exercise 2.3.R.)

Here are two large classes of morphisms that are quasiseparated.

11.1.H. EASY EXERCISE. Show that separated morphisms are quasiseparated.
(Hint: closed immersions are affine, hence quasicompact.)

Second, if X is a Noetherian scheme, then any morphism to another scheme is
quasicompact (easy, see Exercise 8.3.B(a)), so any X → Y is quasiseparated. Hence
those working in the category of Noetherian schemes need never worry about this
issue.

We now give four quick propositions showing that separatedness and qua-
siseparatedness behave well, just as many other classes of morphisms did.

11.1.10. Proposition. — Both separatedness and quasiseparatedness are preserved by
base change.

Proof. Suppose

W

%%

$$ X

%%
Y $$ Z
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is a fiber diagram. We will show that if Y → Z is separated or quasiseparated, then
so is W → X. Then you can quickly verify that

W
δW $$

%%

W ×X W

%%
Y

δY $$ Y ×Z Y

is a fiber diagram. (This is true in any category with fibered products.) As the
property of being a closed immersion is preserved by base change (§10.2 (3)), if δY

is a closed immersion, so is δX.
Quasiseparatedness follows in the identical manner, as quasicompactness is

also preserved by base change (Exercise 10.4.B(a)). !

11.1.11. Proposition. — The condition of being separated is local on the target. Precisely,
a morphism f : X → Y is separated if and only if for any cover of Y by open subsets Ui,
f−1(Ui) → Ui is separated for each i.

11.1.12. Hence affine morphisms are separated, as every morphism of affine schemes
is separated (Exercise 11.1.C). In particular, finite morphisms are separated.

Proof. If X → Y is separated, then for any Ui ↪→ Y, f−1(Ui) → Ui is separated,
as separatedness is preserved by base change (Theorem 11.1.10). Conversely, to
check if ∆ ↪→ X ×Y X is a closed subset, it suffices to check this on an open cover
of X ×Y X. Let g : X ×Y X → Y be the natural map. We will use the open cover
g−1(Ui), which by construction of the fiber product is f−1(Ui) ×Ui

f−1(Ui). As
f−1(Ui) → Ui is separated, f−1(Ui) → f−1(Ui) ×Ui

f(Ui) is a closed immersion
by definition of separatedness. !

11.1.I. EXERCISE. Prove that the condition of being quasiseparated is local on
the target. (Hint: the condition of being quasicompact is local on the target by
Exercise 8.3.C(a); use a similar argument as in Proposition 11.1.11.)

11.1.13. Proposition. — (a) The condition of being separated is closed under composition.
In other words, if f : X → Y is separated and g : Y → Z is separated, then g ◦ f : X → Z
is separated.
(b) The condition of being quasiseparated is closed under composition.

Proof. (a) We are given that δf : X ↪→ X ×Y X and δg : Y ↪→ Y ×Z Y are closed
immersions, and we wish to show that δh : X → X ×Z X is a closed immersion.
Consider the diagram

X
! " δf $$ X ×Y X

c $$

%%

X ×Z X

%%
Y

! " δg $$ Y ×Z Y.

The square is the magic diagram (Exercise 2.3.R). As δg is a closed immersion, c
is too (closed immersions are preserved by base change, §10.2 (3)). Thus c ◦ δf
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is a closed immersion (the composition of two closed immersions is also a closed
immersion, Exercise 9.1.B).

(b) The identical argument (with “closed immersion” replaced by “quasicom-
pact”) shows that the condition of being quasiseparated is closed under composi-
tion. !

11.1.14. Corollary. — Any quasiprojective A-scheme is separated over A. In particular,
any reduced quasiprojective k-scheme is a k-variety.

Proof. Suppose X → Spec A is a quasiprojective A-scheme. The structure mor-
phism can be factored into an open immersion composed with a closed immersion
followed by Pn

A → A. Open immersions and closed immersions are separated (Ex-
ercise 11.1.B), and Pn

A → A is separated (Proposition 11.1.5). Compositions of
separated morphisms are separated (Proposition 11.1.13), so we are done. !

11.1.15. Proposition. — Suppose f : X → Y and f ′ : X ′ → Y ′ are separated (resp. qua-
siseparated) morphisms of S-schemes (where S is a scheme). Then the product morphism
f × f ′ : X ×S X ′ → Y ×S Y ′ is separated (resp. quasiseparated).

Proof. Apply Exercise 10.4.F. !

11.1.16. Applications.
As a first application, we define the graph of a morphism.

11.1.17. Definition. Suppose f : X → Y is a morphism of Z-schemes. The morphism
Γf : X → X ×Z Y given by Γf = (id, f) is called the graph morphism. Then f factors
as pr2 ◦ Γf, where pr2 is the second projection (see Figure 11.3). The diagram of
Figure 11.3 is often called the graph of a morphism. (We will discuss graphs of
rational maps in §11.2.4.)

11.1.18. Proposition. — The graph morphism Γ is always a locally closed immersion. If
Y is a separated Z-scheme (i.e. the structure morphism Y → Z is separated), then Γ is a
closed immersion. If Y is a quasiseparated Z-scheme, then Γ is quasicompact.

This will be generalized in Exercise 11.1.J.

Proof by Cartesian diagram. A special case of the magic diagram (Exercise 2.3.R) is:

(11.1.18.1) X
Γf $$

f

%%

X ×Z Y

%%
Y

δ $$ Y ×Z Y.

The notions of locally closed immersion and closed immersion are preserved by
base change, so if the bottom arrow δ has one of these properties, so does the top.
The same argument establishes the last sentence. !

We next come to strange-looking, but very useful, result. Like the magic
diagram, I find this result unexpectedly ubiquitous.
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f

Γf pr1

pr2

Y

X

X ×Z Y

FIGURE 11.3. The graph morphism

11.1.19. Cancellation Theorem for a Property P of Morphisms. — Let P be a class
of morphisms that is preserved by base change and composition. Suppose

X
f $$

h --)
))

))
))

) Y

g
((::
::
::
::

Z

is a commuting diagram of schemes. Suppose that the diagonal morphism δg : Y →
Y ×Z Y is in P and h : X → Z is in P. Then f : X → Y is in P. In particular:

(i) Suppose that locally closed immersions are in P. If h is in P, then f is in P.
(ii) Suppose that closed immersions are in P (e.g. P could be finite morphisms, mor-

phisms of finite type, closed immersions, affine morphisms). If h is in P and g is
separated, then f is in P.

(iii) Suppose that quasicompact morphisms are in P. If h is in P and g is quasisepa-
rated, then f is in P.

The following diagram summarizes this important theorem:

X
∈P $$

∴∈P --)
))

))
))

) Y

δ∈P((::
::
::
::

Z

When you plug in different P, you get very different-looking (and nonobvious)
consequences. For example, if you factor a locally closed immersion X → Z into
X → Y → Z, then X → Y must be a locally closed immersion.
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Proof. By the graph Cartesian diagram (11.1.18.1)

X
Γf $$

f

%%

X ×Z Y

%%
Y

δg $$ Y ×Z Y

we see that the graph morphism Γf : X → X×Z Y is in P (Definition 11.1.17), as P is
closed under base change. By the fibered square

X ×Z Y
h ′

$$

%%

Y

g

%%
X

h $$ Z

the projection h ′ : X ×Z Y → Y is in P as well. Thus f = h ′ ◦ Γf is in P !

Here now are some fun and useful exercises.

11.1.J. EXERCISE. Suppose π : Y → X is a morphism, and s : X → Y is a section of a
morphism, i.e. π ◦ s is the identity on X. Show that s is a locally closed immersion.
Show that if π is separated, then s is a closed immersion. (This generalizes Propo-
sition 11.1.18.) Give an example to show that s needn’t be a closed immersion if π
isn’t separated.

11.1.K. LESS IMPORTANT EXERCISE. Show that an A-scheme is separated (over A)
if and only if it is separated over Z. In particular, a complex scheme is separated
over C if and only if it is separated over Z, so complex geometers and arithmetic
geometers can communicate about separated schemes without confusion.

11.1.L. USEFUL EXERCISE: THE LOCUS WHERE TWO MORPHISMS AGREE. Suppose
f : X → Y and g : X → Y are two morphisms over some scheme Z. We can now give
meaning to the phrase ’the locus where f and g agree’, and that in particular there
is a largest locally closed subscheme where they agree — and even a closed immer-
sion if Y is separated over Z. Suppose h : W → X is some morphism (perhaps a
locally closed immersion). We say that f and g agree on h if f◦h = g◦h. Show that
there is a locally closed subscheme i : V ↪→ X such that any morphism h : W → X
on which f and g agree factors uniquely through i, i.e. there is a unique j : W → V
such that h = i ◦ j. Show further that if Y → Z is separated, then i : V ↪→ X is a
closed immersion. Hint: define V to be the following fibered product:

V $$

%%

Y

δ

%%
X

(f,g) $$ Y ×Z Y.

As δ is a locally closed immersion, V → X is too. Then if h : W → X is any scheme
such that g ◦ h = f ◦ h, then h factors through V .

The fact that the locus where two maps agree can be nonreduced should not
come as a surprise: consider two maps from A1

k to itself, f(x) = 0 and g(x) = x2.
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They agree when x = 0, but it is better than that — they should agree even on
Spec k[x]/(x2).

Minor Remarks. 1) In the previous exercise, we are describing V ↪→ X by way
of a universal property. Taking this as the definition, it is not a priori clear that V
is a locally closed subscheme of X, or even that it exists.

2) Warning: consider two maps from Spec C to itself over Spec R, the identity
and complex conjugation. These are both maps from a point to a point, yet they
do not agree despite agreeing as maps of sets. (If you do not find this reasonable,
this might help: after base change Spec C → Spec R, they do not agree as maps of
sets.)

3) More generally, the locus where f and g agree can be interpreted as follows:
f and g agree at x if f(x) = g(x) and the two maps of residue fields are the same.

11.1.M. EXERCISE. Suppose f : X → Y and g : X → Y are two morphisms of
k-varieties that are the same at the level of closed points (i.e. for each closed point
x ∈ X, f(x) = g(x)). Show that f = g.

11.1.N. LESS IMPORTANT EXERCISE. Show that the line with doubled origin X
(Example 5.4.5) is not separated, by finding two morphisms f1 : W → X, f2 : W →
X whose domain of agreement is not a closed subscheme (cf. Proposition 11.1.3).
(Another argument was given above, in Exercise 11.1.D. A fancy argument will be
given in Exercise 13.5.C.)

11.1.O. LESS IMPORTANT EXERCISE. Suppose P is a class of morphisms such that
closed immersions are in P, and P is closed under fibered product and composition.
Show that if f : X → Y is in P then fred : Xred → Yred is in P. (Two examples are the
classes of separated morphisms and quasiseparated morphisms.) Hint:

Xred $$

442
22

22
22

22
22

X ×Y Yred

%%

$$ Yred

%%
X $$ Y

11.2 Rational maps to separated schemes

When we introduced rational maps in §7.5, we promised that in good circum-
stances, a rational map has a “largest domain of definition”. We are now ready to
make precise what “good circumstances” means.

11.2.1. Reduced-to-separated Theorem (important!). — Two S-morphisms f1 : U →
Z, f2 : U → Z from a reduced scheme to a separated S-scheme agreeing on a dense open
subset of U are the same.

Proof. Let V be the locus where f1 and f2 agree. It is a closed subscheme of U by
Exercise 11.1.L, which contains a dense open set. But the only closed subscheme
of a reduced scheme U whose underlying set is dense is all of U. !
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11.2.2. Consequence 1. Hence (as X is reduced and Y is separated) if we have two
morphisms from open subsets of X to Y, say f : U → Y and g : V → Y, and they
agree on a dense open subset Z ⊂ U ∩ V , then they necessarily agree on U ∩ V .

Consequence 2. A rational map has a largest domain of definition on which
f : U ""# Y is a morphism, which is the union of all the domains of definition.
In particular, a rational function on a reduced scheme has a largest domain of
definition. For example, the domain of definition of A2

k ""# P1
k given by (x, y) (→

[x, y] has domain of definition A2
k \ {(0, 0)} (cf. §7.5.3). This partially extends the

definition of the domain of a rational function on a locally Noetherian scheme
(Definition 6.5.2). The complement of the domain of definition is called the locus
of indeterminacy, and its points are sometimes called fundamental points of the
rational map, although we won’t use these phrases. (We will see in Exercise 19.4.L
that a rational map to a projective scheme can be upgraded to an honest morphism
by “blowing up” a scheme-theoretic version of the locus of indeterminacy.)

11.2.A. EXERCISE. Show that the Reduced-to-separated Theorem 11.2.1 is false
if we give up reducedness of the source or separatedness of the target. Here are
some possibilities. For the first, consider the two maps from Spec k[x, y]/(y2, xy)
to Spec k[t], where we take f1 given by t (→ x and f2 given by t (→ x + y; f1

and f2 agree on the distinguished open set D(x), see Figure 11.4. For the second,
consider the two maps from Spec k[t] to the line with the doubled origin, one of
which maps to the “upper half”, and one of which maps to the “lower half”. These
two morphisms agree on the dense open set D(f), see Figure 11.5.

f1 f2

FIGURE 11.4. Two different maps from a nonreduced scheme
agreeing on a dense open set

11.2.3. Proposition. — Suppose Y and Z are reduced separated schemes. Then Y and
Z are birational if and only if there is a dense open subscheme U of Y and a dense open
subscheme V of Z such that U ∼= V .

This gives you a good idea of how to think of birational maps. For example,
a variety is rational if it has a dense open subscheme isomorphic to an open sub-
scheme of An.

Proof. I find this proof surprising and unexpected.
Clearly if Y and Z have isomorphic open sets U and V respectively, then they

are birational (with birational maps given by the isomorphisms U → V and V → U
respectively).
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f2f1

FIGURE 11.5. Two different maps to a nonseparated scheme
agreeing on a dense open set

For the other direction, assume that f : Y ""# Z is a birational map, with
inverse birational map g : Z ""# Y. Choose representatives for these rational maps
F : W → Z (where W is an open subscheme of Y) and G : X → Y (where X is an
open subscheme of Z). We will see that F−1(G−1(W)) ⊂ Y and G−1(F−1(X)) ⊂ Z
are isomorphic open subschemes.
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The key observation is that the two morphisms G◦F and the identity from F−1(G−1(W)) →
W represent the same rational map, so by the Reduced-to-separated Theorem 11.2.1
they are the same morphism on F−1(G−1(W)). Thus G ◦ F gives the identity map
from F−1(G−1(W)) to itself. Similarly F◦G gives the identity map on G−1(F−1(X)).

All that remains is to show that F maps F−1(G−1(W)) into G−1(F−1(X)), and
that G maps G−1(F−1(X)) into F−1(G−1(W)), and by symmetry it suffices to show
the former. Suppose q ∈ F−1(G−1(W)). Then F(G(F(q)) = F(q) ∈ X, from which
F(q) ∈ G−1(F−1(X)). (Another approach is to note that each “parallelogram” in
the diagram above is a fibered diagram, and to use the key observation of the
previous paragraph to construct a morphism G−1(F−1(X)) → F−1(G−1(X)) and
vice versa, and showing that they are inverses.) !

11.2.4. Graphs of rational maps. (Graphs of morphisms were defined in §11.1.17.) If
X is reduced and Y is separated, define the graph Γf of a rational map f : X ""# Y
as follows. Let (U, f ′) be any representative of this rational map (so f ′ : U → Y is a
morphism). Let Γf be the scheme-theoretic closure of Γf ′ ↪→ U×Y ↪→ X×Y, where
the first map is a locally closed immersion (Proposition 11.1.18), and the second



248 Math 216: Foundations of Algebraic Geometry

is an open immersion. The product here should be taken in the category you are
working in. For example, if you are working with k-schemes, the fibered product
should be taken over k.

11.2.B. EXERCISE. Show that the graph of a rational map is independent of the
choice of representative of the rational map. Hint: X → X × Y is a map from a
reduced X-scheme to a separated X-scheme.

In analogy with graphs of morphisms, the following diagram of a graph of a
rational map can be useful (c.f. Figure 11.3).

Γf
! "cl. imm.$$ X × Y

;;GG
GG
GG
GG
G

77H
HH

HH
HH

HH

X

,,%
%

%

f $$IIIIIIII Y.

11.2.C. EXERCISE (THE BLOW-UP OF THE PLANE AS THE GRAPH OF A RATIONAL

MAP). Consider the rational map A2
k ""# P1

k given by (x, y) (→ [x;y]. Show that
this rational map cannot be extended over the origin. (A similar argument arises in
Exercise 7.5.I on the Cremona transformation.) Show that the graph of the rational
map is the morphism (the blow-up) described in Exercise 10.2.M. (When we define
blow ups in general , we will see that they are often graphs of rational maps, see
Exercise 19.4.M.)

11.2.5. Variations.
Variations of the short proof of Theorem 11.2.1 yield other useful theorems.

11.2.D. EXERCISE: MAPS OF k-VARIETIES ARE DETERMINED BY THE MAPS ON CLOSED

POINTS. Suppose f1 : X → Y and f2 : X → Y are two maps of varieties over k,
such that f1(p) = f2(p) for all closed points. Show that f1 = f2. (This implies
that the functor from the category of “classical varieties over k”, which we won’t
define here, to the category of k-schemes, is fully faithful. Can you generalize this
appropriately to non-algebraically closed fields?)

11.2.E. EXERCISE (MAPS TO A SEPARATED SCHEME CAN BE EXTENDED OVER AN

EFFECTIVE CARTIER DIVISOR IN AT MOST ONE WAY). Suppose σ : X → Z and
τ : Y → Z are two morphisms, and τ is separated. Suppose further that D is
an effective Cartier divisor on X. Show that any Z-morphism X \ D → Y can be
extended in at most one way to a Z-morphism X → Y. (Hint: reduce to the case
where X = Spec A, and D is the vanishing scheme of t ∈ A. Reduce to showing
that the scheme-theoretic image of D(t) in X is all of X. Show this by showing that
R → Rt is an inclusion.)

As noted in §7.5.2, rational maps can be defined from any X that has associated
points to any Y. The Reduced-to-separated Theorem 11.2.1 can be extended to this
setting, as follows.

11.2.F. EXERCISE (THE “ASSOCIATED-TO-SEPARATED THEOREM”). Prove that
two S-morphisms f1 : U → Z and f2 : U → Z from a locally Noetherian scheme
X to a separated S-scheme, agreeing on a dense open subset of U containing the
associated points of X, are the same.
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11.3 Proper morphisms

Recall that a map of topological spaces (also known as a continuous map!)
is said to be proper if the preimage of any compact set is compact. Properness of
morphisms is an analogous property. For example, a variety over C will be proper
if it is compact in the classical topology. Alternatively, we will see that projective A-
schemes are proper over A — this is the hardest thing we will prove — so you can
see this as a nice property satisfied by projective schemes, and quite convenient to
work with.

Recall (§8.3.6) that a (continuous) map of topological spaces f : X → Y is closed
if for each closed subset S ⊂ X, f(S) is also closed. A morphism of schemes is
closed if the underlying continuous map is closed. We say that a morphism of
schemes f : X → Y is universally closed if for every morphism g : Z → Y, the in-
duced morphism Z×Y X → Z is closed. In other words, a morphism is universally
closed if it remains closed under any base change. (More generally, if P is some
property of schemes, then a morphism of schemes is said to be universally P if it
remains P under any base change.)

To motivate the definition of properness, we remark that a map f : X → Y of
locally compact Hausdorff spaces which have countable bases for their topologies
is universally closed if and only if it is proper in the usual topology. (You are
welcome to prove this as an exercise.)

11.3.1. Definition. A morphism f : X → Y is proper if it is separated, finite type, and
universally closed. A scheme X is often said to be proper if some implicit structure
morphism is proper. For example, a k-scheme X is often described as proper if
X → Spec k is proper. (A k-scheme is often said to be complete if it is proper. We
will not use this terminology.)

Let’s try this idea out in practice. We expect that A1
C → Spec C is not proper,

because the complex manifold corresponding to A1
C is not compact. However, note

that this map is separated (it is a map of affine schemes), finite type, and (trivially)
closed. So the “universally” is what matters here.

11.3.A. EXERCISE. Show that A1
C → Spec C is not proper, by finding a base change

that turns this into a non-closed map. (Hint: Consider a well-chosen map A1
C ×

A1
C → A1

C or A1
C × P1

C → P1
C.)

11.3.2. As a first example: closed immersions are proper. They are clearly sepa-
rated, as affine morphisms are separated, §11.1.12. They are finite type. After base
change, they remain closed immersions, and closed immersions are always closed.
This easily extends further as follows.

11.3.3. Proposition. — Finite morphisms are proper.

Proof. Finite morphisms are separated (as they are affine by definition, and affine
morphisms are separated, §11.1.12), and finite type (basically because finite mod-
ules over a ring are automatically finitely generated). To show that finite mor-
phism are closed after any base change, we note that they remain finite after any
base change (finiteness is preserved by base change, Exercise 10.4.B(d)), and finite
morphisms are closed (Exercise 8.3.M). !
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11.3.4. Proposition. —

(a) The notion of “proper morphism” is stable under base change.
(b) The notion of “proper morphism” is local on the target (i.e. f : X → Y is proper

if and only if for any affine open cover Ui → Y, f−1(Ui) → Ui is proper). Note
that the “only if” direction follows from (a) — consider base change by Ui ↪→ Y.

(c) The notion of “proper morphism” is closed under composition.
(d) The product of two proper morphisms is proper: if f : X → Y and g : X ′ → Y ′ are

proper, where all morphisms are morphisms of Z-schemes, then f×g : X×ZX ′ →
Y ×Z Y ′ is proper.

(e) Suppose

(11.3.4.1) X
f $$

g
--)

))
))

))
) Y

h((::
::
::
::

Z

is a commutative diagram, and g is proper, and h is separated. Then f is proper.

A sample application of (e): a morphism (over Spec k) from a proper k-scheme
to a separated k-scheme is always proper.

Proof. (a) The notions of separatedness, finite type, and universal closedness are
all preserved by fibered product. (Notice that this is why universal closedness is
better than closedness — it is automatically preserved by base change!)

(b) We have already shown that the notions of separatedness and finite type
are local on the target. The notion of closedness is local on the target, and hence so
is the notion of universal closedness.

(c) The notions of separatedness, finite type, and universal closedness are all
preserved by composition.

(d) By (a) and (c), this follows from Exercise 10.4.F.
(e) Closed immersions are proper, so we invoke the Cancellation Theorem 11.1.19

for proper morphisms. !

We now come to the most important example of proper morphisms.

11.3.5. Theorem. — Projective A-schemes are proper over A.

(As finite morphisms to Spec A are projective A-schemes, Exercise 8.3.J, The-
orem 11.3.5 can be used to give a second proof that finite morphisms are proper,
Proposition 11.3.3.)

11.3.6. Remark: “Reasonable” proper schemes are projective. It is not easy to come up
with an example of an A-scheme that is proper but not projective! Over a field, all
proper curves are projective (we will see this in Exercise 20.6.C), and all smooth
surfaces over a field are projective. (Smoothness of course is not yet defined.) We
will meet a first example of a proper but not projective variety (a singular three-
fold) in §17.4.8. We will later see an example of a proper nonprojective surface
in Exercise 22.2.G. Once we know about flatness, we will see Hironaka’s exam-
ple of a proper nonprojective irreducible nonsingular (“smooth”) threefold over C
(§25.7.6).
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Proof. The structure morphism of a projective A-scheme X → Spec A factors as a
closed immersion followed by Pn

A → Spec A. Closed immersions are proper, and
compositions of proper morphisms are proper, so it suffices to show that Pn

A →
Spec A is proper. We have already seen that this morphism is finite type (Easy
Exercise 6.3.J) and separated (Proposition 11.1.5), so it suffices to show that Pn

A →
Spec A is universally closed. As Pn

A = Pn
Z ×Z Spec A, it suffices to show that Pn

X :=
Pn

Z×ZX → X is closed for any scheme X. But the property of being closed is local on
the target on X, so by covering X with affine open subsets, it suffices to show that
Pn

A → Spec A is closed. This is the Fundamental Theorem of Elimination Theory
(Theorem 8.4.7). !

11.3.7. Facts (not yet proved) that may help you correctly think about finiteness.
The following facts may shed some light on the notion of finiteness. We will

prove them later.
A morphism is finite if and only if it is proper and affine, if and only if it is

proper and quasifinite. We have verified the “only if” parts of this statement; the
“if” parts are harder (and involve Zariski’s Main Theorem, cf. §8.3.13).

As an application: quasifinite morphisms from proper schemes to separated
schemes are finite. Here is why: suppose f : X → Y is a quasifinite morphism over
Z, where X is proper over Z. Then by the Cancellation Theorem 11.1.19 for proper
morphisms, X → Y is proper. Hence as f is quasifinite and proper, f is finite.

As an explicit example, consider the map π : P1
k → P1

k given by [x;y] (→
[f(x, y);g(x, y)], where f and g are homogeneous polynomials of the same degree
with no common roots in P1. The fibers are finite, and π is proper (from the Can-
cellation Theorem 11.1.19 for proper morphisms, as discussed after the statement
of Theorem 11.3.4), so π is finite. This could be checked directly as well, but now
we can save ourselves the annoyance.





Part IV

Harder properties of schemes





CHAPTER 12

Dimension

12.1 Dimension and codimension

Everyone knows what a curve is, until he has studied enough mathematics to become
confused ... – F. Klein

At this point, you know a fair bit about schemes, but there are some funda-
mental notions you cannot yet define. In particular, you cannot use the phrase
“smooth surface”, as it involves the notion of dimension and of smoothness. You
may be surprised that we have gotten so far without using these ideas. You may
also be disturbed to find that these notions can be subtle, but you should keep in
mind that they are subtle in all parts of mathematics.

In this chapter, we will address the first notion, that of dimension of schemes.
This should agree with, and generalize, our geometric intuition. Although we
think of dimension as a basic notion in geometry, it is a slippery concept, as it is
throughout mathematics. Even in linear algebra, the definition of dimension of a
vector space is surprising the first time you see it, even though it quickly becomes
second nature. The definition of dimension for manifolds is equally nontrivial.
For example, how do we know that there isn’t an isomorphism between some 2-
dimensional manifold and some 3-dimensional manifold? Your answer will likely
use topology, and hence you should not be surprised that the notion of dimension
is often quite topological in nature.

A caution for those thinking over the complex numbers: our dimensions will
be algebraic, and hence half that of the “real” picture. For example, we will see
very shortly that A1

C, which you may picture as the complex numbers (plus one
generic point), has dimension 1.

12.1.1. Definition(s): dimension. Surprisingly, the right definition is purely topolog-
ical — it just depends on the topological space, and not on the structure sheaf. We
define the dimension of a topological space X (denoted dim X) as the supremum
of lengths of chains of closed irreducible sets, starting the indexing with 0. (The
dimension may be infinite.) Scholars of the empty set can take the dimension of
the empty set to be −∞. Define the dimension of a ring as the Krull dimension of
its spectrum — the supremum of the lengths of the chains of nested prime ideals
(where indexing starts at zero). These two definitions of dimension are sometimes
called Krull dimension. (You might think a Noetherian ring has finite dimension
because all chains of prime ideals are finite, but this isn’t necessarily true — see
Exercise 12.1.I.)

255
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12.1.A. EASY EXERCISE. Show that dim Spec A = dim A. (Hint: Exercise 4.7.E
gives a bijection between irreducible closed subsets of Spec A and prime ideals of
A. It is “inclusion-reversing”.)

The homeomorphism between Spec A and Spec A/N(A) (§4.4.5: the Zariski
topology disregards nilpotents) implies that dim Spec A = dim Spec A/N(A).

12.1.2. Examples. We have identified all the prime ideals of k[t] (they are 0, and
(f(t)) for irreducible polynomials f(t)), Z ((0) and (p)), k (only (0)), and k[x]/(x2)
(only (x)), so we can quickly check that dim A1

k = dim Spec Z = 1, dim Spec k = 0,
dim Spec k[x]/(x2) = 0.

12.1.3. We must be careful with the notion of dimension for reducible spaces. If Z
is the union of two closed subsets X and Y, then dimZ = max(dim X, dim Y). Thus
dimension is not a “local” characteristic of a space. This sometimes bothers us,
so we try to only talk about dimensions of irreducible topological spaces. We say
a topological space is equidimensional or pure dimensional (resp. equidimen-
sional of dimension n or pure dimension n) if each of its irreducible components
has the same dimension (resp. they are all of dimension n).

An equidimensional dimension 1 (resp. 2, n) topological space is said to be a
curve (resp. surface, n-fold).

12.1.B. EXERCISE (FIBERS OF INTEGRAL MORPHISMS, PROMISED IN §8.3.9). Sup-
pose π : X → Y is an integral morphism. Show that every (nonempty) fiber of π
has dimension 0. Hint: As integral morphisms are preserved by base change, we
assume that Y = Spec k. Hence we must show that if φ : k → A is an integral ex-
tension, then dim A = 0. Outline of proof: Suppose p ⊂ m are two prime ideals of
A. Mod out by p, so we can assume that A is a domain. I claim that any non-zero
element is invertible: Say x ∈ A, and x != 0. Then the minimal monic polynomial
for x has non-zero constant term. But then x is invertible — recall the coefficients
are in a field.

12.1.C. IMPORTANT EXERCISE. Show that if f : Spec A → Spec B corresponds
to an integral extension of rings, then dim Spec A = dim Spec B. Hint: show that
a chain of prime ideals downstairs gives a chain upstairs of the same length, by
the Going-up Theorem (Exercise 8.2.F). Conversely, a chain upstairs gives a chain
downstairs. Use Exercise 12.1.B to show that no two elements of the chain upstairs
go to the same element [q] ∈ Spec B of the chain downstairs.

12.1.D. EXERCISE. Show that if X̃ → X is the normalization of a scheme (possibly
in a finite field extension), then dim X̃ = dim X.

12.1.E. EXERCISE. Suppose X is a k-scheme of pure dimension n, and k ⊂ K is
a field extension. Show that XK := X ×k K also has pure dimension n if (a) K/k
is an algebraic extension, or (b) X/k is finite type. (Remark: some hypotheses are
necessary to ensure that dim XK = dim X. As an enlightening example: you can
show that dim k(x) ⊗k k(y) = 1 using the same ideas as in Exercise 10.2.L.)

12.1.F. EXERCISE. Show that dim Z[x] = 2. (Hint: The primes of Z[x] were implic-
itly determined in Exercise 4.2.O.)
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12.1.4. Codimension. Because dimension behaves oddly for disjoint unions, we
need some care when defining codimension, and in using the phrase. For example,
if Y is a closed subset of X, we might define the codimension to be dim X − dim Y,
but this behaves badly. For example, if X is the disjoint union of a point Y and a
curve Z, then dim X−dim Y = 1, but this has nothing to do with the local behavior
of X near Y.

A better definition is as follows. In order to avoid excessive pathology, we
define the codimension of Y in X only when Y is irreducible. (Use extreme caution
when using this word in any other setting.) Define the codimension of an irre-
ducible closed subset Y ⊂ X of a topological space as the supremum of lengths
of increasing chains of irreducible closed subsets starting with Y (where indexing
starts at 0). So the codimension of a point is the codimension of its closure.

We say that a prime ideal p in a ring has codimension (denoted codim) equal
to the supremum of lengths of the chains of decreasing prime ideals starting at p,
with indexing starting at 0. Thus in an integral domain, the ideal (0) has codimen-
sion 0; and in Z, the ideal (23) has codimension 1. Note that the codimension of
the prime ideal p in A is dim Ap (see §4.2.6). (This notion is often called height.)
Thus the codimension of p in A is the codimension of [p] in Spec A.

12.1.G. EXERCISE. Show that if Y is an irreducible closed subset of a scheme X
with generic point y, then the codimension of Y is the dimension of the local ring
OX,y (cf. §4.2.6).

Notice that Y is codimension 0 in X if it is an irreducible component of X. Sim-
ilarly, Y is codimension 1 if it is not an irreducible component, and for every ir-
reducible component Y ′ it is contained in, there is no irreducible subset strictly
between Y and Y ′. (See Figure 12.1 for examples.) A closed subset all of whose
irreducible components are codimension 1 in some ambient space X is said to be a
hypersurface in X.

12.1.H. EASY EXERCISE. Show that

(12.1.4.1) codimX Y + dim Y ≤ dim X.

We will soon see that equality always holds if X and Y are varieties (Theo-
rem 12.2.8), but equality doesn’t hold in general (§12.3.8).

Warning. The notion of codimension still can behave slightly oddly. For exam-
ple, consider Figure 12.1. (You should think of this as an intuitive sketch.) Here
the total space X has dimension 2, but point p is dimension 0, and codimension 1.
We also have an example of a codimension 2 subset q contained in a codimension
0 subset C with no codimension 1 subset “in between”.

Worse things can happen; we will soon see an example of a closed point in an
irreducible surface that is nonetheless codimension 1, not 2, in §12.3.8. However, for
irreducible varieties this can’t happen, and inequality (12.1.4.1) must be an equality
(Theorem 12.2.8).

12.1.5. In unique factorization domains, codimension 1 primes are principal.
For the sake of further applications, we make a short observation.

12.1.6. Lemma. — In a unique factorization domain A, all codimension 1 prime ideals
are principal.
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FIGURE 12.1. Behavior of codimension

This is a first glimpse of the fact that codimension one is rather special — this
theme will continue in §12.3. We will see that the converse of Lemma 12.1.6 holds
as well (when A is a Noetherian integral domain, Proposition 12.3.5).

Proof. Suppose p is a codimension 1 prime. Choose any f != 0 in p, and let g be
any irreducible/prime factor of f that is in p (there is at least one). Then (g) is a
nonzero prime ideal contained in p, so (0) ⊂ (g) ⊂ p. As p is codimension 1, we
must have p = (g), and thus p is principal. !

12.1.7. A fun but unimportant counterexample. We end this introductory section
with a fun pathology. As a Noetherian ring has no infinite chain of prime ideals,
you may think that Noetherian rings must have finite dimension. Nagata, the
master of counterexamples, shows you otherwise with the following example.

12.1.I. !! EXERCISE: AN INFINITE-DIMENSIONAL NOETHERIAN RING. Let A =
k[x1, x2, . . . ]. Choose an increasing sequence of positive integers m1, m2, . . . whose
differences are also increasing (mi+1−mi > mi−mi−1). Let pi = (xmi+1, . . . , xmi+1

)
and S = A − ∪ipi. Show that S is a multiplicative set. Show that S−1A is Noether-
ian. Show that each S−1p is the largest prime ideal in a chain of prime ideals of
length mi+1 − mi. Hence conclude that dim S−1A = ∞.

12.1.8. Remark: local Noetherian rings have finite dimension. However, we shall see in
Exercise 12.3.G(a) that Noetherian local rings always have finite dimension. (This
requires a surprisingly hard fact, a form of Krull’s Ideal Theorem, Theorem 12.3.7.)
Thus points of locally Noetherian schemes always have finite codimension.
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12.2 Dimension, transcendence degree, and Noether
normalization

We now give a powerful alternative interpretation for dimension for irreducible
varieties, in terms of transcendence degree. The proof will involve a classical con-
struction, Noether normalization, which will be useful in other ways as well. In case
you haven’t seen transcendence theory, here is a lightning introduction.

12.2.A. EXERCISE/DEFINITION. Recall that an element of a field extension E/F is
algebraic over F if it is integral over F. A field extension is algebraic if it is integral.
The composition of two algebraic extensions is algebraic, by Exercise 8.2.C. If E/F
is a field extension, and F ′ and F ′′ are two intermediate field extensions, then we
write F ′ ∼ F ′′ if F ′F ′′ is algebraic over both F ′ and F ′′. Here F ′F ′′ is the compositum
of F ′ and F ′′, the smallest field extension in E containing F ′ and F ′′. (a) Show that ∼
is an equivalence relation on subextensions of E/F. A transcendence basis of E/F is a
set of elements {xi} that are algebraically independent over F (there is no nontrivial
polynomial relation among the xi with coefficients in F) such that F({xi}) ∼ E. (b)
Show that if E/F has two transcendence bases, and one has cardinality n, then both have
cardinality n. (Hint: show that you can substitute elements from the one basis
into the other one at a time.) The size of any transcendence basis is called the
transcendence degree (which may be ∞), and is denoted tr. deg. Any finitely
generated field extension necessarily has finite transcendence degree.

12.2.1. Theorem (dimension = transcendence degree). — Suppose A is a finitely-
generated integral domain over a field k. Then dim Spec A = tr. deg K(A)/k.

By “finitely generated domain over k”, we mean “a finitely generated k-algebra
that is an integral domain”.

We will prove Theorem 12.2.1 shortly (§12.2.6). We first show that it is useful
by giving some immediate consequences. We seem to have immediately dim An

k =
n. However, our proof of Theorem 12.2.1 will go through this fact, so it isn’t really
a Corollary.

A more substantive consequence is the following. If X is an irreducible k-
variety, then dim X is the transcendence degree of the function field (the stalk at the
generic point) OX,η over k. Thus (as the generic point lies in all non-empty open
sets) the dimension can be computed in any open set of X. (Warning: this is false
without the finite type hypothesis, even in quite reasonable circumstances: let X
be the two-point space Spec k[x](x), and U be the generic point, see Exercise 4.4.K.)

Another consequence is a second proof of the Nullstellensatz 4.2.3.

12.2.B. EXERCISE: THE NULLSTELLENSATZ FROM DIMENSION THEORY. Suppose
A = k[x1, . . . , xn]/I. Show that the residue field of any maximal ideal of A is a
finite extension of k. (Hint: the maximal ideals correspond to dimension 0 points,
which correspond to transcendence degree 0 extensions of k, i.e. finite extensions
of k.)

Yet another consequence is geometrically believable.

12.2.C. EXERCISE. If π : X → Y is a dominant morphism of irreducible k-varieties,
then dim X ≥ dim Y. (This is false more generally: consider the inclusion of the
generic point into an irreducible curve.)
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Here are a couple of exercises to give you some practice.

12.2.D. EXERCISE. Randomly choose two random quartic equations in C[w, x, y, z].
Show that these two equations cut out a surface in A4

C.

12.2.E. EXERCISE. Show that the equations wz − xy = 0, wy − x2 = 0, xz − y2 =
0 cut out an integral surface S in A4

k. (You may recognize these equations from
Exercises 4.6.H and 9.2.A.) You might expect S to be a curve, because it is cut out
by three equations in 4-space. One of many ways to proceed: cut S into pieces. For
example, show that D(w) ∼= Spec k[x,w]w. (You may recognize S as the affine cone
over the twisted cubic. The twisted cubic was defined in Exercise 9.2.A.) It turns
out that you need three equations to cut out this surface. The first equation cuts out
a threefold in A4

k (by Krull’s Principal Ideal Theorem 12.3.3, which we will meet
soon). The second equation cuts out a surface: our surface, along with another
surface. The third equation cuts out our surface, and removes the “extraneous
component”. One last aside: notice once again that the cone over the quadric
surface k[w, x, y, z]/(wz − xy) makes an appearance.)

12.2.2. Noether Normalization.
Our proof of Theorem 12.2.1 will use another important classical notion, Noether

Normalization.

12.2.3. Noether Normalization Lemma. — Suppose A is an integral domain, finitely
generated over a field k. If tr. degk K(A) = n, then there are elements x1, . . . , xn ∈ A,
algebraically independent over k, such that A is a finite (hence integral by Corollary 8.2.2)
extension of k[x1, . . . , xn].

The geometric content behind this result is that given any integral affine k-
scheme X, we can find a surjective finite morphism X → An

k , where n is the tran-
scendence degree of the function field of X (over k). Surjectivity follows from
the Lying Over Theorem 8.2.5, in particular Exercise 12.1.C. This interpretation is
sometimes called geometric Noether Normalization.

12.2.4. Nagata’s proof of Noether Normalization Lemma 12.2.3. Suppose we can write
A = k[y1, . . . , ym]/p, i.e. that A can be chosen to have m generators. Note that
m ≥ n. We show the result by induction on m. The base case m = n is immediate.

Assume now that m > n, and that we have proved the result for smaller m.
We will find m − 1 elements z1, . . . , zm−1 of A such that A is finite over A ′ :=
k[z1, . . . , zm−1] (i.e. the subring of A generated by z1, . . . , zm−1). Then by the
inductive hypothesis, A ′ is finite over some k[x1, . . . , xn], and A is finite over A ′,
so by Exercise 8.3.I, A is finite over k[x1, . . . , xn].

A

finite

A ′ = k[z1, . . . , zm−1]/p

finite

k[x1, . . . , xn]
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As y1, . . . , ym are algebraically dependent, there is some non-zero algebraic
relation f(y1, . . . , ym) = 0 among them (where f is a polynomial in m variables).

Let z1 = y1 − yr1
m , z2 = y2 − yr2

m , . . . , zm−1 = ym−1 − yrm−1
m , where r1, . . . ,

rm−1 are positive integers to be chosen shortly. Then

f(z1 + yr1
m , z2 + yr2

m , . . . , zm−1 + yrm−1
m , ym) = 0.

Then upon expanding this out, each monomial in f (as a polynomial in m variables)
will yield a single term in that is a constant times a power of ym (with no zi factors).
By choosing the ri so that 0 7 r1 7 r2 7 · · · 7 rm−1, we can ensure that the
powers of ym appearing are all distinct, and so that in particular there is a leading
term yN

m, and all other terms (including those with factors of zi) are of smaller
degree in ym. Thus we have described an integral dependence of ym on z1, . . . ,
zm−1 as desired. !

12.2.5. The geometry behind Nagata’s proof. Here is the geometric intuition be-
hind Nagata’s argument. Suppose we have an m-dimensional variety in An

k with
m < n, for example xy = 1 in A2. One approach is to hope the projection to a
hyperplane is a finite morphism. In the case of xy = 1, if we projected to the x-
axis, it wouldn’t be finite, roughly speaking because the asymptote x = 0 prevents
the map from being closed (cf. Exercise 8.3.L). If we instead projected to a random
line, we might hope that we would get rid of this problem, and indeed we usually
can: this problem arises for only a finite number of directions. But we might have
a problem if the field were finite: perhaps the finite number of directions in which
to project each have a problem. (You can show that if k is an infinite field, then the
substitution in the above proof zi = yi − yri

m can be replaced by the linear substi-
tution zi = yi − aiym where ai ∈ k, and that for a non-empty Zariski-open choice
of ai, we indeed obtain a finite morphism.) Nagata’s trick in general is to “jiggle”
the variables in a non-linear way, and this jiggling kills the non-finiteness of the
map.

12.2.F. EXERCISE (DIMENSION IS ADDITIVE FOR FIBERED PRODUCTS OF FINITE TYPE

k-SCHEMES). Suppose X and Y are finite type k-schemes. Show that dim X×k Y =
dim X + dim Y. (Hint: If we had surjective finite morphisms X → Adim X

k and Y →
Adim Y

k , we could construct a surjective finite morphism X ×k Y → Adim X+dim Y
k .)

12.2.6. Proof of Theorem 12.2.1 on dimension and transcendence degree. Suppose X is an
integral affine k-scheme. We show that dim X equals the transcendence degree n
of its function field, by induction on n. (The idea is that we reduce from X to An to
a hypersurface in An to An−1.) Assume the result is known for all transcendence
degrees less than n.

By Noether normalization, there exists a surjective finite morphism X → An
k .

By Exercise 12.1.C, dim X = dim An
k . If n = 0, we are done, as dim A0

k = 0.
We now show that dim An

k = n for n > 0, by induction. Clearly dim An
k ≥ n,

as we can describe a chain of irreducible subsets of length n + 1: if x1, . . . , xn are
coordinates on An, consider the chain of ideals

(0) ⊂ (x1) ⊂ · · · ⊂ (x1, . . . , xn)
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in k[x1, . . . , xn]. Suppose we have a chain of prime ideals of length at least n:

(0) = p0 ⊂ · · · ⊂ pm.

Choose any nonzero element g of p1, and let f be any irreducible factor of g.
Then replace p1 by (f). (Of course, p1 may have been (f) to begin with...) Then
K(k[x1, . . . , xn]/(f(x1, . . . , xn))) has transcendence degree n − 1, so by induction,

dim k[x1, . . . , xn]/(f) = n − 1.

!

12.2.7. Codimension is the difference of dimensions for irreducible varieties.
Noether normalization will help us show that codimension is the difference of

dimensions for irreducible varieties, i.e. that the inequality (12.1.4.1) is always an
equality.

12.2.8. Theorem. — Suppose X is an irreducible k-variety, Y is an irreducible closed
subset, and η is the generic point of Y. Then dim Y + dim OX,η = dim X. Hence by Ex-
ercise 12.1.G, dim Y + codimX Y = dim X — inequality (12.1.4.1) is always an equality.

Proving this will give us an excuse to introduce some useful notions, such
as the Going-Down Theorem for finite extensions of integrally closed domains
(Theorem 12.2.11). Before we begin the proof, we give an algebraic translation.

12.2.G. EXERCISE. A ring A is called catenary if for every nested pair of prime
ideals p ⊂ q ⊂ A, all maximal chains of prime ideals between p and q have the
same length. (We will not use this term beyond this exercise.) Show that if A is the
localization of a finitely generated ring over a field k, then A is catenary.

12.2.9. Remark. Most rings arising naturally in algebraic geometry are cate-
nary. Important examples include: localizations of finitely generated Z-algebras;
complete Noetherian local rings; Dedekind domains; and Cohen-Macaulay rings,
which will be defined in Chapter 27. It is hard to give an example of a non-catenary
ring; one is given in [Stacks] in the Examples chapter.

12.2.10. Proof of Theorem 12.2.8.

12.2.H. EXERCISE. Reduce the proof of Theorem 12.2.8 to the following problem.
If X is an irreducible affine k-variety and Z is a closed irreducible subset maximal
among those smaller than X (the only larger closed irreducible subset is X), then
dim Z = dim X − 1.

Let d = dim X for convenience. By Noether Normalization 12.2.3, we have a
finite morphism π : X → Ad corresponding to a finite extension of rings. Then π(Z)
is an irreducible closed subset of Ad (finite morphisms are closed, Exercise 8.3.M).

12.2.I. EXERCISE. Show that It suffices to show that π(Z) is a hypersurface. (Hint:
the dimension of any hypersurface is d − 1 by Theorem 12.2.1 on dimension and
transcendence degree. Exercise 12.1.C implies that dimπ−1π(Z)) = dimπ(Z). But
be careful: Z is not π−1π(Z) in general.)
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Now if π(Z) is not a hypersurface, then it is properly contained in an irre-
ducible hypersurface H, so by the Going-Down Theorem 12.2.11 for finite exten-
sions of integrally closed domains (which we shall now prove), there is some
closed irreducible subset Z ′ of X properly containing Z, contradicting the maxi-
mality of Z. !

12.2.11. Theorem (Going-Down Theorem for finite extensions of integrally closed
domains). — Suppose f : B ↪→ A is a finite extension of rings (A is a finite B-module),
B is an integrally closed domain, and A is an integral domain. Then given nested primes
q ⊂ q ′ of B, and a prime p ′ of A lying over q (p ∩ B = q), then there exists a prime p of A
containing p ′, lying over q ′.

As usual, you should sketch a geometric picture of this Theorem. This theorem
is usually stated about extending a chain of ideals, in the same way as the Going-
Up Theorem (Exercise 8.2.F), and you may want to think this through. (Another
Going-Down Theorem, for flat morphisms, will be given in Exercise 25.5.D.)

This theorem is true more generally with “finite” replaced by “integral”; see
[E, p. 291] for the extension of Theorem 12.2.11, or else see [AM, Thm. 5.16] or
[M-CA, Thm. 5(v)] for completely different proofs.

Proof. The proof uses Galois theory. Let L be the normal closure of K(A)/K(B)

(the smallest subfield of K(B) containing K(A), and that is mapped to itself by any
automorphism over K(B)/K(B)). Let C be the integral closure of B in L (discussed
in Exercise 10.6.I). Because A ↪→ C is an integral extension, there is a prime Q
of C lying over q ⊂ B (by the Lying Over Theorem 8.2.5), and a prime Q ′ of C
containing Q lying over q ′ (by the Going-Up Theorem, Exercise 8.2.F). Similarly,
there is a prime P of C lying over p ⊂ A (and thus over q ⊂ B). We would be done
if P = Q, but this needn’t be the case. However, Lemma 12.2.12 below shows there
is an automorphism σ of C over B, that sends Q ′ to P ′, and then the image of σ(Q)
in A will do the trick, completing the proof. (The following diagram, in geometric
terms, may help.)

Spec C/P ′

==

% &

DD,,,
,,,

,,,
,,,

,,,
,,,

,,,

Spec C/Q ′

σ

,,

! " $$

==

Spec C/Q

==

! " $$ Spec C

%%

L

Spec A/p ′

%%

! " $$ ? ! " $$

%%

Spec A

%%

K(A)
$!

,,

Spec B/q ′ !
"

$$ Spec B/q ! " $$ Spec B K(B)
$!

,,

12.2.12. Lemma. — Suppose B is an integrally closed domain, L/K(B) is a finite normal
field extension, and C is the integral closure of B in L. If q ′ is a prime ideal of B, then
automorphisms of L/K(B) act transitively on the primes of C lying over q ′.
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This result is often first seen in number theory, with B = Z and L a Galois
extension of Q.

Proof. Let P and Q1 be two primes of T lying over q ′, and let Q2, . . . , Qn be the
primes of T conjugate to Q1 (the image of Q1 under Aut(L/K(B))). If P is not one
of the Qi, then P is not contained in any of the Qi . Hence by prime avoidance
(Exercise 12.3.D), P is not contained in their union, so there is some a ∈ P not
contained in any Qi. Thus no conjugate of a can be contained in Q1, so the norm
NL/K(B)(a) ∈ A is not contained in Q1 ∩ S = q ′. But since a ∈ P, its norm lies in P,
but also in A, and hence in P ∩ A = q ′, yielding a contradiction. !

12.2.13. ! Most surfaces in three-space of degree d > 3 have no lines. We
conclude with an enlightening example. Although dimension theory is not central
to the following statement, it is essential to the proof.

12.2.J. ENLIGHTENING STRENUOUS EXERCISE. For any d > 3, show that most
degree d surfaces in P3

k
contain no lines. Here, “most” means “all closed points of

a Zariski-open subset of the parameter space for degree d homogeneous polyno-
mials in 4 variables, up to scalars. As there are

(
d+3

3

)
such monomials, the degree

d hypersurfaces are parametrized by P(d+3
3 )−1

k
. Hint: Construct an incidence cor-

respondence

X = {((, H) : [(] ∈ G(1, 3), [H] ∈ P(d+3
3 )−1, ( ⊂ H},

parametrizing lines in P3 contained in a hypersurface: define a closed subscheme

X of P(d+3
3 )−1 × G(1, 3) that makes this notion precise. (Recall that G(1, 3) is a

Grassmannian.) Show that X is a P(d+3
3 )−1−(d+1)-bundle over G(1, 3). (Possible

hint for this: how many degree d hypersurfaces contain the line x = y = 0?)
Show that dim G(1, 3) = 4 (see §7.7: G(1, 3) has an open cover by A4’s). Show that

dim X =
(
d+3

3

)
−1−(d+1)+4. Show that the image of the projection X → P(d+3

3 )−1

must lie in a proper closed subset. The following diagram may help.

dim
(
d+3

3

)
− 1 − (d + 1) + 4

X

P(
d+3

3 )−1−(d+1)

**((
((

((
((

((
((

((
((

((

EEJJJ
JJJ

JJJ
JJJ

JJJ
JJJ

P(d+3
3 )−1 G(1, 3) dim 4

12.2.14. Side Remark. If you do the previous Exercise, your dimension count will
suggest the true facts that degree 1 hypersurfaces — i.e. hyperplanes — have 2-
dimensional families of lines, and that most degree 2 hypersurfaces have 1-dimensional
families of lines, as shown in Exercise 9.2.M. They will also suggest that most de-
gree 3 hypersurfaces contain a finite number of lines, which reflects the celebrated
fact that nonsingular cubic surfaces over an algebraically closed field always con-
tain 27 lines (Theorem 28.1.1), and we will use this incidence correspondence to
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prove it (§28.4). The statement about quartics generalizes to the Noether-Lefschetz
theorem implying that a very general surface of degree d at least 4 contains no
curves that are not the intersection of the surface with a hypersurface. “Very
general” means that in the parameter space (in this case, the projective space
parametrizing surfaces of degree d), the statement is true away from a countable
union of proper Zariski-closed subsets. It is a weaker version of the phrase “almost
every” than “general”.

12.3 Codimension one miracles: Krull and Hartogs

In this section, we will explore a number of results related to codimension
one. We introduce two results that apply in more general situations, and link
functions and the codimension one points where they vanish, Krull’s Principal
Ideal Theorem 12.3.3, and Algebraic Hartogs’ Lemma 12.3.10. We will find these
two theorems very useful. For example, Krull’s Principal Ideal Theorem will help
us compute codimensions, and will show us that codimension can behave oddly,
and Algebraic Hartogs’ Lemma will give us a useful characterization of unique
factorization domains (Proposition 12.3.5). The results in this section will require
(locally) Noetherian hypotheses.

12.3.1. Krull’s Principal Ideal Theorem. The Principal Ideal Theorem generalizes
the linear algebra fact that in a vector space, a single linear equation cuts out a
subspace of codimension 0 or 1 (and codimension 0 occurs only when the equation
is 0).

12.3.2. Krull’s Principal Ideal Theorem (geometric version). — Suppose X is a
locally Noetherian scheme, and f is a function. The irreducible components of V(f) are
codimension 0 or 1.

This is clearly a consequence of the following algebraic statement. You know
enough to prove it for varieties (see Exercise 12.3.H), which is where we will use
it most often. The full proof is technical, and included in §12.5 (see §12.5.2) only to
show you that it isn’t long.

12.3.3. Krull’s Principal Ideal Theorem (algebraic version). — Suppose A is a
Noetherian ring, and f ∈ A. Then every prime p minimal among those containing f has
codimension at most 1. If furthermore f is not a zerodivisor, then every minimal prime p
containing f has codimension precisely 1.

For example, the scheme Spec k[w, x, y, z]/(wz−xy) (the cone over the quadric
surface) is cut out by one non-zero equation wz − xy in A4, so it is a threefold. As
another example, locally principal closed subschemes have “codimension 0 or 1”,
and effective Cartier divisors have “pure codimension 1”.

12.3.A. EXERCISE. What is the dimension of Spec Z[w, x, y, z]/(wz−xy, y17 +z17)?
(Check the hypotheses before invoking Krull!)

12.3.B. EXERCISE. Show that an irreducible homogeneous polynomial in n + 1
variables over a field k describes an integral scheme of dimension n − 1 in Pn

k .
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12.3.C. EXERCISE (VERY IMPORTANT FOR LATER). This is a pretty cool argument.
(a) (Hypersurfaces meet everything of dimension at least 1 in projective space, unlike in
affine space.) Suppose X is a closed subset of Pn

k of dimension at least 1, and H
is a nonempty hypersurface in Pn

k . Show that H meets X. (Hint: note that the
affine cone over H contains the origin in An+1

k . Apply Krull’s Principal Ideal The-
orem 12.3.3 to the cone over X.)
(b) Suppose X ↪→ Pn

k is a closed subset of dimension r. Show that any codimension
r linear space meets X. Hint: Refine your argument in (a). (In fact any two things
in projective space that you might expect to meet for dimensional reasons do in
fact meet. We won’t prove that here.)
(c) Show further that there is an intersection of r+1 nonempty hypersurfaces miss-
ing X. (The key step: show that there is a hypersurface of sufficiently high degree
that doesn’t contain every generic point of X. Show this by induction on the num-
ber of generic points. To get from n to n + 1: take a hypersurface not vanishing
on p1, . . . , pn. If it doesn’t vanish on pn+1, we are done. Otherwise, call this hy-
persurface fn+1. Do something similar with n + 1 replaced by i (1 ≤ i ≤ n). Then
consider

∑
i f1 · · · f̂i · · · fn+1.) If k is infinite, show that there is a codimension r+1

linear subspace missing X. (The key step: show that there is a hyperplane not con-
taining any generic point of a component of X.
(d) If k is an infinite field, show that there is an intersection of r hyperplanes meet-
ing X in a finite number of points. (We will see in Exercise 26.5.C that if k = k, the
number of points for “most” choices of these r hyperplanes, the number of points
is the degree of X. But first of course we must define “degree”.)

12.3.D. EXERCISE (PRIME AVOIDANCE). As an aside, here is an exercise of a similar
flavor to the previous one. Suppose I ⊆ ∪n

i=1pi. (The right side is not an ideal!)
Show that I ⊂ pi for some i. (Can you give a geometric interpretation of this
result?) Hint: by induction on n. Don’t look in the literature — you might find a
much longer argument! (See Exercise 12.3.C for a related problem.)

12.3.E. USEFUL EXERCISE. Suppose f is an element of a Noetherian ring A, con-
tained in no codimension zero or one primes. Show that f is a unit. (Hint: show
that if a function vanishes nowhere, it is a unit.)

12.3.4. A useful characterization of unique factorization domains.
We can use Krull’s Principal Ideal Theorem to prove one of the four useful

criteria for unique factorization domains, promised in §6.4.5.

12.3.5. Proposition. — Suppose that A is a Noetherian integral domain. Then A is a
unique factorization domain if and only if all codimension 1 primes are principal.

This contains Lemma 12.1.6 and (in some sense) its converse.

Proof. We have already shown in Lemma 12.1.6 that if A is a unique factorization
domain, then all codimension 1 primes are principal. Assume conversely that
all codimension 1 primes of A are principal. I claim that the generators of these
ideals are irreducible, and that we can uniquely factor any element of A into these
irreducibles, and a unit. First, suppose (f) is a codimension 1 prime ideal p. Then
if f = gh, then either g ∈ p or h ∈ p. As codim p > 0, p != (0), so by Nakayama’s
Lemma 8.2.H (as p is finitely generated), p != p2. Thus g and h cannot both be in p.
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Say g /∈ p. Then g is contained in no codimension 1 primes (as f was contained in
only one, namely p), and hence is a unit by Exercise 12.3.E.

We next show that any non-zero element f of A can be factored into irre-
ducibles. Now V(f) is contained in a finite number of codimension 1 primes, as
(f) has a finite number of associated primes (§6.5), and hence a finite number of
minimal primes. We show that any nonzero f can be factored into irreducibles
by induction on the number of codimension 1 primes containing f. In the base
case where there are none, then f is a unit by Exercise 12.3.E. For the general case
where there is at least one, say f ∈ p = (g). Then f = gnh for some h /∈ (g). (Rea-
son: otherwise, we have an ascending chain of ideals (f) ⊂ (f/g) ⊂ (f/g2) ⊂ · · · ,
contradicting Noetherianness.) Thus f/gn ∈ A, and is contained in one fewer
codimension 1 primes.

12.3.F. EXERCISE. Conclude the proof by showing that this factorization is unique.
(Possible hint: the irreducible components of V(f) give you the prime factors, but
not the multiplicities.)

12.3.6. Generalizing Krull to more equations. The following generalization of
Krull’s Principal Ideal Theorem looks like it might follow by induction from Krull,
but it is more subtle.

12.3.7. Krull’s Principal Ideal Theorem, Strong Version. — Suppose X = Spec A
where A is Noetherian, and Z is an irreducible component of V(r1, . . . , rn), where r1, . . . , rn ∈
A. Then the codimension of Z is at most n.

A proof is given in §12.5.3.

12.3.G. EXERCISE. Suppose (A,m) is a Noetherian local ring.
(a) (Noetherian local rings have finite dimension, promised in Remark 12.1.8) Use The-
orem 12.3.7 to prove that (A,m) has finite dimension. (Hint: if m = (f1, . . . , fd),
show that dim A ≤ d.)
(b) Let d = dim A. Show that it is possible to find g1, . . . , gd ∈ A are such that
V(g1, . . . , gd) = {[m]}. (Hint: in order to work by induction on d, you need to
find a first equation that will knock the dimension down by 1, i.e. dim A/(gd) =
dim A−1. Find gd using prime avoidance, Exercise 12.3.D.) Show that k ≥ d. (Geo-
metric translation: given a d-dimensional “germ of a reasonable space” around a
point p. Then p can be cut out set-theoretically by d equations, and you always
need at least d equations. These d elements of A are called a system of param-
eters for the Noetherian local ring A, but we won’t use this language except in
Exercise 12.4.A.)

12.3.H. EXERCISE. Prove Theorem 12.3.7 in the special case where X is an irre-
ducible affine variety, i.e. if A is finitely generated domain over some field k. Show
that dim Z ≥ dim X − n. Hint: Theorem 12.2.8.

12.3.8. ! Pathologies of the notion of “codimension”. We can use Krull’s Princi-
pal Ideal Theorem to produce the example of pathology in the notion of codimen-
sion promised earlier this chapter. Let A = k[x](x)[t]. In other words, elements of
A are polynomials in t, whose coefficients are quotients of polynomials in x, where
no factors of x appear in the denominator. (Warning: A is not k[x, t](x).) Clearly,
A is an integral domain, and (xt − 1) is not a zero divisor. You can verify that
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A/(xt − 1) ∼= k[x](x)[1/x] ∼= k(x) — “in k[x](x), we may divide by everything but x,
and now we are allowed to divide by x as well” — so A/(xt − 1) is a field. Thus
(xt − 1) is not just prime but also maximal. By Krull’s theorem, (xt − 1) is codi-
mension 1. Thus (0) ⊂ (xt − 1) is a maximal chain. However, A has dimension at
least 2: (0) ⊂ (t) ⊂ (x, t) is a chain of primes of length 2. (In fact, A has dimension
precisely 2, although we don’t need this fact in order to observe the pathology.)
Thus we have a codimension 1 prime in a dimension 2 ring that is dimension 0.
Here is a picture of this poset of ideals.

(x, t)

(t)

**
**

**
**

(xt − 1)

55
55
55
55
5

(0)

This example comes from geometry, and it is enlightening to draw a picture, see
Figure 12.2. Spec k[x](x) corresponds to a “germ” of A1

k near the origin, and Spec k[x](x)[t]
corresponds to “this × the affine line”. You may be able to see from the picture
some motivation for this pathology — V(xt−1) doesn’t meet V(x), so it can’t have
any specialization on V(x), and there is nowhere else for V(xt − 1) to specialize.
It is disturbing that this misbehavior turns up even in a relatively benign-looking
ring.

V(x)

Spec k[x](x)

Spec k[x](x)[t]

V(xt − 1)

FIGURE 12.2. Dimension and codimension behave oddly on the
surface Spec k[x](x)[t]
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12.3.9. Algebraic Hartogs’ Lemma for Noetherian normal schemes.
Hartogs’ Lemma in several complex variables states (informally) that a holo-

morphic function defined away from a codimension two set can be extended over
that. We now describe an algebraic analog, for Noetherian normal schemes. We
will use this repeatedly and relentlessly when connecting line bundles and divi-
sors.

12.3.10. Algebraic Hartogs’ Lemma. — Suppose A is a Noetherian normal integral
domain. Then

A = ∩p codimension 1Ap.

The equality takes place in K(A); recall that any localization of an integral
domain A is naturally a subset of K(A) (Exercise 2.3.C). Warning: few people call
this Algebraic Hartogs’ Lemma. I call it this because it parallels the statement in
complex geometry.

One might say that if f ∈ K(A) does not lie in Ap where p has codimension 1,
then f has a pole at [p], and if f ∈ K(A) lies in pAp where p has codimension 1, then
f has a zero at [p]. It is worth interpreting Algebraic Hartogs’ Lemma as saying
that a rational function on a normal scheme with no poles is in fact regular (an element
of A). Informally: “Noetherian normal schemes have the Hartogs property.” (We will
properly define zeros and poles in §13.4.8, see also Exercise 13.4.H.)

One can state Algebraic Hartogs’ Lemma more generally in the case that Spec A
is a Noetherian normal scheme, meaning that A is a product of Noetherian normal
integral domains; the reader may wish to do so.

12.3.11. ! Proof. (This proof may be stated completely algebraically, but we state
it as geometrically as possible, at the expense of making it longer.) The left side is
obviously contained in the right, so assume some x lies in every Ap but not in A.
As in the proof of Proposition 6.4.2, we measure the failure of x to be a function
(an element of Spec A) with the “ideal of denominators” I of x:

I := {r ∈ A : rx ∈ A}.

(As an important remark not necessary for the proof: it is helpful to interpret the
ideal of denominators as scheme-theoretically measuring the failure of x to be reg-
ular, or better, giving a scheme-theoretic structure to the locus where x is not regu-
lar.) As 1 /∈ I, we have I != A. Choose a minimal prime q containing I.

Our second step in obtaining a contradiction is to focus near the point [q], i.e.
focus attention on Aq rather than A, and as a byproduct notice that codim q >
1. The construction of the ideal of denominators behaves well with respect to
localization — if p is any prime, then the ideal of denominators of x in Ap is Ip,
and it again measures ”the failure of Algebraic Hartogs’ Lemma for x,” this time
in Ap. But Algebraic Hartogs’ Lemma is vacuously true for dimension 1 rings,
so no codimension 1 prime contains I. Thus q has codimension at least 2. By
localizing at q, we can assume that A is a local ring with maximal ideal q, and that
q is the only prime containing I.

In the third step, we construct a suitable multiple z of x that is still not a func-
tion on Spec A, so that multiplying z by anything vanishing at [q] results in a func-
tion. (Translation: z /∈ A, but zq ⊂ A.) As q is the only prime containing I,

√
I = q

(Exercise 4.4.F), so as q is finitely generated, there is some n with I ⊃ qn (do you
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see why?). Take the minimal such n, so I !⊃ qn−1, and choose any y ∈ qn−1 − I.
Let z = yx. As y /∈ I, z /∈ A. On the other hand, qy ⊂ qn ⊂ I, so qz ⊂ Ix ⊂ A, so qz
is an ideal of A, completing this step.

Finally, we have two cases: either there is function vanishing on [q] that, when
multiplied by z, doesn’t vanish on [q]; or else every function vanishing on [q], mul-
tiplied by z, still vanishes on [q]. Translation: (i) either qz is not contained in q, or
(ii) it is.

(i) If qz ⊂ q, then we would have a finitely-generated A-module (namely q)
with a faithful A[z]-action, forcing z to be integral over A (and hence in A, as A is
integrally closed) by Exercise 8.2.J, yielding a contradiction.

(ii) If qz is an ideal of A not contained in the unique maximal ideal q, then
it must be A! Thus qz = A from which q = A(1/z), from which q is principal.
But then codim q = dim A ≤ dimA/q q/q2 ≤ 1 by Nakayama’s Lemma 8.2.H,
contradicting codim q ≥ 2. !

12.4 Dimensions of fibers of morphisms of varieties

In this section, we show that the dimensions of fibers of morphisms of varieties
behaves in a way you might expect from our geometric intuition. What we need
about varieties is Theorem 12.2.8 (codimension is the difference of dimensions).
We discuss generalizations in §12.4.3.

We begin with an inequality that holds more generally in the locally Noether-
ian setting.

12.4.A. EXERCISE (CODIMENSION BEHAVES AS YOU MIGHT EXPECT FOR A MOR-
PHISM). Suppose π : X → Y is a morphism of locally Noetherian schemes, and
p ∈ X and q ∈ Y are points such that q = π(p). Show that

codimX p ≤ codimY q + codimπ−1q p.

(Does this agree with your geometric intuition? You should be able to come up
with enlightening examples where equality holds, and where equality fails. We
will see that equality always holds for sufficiently nice — flat — morphisms, see
Proposition 25.5.5.) Hint: take a system of parameters for q “in Y”, and a system
of parameters for p “in π−1q”, and use them to find codimY q + codimπ−1q p ele-
ments of OX,p cutting out {[m]} in Spec OX,p. Use Exercise 12.3.G (where “system
of parameters” was defined).

We now show that the inequality of Exercise 12.4.A is actually an equality over
“most of Y” if Y is an irreducible variety.

12.4.1. Proposition. — Suppose π : X → Y is a (necessarily finite type) morphism of
irreducible k-varieties, with dim X = m and dim Y = n. Then there exists a nonempty
open subset U ⊂ Y such that for all y ∈ U, f−1(y) = ∅ or dim f−1(y) = m − n.

Proof. By shrinking Y if necessary, we may assume that Y is affine, say Spec B. We
may also assume that X is affine, say Spec A. (Reason: cover X with a finite number
of affine open subsets X1, . . . , Xa, and take the intersection of the U’s for each of the
π|Xi

.) If π is not dominant, then we are done, as by Chevalley’s Theorem 8.4.2, the
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image misses a dense open subset U of Spec A. So assume now that π is dominant.
We have the following inclusion of rings:

A
! " $$ K(A)

B
$!

,,

! " $$ K(B)
$!

,,

12.4.B. EXERCISE. Show that A ⊗B K(B) = K(A). (Hint: Why is the left side a
subring of K(A)? Why can you invert any element of A?)

By transcendence theory (Exercise 12.2.A), K(A) has transcendence degree
m − n over K(B) (as K(A) has transcendence degree m over k, and K(B) has
transcendence degree n over k). Applying Noether Normalization 12.2.3 to the
K(B)-algebra A ⊗B K(B) = K(A), we find elements t1, . . . , tm−n of K(A), alge-
braically independent over K(B), such that every element of K(A) is integral over
K(B)[t1, . . . , tm−n]. By multiplying each ti ∈ A⊗BK(B) by an appropriate element
of B, we may furthermore assume that the ti lie in A.

Now A is finitely generated over B, and hence over B[t1, . . . , tm−n], say by
u1, . . . , uq. Noether normalization implies that each ui satisfies some monic equa-
tion fi(ui) = 0, where fi ∈ K(B)[t1, . . . , tm−n][t]. Let b ∈ B be the product of all
the denominators of all the (non-leading) coefficients of all the fi. Let U = D(b):
the dense open set of Spec B where b is invertible. Over U, the morphism π looks
as follows.

π−1(U)

finite surjective

%%
π|
π−1(U)

44

Am−n
U

%%

= Spec Bb[t1, . . . , tm−n]

U = Spec Bb

We note first that the image of π includes all of U. (Incidentally, this gives
another solution to Exercise 8.4.K in the case of varieties, which readily extends to
the general case.)

Now fix any point y ∈ U, and let Z be any irreducible component (indeed,
closed subset) of the fiber over y. Then the ring of Z is generated over κ(y) by t1,
. . . , tm−n, u1, . . . , uq, with algebraic dependencies of the ui on t1, . . . , tm−n, and
possibly some other relations. Thus the transcendence degree of Z over κ(y) is at
most m − n, so the dimension of each component of the fiber is at most m − n by
Theorem 12.2.1 (that dimension = transcendence degree).

But Exercise 12.4.A and Theorem 12.2.8 imply that each component of the fiber
is at least m − n, so we are done. !

12.4.C. EXERCISE (USEFUL CRITERION FOR IRREDUCIBILITY). Suppose π : X → Y
is a proper morphism to an irreducible variety, and all the fibers of π are irreducible
of the same dimension. Show that X is irreducible.
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This can be used to give another solution to Exercise 10.4.E, that the product
of irreducible varieties over an algebraically closed field is irreducible. Or more
generally, the product of a geometrically irreducible variety with an irreducible
variety is irreducible.

12.4.2. Theorem (uppersemicontinuity of fiber dimension). — Suppose π : X → Y
is a morphism of finite type k-schemes.
(a) (upper semicontinuity on the source) The dimension of the fiber of π at x ∈ X is an
upper semicontinuous function of X.
(b) (upper semicontinuity on the target) If furthermore π is proper, then the dimension of
the fiber of π over y is an upper semicontinuous function of Y.

You should be able to immediately construct a counterexample to part (b) if
the properness hypothesis is dropped.

Proof. (a) Let Fn be the subset of X consisting of points where the fiber dimension
is at least n. We wish to show that Fn is a closed subset for all n. We argue by
induction on dim Y. The base case dim Y = 0 is trivial. So we fix Y, and assume the
result for all smaller-dimensional targets.

12.4.D. EXERCISE. Show that it suffices to prove the result when X and Y are
integral.

We may assume that π is dominant (or else we could replace Y by the closure
of the image of π). Let r = dim X−dim Y be the “relative dimension” of π. If n ≤ r,
then Fn = X by Exercise 12.4.A (combined with Theorem 12.2.8).

If n > r, then let U ⊂ Y be the dense open subset of Proposition 12.4.1. Then
Fn does not meet the preimage of U. By replacing Y with Y \U, we are done by the
inductive hypothesis.

12.4.E. EASY EXERCISE. Prove (b) (using (a)).
!

12.4.3. Generalizing results of §12.4 beyond varieties. The above arguments can
be extended to more general situations than varieties. We remain in the locally
Noetherian situation for safety. One fact used repeatedly was that codimension is
the difference of dimensions (Theorem 12.2.8). This holds much more generally
(see Remark 12.2.9 on catenary rings). Extensions of Proposition 12.4.1 should
require that π be finite type. In the proof of Proposition 12.4.1, we use that the
generic fiber of the morphism π : X → Y of irreducible schemes is the dim X −
dim Y, which can be proved using Proposition 25.5.5).

The remaining results then readily follow without change.
For a statement of upper semicontinuity of fiber dimension without catenary

hypotheses: Theorem 12.4.2(b) for projective morphisms is done (in a simple way)
in Exercise 20.1.F, and a more general discussion is given in [E, Thm. 14.8(a)]. The
special

12.5 !! Proof of Krull’s Principal Ideal Theorem 12.3.3
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The details of this proof won’t matter to us, so you should probably not read
it. It is included so you can glance at it and believe that the proof is fairly short,
and that you could read it if you needed to.

If A is a ring, an Artinian A-module is an A-module satisfying the descending
chain condition for submodules (any infinite descending sequence of submodules
must stabilize, §4.6.3). A ring is Artinian ring if it is Artinian over itself as a mod-
ule. The notion of Artinian rings is very important, but we will get away without
discussing it much.

If m is a maximal ideal of A, then any finite-dimensional (A/m)-vector space
(interpreted as an A-module) is clearly Artinian, as any descending chain

M1 ⊃ M2 ⊃ · · ·

must eventually stabilize (as dimA/m Mi is a non-increasing sequence of non-negative
integers).

12.5.A. EXERCISE. Suppose m is finitely generated. Show that for any n, mn/mn+1

is a finite-dimensional (A/m)-vector space. (Hint: show it for n = 0 and n = 1.
Show surjectivity of Symn m/m2 → mn/mn+1 to bound the dimension for general
n.) Hence mn/mn+1 is an Artinian A-module.

12.5.B. EXERCISE. Suppose A is a ring with one prime ideal m. Suppose m is
finitely generated. Prove that mn = (0) for some n. (Hint: As

√
0 is prime, it must

be m. Suppose m can be generated by r elements, each of which has kth power 0,
and show that mr(k−1)+1 = 0.)

12.5.C. EXERCISE. Show that if 0 → M ′ → M → M ′′ → 0 is an exact sequence of
modules, then M is Artinian if and only if M ′ and M ′′ are Artinian. (Hint: given
a descending chain in M, produce descending chains in M ′ and M ′′.)

12.5.1. Lemma. — If A is a Noetherian ring with one prime ideal m, then A is Artinian,
i.e., it satisfies the descending chain condition for ideals.

Proof. As we have a finite filtration

A ⊃ m ⊃ · · · ⊃ mn = (0)

all of whose quotients are Artinian, A is Artinian as well. !

12.5.2. Proof of Krull’s Principal Ideal Theorem 12.3.3. Suppose we are given x ∈ A,
with p a minimal prime containing x. By localizing at p, we may assume that A is
a local ring, with maximal ideal p. Suppose q is another prime strictly contained
in p.

x ' (

>>?
??

??
??

?

p ! " $$ A

q
)
*

FF
KKKKKKKK
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For the first part of the theorem, we must show that Aq has dimension 0. The
second part follows from our earlier work: if any minimal primes are height 0, f is
a zerodivisor, by Theorem 6.5.4(c) and (e).

Now p is the only prime ideal containing (x), so A/(x) has one prime ideal. By
Lemma 12.5.1, A/(x) is Artinian.

We invoke a useful construction, the nth symbolic power of a prime ideal: if
A is a ring, and q is a prime ideal, then define

q(n) := {r ∈ A : rs ∈ qn for some s ∈ A − q}.

We have a descending chain of ideals in A

q(1) ⊃ q(2) ⊃ · · · ,

so we have a descending chain of ideals in A/(x)

q(1) + (x) ⊃ q(2) + (x) ⊃ · · ·

which stabilizes, as A/(x) is Artinian. Say q(n) + (x) = q(n+1) + (x), so

q(n) ⊂ q(n+1) + (x).

Hence for any f ∈ q(n), we can write f = ax + g with g ∈ q(n+1). Hence ax ∈ q(n).
As p is minimal over x, x /∈ q, so a ∈ q(n). Thus

q(n) = (x)q(n) + q(n+1).

As x is in the maximal ideal p, the second version of Nakayama’s lemma 8.2.9 gives
q(n) = q(n+1).

We now shift attention to the local ring Aq, which we are hoping is dimen-
sion 0. We have q(n)Aq = q(n+1)Aq (the symbolic power construction clearly
construction commutes with localization). For any r ∈ qnAq ⊂ q(n)Aq, there is
some s ∈ Aq − qAq such that rs ∈ qn+1Aq. As s is invertible, r ∈ qn+1Aq as
well. Thus qnAq ⊂ qn+1Aq, but as qn+1Aq ⊂ qnAq, we have qnAq = qn+1Aq. By
Nakayama’s Lemma version 4 (Exercise 8.2.H),

qnAq = 0.

Finally, any local ring (R,m) such that mn = 0 has dimension 0, as Spec R consists
of only one point: [m] = V(m) = V(mn) = V(0) = Spec R. !

12.5.3. Proof of Theorem 12.3.7, following [E, Thm. 10.2]. We argue by induction on n.
The case n = 1 is Krull’s Principal Ideal Theorem 12.3.3. Assume n > 1. Suppose
p is a minimal prime containing r1, . . . , rn ∈ A. We wish to show that codim p ≤ n.
By localizing at p, we may assume that p is the unique maximal ideal of A. Let
q != p be a prime ideal of A with no prime between p and q. We shall show that q
is minimal over an ideal generated by c − 1 elements. Then codim q ≤ c − 1 by the
inductive hypothesis, so we will be done.

Now q cannot contain every ri (as V(r1, . . . , rn) = {[p]}), so say r1 /∈ q. Then
V(q, r1) = {[p]}. As each ri ∈ p, there is some N such that rN

i ∈ (q, r1) (Exer-
cise 4.4.J), so write rN

i = qi + air1 where qi ∈ q (2 ≤ i ≤ n) and ai ∈ A. Note
that

(12.5.3.1) V(r1, q2, . . . , qn) = V(r1, rN
2 , . . . , rN

n ) = V(r1, r2, . . . , rn) = {[p]}.
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We shall show that q is minimal among primes containing q2, . . . , qn, com-
pleting the proof. In the ring A/(q2, . . . , qn), V(r1) = {[p]} by (12.5.3.1). By Krull’s
principal ideal theorem 12.3.3, [p] is codimension at most 1, so [q] must be codi-
mension 0 in Spec A/(q2, . . . , qn), as desired. !





CHAPTER 13

Nonsingularity (“smoothness”) of Noetherian schemes

One natural notion we expect to see for geometric spaces is the notion of when
an object is “smooth”. In algebraic geometry, this notion, called nonsingularity
(or regularity, although we won’t use this term) is easy to define but a bit subtle
in practice. We will soon define what it means for a scheme to be nonsingular
(or regular) at a point. The Jacobian criterion will show that this corresponds to
smoothness in situations where you may have seen it before. A point that is not
nonsingular is (not surprisingly) called singular (“not smooth”). A scheme is said
to be nonsingular if all its points are nonsingular, and singular if one of its points is
singular.

The notion of nonsingularity is less useful than you might think. Grothendieck
taught us that the more important notions are properties of morphisms, not of ob-
jects, and there is indeed a “relative notion” that applies to a morphism of schemes
f : X → Y that is much better-behaved (corresponding to the notion of “locally on
the source a smooth fibration” in differential geometry). For this reason, the word
“smooth” is reserved for these morphisms. (This is why “smooth” has often been
in quotes when mentioned until now.) We will discuss smooth morphisms (with-
out quotes!) in Chapter 26. However, nonsingularity is still useful, especially in
(co)dimension 1, and we shall discuss this case (of discrete valuation rings) in §13.4.

13.1 The Zariski tangent space

We first define the tangent space of a scheme at a point. It behaves like the
tangent space you know and love at “smooth” points, but also makes sense at
other points. In other words, geometric intuition at the “smooth” points guides
the definition, and then the definition guides the algebra at all points, which in
turn lets us refine our geometric intuition.

This definition is short but surprising. The main difficulty is convincing your-
self that it deserves to be called the tangent space. This is tricky to explain, because
we want to show that it agrees with our intuition, but our intuition is worse than
we realize. So I will just define it for you, and later try to convince you that it is
reasonable.

13.1.1. Definition. Suppose p is a prime ideal of a ring A, so [p] is a point of Spec A.
Then [pAp] is a point of the scheme Spec Ap. For convenience, we let m := pAp ⊂
Ap =: B. Let κ = B/m be the residue field. Then m/m2 is a vector space over the
residue field κ: it is a B-module, and elements of m acts like 0. This is defined
to be the Zariski cotangent space. The dual vector space is the Zariski tangent

277
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space. Elements of the Zariski cotangent space are called cotangent vectors or
differentials; elements of the tangent space are called tangent vectors.

Note that this definition is intrinsic. It does not depend on any specific de-
scription of the ring itself (such as the choice of generators over a field k, which
is equivalent to the choice of embedding in affine space). Notice that the cotan-
gent space is more algebraically natural than the tangent space (the definition is
shorter). There is a moral reason for this: the cotangent space is more naturally de-
termined in terms of functions on a space, and we are very much thinking about
schemes in terms of “functions on them”. This will come up later.

Here are two plausibility arguments that this is a reasonable definition. Hope-
fully one will catch your fancy.

In differential geometry, the tangent space at a point is sometimes defined as
the vector space of derivations at that point. A derivation is a function that takes
in functions near the point that vanish at the point, and gives elements of the field
k, and satisfies the Leibniz rule

(fg) ′ = f ′g + g ′f.

(We will later define derivations in more general settings, §23.2.16) Translation: a
derivation is a map m → k. But m2 maps to 0, as if f(p) = g(p) = 0, then

(fg) ′(p) = f ′(p)g(p) + g ′(p)f(p) = 0.

Thus we have a map m/m2 → k, i.e. an element of (m/m2)∨.

13.1.A. EXERCISE. Check that this is reversible, i.e. that any map m/m2 → k gives
a derivation. In other words, verify that the Leibniz rule holds. (Your proof will
not use the fact that B is a local ring; this will be important at the end of the proof
of Proposition 23.2.17.)

Here is a second vaguer motivation that this definition is plausible for the
cotangent space of the origin of An. Functions on An should restrict to a linear
function on the tangent space. What (linear) function does x2 + xy + x + y restrict
to “near the origin”? You will naturally answer: x+y. Thus we “pick off the linear
terms”. Hence m/m2 are the linear functionals on the tangent space, so m/m2 is the
cotangent space. In particular, you should picture functions vanishing at a point
(i.e. lying in m) as giving functions on the tangent space in this obvious a way.

13.1.2. Old-fashioned example. Computing the Zariski-tangent space is actually
quite hands-on, because you can compute it just as you did when you learned
multivariable calculus. In A3, we have a curve cut out by x + y + z2 + xyz = 0
and x − 2y + z + x2y2z3 = 0. (You can use Krull’s Principal Ideal Theorem 12.3.3
to check that this is a curve, but it is not important to do so.) What is the tangent
line near the origin? (Is it even smooth there?) Answer: the first surface looks like
x + y = 0 and the second surface looks like x − 2y + z = 0. The curve has tangent
line cut out by x + y = 0 and x − 2y + z = 0. It is smooth (in the traditional sense).
In multivariable calculus, the students do a page of calculus to get the answer,
because we aren’t allowed to tell them to just pick out the linear terms.

Let’s make explicit the fact that we are using. If A is a ring, m is a maximal
ideal, and f ∈ m is a function vanishing at the point [m] ∈ Spec A, then the Zariski
tangent space of Spec A/(f) at m is cut out in the Zariski tangent space of Spec A
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(at m) by the single linear equation f (mod m2). The next exercise will force you
think this through.

13.1.B. IMPORTANT EXERCISE (“KRULL’S PRINCIPAL IDEAL THEOREM FOR TAN-
GENT SPACES” — BUT MUCH EASIER THAN KRULL’S PRINCIPAL IDEAL THEO-
REM 12.3.3!). Suppose A is a ring, and m a maximal ideal. If f ∈ m, show
that the Zariski tangent space of A/f is cut out in the Zariski tangent space of A by
f (mod m2). (Note: we can quotient by f and localize at m in either order, as quo-
tienting and localizing commute, (5.3.4.1).) Hence the dimension of the Zariski
tangent space of Spec A at [m] is the dimension of the Zariski tangent space of
Spec A/(f) at [m], or one less. (That last sentence should be suitably interpreted if
the dimension is infinite, although it is less interesting in this case.)

Here is another example to see this principle in action: x + y + z2 = 0 and
x + y + x2 + y4 + z5 = 0 cuts out a curve, which obviously passes through the
origin. If I asked my multivariable calculus students to calculate the tangent line
to the curve at the origin, they would do a reams of calculations which would boil
down (without them realizing it) to picking off the linear terms. They would end
up with the equations x + y = 0 and x + y = 0, which cuts out a plane, not a line.
They would be disturbed, and I would explain that this is because the curve isn’t
smooth at a point, and their techniques don’t work. We on the other hand bravely
declare that the cotangent space is cut out by x + y = 0, and (will soon) define this
as a singular point. (Intuitively, the curve near the origin is very close to lying in
the plane x + y = 0.) Notice: the cotangent space jumped up in dimension from
what it was “supposed to be”, not down. We will see that this is not a coincidence
soon, in Theorem 13.2.1.

Here is a nice consequence of the notion of Zariski tangent space.

13.1.3. Problem. Consider the ring A = k[x, y, z]/(xy − z2). Show that (x, z) is not
a principal ideal.

As dim A = 2 (by Krull’s Principal Ideal Theorem 12.3.3), and A/(x, z) ∼= k[y]
has dimension 1, we see that this ideal is codimension 1 (as codimension is the
difference of dimensions for irreducible varieties, Theorem 12.2.8). Our geometric
picture is that Spec A is a cone (we can diagonalize the quadric as xy − z2 = ((x +
y)/2)2 − ((x−y)/2)2 − z2, at least if char k != 2 — see Exercise 6.4.J), and that (x, z)
is a ruling of the cone. (See Figure 13.1 for a sketch.) This suggests that we look at
the cone point.

Solution. Let m = (x, y, z) be the maximal ideal corresponding to the ori-
gin. Then Spec A has Zariski tangent space of dimension 3 at the origin, and
Spec A/(x, z) has Zariski tangent space of dimension 1 at the origin. But Spec A/(f)
must have Zariski tangent space of dimension at least 2 at the origin by Exer-
cise 13.1.B.

13.1.C. EXERCISE. Show that (x, z) ⊂ k[w, x, y, z]/(wz − xy) is a codimension
1 ideal that is not principal. (See Figure 13.2 for the projectivization of this situ-
ation.) This example was promised in Exercise 6.4.D. You might use it again in
Exercise 13.1.D.
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FIGURE 13.1. V(x, z) ⊂ Spec k[x, y, z]/(xy − z2) is a ruling on a cone

FIGURE 13.2. The ruling V(x, z) on V(wz − xy) ⊂ P3.

13.1.D. EXERCISE. Let A = k[w, x, y, z]/(wz − xy). Show that Spec A is not fac-
torial. (Exercise 6.4.K shows that A is not a unique factorization domain, but this
is not enough — why is the localization of A at the prime (w, x, y, z) not factorial?
One possibility is to do this “directly”, by trying to imitate the solution to Exer-
cise 6.4.K, but this might be hard. Instead, use the intermediate result that in a
unique factorization domain, any codimension 1 prime is principal, Lemma 12.1.6,
and considering Exercise 13.1.C.) As A is integrally closed if k = k and char k != 2
(Exercise 6.4.I(c)), this yields an example of a scheme that is normal but not facto-
rial, as promised in Exercise 6.4.F. A slight generalization will be given in 19.4.N.

13.1.4. Morphisms and tangent spaces. Suppose f : X → Y, and f(p) = q. Then
if we were in the category of manifolds, we would expect a tangent map, from the
tangent space of p to the tangent space at q. Indeed that is the case; we have a map
of stalks OY,q → OX,p, which sends the maximal ideal of the former n to the maxi-
mal ideal of the latter m (we have checked that this is a “local morphism” when we
briefly discussed locally ringed spaces). Thus n2 → m2, from which n/n2 → m/m2.
If (OX,p,m) and (OY,q, n) have the same residue field κ, so n/n2 → m/m2 is a linear
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map of κ-vector spaces, we have a natural map (m/m2)∨ → (n/n2)∨. This is the
map from the tangent space of p to the tangent space at q that we sought. (Aside:
note that the cotangent map always exists, without requiring p andq to have the
same residue field — a sign that cotangent spaces are more natural than tangent
spaces in algebraic geometry.)

Here are some exercises to give you practice with the Zariski tangent space. If
you have some differential geometric background, the first will further convince
you that this definition correctly captures the idea of (co)tangent space.

13.1.E. IMPORTANT EXERCISE (THE JACOBIAN COMPUTES THE ZARISKI TANGENT

SPACE). Suppose X is a finite type k-scheme. Then locally it is of the form
Spec k[x1, . . . , xn]/(f1, . . . , fr). Show that the Zariski cotangent space at a k-valued
point is given by the cokernel of the Jacobian map kr → kn given by the Jacobian
matrix

(13.1.4.1) J =





∂f1

∂x1
(p) · · · ∂fr

∂x1
(p)

...
. . .

...
∂f1

∂xn
(p) · · · ∂fr

∂xn
(p)



 .

(This is makes precise our example of a curve in A3 cut out by a couple of equa-
tions, where we picked off the linear terms, see Example 13.1.2.) You might be
alarmed: what does ∂f

∂x1
mean? Do you need deltas and epsilons? No! Just define

derivatives formally, e.g.

∂

∂x1
(x2

1 + x1x2 + x2
2) = 2x1 + x2.

Hint: Do this first when p is the origin, and consider linear terms, just as in Exam-
ple 13.1.2 and Exercise 13.1.B. For the general case, “translate p to the origin”.

13.1.5. Warning. It is more common in mathematics (but not universal) to define
the Jacobian matrix as the transpose of this. But for the way we use it, it will be
more convenient to follow this minority convention.

13.1.F. LESS IMPORTANT EXERCISE (“HIGHER-ORDER DATA”). In Exercise 4.7.B,
you computed the equations cutting out the three coordinate axes of A3

k. (Call this
scheme X.) Your ideal should have had three generators. Show that the ideal can’t
be generated by fewer than three elements. (Hint: working modulo m = (x, y, z)
won’t give any useful information, so work modulo m2.)

13.1.G. EXERCISE. Suppose X is a k-scheme. Describe a natural bijection from
Mork(Spec k[ε]/(ε2), X) to the data of a point p with residue field k (necessarily a
closed point) and a tangent vector at p. (This turns out to be very important, for
example in deformation theory.)

13.1.H. EXERCISE. Find the dimension of the Zariski tangent space at the point
[(2, 2i)] of Z[2i] ∼= Z[x]/(x2 + 4). Find the dimension of the Zariski tangent space
at the point [(2, x)] of Z[

√
−2] ∼= Z[x]/(x2 + 2). (If you prefer geometric versions of

the same examples, replace Z by or C, and 2 by y: consider C[x, y]/(x2 + y2) and
C[x, y]/(x2 + y).)



282 Math 216: Foundations of Algebraic Geometry

13.2 Nonsingularity

The key idea in the definition of nonsingularity is contained in the following
result, that “the dimension of the Zariski tangent space is at least the dimension of
the local ring”.

13.2.1. Theorem. — Suppose (A,m, k) is a Noetherian local ring. Then dim A ≤
dimk m/m2.

If equality holds, we say that A is a regular local ring. (If a Noetherian ring A
is regular at all of its primes, A is said to be a regular ring, but we won’t use this
terminology.) A locally Noetherian scheme X is regular or nonsingular at a point
p if the local ring OX,p is regular. It is singular at the point otherwise. A scheme is
regular or nonsingular if it is regular at all points. It is singular otherwise (i.e. if
it is singular at at least one point).

You will hopefully become convinced that this is the right notion of “smooth-
ness” of schemes. Remarkably, Krull introduced the notion of a regular local ring
for purely algebraic reasons, some time before Zariski realized that it was a funda-
mental notion in geometry in 1947.

13.2.2. Proof of Theorem 13.2.1. Note that m is finitely generated (as A is Noether-
ian), so m/m2 is a finitely generated (A/m = k)-module, hence finite-dimensional.
Say dimk m/m2 = n. Choose a basis of m/m2, and lift them to elements f1, . . . , fn

of m. Then by Nakayama’s lemma (version 4, Exercise 8.2.H), (f1, . . . , fn) = m.
Recall Krull’s Theorem 12.3.7: any irreducible component of V(f1, . . . , fn) has

codimension at most n. In this case, V((f1, . . . , fn)) = V(m) is just the point [m], so
the codimension of m is at most n. Thus the longest chain of prime ideals contained
in m is at most n + 1. But this is also the longest chain of prime ideals in A (as m is
the unique maximal ideal), so n ≥ dim A. !

13.2.A. EXERCISE. Show that Noetherian local rings have finite dimension. (Noe-
therian rings in general may have infinite dimension, see Exercise 12.1.I.)

13.2.B. EXERCISE (THE SLICING CRITERION FOR NONSINGULARITY). Suppose X is
a Noetherian scheme, D is an effective Cartier divisor on X (Definition 9.1.2), and
p ∈ X. Show that if p is a nonsingular point of D then p is a nonsingular point of
X. (Hint: Krull’s Principal Ideal Theorem for tangent spaces, Exercise 13.1.B.)

13.2.3. The Jacobian criterion for nonsingularity, and k-smoothness.
A finite type k-scheme is locally of the form Spec k[x1, . . . , xn]/(f1, . . . , fr). The

Jacobian criterion for nonsingularity (Exercise 13.2.C) gives a hands-on method for
checking for singularity at closed points, using the equations f1, . . . , fr, if k = k.

13.2.C. IMPORTANT EXERCISE (THE JACOBIAN CRITERION — EASY, GIVEN EXER-
CISE 13.1.E). Suppose X = Spec k[x1, . . . , xn]/(f1, . . . , fr) has pure dimension
d. Show that a k-valued point p ∈ X is nonsingular if the corank of the Jacobian
matrix (13.1.4.1) (the dimension of the cokernel) at p is d.
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13.2.D. EASY EXERCISE. Suppose k = k. Show that the singular closed points of
the hypersurface f(x1, . . . , xn) = 0 in An

k are given by the equations

f =
∂f

∂x1
= · · · =

∂f

∂xn
= 0.

(Translation: the singular points of f = 0 are where the gradient of f vanishes. This
is not shocking.)

13.2.4. Smoothness over a field k, and the Jacobian criterion over non-algebraically
closed fields. Before using the Jacobian criterion to get our hands dirty with some
explicit varieties, I want to make some general philosophical comments. There
seem to be two serious drawbacks with the Jacobian criterion. For finite type
schemes over k, the criterion gives a necessary condition for nonsingularity, but it
is not obviously sufficient, as we need to check nonsingularity at non-closed points
as well. We can prove sufficiency by working hard to show Fact 13.3.8, which
shows that the non-closed points must be nonsingular as well. A second failing is
that the criterion requires k to be algebraically closed. These problems suggest that
old-fashioned ideas of using derivatives and Jacobians are ill-suited to the correct
modern notion of nonsingularity. But in fact the fault is with nonsingularity. There
is a better notion of smoothness over a field. Better yet, this idea generalizes to the
notion of a smooth morphism of schemes, which behaves well in all possible ways
(preserved by base change, composition, etc.). This is another sign that some prop-
erties we think of as of objects (“absolute notions”) should really be thought of
as properties of morphisms (“relative notions”). We know enough to imperfectly
define what it means for a scheme to be k-smooth, or smooth over k: a k-scheme
is smooth of dimension d if it is reduced and locally of finite type, pure dimension
d, and there exist a cover by affine open sets Spec k[x1, . . . , xn]/(f1, . . . , fr) where
the Jacobian matrix has corank d everywhere. You can check that any open subset
of a smooth k-variety is also a smooth k-variety. We could check that this implies
that this is equivalent to the Jacobian being corank d everywhere for every affine
open cover (and by any choice of generators of the ring corresponding to such an
open set), and also that it suffices to check at the closed points (rank of a matrix of
functions is an upper semicontinuous function). But the cokernel of the Jacobian
matrix is secretly the space of differentials (which might not be surprising if you
have experience with differentials in differential geometry), so this will come for
free when we give the right description of this definition in §26.2.1. The current
imperfect definition will suffice for us to work out examples.

13.2.E. EXERCISE (PRACTICE WITH THE CONCEPT). Show that An
k is k-smooth for

any n and k. For which characteristics is the curve y2z = x3 − xz2 in P2
k smooth

over k (cf. Exercise 13.2.I)?

13.2.5. Nonsingularity vs. k-smoothness. In Exercise 13.2.F, you will establish
that a finite type k-scheme is smooth if and only if it is nonsingular at its closed
points (which we will soon see is the same as nonsingularity everywhere, Theo-
rem 13.3.9). It is a nontrivial fact that (i) a smooth k-scheme is necessarily nonsin-
gular, and (ii) a nonsingular finite type k-scheme is smooth if k is perfect (e.g. if
char k = 0 or k is a finite field). We will prove (ii) in §13.3.10. Perfection is neces-
sary in (ii): Let k = Fp(u), and consider the hypersurface X = Spec k[x]/(xp − u).
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Now k[x]/(xp − u) is a field, hence nonsingular. But if f(x) = xp − u, then
f(u1/p) = df

dx (u1/p) = 0, so the Jacobian criterion fails.

13.2.F. EXERCISE. Show that X is a finite type scheme of pure dimension n over an
algebraically closed field k = k is nonsingular at its closed points if and only if it
is k-smooth. Hint to show nonsingularity implies k-smoothness: use the Jacobian
criterion to show that the corank of the Jacobian is n at the closed points of X. Then
use the fact that the rank of a matrix is upper semicontinuous.

13.2.6. Back to nonsingularity. We now return to nonsingularity, although many
of the following statement are really about k-smoothness. In order to use the Jaco-
bian criterion, we will usually work over an algebraically closed field.

13.2.G. EXERCISE. Suppose k = k. Show that A1
k and A2

k are nonsingular. (Make
sure to check nonsingularity at the non-closed points! Fortunately you know what
all the points of A2

k are; this is trickier for A3
k.) Show that P1

k and P2
k are nonsingu-

lar. (This holds even if k isn’t algebraically closed, using the fact that smoothness
implies nonsingularity, as discussed in §13.2.5, and in higher dimension, using
Fact 13.3.8 below.)

13.2.H. EXERCISE (THE EULER TEST FOR PROJECTIVE HYPERSURFACES). There is
an analogous Jacobian criterion for hypersurfaces f = 0 in Pn

k . Suppose k = k.
Show that the singular closed points correspond to the locus

f =
∂f

∂x1
= · · · =

∂f

∂xn
= 0.

If the degree of the hypersurface is not divisible by char k (e.g. if char k = 0), show
that it suffices to check ∂f

∂x1
= · · · = ∂f

∂xn
= 0. Hint: show that (deg f)f =

∑
i xi

∂f
∂x1

.
(Fact: this will give the singular points in general, not just the closed points, cf.
§13.2.4. I don’t want to prove this, and I won’t use it.)

13.2.I. EXERCISE. Suppose that k = k does not have characteristic 2. Show that
y2z = x3 − xz2 in P2

k is an irreducible nonsingular curve. (Eisenstein’s criterion
gives one way of showing irreducibility. Warning: we didn’t specify char k != 3, so
be careful when using the Euler test.)

13.2.J. EXERCISE. Suppose k = k has characteristic 0. Show that there exists a
nonsingular plane curve of degree d. (Feel free to weaken the hypotheses.)

13.2.K. EXERCISE. Find all the singular closed points of the following plane curves.
Here we work over k = k of characteristic 0 to avoid distractions.

(a) y2 = x2 + x3. This is an example of a node.
(b) y2 = x3. This is called a cusp; we met it earlier in Exercise 10.6.F.
(c) y2 = x4. This is called a tacnode; we met it earlier in Exercise 10.6.G.

(A precise definition of a node etc. will be given in Definition 13.7.2.)

13.2.L. EXERCISE. Suppose k = k. Use the Jacobian criterion to show that the
twisted cubic Proj k[w, x, y, z]/(wz− xy,wy− x2, xz−y2) is nonsingular. (You can
do this, without any hypotheses on k, using the fact that it is isomorphic to P1. But
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do this with the explicit equations, for the sake of practice. The twisted cubic was
defined in Exercise 9.2.A.)

13.2.7. Tangent planes and tangent lines.
Suppose a scheme X ⊂ An is cut out by equations f1, . . . , fr, and X is nonsin-

gular of dimension d at the k-valued point a = (a1, . . . , an). Then the tangent
d-plane to X at p (sometimes denoted TpX) is given by the r equations

(
∂fi

∂x1

)
(a)(x1 − a1) + · · · +

(
∂fi

∂xn

)
(a)(xn − an) = 0.

13.2.M. EXERCISE. Why is this independent of the choice of defining equations f1,
. . . , fr of X?

The Jacobian criterion (Exercise 13.2.C) ensures that these r equations indeed
cut out a d-plane. If d = 1, this is called the tangent line. This is precisely the
definition of tangent plane that we see in multivariable calculus, but note that
here this is the definition, and thus don’t have to worry about δ’s and ε’s. Instead
we will have to just be careful that it behaves the way we want to.

13.2.N. EXERCISE. Compute the tangent line to the curve of Exercise 13.2.K(b) at
(1, 1).

13.2.O. EXERCISE. Suppose X ⊂ Pn
k (k as usual a field) is cut out by homogeneous

equations f1, . . . , fr, and p ∈ X is a k-valued point that is nonsingular of dimension
d. Define the (projective) tangent d-plane to X at p. (Definition 9.2.3 gives the
definition of a d-plane in Pn

k , but you shouldn’t need to refer there.)

13.2.8. Side remark to help you think cleanly. We would want the definition of
tangent k-plane to be natural in the sense that for any automorphism q of An

k (or,
in the case of the previous Exercise, Pn

k ), q(TpX) = Tq(p)q(X). You could verify this
by hand, but you can also say this in a cleaner way, by interpreting the equations
cutting out the tangent space in a coordinate free manner. Informally speaking, we
are using the canonical identification of n-space with the tangent space to n-space
at p, and using the fact that the Jacobian “linear transformation” cuts out TpX in
TpAn in a way independent of choice of coordinates on An or defining equations
of X. Your solution to Exercise 13.2.M will help you start to think in this way.

13.2.P. EXERCISE. Suppose X ⊂ Pn
k is a degree d hypersurface cut out by f = 0, and

L is a line not contained in X. Exercise 9.2.E (a case of Bézout’s theorem) showed
that X and L meet at d points, counted “with multiplicity”. multiplicity d. Suppose
L meets X “with multiplicity at least 2” at a k-valued point p ∈ L ∩ X, and that p is
a nonsingular point of X. Show that L is contained in the tangent plane to X at p.

13.2.9. Arithmetic examples.

13.2.Q. EASY EXERCISE. Show that Spec Z is a nonsingular curve.

13.2.R. EXERCISE. (This tricky exercise is for those who know about the primes of
the Gaussian integers Z[i].) There are several ways of showing that Z[i] is dimen-
sion 1 (For example: (i) it is a principal ideal domain; (ii) it is the normalization of



286 Math 216: Foundations of Algebraic Geometry

Z in the field extension Q(i)/Q; (iii) using Krull’s Principal Ideal Theorem 12.3.3
and the fact that dim Z[x] = 2 by Exercise 12.1.F). Show that Spec Z[i] is a nonsin-
gular curve. (There are several ways to proceed. You could use Exercise 13.1.B.
For example, consider the prime (2, 1 + i), which is cut out by the equations 2 and
1 + x in Spec Z[x]/(x2 + 1).) We will later (§13.4.11) have a simpler approach once
we discuss discrete valuation rings.

13.2.S. EXERCISE. Show that [(5, 5i)] is the unique singular point of Spec Z[5i].
(Hint: Z[i]5 ∼= Z[5i]5. Use the previous exercise.)

13.3 Two pleasant facts about regular local rings

Here are two pleasant facts. Because we won’t prove them in full generality,
we will be careful when using them. In this section only, you may assume these
facts in doing exercises. In some sense, the first fact connects regular local rings to
algebra, and the second connects them to geometry.

13.3.1. Pleasant Fact (Auslander-Buchsbaum, [E, Thm. 19.19]). — Regular local
rings are unique factorization domains.

Thus regular schemes are factorial, and hence normal by Exercise 6.4.F.
In particular, as you might expect, a scheme is “locally irreducible” at a “smooth”

point: a (Noetherian) regular local ring is an integral domain. This can be shown
more directly, [E, Cor. 10.14]. (Of course, normality suffices to show that a Noe-
therian local ring is an integral domain — integrally closed local rings are integral
domains by definition.) Using “power series” ideas, we will prove the following
case in §13.7, which will suffice for dealing with varieties.

13.3.2. Theorem. — Suppose (A,m) is a regular local ring containing its residue field k
(i.e. A is a k-algebra). Then A is an integral domain.

13.3.A. EXERCISE. Suppose X is a variety over k, and p is a nonsingular k-valued
point. Use Theorem 13.3.2 to show that only one irreducible component of X
passes through p. (Your argument will apply without change to general Noether-
ian schemes using Fact 13.3.1.)

13.3.B. EASY EXERCISE. Show that a nonsingular Noetherian scheme is irre-
ducible if and only if it is connected. (Hint: Exercise 6.3.E.)

13.3.3. Remark: factoriality is weaker than nonsingularity. There are local rings that
are singular but still factorial, so the implication factorial implies nonsingular is
strict. Here are is an example that we will verify later. Suppose k is an algebraically
closed field of characteristic not 2. Let A = k[x1, . . . , xn]/(x2

1 + · · ·+ x2
n). Note that

Spec A is clearly singular at the origin. In Exercise 15.2.S, we will show that A
is a unique factorization domain when n ≥ 5, so Spec A is factorial. Note that
if n = 4, A is not a unique factorization domain, because of our friend the non-
singular quadric, see Exercise 13.1.D. (Aside: More generally, it is a consequence
of Grothendieck’s proof (of a conjecture of Samuel) that a local Noetherian ring
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that is a complete intersection — in particular a hypersurface — that is factorial in
codimension at most 3 must be factorial, [SGA2, Exp. XI, Cor. 3.14].)

13.3.4. Local complete intersections.
(We discuss this now because we will invoke Theorem 13.3.2 in the proof of

Theorem 13.3.5.) Suppose Y is a nonsingular (and hence implicitly locally Noe-
therian) scheme. A closed immersion π : X ↪→ Y is said to be a local complete
intersection (of codimension m) if for each point x ∈ X, the ideal sheaf IX/Y,x is
generated by m elements, and each irreducible component of Spec OX,x has codi-
mension m in Spec OY,x. (Note that by Theorem 12.3.7, an enhanced version of
Krull’s Principal Ideal Theorem 12.3.3, if IX/Y,x is generated by m elements, then
each irreducible component of Spec OX,x has codimension at most m in Spec OY,x.)

For example, the union of the three axes in A3
k is not a complete intersection,

by Exercise 13.1.F. Another example is the cone over the twisted cubic (Exer-
cise 12.2.E), where a Zariski tangent space check will verify that you need three
equations cut out this surface in A4

k.

13.3.C. EXERCISE. Suppose i : X ↪→ Y is a closed immersion into a nonsingular
scheme of pure dimension n. Show that the locus of points x ∈ X where i is a
complete intersection is open in X. Hence show that if X is quasicompact, then to
check that i is a local complete intersection it suffices to check at closed points of
X.

13.3.5. Theorem: “k-smooth in k-smooth is always a local complete intersection”.
— Suppose π : X → Y is a closed immersion of a pure dimension d k-smooth variety into
a pure dimension n k-smooth variety. Then that π is a local complete intersection (of
codimension n − d).

(These hypotheses are more stringent than necessary, and we discuss how to
weaken them in Remark 13.3.6.)

Proof. The final parenthetical comment follows from the rest of the statement, as
for varieties, codimension is the difference of dimensions (Theorem 12.2.8).

By Exercise 13.3.C, it suffices to check that π is a local complete intersection

at every closed point x ∈ X. Let φ : (B, n) $$ $$ (A,m) be the corresponding

surjection of local rings. Let I be the kernel of φ, and choose generators f1, . . . , fr of
I. By Exercise 13.1.B, these r equations induce a total of n−d linearly independent
equations on the Zariski tangent space TxY to obtain the Zariski tangent space TxX.
Re-order the fi so that the n − d cut out the Zariski tangent space TxX in TxY.
Let X ′ = Spec B/(f1, . . . , fn−d). Then by Krull’s Principal Ideal Theorem 12.3.3
applied n − r times, dim X ′ ≥ m, while dim TxX ′ = m, so by Theorem 13.2.1,
dim X ′ = m, and X ′ is nonsingular at x. By Theorem 13.3.2, B/(f1, . . . , fn−d) is
an integral domain. Thus we have a surjection B/(f1, . . . , fn−d) → B/I ∼= A of
integral domains of the same dimension, so we must have equality (any nonzero
element in the kernel would be a non-zero divisor, so the quotient would have
strictly smaller dimension by Krull’s Principal Ideal Theorem 12.3.3). Thus I =
(f1, . . . , fn−d) as desired. !
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13.3.6. Remark: Relaxing hypotheses. The main thing we needed to make this work
is that codimension is the difference of dimension, which is true in reasonable
circumstances, including varieties (Theorem 12.2.8), and localizations of finite type
algebras over the integers. Theorem 13.3.2 can be replaced by Fact 13.3.1, that
regular local rings are always integral domains.

13.3.7. The second pleasant fact.
We come next to the second fact that will help us sleep well at night.

13.3.8. Pleasant Fact (due to Serre, [E, Cor. 19.14], [M-CRT, Thm. 19.3]). — Sup-
pose (A,m) is a Noetherian regular local ring. Any localization of A at a prime is also a
regular local ring.

Hence to check if Spec A is nonsingular (A Noetherian), it suffices to check
at closed points (at maximal ideals). This major theorem was an open problem
in commutative algebra for a long time until settled by homological methods by
Serre. The special case of local rings that are localizations of finite type k-algebras
will be given in Exercise 27.1.E.

13.3.D. EXERCISE. Show (using Fact 13.3.8) that you can check nonsingularity
of a Noetherian scheme by checking at closed points. (Caution: as mentioned in
Exercise 6.1.E, a scheme in general needn’t have any closed points!)

We will be able to prove two important cases of Exercise 13.3.D without invok-
ing Fact 13.3.8. The first will be proved in §27.1.6.

13.3.9. Theorem. — If X is a finite type k-scheme that is nonsingular at all its closed
points, then X is nonsingular.

13.3.E. EXERCISE. Suppose X is a Noetherian dimension 1 scheme that is nonsin-
gular at its closed points. Show that X is reduced. Hence show (without invoking
Fact 13.3.8) that X is nonsingular.

13.3.F. EXERCISE (GENERALIZING EXERCISE 13.2.J). Suppose k is an algebraically
closed field of characteristic 0. Show that there exists a nonsingular hypersurface
of degree d in Pn. (As in Exercise 13.2.J, feel free to weaken the hypotheses.)

Although we now know that An
k

is nonsingular (modulo our later proof of The-
orem 13.3.9), you may be surprised to find that we never use this fact (although we
might use the fact that it is nonsingular in dimension 0 and codimension 1, which
we knew beforehand). Perhaps surprisingly, it is more important to us that An

k
is

factorial and hence normal, which we showed more simply. Similarly, geometers
may be pleased to finally know that varieties over k are nonsingular if and only if
they are nonsingular at closed points, but they likely cared only about the closed
points anyway. In short, nonsingularity is less important than you might think,
except in (co)dimension 1, which is the topic of the next section.

13.3.10. !! Checking nonsingularity of k-schemes at closed points by base chang-
ing to k.

We conclude by fulfilling a promise made in §13.2.5. The Jacobian criterion is
a great criterion for checking nonsingularity of finite type k-schemes at k-valued
points. The following result extends its applicability to more general closed points.
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Suppose X is a finite type k-scheme of pure dimension n, and p ∈ X is a closed
point with residue field k ′. By the Nullstellensatz 4.2.3, k ⊂ k ′ is a finite extension;
suppose that it is separable. Define π : Xk := X ×k k → X by base change from
Spec k → Spec k.

13.3.G. EXERCISE. (a) Suppose f(x) ∈ k[x] is a separable polynomial (i.e. f has
distinct roots in k), and irreducible, so k ′′ := k[x]/(f(x)) is a field extension of k.
Show that k ′′⊗kk is, as a ring, k×· · ·×k, where there are deg f = deg k ′′/k factors.
(b) Show that π−1p consists of deg(k ′′/k) reduced points.

13.3.H. EXERCISE. Suppose p is a closed point of X, with residue field k ′ that is
separable over k of degree d. Show that Xk is nonsingular at all the preimages p1,
. . . , pd of p if and only if X is nonsingular at p as follows.

(a) Reduce to the case X = Spec A.
(b) Let m ⊂ A be the maximal ideal corresponding to p. By tensoring the

exact sequence 0 → m → A → k ′ → 0 with k (field extensions preserve
exactness of sequences of vector spaces), interpret

0 → m → A ⊗k k → k ′ ⊗k k → 0

show that m ⊗k k ⊂ A ⊗k k is the ideal corresponding to the pullback of
p to Spec A ⊗k k. Verify that (m ⊗k k)2 = m2 ⊗k k.

(c) By tensoring the short exact sequence of k-vector spaces 0 → m2 → m →
m/m2 → 0 with k, show that

d∑

i=1

dimk TXk,pi
= d dimk TX,p.

(d) Use Exercise 12.1.E(b) and the inequalities dimk TXk,pi
≤ dim Xk and

dimk TX,p ≤ dim X (Theorem 13.2.1) to conclude.

In fact, nonsingularity at a single pi is enough to conclude nonsingularity at p.
(The first idea in showing this: deal with the case when k ′/k is Galois, and obtain
some transitive group action of Gal(k ′/k) on {p1, . . . , pd}.)

This can be used to extend most of the exercises earlier in this section, usually
by replacing the statement that k = k with the statement that k is perfect. For
example, if k is perfect, then the Jacobian criterion checks for nonsingularity at all
closed points.

13.4 Discrete valuation rings: Dimension 1 Noetherian regular
local rings

The case of (co)dimension 1 is important, because if you understand how
primes behave that are separated by dimension 1, then you can use induction to
prove facts in arbitrary dimension. This is one reason why Krull’s Principal Ideal
Theorem 12.3.3 is so useful.

A dimension 1 Noetherian regular local ring can be thought of as a “germ of
a smooth curve” (see Figure 13.3). Two examples to keep in mind are k[x](x) =
{f(x)/g(x) : x ! | g(x)} and Z(5) = {a/b : 5 ! | b}. The first example is “geometric”
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and the second is “arithmetic”, but hopefully it is clear that they are basically the
same.

FIGURE 13.3. A germ of a curve

The purpose of this section is to give a long series of equivalent definitions of
these rings. Before beginning, we quickly sketch these seven definitions. There
are a number of ways a Noetherian local ring can be “nice”. It can be regular, or
a principal domain, or a unique factorization domain, or normal. In dimension 1,
these are the same. Also equivalent are nice properties of ideals: if m is principal;
or if all ideals are either powers of the maximal ideal, or 0. Finally, the ring can
have a discrete valuation, a measure of “size” of elements that behaves particularly
well.

13.4.1. Theorem. — Suppose (A,m) is a Noetherian local ring of dimension 1. Then the
following are equivalent.

(a) (A,m) is regular.
(b) m is principal.

Here is why (a) implies (b). If A is regular, then m/m2 is one-dimensional.
Choose any element t ∈ m − m2. Then t generates m/m2, so generates m by
Nakayama’s lemma 8.2.H. We call such an element a uniformizer.

Conversely, if m is generated by one element t over A, then m/m2 is generated
by one element t over A/m = k. Since dimk m/m2 ≥ 1 by Theorem 13.2.1, we have
dimk m/m2 = 1, and (A,m) is regular.

We will soon use a useful fact, which is geometrically motivated, and is a
special case of an important result, the Artin-Rees Lemma 13.6.3.

13.4.2. Proposition. — If (A,m) is a Noetherian local ring, then ∩im
i = 0.

13.4.3. The geometric intuition for this is that any function that is analytically zero
at a point (vanishes to all orders) actually vanishes in a neighborhood of that point.
(Exercise 13.6.B will make this precise.) The geometric intuition also suggests an

example showing that Noetherianness is necessary: consider the function e−1/x2

in the germs of C∞ -functions on R at the origin.
It is tempting to argue that

(13.4.3.1) m(∩im
i) = ∩im

i,

and then to use Nakayama’s lemma 8.2.H to argue that ∩im
i = 0. Unfortunately,

it is not obvious that this first equality is true: product does not commute with
infinite descending intersections in general. (Aside: product also doesn’t commute
with finite intersections in general, as for example in k[x, y, z]/(xz − yz), z((x) ∩
(y)) != (xz ∩ yz).) You will establish Proposition 13.4.2 in Exercise 13.6.A.
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13.4.4. Proposition. — Suppose (A,m) is a Noetherian regular local ring of dimension
1 (i.e. satisfying (a) above). Then A is an integral domain.

Proof. Suppose xy = 0, and x, y != 0. Then by Proposition 13.4.2, x ∈ mi \ mi+1

for some i ≥ 0, so x = ati for some a /∈ m. Similarly, y = btj for some j ≥ 0 and
b /∈ m. As a, b /∈ m, a and b are invertible. Hence xy = 0 implies ti+j = 0. But as
nilpotents don’t affect dimension,

(13.4.4.1) dim A = dim A/(t) = dim A/m = dim k = 0,

contradicting dim A = 1. !

13.4.5. Theorem. — Suppose (A,m) is a Noetherian local ring of dimension 1. Then (a)
and (b) are equivalent to:

(c) all ideals are of the form mn or (0).

Proof. Assume (a): suppose (A,m, k) is a Noetherian regular local ring of dimen-
sion 1. Then I claim that mn != mn+1 for any n. Otherwise, by Nakayama’s lemma,
mn = 0, from which tn = 0. But A is an integral domain, so t = 0, from which
A = A/m is a field, which can’t have dimension 1, contradiction.

I next claim that mn/mn+1 is dimension 1. Reason: mn = (tn). So mn is
generated as as a A-module by one element, and mn/(mmn) is generated as a
(A/m = k)-module by 1 element (non-zero by the previous paragraph), so it is a
one-dimensional vector space.

So we have a chain of ideals A ⊃ m ⊃ m2 ⊃ m3 ⊃ · · · with ∩mi = (0)
(Proposition 13.4.2). We want to say that there is no room for any ideal besides
these, because “each pair is “separated by dimension 1”, and there is “no room at
the end”. Proof: suppose I ⊂ A is an ideal. If I != (0), then there is some n such that
I ⊂ mn but I !⊂ mn+1. Choose some u ∈ I − mn+1. Then (u) ⊂ I. But u generates
mn/mn+1, hence by Nakayama it generates mn, so we have mn ⊂ I ⊂ mn, so we
are done. Conclusion: in a Noetherian local ring of dimension 1, regularity implies
all ideals are of the form mn or (0).

We now show that (c) implies (a). Assume (a) is false: suppose we have a
dimension 1 Noetherian local integral domain that is not regular, so m/m2 has
dimension at least 2. Choose any u ∈ m − m2. Then (u,m2) is an ideal, but m "
(u,m2) " m2. !

13.4.A. EASY EXERCISE. Suppose (A,m) is a Noetherian dimension 1 local ring.
Show that (a)–(c) above are equivalent to:

(d) A is a principal ideal domain.

13.4.6. Discrete valuation rings. We next define the notion of a discrete valuation
ring. Suppose K is a field. A discrete valuation on K is a surjective homomor-
phism v : K× → Z (in particular, v(xy) = v(x) + v(y)) satisfying

v(x + y) ≥ min(v(x), v(y))

except if x + y = 0 (in which case the left side is undefined). (Such a valuation is
called non-archimedean, although we will not use that term.) It is often convenient
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to say v(0) = ∞. More generally, a valuation is a surjective homomorphism v :
K× → G to a totally ordered group G, although this isn’t so important to us.

Examples.

(i) (the 5-adic valuation) K = Q, v(r) is the “power of 5 appearing in r”, e.g.
v(35/2) = 1, v(27/125) = −3.

(ii) K = k(x), v(f) is the “power of x appearing in f.”
(iii) K = k(x), v(f) is the negative of the degree. This is really the same as (ii),

with x replaced by 1/x.

Then 0 ∪ {x ∈ K× : v(x) ≥ 0} is a ring, which we denote Ov. It is called the
valuation ring of v. (Not every valuation is discrete. Consider the ring of Puisseux
series over a field k, K = ∪n≥1k((x1/n)), with v : K× → Q given by v(xq) = q.)

13.4.B. EXERCISE. Describe the valuation rings in the three examples above. (You
will notice that they are familiar-looking dimension 1 Noetherian local rings. What
a coincidence!)

13.4.C. EXERCISE. Show that {0}∪{x ∈ K× : v(x) ≥ 1} is the unique maximal ideal
of the valuation ring. (Hint: show that everything in the complement is invertible.)
Thus the valuation ring is a local ring.

An integral domain A is called a discrete valuation ring (or DVR) if there
exists a discrete valuation v on its fraction field K = K(A) for which Ov = A.
Similarly, A is a valuation ring if there exists a valuation v on K for which Ov = A.

Now if A is a Noetherian regular local ring of dimension 1, and t is a uni-
formizer (a generator of m as an ideal, or equivalently of m/m2 as a k-vector space)
then any non-zero element r of A lies in some mn − mn+1, so r = tnu where u is a
unit (as tn generates mn by Nakayama, and so does r), so K(A) = At = A[1/t]. So
any element of K(A) can be written uniquely as utn where u is a unit and n ∈ Z.
Thus we can define a valuation v(utn) = n.

13.4.D. EXERCISE. Show that v is a discrete valuation.

13.4.E. EXERCISE. Conversely, suppose (A,m) is a discrete valuation ring. Show
that (A,m) is a Noetherian regular local ring of dimension 1. (Hint: Show that the
ideals are all of the form (0) or In = {r ∈ A : v(r) ≥ n}, and (0) and I1 are the
only primes. Thus we have Noetherianness, and dimension 1. Show that I1/I2 is
generated by the image of any element of I1 − I2.)

Hence we have proved:

13.4.7. Theorem. — An integral domain A is a Noetherian local ring of dimension 1
satisfying (a)–(d) if and only if

(e) A is a discrete valuation ring.

13.4.F. EXERCISE. Show that there is only one discrete valuation on a discrete
valuation ring.

13.4.8. Definition. Thus any Noetherian regular local ring of dimension 1 comes
with a unique valuation on its fraction field. If the valuation of an element is n > 0,
we say that the element has a zero of order n. If the valuation is −n < 0, we say
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that the element has a pole of order n. We will come back to this shortly, after
dealing with (f) and (g).

13.4.9. Theorem. — Suppose (A,m) is a Noetherian local ring of dimension 1. Then
(a)–(e) are equivalent to:

(f) A is a unique factorization domain,
(g) A is integrally closed in its fraction field K = K(A).

Proof. (a)–(e) clearly imply (f), because we have the following stupid unique factor-
ization: each non-zero element of r can be written uniquely as utn where n ∈ Z≥0

and u is a unit.
Now (f) implies (g), because unique factorization domains are integrally closed

in their fraction fields (Exercise 6.4.F).
It remains to check that (g) implies (a)–(e). We will show that (g) implies (b).
Suppose (A,m) is a Noetherian local integral domain of dimension 1, inte-

grally closed in its fraction field K = K(A). Choose any nonzero r ∈ m. Then
S = A/(r) is a Noetherian local ring of dimension 0 — its only prime is the image
of m, which we denote n to avoid confusion. Then n is finitely generated, and each
generator is nilpotent (the intersection of all the prime ideals in any ring are the
nilpotents, Theorem 4.2.10). Then nN = 0, where N is sufficiently large. Hence
there is some n such that nn = 0 but nn−1 != 0.

Now comes the crux of the argument. Thus in A, mn ⊆ (r) but mn−1 !⊂ (r).
Choose s ∈ mn−1 − (r). Consider s/r ∈ K(A). As s /∈ (r), s/r /∈ A, so as A is
integrally closed, s/r is not integral over A.

Now s
rm !⊂ m (or else s

rm ⊂ m would imply that m is a faithful A[s
r ]-module,

contradicting Exercise 8.2.J). But sm ⊂ mn ⊂ rA, so s
rm ⊂ A. Thus s

rm = A, from
which m = r

sA, so m is principal. !

13.4.10. Geometry of normal Noetherian schemes. We can finally make precise
(and generalize) the fact that the function (x − 2)2x/(x − 3)4 on A1

C has a double
zero at x = 2 and a quadruple pole at x = 3. Furthermore, we can say that 75/34
has a double zero at 5, and a single pole at 2. (What are the zeros and poles of
x3(x + y)/(x2 + xy)3 on A2?) Suppose X is a locally Noetherian scheme. Then for
any regular codimension 1 points (i.e. any point p where OX,p is a regular local
ring of dimension 1), we have a discrete valuation v. If f is any non-zero element
of the fraction field of OX,p (e.g. if X is integral, and f is a non-zero element of
the function field of X), then if v(f) > 0, we say that the element has a zero of
order v(f), and if v(f) < 0, we say that the element has a pole of order −v(f). (We
aren’t yet allowed to discuss order of vanishing at a point that is not regular or
codimension 1. One can make a definition, but it doesn’t behave as well as it does
when have you have a discrete valuation.)

13.4.G. EXERCISE (FINITENESS OF ZEROS AND POLES ON NOETHERIAN SCHEMES).
Suppose X is an integral Noetherian scheme, and f ∈ K(X)× is a non-zero element
of its function field. Show that f has a finite number of zeros and poles. (Hint:
reduce to X = Spec A. If f = f1/f2, where fi ∈ A, prove the result for fi.)
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Suppose A is a Noetherian integrally closed domain. Then it is regular in
codimension 1 (translation: its points of codimension at most 1 are regular). If A
is dimension 1, then obviously A is nonsingular.

13.4.H. EXERCISE. If f is a rational function on a locally Noetherian normal scheme
with no poles, show that f is regular. (Hint: Algebraic Hartogs’ Lemma 12.3.10.)

13.4.11. For example (cf. Exercise 13.2.R), Spec Z[i] is nonsingular, because it is di-
mension 1, and Z[i] is a unique factorization domain. Hence Z[i] is normal, so all
its closed (codimension 1) points are nonsingular. Its generic point is also nonsin-
gular, as Z[i] is an integral domain.

13.4.12. Remark. A (Noetherian) scheme can be singular in codimension 2 and
still be normal. For example, you have shown that the cone x2 + y2 = z2 in A3 in
characteristic not 2 is normal (Exercise 6.4.I(b)), but it is singular at the origin (the
Zariski tangent space is visibly three-dimensional).

But singularities of normal schemes are not so bad. For example, we have al-
ready seen Hartogs’ Theorem 12.3.10 for Noetherian normal schemes, which states
that you could extend functions over codimension 2 sets.

13.4.13. Remark. We know that for Noetherian rings we have implications

unique factorization domain =⇒ integrally closed =⇒ regular in codimension 1.

Hence for locally Noetherian schemes, we have similar implications:

factorial =⇒ normal =⇒ regular in codimension 1.

Here are two examples to show you that these inclusions are strict.

13.4.I. EXERCISE (THE KNOTTED PLANE). Let A be the subring k[x3, x2, xy, y] ⊂
k[x, y]. (Informally, we allow all polynomials that don’t include a non-zero multi-
ple of the monomial x.) Show that Spec k[x, y] → Spec A is a normalization. Show
that A is not integrally closed. Show that Spec A is regular in codimension 1 (hint:
show it is dimension 2, and when you throw out the origin you get something
nonsingular, by inverting x2 and y respectively, and considering Ax2 and Ay).

13.4.14. Example. Suppose k is algebraically closed of characteristic not 2. Then
k[w, x, y, z]/(wz − xy) is integrally closed, but not a unique factorization domain,
see Exercise 6.4.K (and Exercise 13.1.D).

13.4.15. Dedekind domains. A Dedekind domain is a Noetherian integral do-
main of dimension at most one that is normal (integrally closed in its fraction
field). The localization of a Dedekind domain at any prime but (0) (i.e. a codimen-
sion one prime) is hence a discrete valuation ring. This is an important notion, but
we won’t use it much. Rings of integers of number fields are examples, see §10.6.1.
In particular, if n is a square free integer congruent to 3 (mod 4), then Z[

√
n] is a

Dedekind domain, by Exercise 6.4.I(a).

13.4.16. Remark: Serre’s criterion that “normal = R1+S2”. Suppose A is a reduced
Noetherian ring. Serre’s criterion for normality states that A is normal if and only if
A is regular in codimension 1, and every associated prime of a principal ideal gen-
erated by a non-zerodivisor is of codimension 1 (i.e. if b is a non-zerodivisor, then
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Spec A/(b) has no embedded points). The first hypothesis is sometimes called
“R1”, and the second is called “Serre’s S2 criterion”. The S2 criterion says rather
precisely what is needed for normality in addition to regularity in codimension
1. We won’t use this, so we won’t prove it here. (See [E, §11.2] for a proof.)
Note that the necessity of R1 follows from the equivalence of (a) and (g) in The-
orem 13.4.9.) An example of a variety satisfying R1 but not S2 is the knotted plane,
Exercise 13.4.I.

13.4.J. EXERCISE. Consider two planes in A4
k meeting at a point, V(x, y) and

V(z,w). Their union V(xz, xw, yz, yw) is not normal, but it is regular in codimen-
sion 1. Show that it fails the S2 condition by considering the function x+z. (This is
a useful example: it is a simple example of a variety that is not Cohen-Macaulay.)

13.4.17. Remark: Finitely generated modules over a discrete valuation ring. We record a
useful fact for future reference. Recall that finitely generated modules over a prin-
cipal ideal domain are finite direct sums of cyclic modules (see for example [DF,
§12.1, Thm. 5]). Hence any finitely generated module over a discrete valuation
ring A with uniformizer t is a finite direct sum of terms A and A/(tr) (for various
r). See Proposition 14.7.3 for an immediate consequence.

13.5 Valuative criteria for separatedness and properness

In reasonable circumstances, it is possible to verify separatedness by check-
ing only maps from spectra of discrete valuations rings. There are three reasons
you might like this (even if you never use it). First, it gives useful intuition for
what separated morphisms look like. Second, given that we understand schemes
by maps to them (the Yoneda philosophy), we might expect to understand mor-
phisms by mapping certain maps of schemes to them, and this is how you can
interpret the diagram appearing in the valuative criterion. And the third concrete
reason is that one of the two directions in the statement is much easier (a special
case of the Reduced-to-separated Theorem 11.2.1, see Exercise 13.5.A), and this is
the direction we will repeatedly use.

We begin with a valuative criterion that applies in a case that will suffice for
the interests of most people, that of finite type morphisms of Noetherian schemes.
We will then give a more general version for more general readers.

13.5.1. Theorem (Valuative criterion for separatedness for morphisms of finite
type of Noetherian schemes). — Suppose f : X → Y is a morphism of finite type of
Noetherian schemes. Then f is separated if and only if the following condition holds. For
any discrete valuation ring A, and any diagram of the form

(13.5.1.1) Spec K(A)
" #

open imm.

%%

$$ X

f

%%
Spec A $$ Y
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(where the vertical morphism on the left corresponds to the inclusion A ↪→ K(A)), there is
at most one morphism Spec A → X such that the diagram

(13.5.1.2) Spec K(A) $$
" #

open imm.

%%

X

f

%%
Spec A

≤1

GG

$$ Y

commutes.

13.5.A. EXERCISE (THE EASY DIRECTION). Use the Reduced-to-separated Theo-
rem 11.2.1 to prove one direction of the theorem: that if f is separated, then the
valuative criterion holds.

13.5.B. EXERCISE. Suppose X is an irreducible Noetherian separated curve. If p ∈
X is a nonsingular point, then OX,p is a discrete valuation ring, so each nonsingular
point yields a discrete valuation on K(X). Use the previous exercise to show that
distinct points yield distinct valuations.

Here is the intuition behind the valuative criterion (see Figure 13.4). We think
of Spec of a discrete valuation ring A as a “germ of a curve”, and Spec K(A) as
the “germ minus the origin” (even though it is just a point!). Then the valuative
criterion says that if we have a map from a germ of a curve to Y, and have a lift of
the map away from the origin to X, then there is at most one way to lift the map
from the entire germ. In the case where Y is a field, you can think of this as saying
that limits of one-parameter families are unique (if they exist).

?

FIGURE 13.4. The line with the doubled origin fails the valuative
criterion for separatedness

For example, this captures the idea of what is wrong with the map of the line
with the doubled origin over k (Figure 13.5): we take Spec A to be the germ of the
affine line at the origin, and consider the map of the germ minus the origin to the
line with doubled origin. Then we have two choices for how the map can extend
over the origin.

13.5.C. EXERCISE. Make this precise: show that map of the line with doubled
origin over k to Spec k fails the valuative criterion for separatedness. (Earlier argu-
ments were given in Exercises 11.1.D and 11.1.N.)
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2 choices

FIGURE 13.5. The valuative criterion for separatedness

13.5.2. Remark for experts: moduli spaces and the valuative criterion of separatedness. If
Y = Spec k, and X is a (fine) moduli space (a term I won’t define here) of some
type of object, then the question of the separatedness of X (over Spec k) has a nat-
ural interpretation: given a family of your objects parametrized by a “punctured
discrete valuation ring”, is there always at most one way of extending it over the
closed point?

13.5.3. Idea behind the proof. (One direction was done in Exercise 13.5.A.) If f is
not separated, our goal is to produce a diagram (13.5.1.1) that can be completed
to (13.5.1.2) in more than one way. If f is not separated, then δ : X → X ×Y X is a
locally closed immersion that is not a closed immersion.

13.5.D. EXERCISE. Show that you can find points p /∈ X×Y X and q ∈ X×Y X such
that p ∈ q, and there are no points “between p and q” (no points r distinct from p
and q with p ∈ r and r ∈ q). (Exercise 8.4.B may shed you some light.)

Let Q be the scheme obtained by giving the induced reduced subscheme struc-
ture to q. Let B = OQ,p be the local ring of Q at p.

13.5.E. EXERCISE. Show that B is a Noetherian local integral domain of dimension
1.

If B were regular, then we would be done: composing the inclusion morphism
Q → X ×Y X with the two projections induces the same morphism q → X (i.e.
Specκ(q) → X) but different extensions to Q precisely because p is not in the diag-
onal. To complete the proof, one shows that the normalization of B is Noetherian;
then localizing at any prime above p (there is one by the Lying Over Theorem 8.2.5)
yields the desired discrete valuation ring A.

With a more powerful invocation of commutative algebra, we can prove a
valuative criterion with much less restrictive hypotheses.

13.5.4. Theorem (Valuative criterion of separatedness). — Suppose f : X → Y is a
quasiseparated morphism. Then f is separated if and only if the following condition holds.
For any valuation ring A with function field K, and any diagram of the form (13.5.1.1),
there is at most one morphism Spec A → X such that the diagram (13.5.1.2) commutes.
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Because I have already proved something useful that we will never use, I feel
no urge to prove this harder fact. The proof of one direction, that separated implies
that the criterion holds, follows from the identical argument as in Exercise 13.5.A.

13.5.5. Valuative criteria of properness.
There is a valuative criterion for properness too. It is philosophically useful,

and sometimes directly useful, although we won’t need it.

13.5.6. Theorem (Valuative criterion for properness for morphisms of finite type
of Noetherian schemes). — Suppose f : X → Y is a morphism of finite type of locally
Noetherian schemes. Then f is proper if and only if for any discrete valuation ring A and
any diagram (13.5.1.1), there is exactly one morphism Spec A → X such that the diagram
(13.5.1.2) commutes.

Recall that the valuative criterion for separatedness was the same, except that
exact was replaced by at most.

In the case where Y is a field, you can think of this as saying that limits of one-
parameter families always exist, and are unique. This is a useful intuition for the
notion of properness.

13.5.F. EXERCISE. Use the valuative criterion of properness to prove that Pn
A →

Spec A is proper if A is Noetherian. (This is a difficult way to prove a fact that we
already showed in Theorem 11.3.5.)

13.5.7. Remarks for experts. There is a moduli-theoretic interpretation similar to
that for separatedness (Remark 13.5.2): X is proper if and only if there is always
precisely one way of filling in a family over a punctured discrete valuation ring.

Finally, here is a fancier version of the valuative criterion for properness.

13.5.8. Theorem (Valuative criterion of properness). — Suppose f : X → Y is a
quasiseparated, finite type (hence quasicompact) morphism. Then f is proper if and only
if the following condition holds. For any valuation ring A and any diagram of the form
(13.5.1.1), there is exactly one morphism Spec A → X such that the diagram (13.5.1.2)
commutes.

13.6 ! Filtered rings and modules, and the Artin-Rees Lemma

The Artin-Rees Lemma 13.6.3 generalizes the intuition behind Proposition 13.4.2,
that any function that is analytically zero at a point actually vanishes in a neighbor-
hood of that point (§13.4.3). Because we will use it later (proving the Cohomology
and Base Change Theorem 25.8.5), and because it is useful to recognize it in other
contexts, we discuss it in some detail.

13.6.1. Definitions. Suppose I is an ideal of a ring A. A descending filtration of an
A-module M

(13.6.1.1) M = M0 ⊃ M1 ⊃ M2 ⊃ · · ·
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is called an I-filtering if IdMn ⊂ Mn+d for all d,n ≥ 0. An example is the I-adic
filtering where Mk = IkM. We say an I-filtering is I-stable if for some s and all
d ≥ 0, IdMs = Md+s. For example, the I-adic filtering is I-stable.

Let A•(I) be the graded ring ⊕n≥0In. This is called the Rees algebra of the
ideal I in A, although we will not need this terminology. Any I-filtered module
is an A•(I)-module. Define M•(I) := ⊕InM. It is naturally a graded module over
A•(I).

13.6.2. Proposition. If A is Noetherian, M is a finitely generated A-module, and
(13.6.1.1) is an I-filtration, then M•(I) is a finitely generated A•(I)-module if and only if
the filtration (13.6.1.1) is I-stable.

Proof. Note that A•(I) is Noetherian (by Exercise 5.5.A(b), as A is Noetherian, and
I is a finitely generated A-module).

Assume first that M•(I) is finitely generated over the Noetherian ring A•(I),
and hence Noetherian. Consider the increasing chain of A•(I)-submodules whose
kth element Lk is

M ⊕ M1 ⊕ M2 ⊕ · · ·⊕ Mk ⊕ IMk ⊕ I2Mk ⊕ · · ·

(which agrees with M•(I) up until Mk, and then “I-stabilizes”). This chain must
stabilize by Noetherianness. But ∪Lk = M•(I), so for some s ∈ Z, Ls = M•(I), so
IdMs = Ms+d for all d ≥ 0 — (13.6.1.1) is I-stable.

For the other direction, assume that Md+s = IdMs for a fixed s and all d ≥ 0.
Then M•(I) is generated over A•(I) by M⊕M1 ⊕ · · ·⊕Ms. But each Mj is finitely
generated, so M•(I) is indeed a finitely generated A•-module. !

13.6.3. Artin-Rees Lemma. — Suppose A is a Noetherian ring, and (13.6.1.1) is an I-
stable filtration of a finitely generated A-module M. Suppose that L ⊂ M is a submodule,
and let Ln := L ∩ Mn. Then

L = L0 ⊃ L1 ⊃ L2 ⊃ · · ·

is an I-stable filtration of L.

Proof. Note that L• is an I-filtration, as ILn ⊂ IL ∩ IMn ⊂ L ∩ Mn+1 = Ln+1. Also,
L•(I) is an A•(I)-submodule of the finitely generated A•(I)-module M•(I), and
hence finitely generated by Exercise 4.6.Y (as A•(I) is Noetherian, see the proof of
Proposition 13.6.2). !

An important special case is the following.

13.6.4. Corollary. — Suppose I ⊂ A is an ideal of a Noetherian ring, and M is a finitely
generated A-module, and L is a submodule. Then for some integer s, Id(L ∩ IsM) =
L ∩ Id+sM for all d ≥ 0.

Warning: it need not be true that IdL = L ∩ IdM for all d. (Can you think of a
counterexample to this statement?)

Proof. Apply the Artin-Rees Lemma 13.6.3 to the filtration Mn = InM. !
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13.6.A. EXERCISE. Prove Proposition 13.4.2. Hint: use the previous Corollary to
prove (13.4.3.1).

13.6.B. EXERCISE. Make the following precise, and prove it (thereby justifying the
intuition in §13.4.3): if X is a locally Noetherian scheme, and f is a function on X
that is analytically zero at a point p ∈ X, then f vanishes in a (Zariski) neighbor-
hood of p.

13.7 ! Completions

This section will briefly introduce the notion of completions of rings, which
generalizes the notion of power series. Our short-term goal is to show that regular
local rings appearing on k-varieties are integral domains (Theorem 13.3.2), and a
key fact (§13.7.4) that has been used in the proof that nonsingularity for k-varieties
can be checked at closed points (Theorem 13.3.9). But we will also define some
types of singularities such as nodes of curves.

13.7.1. Definition. Suppose that I is an ideal of a ring A. Define Â to be lim←−A/Ii,
the completion of A at I (or along I). More generally, if M is an A-module, define
M̂ to be lim←−M/IiM, the completion of M at I (or along I) — this notion will turn
up in §25.10.

13.7.A. EXERCISE. Suppose that I is a maximal ideal m. Show that the completion
construction factors through localization at m. More precisely, make sense of the
following diagram, and show that it commutes.

A

%%

$$ Â

∼
%%

Am
$$ Âm

For this reason, one informally thinks of the information in the completion as com-
ing from an even smaller shred of a scheme than the localization.

13.7.B. EXERCISE. If J ⊂ A is an ideal, figure out how to define the completion
Ĵ ⊂ Â (an ideal of Â) using (J + Im)/Im ⊂ A/Im. With your definition, you will

observe an isomorphism Â/J ∼= Â/Ĵ, which is helpful for computing completions
in practice.

13.7.2. Definition (cf. Exercise 13.2.K). If X is a k-variety of pure dimension 1,
and p is a closed point, where char k != 2, 3. We say that X has a node (resp.
cusp, tacnode, triple point) at p if ÔX,p is isomorphic to the completion of the
curve Spec k[x, y]/(y2 − x2) (resp. Spec k[x, y]/(y2 − x3), Spec k[x, y]/(y2 − x4),
Spec k[x, y]/(y3−x3)). One can define other singularities similarly (see for example
Definition 19.4.4, Exercise 19.4.F, and Remark 19.4.5). You may wish to extend
these definitions to more general fields.
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Suppose for the rest of this section that (A,m) is Noetherian local ring con-
taining its residue field k (i.e. it is a k-algebra), of dimension n. Let x1, . . . , xn be
elements of A whose images are a basis for m/m2.

13.7.C. EXERCISE. Show that the natural map A → Â is an injection. (Hint:
Proposition 13.4.2.)

13.7.D. EXERCISE. Show that the map of k-algebras k[[t1, . . . , tn]] → Â defined by
ti (→ xi is a surjection. (First be clear why there is such a map!)

13.7.E. EXERCISE. Show that Â is a Noetherian local ring. (Hint: By Exercise 4.6.K,
k[[t1 . . . , tn]] is Noetherian.)

13.7.F. EXERCISE. Show that k[[t1, . . . , tn]] is an integral domain. (Possible hint: if
f ∈ k[[t1, . . . , tn]] is nonzero, make sense of its “degree”, and its “leading term”.)

13.7.G. EXERCISE. Show that k[[t1, . . . , tn]] is dimension n. (Hint: find a chain of
n+1 prime ideals to show that the dimension is at least n. For the other inequality,
use the multi-equation generalization of Krull, Theorem 12.3.7.)

13.7.H. EXERCISE. If p ⊂ A, show that p̂ is a prime ideal of Â. (Hint: if f, g /∈ p,
then let mf,mg be the first “level” where they are not in p (i.e. the smallest m such
that f /∈ p/mm+1). Show that fg /∈ p/mmf+mg+1.)

13.7.I. EXERCISE. Show that if I " J ⊂ A are nested ideals, then Î " Ĵ. Hence
(applying this to prime ideals) show that dim Â ≥ dim A.

Suppose for the rest of this section that (A,m) is a regular local ring.

13.7.J. EXERCISE. Show that dim Â = dim A. (Hint: argue dim Â ≤ dim m/m2 =
dim A.)

13.7.3. Theorem. — Suppose (A,m) is a Noetherian regular local ring containing its
residue field k. Then k[[t1, . . . , tn]] → Â is an isomorphism.

(This is basically the Cohen Structure Theorem.) Thus you should think of
the map A → Â = k[[x1, . . . xn]] as sending an element of A to its power series
expansion in the variables xi.

Proof. We wish to show that k[[t1, . . . , tn]] → Â is injective; we already know it
is surjective (Exercise 13.7.D). Suppose f ∈ k[[t1, . . . , tn]] maps to 0, so we get a
surjection map k[[t1, . . . , tn]]/f → Â. Now f is not a zerodivisor, so by Krull’s
Principal Ideal Theorem 12.3.3, the left side has dimension n − 1. But then any
quotient of it has dimension at most n − 1, yielding a contradiction. !

13.7.K. EXERCISE. Prove Theorem 13.3.2, that regular local rings containing their
residue field are integral domains.

13.7.4. Fact for later. We conclude by mentioning a fact we will use later. Suppose
(A,m) is a regular local ring of dimension n, containing its residue field. Suppose
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x1, . . . , xm are elements of m such that their images in m/m2 are linearly indepen-
dent (over k). Let I = (x1, . . . , xm). Note that (A/I,m) is a regular local ring: by
Krull’s Principal Ideal Theorem 12.3.3, dim A/I ≥ n − m, and in A/I, m/m2 is
dimension n − m. Thus I is a prime ideal, and I/I2 is an (A/I)-module.

13.7.L. EXERCISE. Show that dimk(I/I2) ⊗A/I k = n − m. (Hint: reduce this
to a calculation in the completion. It will be convenient to choose coordinates by
extending x1, . . . , xm to x1, . . . , xn.)
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Quasicoherent sheaves





CHAPTER 14

Quasicoherent and coherent sheaves

Quasicoherent and coherent sheaves generalize the notion of a vector bundle.
To motivate them, we first discuss vector bundles, and their interpretation as lo-
cally free shaves.

A free sheaf on X is an OX-module isomorphic to O⊕I
X where the sum is over

some index set I. A locally free sheaf on a ringed space X is an OX-module lo-
cally isomorphic to a free sheaf. This corresponds to the notion of a vector bun-
dle (§14.1). Quasicoherent sheaves form a convenient abelian category containing
the locally free sheaves that is much smaller than the full category of O-modules.
Quasicoherent sheaves generalize free sheaves in much the way that modules gen-
eralize free modules. Coherent sheaves are roughly speaking a finite rank version
of quasicoherent sheaves, which form a well-behaved abelian category containing
finite rank locally free sheaves (or equivalently, finite rank vector bundles).

14.1 Vector bundles and locally free sheaves

We recall the notion of vector bundles on smooth manifolds. Nontrivial ex-
amples to keep in mind are the tangent bundle to a manifold, and the Möbius
strip over a circle (interpreted as a line bundle). Arithmetically-minded readers
shouldn’t tune out: for example, fractional ideals of the ring of integers in a num-
ber field (defined in §10.6.1) turn out to be an example of a “line bundle on a
smooth curve” (Exercise 14.1.K).

A rank n vector bundle on a manifold M is a fibration π : V → M with the
structure of an n-dimensional real vector space on π−1(x) for each point x ∈ M,
such that for every x ∈ M, there is an open neighborhood U and a homeomor-
phism

φ : U × Rn → π−1(U)

over U (so that the diagram

(14.1.0.1) π−1(U)

π|
π−1(U) ''$

$$
$$

$$
$$
++

∼= $$ U × Rn

projection to first factor
55LL
LL
LL
LL
LL

U

commutes) that is an isomorphism of vector spaces over each y ∈ U. An isomor-
phism (14.1.0.1) is called a trivialization over U.

We call n the rank of the vector bundle. A rank 1 vector bundle is called a
line bundle. (It can also be convenient to be agnostic about the rank of the vector

305
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bundle, so it can have different ranks on different connected components. It is also
sometimes convenient to consider infinite-rank vector bundles.)

14.1.1. Transition functions. Given trivializations over U1 and U2, over their
intersection, the two trivializations must be related by an element T12 of GL(n)
with entries consisting of functions on U1 ∩U2. If {Ui} is a cover of M, and we are
given trivializations over each Ui, then the {Tij} must satisfy the cocycle condition:

(14.1.1.1) Tij|Ui∩Uj∩Uk
◦ Tjk|Ui∩Uj∩Uk

= Tik|Ui∩Uj∩UK
.

(This implies Tij = T−1
ji .) The data of the Tij are called transition functions (or

transition matrices for the trivialization.
Conversely, given the data of a cover {Ui} and transition functions Tij, we can

recover the vector bundle (up to unique isomorphism) by “gluing together the
various Ui × Rn along Ui ∩ Uj using Tij”.

14.1.2. The sheaf of sections. Fix a rank n vector bundle V → M. The sheaf of
sections F of V (Exercise 3.2.G) is an OM-module — given any open set U, we can
multiply a section over U by a function on U and get another section.

Moreover, given a trivialization over U, the sections over U are naturally iden-
tified with n-tuples of functions of U.

U × Rn

π

%%
U

n-tuple of functions

HH

Thus given a trivialization, over each open set Ui, we have an isomorphism
F |Ui

∼= O⊕n
Ui

. We say that such an F is a locally free sheaf of rank n. (A sheaf F
is free of rank n if F ∼= O⊕n.)

14.1.3. Transition functions for the sheaf of sections. Suppose we have a vector
bundle on M, along with a trivialization over an open cover Ui. Suppose we
have a section of the vector bundle over M. (This discussion will apply with M
replaced by any open subset.) Then over each Ui, the section corresponds to an
n-tuple functions over Ui, say #si.

14.1.A. EXERCISE. Show that over Ui ∩Uj, the vector-valued function #si is related
to #sj by the transition functions: Tij#s

i = #sj. (Don’t do this too quickly — make
sure your i’s and j’s are on the correct side.)

Given a locally free sheaf F with rank n, and a trivializing neighborhood of
F (an open cover {Ui} such that over each Ui, F |Ui

∼= O⊕n
Ui

as O-modules), we
have transition functions Tij ∈ GL(n,O(Ui ∩ Uj)) satisfying the cocycle condition
(14.1.1.1). Thus in conclusion the data of a locally free sheaf of rank n is equivalent
to the data of a vector bundle of rank n. This change of perspective is useful, and
is similar to an earlier change of perspective when we introduced ringed spaces:
understanding spaces is the same as understanding (sheaves of) functions on the
spaces, and understanding vector bundles (a type of “space over M”) is the same
as understanding functions.
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14.1.4. Definition. A rank 1 locally free sheaf is called an invertible sheaf. (Unim-
portant aside: “invertible sheaf” is a heinous term for something that is essentially
a line bundle. The motivation is that if X is a locally ringed space, and F and G are
OX-modules with F⊗OX

G ∼= OX, then F and G are invertible sheaves [MO33489].
Thus in the monoid of OX-modules under tensor product, invertible sheaves are
the invertible elements. We will never use this fact.)

14.1.5. Locally free sheaves on schemes.
We can generalize the notion of locally free sheaves to schemes without change.

A locally free sheaf of rank n on a scheme X is defined as an OX-module F that
is locally a free sheaf of rank n. Precisely, there is an open cover {Ui} of X such
that for each Ui, F |Ui

∼= O⊕n
Ui

. This open cover determines transition functions —
the data of a cover {Ui} of X, and functions Tij ∈ GL(n,O(Ui ∩ Uj)) satisfying the
cocycle condition (14.1.1.1) — which in turn determine the locally free sheaf. As
before, given this data, we can find the sections over any open set U. Informally,
they are sections of the free sheaves over each U∩Ui that agree on overlaps. More

formally, for each i, they are #si =




si
1
...

si
n



 ∈ Γ(U ∩ Ui,OX)n, satisfying Tij#s
i = #sj

on U ∩ Ui ∩ Uj.
You should think of these as vector bundles, but just keep in mind that they are

not the “same”, just equivalent notions. We will later (Definition 18.1.4) define the
“total space” of the vector bundle V → X (a scheme over X) in terms of the sheaf
version of Spec (precisely, Spec Sym V•). But the locally free sheaf perspective will
prove to be more useful. As one example: the definition of a locally free sheaf is
much shorter than that of a vector bundle.

As in our motivating discussion, it is sometimes convenient to let the rank vary
among connected components, or to consider infinite rank locally free sheaves.

14.1.6. Useful constructions, in the form of a series of important exercises.
We now give some useful constructions in the form of a series of exercises.

Two hints: Exercises 14.1.B–14.1.G will apply for ringed spaces in general, so you
shouldn’t use special properties of schemes. Furthermore, they are all local on X,
so you can reduce to the case where the locally free sheaves in question are actually
free.

14.1.B. EXERCISE. Suppose F and G are locally free sheaves on X of rank m and
n respectively. Show that Hom OX

(F ,G ) is a locally free sheaf of rank mn.

14.1.C. EXERCISE. If E is a (finite rank) locally free sheaf on X of rank n, Exer-
cise 14.1.B implies that E ∨ := Hom (E ,OX) is also a locally free sheaf of rank n.
This is called the dual of E . Given transition functions for E , describe transition
functions for E ∨. (Note that if E is rank 1, i.e. invertible, the transition functions
of the dual are the inverse of the transition functions of the original.) Show that
E ∼= E ∨∨. (Caution: your argument showing that there is a canonical isomor-
phism (F∨)∨ ∼= F better not also show that there is an isomorphism F∨ ∼= F !
We will see an example in §15.1 of a locally free F that is not isomorphic to its
dual: the invertible sheaf O(1) on Pn.)
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14.1.D. EXERCISE. If F and G are locally free sheaves, show that F ⊗G is a locally
free sheaf. (Here ⊗ is tensor product as OX-modules, defined in Exercise 3.5.I.) If
F is an invertible sheaf, show that F ⊗ F∨ ∼= OX.

14.1.E. EXERCISE. Recall that tensor products tend to be only right-exact in gen-
eral. Show that tensoring by a locally free sheaf is exact. More precisely, if F is a
locally free sheaf, and G ′ → G → G ′′ is an exact sequence of OX-modules, then
then so is G ′ ⊗F → G ⊗F → G ′′ ⊗F . (Possible hint: it may help to check exact-
ness by checking exactness at stalks. Recall that the tensor product of stalks can be
identified with the stalk of the tensor product, so for example there is a “natural”
isomorphism (G ⊗OX

F )x
∼= Gx ⊗OX,x

Fx, Exercise 3.5.I(b).)

14.1.F. EXERCISE. If E is a locally free sheaf of finite rank, and F and G are
OX-modules, show that Hom (F ,G ⊗ E ) ∼= Hom (F ⊗ E ∨,G ). (Possible hint: first
consider the case where E is free.)

14.1.G. EXERCISE AND IMPORTANT DEFINITION. Show that the invertible sheaves
on X, up to isomorphism, form an abelian group under tensor product. This is
called the Picard group of X, and is denoted Pic X.

Unlike the previous exercises, the next one is specific to schemes.

14.1.H. EXERCISE. Suppose s is a section of a locally free sheaf F on a scheme X.
Define the notion of the subscheme cut out by s = 0. (Hint: given a trivialization
over an open set U, s corresponds to a number of functions f1, . . . on U; on U, take
the scheme cut out by these functions.)

14.1.7. Random concluding remarks.
We define rational (and regular) sections of a locally free sheaf on a scheme

X just as we did rational (and regular) functions (see for example §6.5 and §7.5).

14.1.I. EXERCISE. Show that locally free sheaves on Noetherian normal schemes
satisfy “Hartogs’ lemma”: sections defined away from a set of codimension at
least 2 extend over that set. (Hartogs’ lemma for Noetherian normal schemes is
Theorem 12.3.10.)

14.1.8. Remark. Based on your intuition for line bundles on manifolds, you might
hope that every point has a “small” open neighborhood on which all invertible
sheaves (or locally free sheaves) are trivial. Sadly, this is not the case. We will
eventually see (§21.9.1) that for the curve y2 − x3 − x = 0 in A2

C, every nonempty
open set has nontrivial invertible sheaves. (This will use the fact that it is an open
subset of an elliptic curve.)

14.1.J. ! EXERCISE (FOR THOSE WITH SUFFICIENT COMPLEX-ANALYTIC BACKGROUND).
Recall the analytification functor (Exercises 7.3.J and 11.1.F), that takes a complex
finite type reduced scheme and produces a complex analytic space.
(a) If L is an invertible sheaf on a complex (algebraic) variety X, define (up to
unique isomorphism) the corresponding invertible sheaf on the complex variety
Xan.
(b) Show that the induced map Pic X → Pic Xan is a group homomorphism.
(c) Show that this construction is functorial: if π : X → Y is a morphism of complex
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varieties, the following diagram commutes:

Pic Y
π∗

$$

%%

Pic X

%%
Pic Yan

π∗
an $$ Pic Xan

where the vertical maps are the ones you have defined.

14.1.K. ! EXERCISE (FOR THOSE WITH SUFFICIENT ARITHMETIC BACKGROUND;
SEE ALSO PROPOSITION 15.2.7 AND §15.2.10). Recall the definition of the ring
of integers OK in a number field K, Remark 10.6.1. A fractional ideal a of OK

is an OK-submodule of K such that there is a nonzero a ∈ OK such that aa ⊂ OK.
Products of fractional ideals are defined analogously to products of ideals in a ring
(defined in Exercise 4.4.C): ab consists of (finite) OK-linear combinations of prod-
ucts of elements of a and elements of b. Thus fractional ideals form a semigroup
under multiplication, with OK as the identity. In fact fractional ideals of OK form
a group.

(a) Explain how a fractional ideal on a ring of integers in a number field
yields an invertible sheaf.

(b) A fractional ideal is principal if it is of the form rOK for some r ∈ K.
Show that any two that differ by a principal ideal yield the same invert-
ible sheaf.

(c) Show that two fractional ideals that yield the same invertible sheaf differ
by a principal ideal.

The class group is defined to be the group of fractional ideals modulo the principal
ideals (i.e. modulo K×). This exercise shows that the class group is (isomorphic
to) the Picard group of OK. (This discussion applies to the ring of integers in any
global field.)

14.1.9. The problem with locally free sheaves.
Recall that OX-modules form an abelian category: we can talk about kernels,

cokernels, and so forth, and we can do homological algebra. Similarly, vector
spaces form an abelian category. But locally free sheaves (i.e. vector bundles),
along with reasonably natural maps between them (those that arise as maps of
OX-modules), don’t form an abelian category. As a motivating example in the cat-
egory of differentiable manifolds, consider the map of the trivial line bundle on
R (with coordinate t) to itself, corresponding to multiplying by the coordinate t.
Then this map jumps rank, and if you try to define a kernel or cokernel you will
get confused.

This problem is resolved by enlarging our notion of nice OX-modules in a nat-
ural way, to quasicoherent sheaves. (You can turn this into two definitions of quasi-
coherent sheaves, equivalent to those we will give. We want a notion that is local
on X of course. So we ask for the smallest abelian subcategory of ModOX

that is
“local” and includes vector bundles. It turns out that the main obstruction to vec-
tor bundles to be an abelian category is the failure of cokernels of maps of locally
free sheaves — as OX-modules — to be locally free; we could define quasicoherent
sheaves to be those OX-modules that are locally cokernels, yielding a description
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that works more generally on ringed spaces, as described in Exercise 14.4.B. You
may wish to later check that our future definitions are equivalent to these.)

OX-modules ⊃ quasicoherent sheaves ⊃ locally free sheaves
(abelian category) (abelian category) (not an abelian category)

Similarly, finite rank locally free sheaves will sit in a nice smaller abelian cate-
gory, that of coherent sheaves.

quasicoherent sheaves ⊃ coherent sheaves ⊃ finite rank locally free sheaves
(abelian category) (abelian category) (not an abelian category)

14.1.10. Remark: Quasicoherent and coherent sheaves on ringed spaces in general. We
will discuss quasicoherent and coherent sheaves on schemes, but they can be de-
fined more generally on ringed spaces. Many of the results we state will hold in
this greater generality, but because the proofs look slightly different, we restrict
ourselves to schemes to avoid distraction.

14.2 Quasicoherent sheaves

We now define the notion of quasicoherent sheaf. In the same way that a scheme
is defined by “gluing together rings”, a quasicoherent sheaf over that scheme is
obtained by “gluing together modules over those rings”. Given an A-module M,
we defined an O-module M̃ on Spec A long ago (Exercise 5.1.D) — the sections
over D(f) were Mf.

14.2.1. Theorem. — Let X be a scheme, and F an OX-module. Then let P be the
property of affine open sets that F |Spec A

∼= M̃ for an A-module M. Then P satisfies the
two hypotheses of the Affine Communication Lemma 6.3.2.

We prove this in a moment.

14.2.2. Definition. If X is a scheme, then an OX-module F is quasicoherent if for
every affine open subset Spec A ⊂ X, F |Spec A

∼= M̃ for some A-module M. By
Theorem 14.2.1, it suffices to check this for a collection of affine open sets covering
X. For example, M̃ is a quasicoherent sheaf on X, and all locally free sheaves on X
are quasicoherent.

14.2.A. UNIMPORTANT EXERCISE (NOT EVERY OX-MODULE IS A QUASICOHERENT

SHEAF). (a) Suppose X = Spec k[t]. Let F be the skyscraper sheaf supported at
the origin [(t)], with group k(t) and the usual k[t]-module structure. Show that
this is an OX-module that is not a quasicoherent sheaf. (More generally, if X is
an integral scheme, and p ∈ X that is not the generic point, we could take the
skyscraper sheaf at p with group the function field of X. Except in a silly circum-
stances, this sheaf won’t be quasicoherent.) See Exercises 9.1.D and 14.3.F for
more (pathological) examples of OX-modules that are not quasicoherent.
(b) Suppose X = Spec k[t]. Let F be the skyscraper sheaf supported at the generic
point [(0)], with group k(t). Give this the structure of an OX-module. Show that
this is a quasicoherent sheaf. Describe the restriction maps in the distinguished
topology of X. (Remark: your argument will apply more generally, for example
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when X is an integral scheme with generic point η, and F is the skyscraper sheaf
iη,∗K(X).)

14.2.B. UNIMPORTANT EXERCISE (NOT EVERY QUASICOHERENT SHEAF IS LOCALLY

FREE). Use the example of Exercise 14.2.A(b) to show that not every quasicoherent
sheaf is locally free.

Proof of Theorem 14.2.1. Clearly if Spec A has property P, then so does the distin-
guished open Spec Af: if M is an A-module, then M̃|Spec Af

∼= M̃f as sheaves of
OSpec Af

-modules (both sides agree on the level of distinguished open sets and
their restriction maps).

We next show the second hypothesis of the Affine Communication Lemma 6.3.2.
Suppose we have modules M1, . . . , Mn, where Mi is an Afi

-module, along with
isomorphisms φij : (Mi)fj

→ (Mj)fi
of Afifj

-modules, satisfying the cocycle
condition (14.1.1.1). We want to construct an M such that M̃ gives us M̃i on
D(fi) = Spec Afi

, or equivalently, isomorphisms ρi : Γ(D(fi), M̃) → Mi, so that
the bottom triangle of

(14.2.2.1) M
⊗Afi

IIMM
MM
MM
MM
MM ⊗Afj

662
22

22
22

22
2

Mfi

ρi

∼
55LL
LL
LL
LL
L ⊗Afj

666
66

66
66

66
Mfj

ρj

∼
''$

$$
$$

$$
$

⊗Afj

IIBB
BB
BB
BB
B

Mi

⊗Afi 77$
$$

$$
$$

$$
Mfifj@@

∼
II77
77
77
77
7 JJ

∼
664

44
44

44
44

Mj

⊗Afj;;LL
LL
LL
LL
L

(Mi)fj

φij

∼
$$ (Mj)fi

commutes.

14.2.C. EXERCISE. Why does this suffice to prove the result? In other words, why
does this imply that F |Spec A

∼= M̃?

We already know that M should be Γ(F , Spec A), as F is a sheaf. Consider
elements of M1 × · · · × Mn that “agree on overlaps”; let this set be M. In other
words,

(14.2.2.2) 0 $$ M $$ M1 × · · ·× Mn
γ $$ M12 × M13 × · · ·× M(n−1)n

is an exact sequence (where Mij = (Mi)fj
∼= (Mj)fi

, and the map γ is the “dif-
ference” map. So M is a kernel of a morphism of A-modules, hence an A-module.
We are left to show that Mi

∼= Mfi
(and that this isomorphism satisfies (14.2.2.1)).

(At this point, we may proceed in a number of ways, and the reader may wish to
find their own route rather than reading on.)

For convenience assume i = 1. Localization is exact (Exercise 2.6.F(a)), so
tensoring (14.2.2.2) by Af1

yields

(14.2.2.3) 0 $$ Mf1
$$ (M1)f1

× (M2)f1
× · · ·× (Mn)f1

$$ M12 × · · ·× M1n × (M23)f1
× · · ·× (M(n−1)n)f1
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is an exact sequence of Af1
-modules.

We now identify many of the modules appearing in (14.2.2.3) in terms of M1.
First of all, f1 is invertible in Af1

, so (M1)f1
is canonically M1. Also, (Mj)f1

∼=
(M1)fj

via φij. Hence if i, j != 1, (Mij)f1
∼= (M1)fifj

via φ1i and φ1j (here the
cocycle condition is implicitly used). Furthermore, (M1i)f1

∼= (M1)fi
via φ1i.

Thus we can write (14.2.2.3) as

(14.2.2.4) 0 $$ Mf1
$$ M1 × (M1)f2

× · · ·× (M1)fn

α ,, (M1)f2
× · · ·× (M1)fn

× (M1)f2f3
× · · ·× (M1)fn−1fn

By assumption, F |Spec Af1

∼= M̃1 for some M1, so by considering the cover

Spec Af1
= Spec Af1

∪ Spec Af1f2
∪ Spec Af1f3

∪ · · · ∪ Spec Af1fn

(notice the “redundant” first term), and identifying sections of F over Spec Af1
in

terms of sections over the open sets in the cover and their pairwise overlaps, we
have an exact sequence of Af1

-modules

0 $$ M1
$$ M1 × (M1)f2

× · · ·× (M1)fn

β $$ (M1)f2
× · · ·× (M1)fn

× (M1)f2f3
× · · ·× (M1)fn−1fn

which is very similar to (14.2.2.4). Indeed, the final map β of the above sequence is
the same as the map α of (14.2.2.4), so kerα = kerβ, i.e. we have an isomorphism
M1

∼= Mf1
.

Finally, the triangle of (14.2.2.1) is commutative, as each vertex of the triangle
can be identified as the sections of F over Spec Af1f2

. !

14.3 Characterizing quasicoherence using the distinguished affine
base

Because quasicoherent sheaves are locally of a very special form, in order to
“know” a quasicoherent sheaf, we need only know what the sections are over every
affine open set, and how to restrict sections from an affine open set U to a distin-
guished affine open subset of U. We make this precise by defining what I will call
the distinguished affine base of the Zariski topology — not a base in the usual sense.
The point of this discussion is to give a useful characterization of quasicoherence,
but you may wish to just jump to §14.3.3.

The open sets of the distinguished affine base are the affine open subsets of
X. We have already observed that this forms a base. But forget that fact. We like
distinguished open sets Spec Af ↪→ Spec A, and we don’t really understand open
immersions of one random affine open subset in another. So we just remember the
“nice” inclusions.

14.3.1. Definition. The distinguished affine base of a scheme X is the data of the
affine open sets and the distinguished inclusions.

In other words, we remember only some of the open sets (the affine open sets),
and only some of the morphisms between them (the distinguished morphisms). For
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experts: if you think of a topology as a category (the category of open sets), we
have described a subcategory.

We can define a sheaf on the distinguished affine base in the obvious way: we
have a set (or abelian group, or ring) for each affine open set, and we know how
to restrict to distinguished open sets.

Given a sheaf F on X, we get a sheaf on the distinguished affine base. You
can guess where we are going: we will show that all the information of the sheaf
is contained in the information of the sheaf on the distinguished affine base.

As a warm-up, we can recover stalks as follows. (We will be implicitly using
only the following fact. We have a collection of open subsets, and some subsets,
such that if we have any x ∈ U,V where U and V are in our collection of open sets,
there is some W containing x, and contained in U and V such that W ↪→ U and
W ↪→ V are both in our collection of inclusions. In the case we are considering here,
this is the key Proposition 6.3.1 that given any two affine open sets Spec A, Spec B
in X, Spec A∩Spec B could be covered by affine open sets that were simultaneously
distinguished in Spec A and Spec B. In fancy language: the category of affine open
sets, and distinguished inclusions, forms a filtered set.)

The stalk Fx is the colimit lim−→(f ∈ F (U)) where the limit is over all open sets
contained in X. We compare this to lim−→(f ∈ F (U)) where the limit is over all affine
open sets, and all distinguished inclusions. You can check that the elements of one
correspond to elements of the other. (Think carefully about this!)

14.3.A. EXERCISE. Show that a section of a sheaf on the distinguished affine base
is determined by the section’s germs.

14.3.2. Theorem. —

(a) A sheaf on the distinguished affine base Fb determines a unique sheaf F , which
when restricted to the affine base is Fb. (Hence if you start with a sheaf, and
take the sheaf on the distinguished affine base, and then take the induced sheaf,
you get the sheaf you started with.)

(b) A morphism of sheaves on a distinguished affine base uniquely determines a
morphism of sheaves.

(c) An OX-module “on the distinguished affine base” yields an OX-module.

This proof is identical to our argument of §3.7 showing that sheaves are (es-
sentially) the same as sheaves on a base, using the “sheaf of compatible germs”
construction. The main reason for repeating it is to let you see that all that is
needed is for the open sets to form a filtered set (or in the current case, that the
category of open sets and distinguished inclusions is filtered).

For experts: (a) and (b) are describing an equivalence of categories between
sheaves on the Zariski topology of X and sheaves on the distinguished affine base
of X.

Proof. (a) Suppose Fb is a sheaf on the distinguished affine base. Then we can
define stalks.

For any open set U of X, define the sheaf of compatible germs

F (U) := {(fx ∈ Fb
x )x∈U : for all x ∈ U,

there exists Ux with x ⊂ Ux ⊂ U, Fx ∈ Fb(Ux)

such that Fx
y = fy for all y ∈ Ux}
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where each Ux is in our base, and Fx
y means “the germ of Fx at y”. (As usual, those

who want to worry about the empty set are welcome to.)
This is a sheaf: convince yourself that we have restriction maps, identity, and

gluability, really quite easily.
I next claim that if U is in our base, that F (U) = Fb(U). We clearly have a

map Fb(U) → F (U). This is an isomorphism on stalks, and hence an isomor-
phism by Exercise 3.4.E.

14.3.B. EXERCISE. Prove (b) (cf. Exercise 3.7.C).

14.3.C. EXERCISE. Prove (c) (cf. Remark 3.7.3)

!

14.3.3. A characterization of quasicoherent sheaves in terms of distinguished
inclusions. We use this perspective to give a useful characterization of quasi-
coherent sheaves. Suppose Spec Af ↪→ Spec A ⊂ X is a distinguished open set.
Let φ : Γ(Spec A,F ) → Γ(Spec Af,F ) be the restriction map. The source of φ
is an A-module, and the target is an Af-module, so by the universal property of
localization, φ naturally factors as:

Γ(Spec A,F )
φ $$

""==
==

==
==

==
==

Γ(Spec Af,F )

Γ(Spec A,F )f

α

KKEEEEEEEEEEEE

14.3.D. VERY IMPORTANT EXERCISE. Show that an OX-module F is quasicoherent
if and only if for each such distinguished Spec Af ↪→ Spec A, α is an isomorphism.

Thus a quasicoherent sheaf is (equivalent to) the data of one module for each
affine open subset (a module over the corresponding ring), such that the mod-
ule over a distinguished open set Spec Af is given by localizing the module over
Spec A. The next exercise shows that this will be an easy criterion to check.

14.3.E. IMPORTANT EXERCISE (CF. THE QCQS LEMMA 8.3.4). Suppose X is a
quasicompact and quasiseparated scheme (i.e. covered by a finite number of affine
open sets, the pairwise intersection of which is also covered by a finite number of
affine open sets). Suppose F is a quasicoherent sheaf on X, and let f ∈ Γ(X,OX)
be a function on X. Show that the restriction map resXf⊂X : Γ(X,F ) → Γ(Xf,F )
(here Xf is the open subset of X where f doesn’t vanish) is precisely localization. In
other words show that there is an isomorphism Γ(X,F )f → Γ(Xf,F ) making the
following diagram commute.

Γ(X,F )
resXf⊂X $$

⊗AAf 44A
AA

AA
AA

AA
A

Γ(Xf,F )

Γ(X,F )f

∼

00CCCCCCCCCC
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All that you should need in your argument is that X admits a cover by a finite
number of open sets, and that their pairwise intersections are each quasicompact.
(Hint: Apply the exact functor ⊗AAf to the exact sequence

0 → Γ(X,F ) → ⊕iΓ(Ui,F ) → ⊕Γ(Uijk,F )

where the Ui form a finite affine cover of X and Uijk form a finite affine cover of
Ui ∩ Uj.)

14.3.F. LESS IMPORTANT EXERCISE. Give a counterexample to show that the above
statement need not hold if X is not quasicompact. (Possible hint: take an infinite
disjoint union of affine schemes. The key idea is that infinite direct products do
not commute with localization.)

14.3.G. EXERCISE (GOOD PRACTICE: THE SHEAF OF NILPOTENTS). If A is a ring,
and f ∈ A, show that N(Af) ∼= N(A)f. Use this to show construct the quasicoher-
ent sheaf of nilpotents on any scheme X. This is an example of an ideal sheaf (of
OX).

14.3.H. EXERCISE (TO BE USED REPEATEDLY IN §16.3). Generalize Exercise 14.3.E
as follows. Suppose X is a quasicompact quasiseparated scheme, L is an invert-
ible sheaf on X with section s, and F is a quasicoherent sheaf on X. As in Exer-
cise 14.3.E, let Xs be the open subset of X where s doesn’t vanish. Show that any
section of F over Xs can be interpreted as a the quotient of a global section of
F ⊗ L ⊗n by sn. More precisely: note that ⊕n≥0Γ(X,L ⊗n) is a graded ring, and
we interpret s as a degree 1 element of it. Note also that ⊕n≥0Γ(X,F ⊗ L ⊗n) is a
graded module over this ring. Describe a natural map

((
⊕n≥0Γ(X,F ⊗ L ⊗n)

)
s

)
0

→ Γ(Xs,F )

and show that it is an isomorphism. (Hint: after showing the existence of the
natural map, show the result in the affine case.)

14.3.I. IMPORTANT EXERCISE (COROLLARY TO EXERCISE 14.3.E: PUSHFORWARDS

OF QUASICOHERENT SHEAVES ARE QUASICOHERENT IN NON-PATHOLOGICAL CIR-
CUMSTANCES). Suppose π : X → Y is a quasicompact quasiseparated morphism,
and F is a quasicoherent sheaf on X. Show that π∗F is a quasicoherent sheaf on
Y.

14.3.4. !! Grothendieck topologies. The distinguished affine base isn’t a topol-
ogy in the usual sense — the union of two affine sets isn’t necessarily affine, for
example. It is however a first new example of a generalization of a topology — the
notion of a site or a Grothendieck topology. We give the definition to satisfy the
curious, but we certainly won’t use this notion. (For a clean statement, see [Stacks,
00VH]; this is intended only as motivation.) The idea is that we should abstract
away only those notions we need to define sheaves. We need the notion of open
set, but it turns out that we won’t even need an underling set, i.e. we won’t even
need the notion of points! Let’s think through how little we need. For our discus-
sion of sheaves to work, we needed to know what the open sets were, and what
the (allowed) inclusions were, and these should “behave well”, and in particular
the data of the open sets and inclusions should form a category. (For example,
the composition of an allowed inclusion with another allowed inclusion should
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be an allowed inclusion — in the distinguished affine base, a distinguished open
set of a distinguished open set is a distinguished open set.) So we just require the
data of this category. At this point, we can already define presheaf (as just a con-
travariant functor from this category of “open sets”). We saw this idea earlier in
Exercise 3.2.A.

In order to extend this definition to that of a sheaf, we need to know more
information. We want two open subsets of an open set to intersect in an open set,
so we want the category to be closed under fiber products (cf. Exercise 2.3.N). For the
identity and gluability axioms, we need to know when some open sets cover another,
so we also remember this as part of the data of a Grothendieck topology. This data
of the coverings satisfy some obvious properties. Every open set covers itself (i.e.
the identity map in the category of open sets is a covering). Coverings pull back: if we
have a map Y → X, then any cover of X pulls back to a cover of Y. Finally, a cover of a
cover should be a cover. Such data (satisfying these axioms) is called a Grothendieck
topology or a site. We can define the notion of a sheaf on a Grothendieck topology
in the usual way, with no change. A topos is a scary name for a category of sheaves
on a Grothendieck topology.

Grothendieck topologies are used in a wide variety of contexts in and near
algebraic geometry. Etale cohomology (using the etale topology), a generalization
of Galois cohomology, is a central tool, as are more general flat topologies, such as
the smooth topology. The definition of a Deligne-Mumford or Artin stack uses the
etale and smooth topologies, respectively. Tate developed a good theory of non-
archimedean analytic geometry over totally disconnected ground fields such as Qp

using a suitable Grothendieck topology. Work in K-theory (related for example to
Voevodsky’s work) uses exotic topologies.

14.4 Quasicoherent sheaves form an abelian category

The category of A-modules is an abelian category. Indeed, this is our motivat-
ing example for the notion of abelian category. Similarly, quasicoherent sheaves
on a scheme X form an abelian category, which we call QCohX. Here is how.

When you show that something is an abelian category, you have to check
many things, because the definition has many parts. However, if the objects you
are considering lie in some ambient abelian category, then it is much easier. You
have seen this idea before: there are several things you have to do to check that
something is a group. But if you have a subset of group elements, it is much easier
to check that it forms a subgroup.

You can look at back at the definition of an abelian category, and you will see
that in order to check that a subcategory is an abelian subcategory, you need to
check only the following things:

(i) 0 is in the subcategory
(ii) the subcategory is closed under finite sums

(iii) the subcategory is closed under kernels and cokernels

In our case of QCohX ⊂ ModOX
, the first two are cheap: 0 is certainly quasico-

herent, and the subcategory is closed under finite sums: if F and G are sheaves
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on X, and over Spec A, F ∼= M̃ and G ∼= Ñ, then F ⊕ G = M̃ ⊕ N (do you see
why?), so F ⊕ G is a quasicoherent sheaf.

We now check (iii), using the characterization of Important Exercise 14.3.3.
Suppose α : F → G is a morphism of quasicoherent sheaves. Then on any affine
open set U, where the morphism is given by β : M → N, define (kerα)(U) = kerβ
and (cokerα)(U) = cokerβ. Then these behave well under inversion of a single
element: if

0 → K → M → N → P → 0

is exact, then so is

0 → Kf → Mf → Nf → Pf → 0,

from which (kerβ)f
∼= ker(βf) and (cokerβ)f

∼= coker(βf). Thus both of these
define quasicoherent sheaves. Moreover, by checking stalks, they are indeed the
kernel and cokernel of α (exactness can be checked stalk-locally). Thus the quasi-
coherent sheaves indeed form an abelian category.

14.4.A. EXERCISE. Show that a sequence of quasicoherent sheaves F → G → H
on X is exact if and only if it is exact on each open set in any given affine cover
of X. (In particular, taking sections over an affine open Spec A is an exact functor
from the category of quasicoherent sheaves on X to the category of A-modules.
Recall that taking sections is only left-exact in general, see §3.5.E.) In particular,
we may check injectivity or surjectivity of a morphism of quasicoherent sheaves
by checking on an affine cover of our choice.

Warning: If 0 → F → G → H → 0 is an exact sequence of quasicoherent
sheaves, then for any open set

0 → F (U) → G (U) → H (U)

is exact, and exactness on the right is guaranteed to hold only if U is affine. (To set
you up for cohomology: whenever you see left-exactness, you expect to eventually
interpret this as a start of a long exact sequence. So we are expecting H1’s on the
right, and now we expect that H1(Spec A,F ) = 0. This will indeed be the case.)

14.4.B. LESS IMPORTANT EXERCISE (CONNECTION TO ANOTHER DEFINITION, AND

QUASICOHERENT SHEAVES ON RINGED SPACES IN GENERAL). Show that an OX-
module F on a scheme X is quasicoherent if and only if there exists an open cover
by Ui such that on each Ui, F |Ui

is isomorphic to the cokernel of a map of two
free sheaves:

O⊕I
Ui

→ O⊕J
Ui

→ F |Ui
→ 0

is exact. We have thus connected our definitions to the definition given at the very
start of the chapter. This is the definition of a quasicoherent sheaf on a ringed space
in general. It is useful in many circumstances, for example in complex analytic
geometry.

14.5 Module-like constructions
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In a similar way, basically any nice construction involving modules extends
to quasicoherent sheaves. (One exception: the Hom of two A-modules is an A-
module, but the Hom of two quasicoherent sheaves is quasicoherent only in “rea-
sonable” circumstances, see Exercise 14.7.A.)

14.5.1. Locally free sheaves from free modules.

14.5.A. EXERCISE (POSSIBLE HELP FOR LATER PROBLEMS). (a) Suppose

(14.5.1.1) 0 → F ′ → F → F ′′ → 0

is a short exact sequence of locally free sheaves on X. Suppose U = Spec A is an
affine open set where F ′, F ′′ are free, say F ′|Spec A = Ã⊕a, F ′′|Spec A = Ã⊕b.
(Here a and b are assumed to be finite for convenience, but this is not necessary,
so feel free to generalize to the infinite rank case.) Show that F is also free, and
that 0 → F ′ → F → F ′′ → 0 can be interpreted as coming from the tautological
exact sequence 0 → A⊕a → A⊕(a+b) → A⊕b → 0. (As a consequence, given an
exact sequence of quasicoherent sheaves (14.5.1.1) where F ′ and F ′′ are locally
free, F must also be locally free.)
(b) In the finite rank case, show that given such an open cover, the transition func-
tions (really, matrices) of F may be interpreted as block upper-diagonal matrices,
where the top a × a block are transition functions for F ′, and the bottom b × b
blocks are transition functions for F ′′.

14.5.B. EXERCISE. Suppose (14.5.1.1) is an exact sequence of quasicoherent sheaves
on X. (a) If F ′ and F " are locally free, show that F is locally free. (Hint: Use the
previous exercise.)
(b) If F and F " are locally free of finite rank, show that F ′ is too. (Hint: Reduce
to the case X = Spec A and F and F ′′ free. Interpret the map φ : F → F ′′ as
an n × m matrix M with values in A, with m the rank of F and n the rank of
F ′′. For each point p of X, show that there exist n columns {c1, . . . , cn} of M that
are linearly independent at p and hence near p (as linear independence is given
by nonvanishing of the appropriate n × n determinant). Thus X can be covered
by distinguished open subsets in bijection with the choices of n columns of M.
Restricting to one subset and renaming columns, reduce to the case where the de-
terminant of the first n columns of M is invertible. Then change coordinates on
A⊕m = F (Spec A) so that M with respect to the new coordinates is the identity
matrix in the first n columns, and 0 thereafter. Finally, in this case interpret F ′ as

˜A⊕(m−n).
(c) If F ′ and F are both locally free, show that F ′′ need not be. (Hint: over k[t],
consider 0 → tk[t] → k[t] → k[t]/(t) → 0. We will soon interpret this as the closed
subscheme exact sequence (14.5.5.1) for a point on A1.)

14.5.2. Tensor products. Another important example is tensor products.

14.5.C. EXERCISE. If F and G are quasicoherent sheaves, show that F ⊗ G is a
quasicoherent sheaf described by the following information: If Spec A is an affine
open, and Γ(Spec A,F ) = M and Γ(Spec A,G ) = N, then Γ(Spec A,F ⊗ G ) =
M⊗N, and the restriction map Γ(Spec A,F ⊗G ) → Γ(Spec Af,F ⊗G ) is precisely
the localization map M ⊗A N → (M ⊗A N)f

∼= Mf ⊗Af
Nf. (We are using the
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algebraic fact that (M ⊗R N)f
∼= Mf ⊗Rf

Nf. You can prove this by universal
property if you want, or by using the explicit construction.)

Note that thanks to the machinery behind the distinguished affine base, sheafi-
fication is taken care of. This is a feature we will use often: constructions involv-
ing quasicoherent sheaves that involve sheafification for general sheaves don’t re-
quire sheafification when considered on the distinguished affine base. Along with
the fact that injectivity, surjectivity, kernels and so on may be computed on affine
opens, this is the reason that it is particularly convenient to think about quasico-
herent sheaves in terms of affine open sets.

Given a section s of F and a section t of G , we have a section s ⊗ t of F ⊗ G .
If F is an invertible sheaf, this section is often denoted st.

14.5.3. Tensor algebra constructions.
For the next exercises, recall the following. If M is an A-module, then the

tensor algebra T•(M) is a non-commutative algebra, graded by Z≥0, defined as
follows. T0(M) = A, Tn(M) = M ⊗A · · · ⊗A M (where n terms appear in the
product), and multiplication is what you expect.

The symmetric algebra Sym• M is a symmetric algebra, graded by Z≥0, de-
fined as the quotient of T•(M) by the (two-sided) ideal generated by all elements
of the form x⊗y−y⊗x for all x, y ∈ M. Thus Symn M is the quotient of M⊗· · ·⊗M
by the relations of the form m1 ⊗ · · · ⊗ mn − m ′

1 ⊗ · · · ⊗ m ′
n where (m ′

1, . . . ,m ′
n)

is a rearrangement of (m1, . . . ,mn).
The exterior algebra ∧•M is defined to be the quotient of T•M by the (two-

sided) ideal generated by all elements of the form x ⊗ x for all x ∈ M. Expanding
(a+b)⊗(a+b), we see that a⊗b = −b⊗a in ∧2M. This implies that if 2 is invertible
in A (e.g. if A is a field of characteristic not 2), ∧nM is the quotient of M⊗ · · ·⊗M

by the relations of the form m1 ⊗ · · ·⊗mn − (−1)sgn(σ)mσ(1) ⊗ · · ·⊗mσ(n) where
σ is a permutation of {1, . . . , n}. The exterior algebra is a “skew-commutative” A-
algebra.

It is most correct to write T•
A(M), Sym•

A(M), and ∧•
A(M), but the “base ring”

A is usually omitted for convenience. (Better: both Sym and ∧ can defined by
universal properties. For example, Symn

A(M) is universal among modules such
that any map of A-modules M⊗n → N that is symmetric in the n entries factors
uniquely through Symn

A(M).)

14.5.D. EXERCISE. Suppose F is a quasicoherent sheaf. Define the quasicoherent
sheaves Symn F and ∧nF . (One possibility: describe them on each affine open
set, and use the characterization of Important Exercise 14.3.3.) If F is locally free
of rank m, show that TnF , Symn F , and ∧nF are locally free, and find their
ranks.

You can also define the sheaf of non-commutative algebras T•F , the sheaf of
commutative algebras Sym• F , and the sheaf of skew-commutative algebras ∧•F .

14.5.E. EXERCISE. Suppose 0 → F ′ → F → F ′′ → 0 is an exact sequence of
locally free sheaves. Show that for any r, there is a filtration of Symr F

Symr F = F0 ⊇ F1 ⊇ · · · ⊇ Fr ⊇ Fr+1 = 0



320 Math 216: Foundations of Algebraic Geometry

with subquotients

Fp/Fp+1 ∼= (Symp F ′) ⊗ (Symr−p F ′′).

(Here are two different possible hints for this and Exercise 14.5.G: (1) Interpret
the transition matrices for F as block upper-diagonal, with two blocks, where
one diagonal block gives the transition matrices for F ′, and the other gives the
transition matrices for F ′′ (cf. Exercise 14.5.1.1(b)). Then appropriately interpret
the transition matrices for Symr F as block upper-diagonal as well, with r + 1
blocks. (2) It suffices to consider a small enough affine open set Spec A, where F ′,
F , F ′′ are free, and to show that your construction behaves well with respect to
localization at an element f ∈ A. In such an open set, the sequence is 0 → A⊕p →
A⊕(p+q) → A⊕q → 0 by the Exercise 14.5.A. Let e1, . . . , en be the standard basis
of An, and f1, . . . , fq be the the standard basis of A⊕q. Let e ′

1, . . . , e ′
p be denote the

images of e1, . . . , ep in Ap+q. Let f ′1, . . . , f ′q be any lifts of f1, . . . , fq to A⊕(p+q).
Note that f ′i is well-defined modulo e ′

1, . . . , e ′
p. Note that

Syms F |Spec A
∼= ⊕s

i=0 Symi F ′|Spec A ⊗OSpec A
Syms−i F ′′|Spec A.

Show that Fp := ⊕s
i=p Symi F ′|Spec A⊗OSpec A

Syms−i F ′′|Spec A gives a well-defined
(locally free) subsheaf that is independent of the choices made, e.g. of the basis e1,
. . . , ep , f1, . . . , fq, and the lifts f ′1, . . . , f ′q.)

14.5.F. EXERCISE. Suppose F is locally free of rank n. Then ∧nF is called the
determinant (line) bundle or (both better and worse) the determinant locally free
sheaf. Describe a map ∧rF × ∧n−rF → ∧nF that induces an isomorphism of
∧rF → (∧n−rF ) ⊗ ∧nF . This is called a perfect pairing of vector bundles.
(If you know about perfect pairings of vector spaces, do you see why this is a
generalization?) You might use this later showing duality of Hodge numbers of
nonsingular varieties over algebraically closed fields, Exercise 23.4.K.

14.5.G. USEFUL EXERCISE. Suppose 0 → F ′ → F → F ′′ → 0 is an exact
sequence of locally free sheaves. Show that for any r, there is a filtration of ∧rF :

∧rF = F0 ⊇ F1 ⊇ · · · ⊇ Fr ⊃ Fr+1 = 0

with subquotients

Fp/Fp+1 ∼= (∧pF ′) ⊗ (∧r−pF ′′)

for each p. In particular, det F = (det F ′) ⊗ (det F ′′). In fact we only need that
F ′′ is locally free.

14.5.H. EXERCISE (DETERMINANT LINE BUNDLES BEHAVE WELL IN EXACT SEQUENCES).
Suppose 0 → F1 → · · · → Fn → 0 is an exact sequence of finite rank locally free
sheaves on X. Show that “the alternating product of determinant bundles is triv-
ial”:

det(F1) ⊗ det(F2)∨ ⊗ det(F3) ⊗ det(F4)∨ ⊗ · · ·⊗ det(Fn)(−1)n ∼= OX.

(Hint: break the exact sequence into short exact sequences. Use Exercise 14.5.B(b)
to show that they are short exact exact sequences of finite rank locally free sheaves.
Then use the previous Exercise 14.5.G.
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14.5.4. Torsion-free sheaves (a stalk-local condition). An A-module M is said to
be torsion-free if rm = 0 implies r = 0 or m = 0. An OX-module F is said to be
torsion-free if Fp is a torsion-free OX,p-module for all p.

14.5.I. EXERCISE. Show that if M is a torsion-free A-module, then so is any local-
ization of M. Hence show that M̃ is a torsion free sheaf on Spec A.

14.5.J. UNIMPORTANT EXERCISE (TORSION-FREENESS IS NOT AN AFFINE LOCAL

CONDITION FOR STUPID REASONS). Find an example on a two-point space show-
ing that M := A might not be torsion-free on Spec A even though OSpec A = M̃ is
torsion-free.

14.5.5. Quasicoherent sheaves of ideals correspond to closed subschemes. Re-
call that if i : X ↪→ Y is a closed immersion, then we have a surjection of sheaves on

Y: OY
$$ $$ i∗OX (§9.1). (The i∗ is often omitted, as we are considering the sheaf

on X as being a sheaf on Y.) The kernel IX/Y is a “sheaf of ideals” in Y: for each
open subset U of Y, the sections form an ideal in the ring of functions on U.

Compare (hard) Exercise 9.1.F and the characterization of quasicoherent sheaves
given in (hard) Exercise 14.3.D. You will see that a sheaf is ideas is quasicoherent if
and only if it comes from a closed subscheme. (An example of a non-quasicoherent
sheaf of ideals was given in Exercise 9.1.D.) We call

(14.5.5.1) 0 → IX/Y → OY → i∗OX → 0

the closed subscheme exact sequence corresponding to X ↪→ Y.

14.6 Finite type and coherent sheaves

There are some natural finiteness conditions on an A-module M. I will tell
you three. In the case when A is a Noetherian ring, which is the case that almost
all of you will ever care about, they are all the same.

The first is the most naive: a module could be finitely generated. In other
words, there is a surjection Ap → M → 0.

The second is reasonable too. It could be finitely presented — it could have a
finite number of generators with a finite number of relations: there exists a finite
presentation

Aq → Ap → M → 0.

14.6.A. EXERCISE (“FINITELY PRESENTED IMPLIES ALWAYS FINITELY PRESENTED”).
Suppose M is a finitely presented A-module, and φ : Ap ′

→ M is any surjection.
Show that kerφ is finitely generated. Hint: Write M as the kernel of Ap by a
finitely generated module K. Figure out how to map the short exact sequence
0 → K → Ap → M → 0 to the exact sequence 0 → kerφ → Ap ′

→ M → 0, and
use the Snake Lemma.

The third notion is frankly a bit surprising, and I will justify it soon. We say
that an A-module M is coherent if (i) it is finitely generated, and (ii) whenever we
have a map Ap → M (not necessarily surjective!), the kernel is finitely generated.
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Clearly coherent implies finitely presented, which in turn implies finitely gen-
erated.

14.6.1. Proposition. — If A is Noetherian, then these three definitions are the same.

Proof. As we observed earlier, coherent implies finitely presented implies finitely

generated. So suppose M is finitely generated. Take any Ap α $$ M . Then
kerα is a submodule of a finitely generated module over A, and is thus finitely
generated by Exercise 4.6.Y. Thus M is coherent. !

Hence most people can think of these three notions as the same thing.

14.6.2. Proposition. — The coherent A-modules form an abelian subcategory of the
category of A-modules.

The proof in general is given in §14.8 in a series of short exercises. You should
read this only if you are particularly curious.

Proof if A is Noetherian. Recall from our discussion at the start of §14.4 that we must
check three things:

(i) The 0-sheaf is coherent.
(ii) The category of coherent modules is closed under finite sums.

(iii) The category of coherent modules is closed under kernels and cokernels

The first two are clear. For (iii), suppose that f : M → N is a map of finitely
generated modules. Then coker f is finitely generated (it is the image of N), and
ker f is too (it is a submodule of a finitely generated module over a Noetherian
ring, Exercise 4.6.Y). !

14.6.B. ! EASY EXERCISE (ONLY IMPORTANT FOR NON-NOETHERIAN PEOPLE). Show
A is coherent as an A-module if and only if the notion of finitely presented agrees
with the notion of coherent.

14.6.C. EXERCISE. If f ∈ A, show that if M is a finitely generated (resp. finitely
presented, coherent) A-module, then Mf is a finitely generated (resp. finitely pre-
sented, coherent) Af-module. (The “coherent” case is the tricky one.)

14.6.D. EXERCISE. If (f1, . . . , fn) = A, and Mfi
is finitely generated (resp. finitely

presented, coherent) Afi
-module for all i, then M is a finitely generated (resp.

finitely presented, coherent) A-module. Hint for the finitely presented case: Ex-
ercise 14.6.A.

14.6.3. Definition. A quasicoherent sheaf F is finite type (resp. finitely pre-
sented, coherent) if for every affine open Spec A, Γ(Spec A,F ) is a finitely gen-
erated (resp. finitely presented, coherent) A-module. Note that coherent sheaves
are always finite type, and that on a locally Noetherian scheme, all three notions
are the same (by Proposition 14.6.1). By Proposition 14.6.2 implies that the coher-
ent sheaves on X form an abelian category, which we denote CohX. Coherence is
basically only interesting if OX is coherent.
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Thanks to the Affine Communication Lemma 6.3.2, and the two previous ex-
ercises 14.6.C and 14.6.D, it suffices to check this on the open sets in a single affine
cover. Notice that locally free sheaves are always finite type, and if OX is coherent,
locally free sheaves on X are coherent. (If OX is not coherent, then coherence is a
pretty useless notion on X.)

14.6.4. A few words on the notion of coherence. Proposition 14.6.2 is a good motiva-
tion for this definition: it gives a small (in a non-technical sense) abelian category
in which we can think about vector bundles.

There are two sorts of people who should care about the details of this defi-
nition, rather than living in a Noetherian world where coherent means finite type.
Complex geometers should care. They consider complex-analytic spaces with the
classical topology. One can define the notion of coherent OX-module in a way anal-
ogous to this (see [S-FAC, Def. 2]). Then Oka’s theorem states that the structure
sheaf is coherent, and this is very hard [GR, §2.5].

The second sort of people who should care are the sort of arithmetic people
who may need to work with non-Noetherian rings. For example, the ring of adeles
is non-Noetherian.

Warning: it is common in the later literature to incorrectly define coherent as
finitely generated. Please only use the correct definition, as the wrong definition
causes confusion. Besides doing this for the reason of honesty, it will also help
you see what hypotheses are actually necessary to prove things. And that always
helps you remember what the proofs are — and hence why things are true.

14.7 Pleasant properties of finite type and coherent sheaves

We begin with the fact that Hom behaves reasonably if the source is coherent.

14.7.A. EXERCISE. (a) Suppose F is a coherent sheaf on X, and G is a quasi-
coherent sheaf on X. Show that Hom (F ,G ) is a quasicoherent sheaf. Hint: De-
scribe it on affine open sets, and show that it behaves well with respect to local-
ization with respect to f. To show that HomA(M,N)f

∼= HomAf
(Mf,Nf), use

Exercise 2.6.G. Up to here, you need only the fact that F is locally finitely pre-
sented. (Aside: For an example of quasicoherent sheaves F and G on a scheme X
such that Hom (F ,G ) is not quasicoherent, let A be a discrete valuation ring with
uniformizer t, let X = Spec A, let F = M̃ and G = Ñ with M = ⊕∞

i=1A and
N = A. Then Mt = ⊕∞

i=1At, and of course N = At. Consider the homomorphism
φ : Mt → Nt sending 1 in the ith factor of Mt to 1/ti. Then φ is not the localiza-
tion of any element of HomA(M,N).)
(b) If further G is coherent and OX is coherent, show that Hom (F ,G ) is also coher-
ent. Show that Hom is a left-exact functor in both variables (cf. Exercise 3.5.G). (We
remark that the left-exactness fact has nothing to do with quasicoherence — it is
true even for OX-modules, as remarked in §3.5.1.)

14.7.1. Duals of coherent sheaves. In particular, if F is coherent, its dual F∨ :=
Hom (F ,O) is too. This generalizes the notion of duals of vector bundles in Exer-
cise 14.1.C. Your argument there generalizes to show that there is always a natural
morphism F → (F∨)∨. Unlike in the vector bundle case, this is not always an
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isomorphism. (For an example, let F be the coherent sheaf associated to k[t]/(t)
on A1 = Spec k[t], and show that F∨ = 0.) Coherent sheaves for which the “dou-
ble dual” map is an isomorphism are called reflexive sheaves, but we won’t use
this notion. The canonical map F ⊗ F∨ → OX is called the trace map — can you
see why?

14.7.B. EXERCISE. Suppose

(14.7.1.1) 0 → F → G → H → 0

is an exact sequence of quasicoherent sheaves on a scheme X, where H is a locally
free quasicoherent sheaf, and suppose E is a quasicoherent sheaf. Show that the
exact sequence (3.5.0.2) is also exact on the right:

0 → Hom (H ,E ) → Hom (G ,E ) → Hom (F ,E ) → 0

is an exact sequence. (Hint: this is local, so you can assume that X is affine, say

Spec A, and H = Ã⊕n, so (14.7.1.1) can be written as 0 → M → N → A⊕n → 0.
Show that this exact sequence splits, so we can write N = M ⊕ A⊕n in a way that
respects the exact sequence.) In particular, if F , G , H , and OX are all coherent,
then we have an exact sequence of coherent sheaves

0 → H ∨ → G ∨ → F∨ → 0.

14.7.C. EXERCISE (THE SUPPORT OF A FINITE TYPE QUASICOHERENT SHEAF IS

CLOSED). This exercise is partially an excuse to discuss the useful notion of “sup-
port”. Suppose s is a section of a sheaf F of abelian groups. Define the support of
s by

Supp s := {p ∈ X : sp != 0 in Fp}.

Define the support of F by Supp F = {p ∈ X : Fp != 0} (cf. Exercise 3.6.F(b))
— the union of “all the supports of sections on various open sets”. (Support is a
stalk-local notion, and hence behaves well with respect to restriction to open sets,
or to stalks. Warning: Support is where the germ(s) are nonzero, not where the
value(s) are nonzero.) Show that the support of a finite type quasicoherent sheaf
on a scheme X is a closed subset. (Hint: Reduce to the case X affine. Choose a
finite set of generators of the corresponding module.) Show that the support of a
quasicoherent sheaf need not be closed. (Hint: If A = C[t], then C[t]/(t − a) is an
A-module supported at a. Consider ⊕a∈CC[t]/(t − a). Be careful: this example
won’t work if ⊕ is replaced by

∏
.)

14.7.2. Remark. In particular, if X is a locally Noetherian scheme, the sheaf of
nilpotents (Exercise 14.3.G) is coherent and in particular finite, and thus has closed
support. This makes precise the statement that in good (Noetherian) situations,
the fuzz on a scheme is supported on a closed subset, promised in §5.2.1.

We next come to a geometric interpretation of Nakayama’s lemma, which is
why I consider Nakayama’s Lemma a geometric fact (with an algebraic proof).

14.7.D. USEFUL EXERCISE: GEOMETRIC NAKAYAMA (GENERATORS OF A FIBER

GENERATE A FINITE TYPE QUASICOHERENT SHEAF NEARBY). Suppose X is a
scheme, and F is a finite type quasicoherent sheaf. Show that if U ⊂ X is a neigh-
borhood of x ∈ X and a1, . . . , an ∈ F (U) so that the images a1, . . . , an ∈ Fx
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generate F |x (defined as Fx ⊗ κ(x), §5.3.5), then there is an affine neighborhood
x ⊂ Spec A ⊂ U of x such that “a1|Spec A, . . . , an|Spec A generate F |Spec A” in the
following senses:

(i) a1|Spec A, . . . , an|Spec A generate F (Spec A) as an A-module;
(ii) for any y ∈ Spec A, a1, . . . , an generate the stalk F |Spec A as an OX,y-

module (and hence for any y ∈ Spec A, the fibers a1|y, . . . , an|y generate
the fiber F |y as a κ(y)-vector space).

In particular, if Fx ⊗ κ(x) = 0, then there exists a neighborhood V of x such that
F |V = 0.

14.7.E. USEFUL EXERCISE (LOCAL FREENESS OF A COHERENT SHEAF IS A STALK-
LOCAL PROPERTY; AND LOCALLY FREE STALKS IMPLY LOCAL FREENESS NEARBY).
Suppose F is a coherent sheaf on scheme X. Show that if Fx is a free OX,x-module
for some x ∈ X, then F is locally free in some open neighborhood of X. Hence F is
locally free if and only if Fx is a free OX,x-module for all x ∈ X. Hint: Find an open
neighborhood U of x, and n elements of F (U) that generate F |x and hence by
Nakayama’s lemma they generate Fx. Use Geometric Nakayama, Exercise 14.7.D,
show that the sections generate Fy for all y in some neighborhood Y of x in U.
Thus you have described a surjection O⊕n

Y → F |Y . Show that the kernel this map
is finite type, and hence has closed support (say Z ⊂ Y), which does not contain x.
Thus O⊕n

Y\Z → F |Y\Z is an isomorphism.

This is enlightening in a number of ways. It shows that for coherent sheaves,
local freeness is a stalk-local condition. Furthermore, on an integral scheme, any
coherent sheaf F is automatically free over the generic point (do you see why?),
so every coherent sheaf on an integral scheme is locally free over a dense open
subset. And any coherent sheaf that is 0 at the generic point of an irreducible
scheme is necessarily 0 on a dense open subset. The last two sentences show the
utility of generic points; such statements would have been more mysterious in
classical algebraic geometry.

14.7.F. EXERCISE. Show that torsion-free coherent sheaves on a nonsingular
(hence implicitly locally Noetherian) curve are locally free. (Although “torsion
sheaf” is has not yet been defined, you should also be able to make sense out of
the statement: any coherent sheaf is a direct sum of a torsion-free sheaf and a
torsion sheaf.)

To answer the previous exercise, use Useful Exercise 14.7.E (local freeness can
be checked at stalks) to reduce to the discrete valuation ring case, and recall Re-
mark 13.4.17, the structure theorem for finitely generated modules over a princi-
pal ideal domain A: any such module can be written as the direct sum of principal
modules A/(a). For discrete valuation rings, this means that the summands are of
the form A or A/mk. Hence:

14.7.3. Proposition. — If M is a finitely generated module over a discrete valuation
ring, then M is torsion-free if and only if M is free.

(Exercise 25.2.C is closely related.)
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Proposition 14.7.3 is false without the finite generation hypothesis: consider
M = K(A) for a suitably general ring A. It is also false if we give up the “dimen-
sion 1” hypothesis: consider (x, y) ⊂ C[x, y]. And it is false if we give up the
“nonsingular” hypothesis: consider (x, y) ⊂ C[x, y]/(xy). (These examples require
some verification.)

14.7.4. Rank of a quasicoherent sheaf at a point.
Suppose F is a quasicoherent sheaf on a scheme X, and p is a point of X. The

vector space Fp/mFp = Fp ⊗OX,p
κ(p) can be interpreted as the fiber of the sheaf

at the point, where m is the maximal ideal corresponding to p, and κ(p) is as usual
the residue field at p. A section of F over an open set containing p can be said to
take on a value at that point, which is an element of this vector space. The rank of
a quasicoherent sheaf F at a point p is dimκ(p) Fp/mFp (possibly infinite). More
explicitly, on any affine set Spec A where p = [p] and F (Spec A) = M, then the
rank is dimK(A/p) Mp/pMp. Note that this definition of rank is consistent with the
notion of rank of a locally free sheaf. In the locally free case, the rank is a (locally)
constant function of the point. The converse is sometimes true, see Exercise 14.7.J
below.

If X is irreducible, and F is a quasicoherent (usually coherent) sheaf on X on
X, then rank F (with no mention of a point) by convention means at the generic
point.

14.7.G. EXERCISE. Consider the coherent sheaf F on A1
k = Spec k[t] correspond-

ing to the module k[t]/(t). Find the rank of F at every point of A1. Don’t forget
the generic point!

14.7.H. EXERCISE. Show that at any point, rank(F ⊕ G ) = rank(F ) + rank(G )
and rank(F ⊗G ) = rank F rank G at any point. (Hint: Show that direct sums and
tensor products commute with ring quotients and localizations, i.e. (M ⊕ N) ⊗R

(R/I) ∼= M/IM ⊕ N/IN, (M ⊗R N) ⊗R (R/I) ∼= (M ⊗R R/I) ⊗R/I (N ⊗R R/I) ∼=
M/IM ⊗R/I N/IM, etc.)

If F is finite type, then the rank is finite, and by Nakayama’s lemma, the rank
is the minimal number of generators of Mp as an Ap-module.

14.7.I. IMPORTANT EXERCISE. If F is a finite type quasicoherent sheaf on X, show
that rank(F ) is an upper semicontinuous function on X. Hint: generators at a
point p are generators nearby by Geometric Nakayama’s Lemma, Exercise 14.7.D.
(The example in Exercise 14.7.C shows the necessity of the finite type hypothesis.)

14.7.J. IMPORTANT HARD EXERCISE.
(a) If X is reduced, F is a finite type quasicoherent sheaf on X, and the rank is
constant, show that F is locally free. Then use upper semicontinuity of rank (Ex-
ercise 14.7.I) to show that finite type quasicoherent sheaves on an integral scheme
are locally free on a dense open set. (By examining your proof, you will see that
the Integrality hypothesis can be relaxed. In fact it can be removed completely —
reducedness is all that is necessary.) Hint: Reduce to the case where X is affine.
Then show it in a neighborhood of a closed point p as follows. (You will have have
to show that this suffices, using the affine assumption. But note that closed points
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aren’t necessarily dense in an affine scheme, see for example Exercise 4.4.K) Sup-
pose n = rank F . Choose n generators of the fiber F |p (a basis as an κ(p)-vector
space). By Geometric Nakayama’s Lemma 14.7.D, we can find a smaller neighbor-
hood p ∈ Spec A ⊂ X, with F |Spec A = M̃, so that the chosen generators F |p lift
to generators m1, . . . , mn of M. Let φ : An → M with (r1, . . . , rn) (→

∑
rimi. If

kerφ != 0, then suppose (r1, . . . , rn) is in the kernel, with r1 != 0. As r1 != 0, there is
some p where r1 /∈ p — here we use the reduced hypothesis. Then r1 is invertible
in Ap, so Mp has fewer than n generators, contradicting the constancy of rank.
(b) Show that part (a) can be false without the condition of X being reduced. (Hint:
Spec k[x]/x2, M = k.)

You can use the notion of rank to help visualize finite type quasicoherent
sheaves, or even quasicoherent sheaves. For example, I think of a coherent sheaf
as generalizing a finite rank vector bundle as follows: to each point there is an
associated vector space, and although the ranks can jump, they fit together in
families as well as one might hope. You might try to visualize the example of
Example 14.7.G. Nonreducedness can fit into the picture as well — how would
you picture the coherent sheaf on Spec k[ε]/(ε2) corresponding to k[ε]/(ε)? How
about k[ε]/(ε2) ⊕ k[ε]/(ε)?

14.7.5. Degree of a finite morphism at a point. Suppose π : X → Y is a finite morphism.
Then π∗OX is a finite type (quasicoherent) sheaf on Y, and the rank of this sheaf at
a point p is called the degree of the finite morphism at p. By Exercise 14.7.I, the
degree of π is a upper semicontinuous function on Y. The degree can jump: con-
sider the closed immersion of a point into a line corresponding to k[t] → k given
by t (→ 0. It can also be constant in cases that you might initially find surprising —
see Exercise 10.3.3, where the degree is always 2, but the 2 is obtained in a number
of different ways.

14.7.K. EXERCISE. Suppose π : X → Y is a finite morphism. By unwinding
the definition, verify that the degree of π at p is the dimension of the space of
functions of the scheme-theoretic preimage of p, considered as a vector space over
the residue field κ(p). In particular, the degree is zero if and only if π−1(p) is
empty.

14.8 !! Coherent modules over non-Noetherian rings

This section is intended for people who might work with non-Noetherian
rings, or who otherwise might want to understand coherent sheaves in a more
general setting. Read this only if you really want to!

Suppose A is a ring. Recall the definition of when an A-module M is finitely
generated, finitely presented, and coherent. The reason we like coherence is that
coherent modules form an abelian category. Here are some accessible exercises
working out why these notions behave well. Some repeat earlier discussion in
order to keep this section self-contained.

The notion of coherence of a module is only interesting in the case that a ring is
coherent over itself. Similarly, coherent sheaves on a scheme X will be interesting
only when OX is coherent (“over itself”). In this case, coherence is clearly the
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same as finite presentation. An example where non-Noetherian coherence comes
up is the ring R〈x1, . . . , xn〉 of “restricted power series” over a valuation ring R
of a non-discretely valued K (for example, a completion of the algebraic closure of
Qp). This is relevant to Tate’s theory of non-archimedean analytic geometry over K.
The importance of the coherence of the structure sheaf underlines the importance
of Oka’s theorem in complex geometry.

14.8.A. EXERCISE. Show that coherent implies finitely presented implies finitely
generated. (This was discussed in the previous section.)

14.8.B. EXERCISE. Show that 0 is coherent.

Suppose for problems 14.8.C–14.8.I that

(14.8.0.1) 0 → M → N → P → 0

is an exact sequence of A-modules. In thise series of problems, we will show that
if two of {M,N, P} are coherent, the third is as well, which will prove very useful.

14.8.1. Hint †. The following hint applies to several of the problems: try to write

0 $$ Ap $$

%%

Ap+q $$

%%

Aq $$

%%

0

0 $$ M $$ N $$ P $$ 0

and possibly use the Snake Lemma 2.7.5.

14.8.C. EXERCISE. Show that N finitely generated implies P finitely generated.
(You will only need right-exactness of (14.8.0.1).)

14.8.D. EXERCISE. Show that M, P finitely generated implies N finitely generated.
(Possible hint: †.) (You will only need right-exactness of (14.8.0.1).)

14.8.E. EXERCISE. Show that N,P finitely generated need not imply M finitely
generated. (Hint: if I is an ideal, we have 0 → I → A → A/I → 0.)

14.8.F. EXERCISE. Show that N coherent, M finitely generated implies M coherent.
(You will only need left-exactness of (14.8.0.1).)

14.8.G. EXERCISE. Show that N, P coherent implies M coherent. Hint for (i):

Aq

%%

..*
**

**
**

*

Ap

%% !!#
##

##
##

#

0 $$ M

%%

$$ N

%%

$$ P $$

>>?
??

??
??

? 0

0 0 0

(You will only need left-exactness of (14.8.0.1).)
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14.8.H. EXERCISE. Show that M finitely generated and N coherent implies P
coherent. (Hint for (ii): †.)

14.8.I. EXERCISE. Show that M, P coherent implies N coherent. (Hint: †.)

14.8.J. EXERCISE. Show that a finite direct sum of coherent modules is coherent.

14.8.K. EXERCISE. Suppose M is finitely generated, N coherent. Then if φ : M →
N is any map, then show that Imφ is coherent.

14.8.L. EXERCISE. Show that the kernel and cokernel of maps of coherent modules
are coherent.

At this point, we have verified that coherent A-modules form an abelian sub-
category of the category of A-modules. (Things you have to check: 0 should be
in this set; it should be closed under finite sums; and it should be closed under
taking kernels and cokernels.)

14.8.M. EXERCISE. Suppose M and N are coherent submodules of the coherent
module P. Show that M + N and M ∩ N are coherent. (Hint: consider the right
map M ⊕ N → P.)

14.8.N. EXERCISE. Show that if A is coherent (as an A-module) then finitely pre-
sented modules are coherent. (Of course, if finitely presented modules are coher-
ent, then A is coherent, as A is finitely presented!)

14.8.O. EXERCISE. If M is finitely presented and N is coherent, show that Hom(M,N)
is coherent. (Hint: Hom is left-exact in its first argument.)

14.8.P. EXERCISE. If M is finitely presented, and N is coherent, show that M ⊗ N
is coherent.

14.8.Q. EXERCISE. If f ∈ A, show that if M is a finitely generated (resp. finitely
presented, coherent) A-module, then Mf is a finitely generated (resp. finitely pre-
sented, coherent) Af-module. (Hint: localization is exact, Exercise 2.6.F(a).) This
exercise is repeated from Exercise 14.6.C to make this section self-contained.

14.8.R. EXERCISE. Suppose (f1, . . . , fn) = A. Show that if Mfi
is finitely generated

for all i, then M is too. (Hint: Say Mfi
is generated by mij ∈ M as an Afi

-module.
Show that the mij generate M. To check surjectivity ⊕i,jA → M, it suffices to
check “on D(fi)” for all i.)

14.8.S. EXERCISE. Suppose (f1, . . . , fn) = A. Show that if Mfi
is coherent for all

i, then M is too. (Hint: if φ : A2 → M, then (kerφ)fi
= ker(φfi

), which is finitely
generated for all i. Then apply the previous exercise.)





CHAPTER 15

Line bundles: Invertible sheaves and divisors

We next describe convenient and powerful ways of working with and classify-
ing line bundles (invertible sheaves). We begin with a fundamental example, the
line bundles O(n) on projective space, §15.1. We then introduce Weil divisors (for-
mal sums of codimension 1 subsets), and use them to determine Pic X in a number
of circumstances, §15.2. We finally discuss sheaves of ideals that happen to be in-
vertible (effective Cartier divisors), §15.3. A central theme is that line bundles are
closely related to “codimension 1 information”.

15.1 Some line bundles on projective space

We now describe an important family of invertible sheaves on projective space
over a field k.

As a warm-up, we begin with the invertible sheaf OP1
k
(1) on P1

k = Proj k[x0, x1].

The subscript P1
k refers to the space on which the sheaf lives, and is often omitted

when it is clear from the context. We describe the invertible sheaf O(1) using transi-
tion functions. It is trivial on the usual affine open sets U0 = D(x0) = Spec k[x1/0]
and U1 = D(x1) = Spec k[x0/1]. (We continue to use the convention xi/j for de-
scribing coordinates on patches of projective space, see §5.4.9.) Thus the data of
a section over U0 is a polynomial in x1/0. The transition function from U0 to U1

is multiplication by x0/1 = x−1
1/0. The transition function from U1 to U0 is hence

multiplication by x1/0 = x−1
0/1.

This information is summarized below:

open cover U0 = Spec k[x1/0] U1 = Spec k[x0/1]

trivialization and transition functions k[x1/0]

×x0/1=x−1
1/0

LL
k[x0/1]

×x1/0=x−1
0/1

MM

To test our understanding, let’s compute the global sections of O(1). This will
generalize our hands-on calculation that Γ(P1

k,OP1
k
) ∼= k (Example 5.4.6). A global

section is a polynomial f(x1/0) ∈ k[x1/0] and a polynomial g(x0/1) ∈ k[x0/1] such
that f(1/x0/1)x0/1 = g(x0/1). A little thought will show that f must be linear:
f(x1/0) = ax1/0 + b, and hence g(x0/1) = a + bx0/1. Thus

dim Γ(P1
k,O(1)) = 2 != 1 = dim Γ(P1

k,O).

331
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Thus O(1) is not isomorphic to O , and we have constructed our first (proved) ex-
ample of a nontrivial line bundle!

We next define more generally OP1
k
(n) on P1

k. It is defined in the same way,
except that the transition functions are the nth powers of those for O(1).

open cover U0 = Spec k[x1/0] U1 = Spec k[x0/1]

trivialization and transition functions k[x1/0]

×xn
0/1=x−n

1/0

LL
k[x0/1]

×xn
1/0=x−n

0/1

MM

In particular, thanks to the explicit transition functions, we see that O(n) = O(1)⊗n

(with the obvious meaning if n is negative: (O(1)⊗(−n))∨). Clearly also O(m) ⊗
O(n) = O(m + n).

15.1.A. IMPORTANT EXERCISE. Show that dim Γ(P1,O(n)) = n + 1 if n ≥ 0, and 0
otherwise.

15.1.1. Example. Long ago (§3.5.I), we warned that sheafification was necessary
when tensoring OX-modules: if F and G are two OX-modules on a ringed space,
then it is not necessarily true that F (X)⊗OX(X) G (X) ∼= (F ⊗G )(X). We now have
an example: let X = P1

k, F = O(1), G = O(−1).

15.1.B. EXERCISE. Show that if m != n, then O(m) !∼= O(n). Hence conclude that
we have an injection of groups Z ↪→ Pic P1

k given by n (→ O(n).

It is useful to identify the global sections of O(n) with the homogeneous poly-
nomials of degree n in x0 and x1, i.e. with the degree n part of k[x0, x1]. Can you
see this from your solution to Exercise 15.1.A? We will see that this identification
is natural in many ways. For example, we will later see that the definition of O(n)
doesn’t depend on a choice of affine cover, and this polynomial description is also
independent of cover. As an immediate check of the usefulness of this point of
view, ask yourself: where does the section x3

0 − x0x2
1 of O(3) vanish? The section

x0 + x1 of O(1) can be multiplied by the section x2
0 of O(2) to get a section of O(3).

Which one? Where does the rational section x4
0(x1 + x0)/x7

1 of O(−2) have zeros
and poles, and to what order? (We saw the notion of zeros and poles in Defini-
tion 13.4.8, and will meet them again in §15.2, but you should intuitively answer
these questions already.)

We now define the invertible sheaf OPm
k

(n) on the projective space Pm
k . On the

usual affine open set Ui = Spec k[x0/i, . . . , xm/i]/(xi/i − 1) = Spec Ai, it is trivial,
so sections (as an Ai-module) are isomorphic to Ai. The transition function from
Ui to Uj is multiplication by xn

i/j = x−n
j/i .

Ui = Spec k[x0/i, . . . , xm/i]/(xi/i − 1) Uj = Spec k[x0/j, . . . , xm/j]/(xj/j − 1)

k[x0/i, . . . , xm/i]/(xi/i − 1)

×xn
i/j=x−n

j/i $$
Spec k[x0/j, . . . , xm/j]/(xj/j − 1)

×xn
j/i=x−n

i/j

NN

Note that these transition functions clearly satisfy the cocycle condition.
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15.1.C. ESSENTIAL EXERCISE. Show that dimk Γ(Pm
k ,OPm

k
(n)) =

(
m+n

n

)
.

As in the case of P1, sections of O(n) on Pm
k are naturally identified with ho-

mogeneous degree n polynomials in our m + 1 variables. Thus x + y + 2z is a
section of O(1) on P2. It isn’t a function, but we know where this section vanishes
— precisely where x + y + 2z = 0.

Also, notice that for fixed m,
(
m+n

n

)
is a polynomial in n of degree m for

n ≥ 0 (or better: for n ≥ −m − 1). This should be telling you that this function
“wants to be a polynomial,” but won’t succeed without assistance. We will later
define h0(Pm

k ,O(n)) := dimk Γ(Pm
k ,O(n)), and later still we will define higher

cohomology groups, and we will define the Euler characteristic χ(Pm
k ,O(n)) :=∑∞

i=0(−1)ihi(Pm
k ,O(n)) (cohomology will vanish in degree higher than n). We

will discover the moral that the Euler characteristic is better-behaved than h0, and
so we should now suspect (and later prove, see Theorem 20.1.2) that this polyno-
mial is in fact the Euler characteristic, and the reason that it agrees with h0 for
n ≥ 0 because all the other cohomology groups should vanish.

We finally note that we can define O(n) on Pm
A for any ring A: the above

definition applies without change.

15.2 Line bundles and Weil divisors

The notion of Weil divisors gives a great way of understanding and classifying
line bundles, at least on Noetherian normal schemes. Some of what we discuss will
apply in more general circumstances, and the expert is invited to consider gener-
alizations by judiciously weakening hypotheses in various statements. Before we
get started, I want to warn you: this is one of those topics in algebraic geometry
that is hard to digest — learning it changes the way in which you think about
line bundles. But once you become comfortable with the imperfect dictionary to
divisors, it becomes second nature.

For the rest of this section, we consider only Noetherian schemes. We do this
because we want to discuss codimension 1 subsets, and also have decomposition
into irreducibles components. We will also use Hartogs’ lemma, which requires
Noetherianness.

Define a Weil divisor as a formal sum of codimension 1 irreducible closed
subsets of X. In other words, a Weil divisor is defined to be an object of the form

∑

Y ⊂ X codimension 1

nY [Y]

the nY are integers, all but a finite number of which are zero. Weil divisors obvi-
ously form an abelian group, denoted Weil X.

For example, if X is a curve, the Weil divisors are linear combination of closed
points.

We say that [Y] is an irreducible (Weil) divisor. A Weil divisor is said to be
effective if nY ≥ 0 for all Y. In this case we say D ≥ 0, and by D1 ≥ D2 we
mean D1 − D2 ≥ 0. The support of a Weil divisor D is the subset ∪nY ,=0Y. If
U ⊂ X is an open set, there is a natural restriction map Weil X → Weil U, where∑

nY [Y] (→
∑

Y∩U,=∅ nY [Y ∩ U].
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Suppose now that X is regular in codimension 1 (and Noetherian). We add this
hypothesis because we will use properties of discrete valuation rings. Assume
also that X is reduced. (This is only so we can talk about rational functions without
worrying about them being defined at embedded points. Feel free to relax this
hypothesis.) Suppose that L is an invertible sheaf, and s a rational section not
vanishing everywhere on any irreducible component of X. (Rational sections are
given by a section over a dense open subset of X, with the obvious equivalence,
§14.1.7.) Then s determines a Weil divisor

div(s) :=
∑

Y

valY(s)[Y]

called the divisor of zeros and poles (cf. Definition 13.4.8). To determine the val-
uation valY(s) of s along Y, take any open set U containing the generic point of
Y where L is trivializable, along with any trivialization over U; under this trivi-
alization, s is a nonzero rational function on U, which thus has a valuation. Any
two such trivializations differ by a unit (transition functions are units), so this
valuation is well-defined. Note that valY(s) = 0 for all but finitely many Y, by
Exercise 13.4.G. The map div is a group homomorphism

div : {(L , s)} → Weil X.

(Be sure you understand how {(L , s)} forms a group!) A unit has no poles or zeros,
so div descends to a group homomorphism

(15.2.0.1) div : {(L , s)}/Γ(X,OX)× → Weil X.

15.2.A. EASIER EXERCISE. (a) (divisors of rational functions) Verify that on A1
k,

div(x3/(x + 1)) = 3[(x)] − [(x + 1)] (“= 3[0] − [−1]”).
(b) (divisor of a rational sections of a nontrivial invertible sheaf) On P1

k, there is a ratio-
nal section of O(1) “corresponding to” x2/(x+y). Figure out what this means, and
calculate div(x2/(x + y)).

Homomorphism (15.2.0.1) will be the key to determining all the line bundles
on many X. Note that any invertible sheaf will have such a rational section (for
each irreducible component, take a non-empty open set not meeting any other ir-
reducible component; then shrink it so that L is trivial; choose a trivialization;
then take the union of all these open sets, and choose the section on this union
corresponding to 1 under the trivialization). We will see that in reasonable situa-
tions, this map div will be injective, and often an isomorphism. Thus by forgetting
the rational section (taking an appropriate quotient), we will have described the
Picard group of all line bundles. Let’s put this strategy into action.

15.2.1. Proposition. — If X is normal and Noetherian then the map div is injective.

Proof. Suppose div(L , s) = 0. Then s has no poles. Hence by Hartogs’ lemma for
invertible sheaves (Exercise 14.1.I), s is a regular section. Now s vanishes nowhere,
so s gives an isomorphism ×s : OX → L . (More precisely, on an open set U,
the bijection OX(U) → L (U) is multiplication by s|U, and the inverse is division
by s|U. This behaves well with respect to restriction maps, and hence gives an
isomorphism of sheaves.) !
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Motivated by this, we try to find an inverse to div, or at least to determine the
image of div.

15.2.2. Important Definition. Assume now that X is irreducible (purely to avoid
making (15.2.2.1) look uglier — but feel free to relax this, see Exercise 15.2.B). Sup-
pose D is a Weil divisor. Define the sheaf OX(D) by

(15.2.2.1) Γ(U,OX(D)) := {t ∈ K(X)× : div |Ut + D|U ≥ 0} ∪ {0}.

(Here div |Ut means take the divisor of t considered as a rational function on U,
i.e. consider just the irreducible divisors of U.) The subscript X in OX(D) is omit-
ted when it is clear from context. The sections of OX(D) over U are the rational
functions on U that have poles and zeros constrained by D. A positive co-efficient
in D allows a pole of that order; a negative coefficients demands a zero of that
order. Away from the support of D, this is (isomorphic to) the structure sheaf (by
algebraic Hartogs’ theorem 12.3.10).

15.2.B. LESS IMPORTANT EXERCISE. Generalize this definition to the case when X
is not necessarily irreducible. (This is just a question of language. Once you have
done this, feel free to drop this hypothesis in the rest of this section.)

15.2.C. EASY EXERCISE. Verify that OX(D) is a quasicoherent sheaf. (Hint: the
distinguished affine criterion for quasicoherence of Exercise 14.3.D.)

In good situations, OX(D) is an invertible sheaf. For example, let X = A1
k.

Consider
OX (−2[(x)] + [(x − 1)] + [(x − 2)]) ,

often written O(−2[0] + [1] + [2]) for convenience. Then 3x3/(x − 1) is a global
section; it has the required two zeros at x = 0 (and even one to spare), and takes
advantage of the allowed pole at x = 1, and doesn’t have a pole at x = 2, even
though one is allowed. (Unimportant aside: the statement remains true in charac-
teristic 2, although the explanation requires editing.)

15.2.D. EASY EXERCISE. (This is a consequence of later discussion as well, but
you should be able to do this by hand.)
(a) Show that any global section of OA1

k
(−2[(x)] + [(x − 1)] + [(x − 2)]) is a k[x]-

multiple of x2/(x − 1)(x − 2).
(b) Extend the argument of (a) to give an isomorphism

OA1
k
(−2[(x)] + [(x − 1)] + [(x − 2)]) ∼= OA1

k
.

More generally, in good circumstances, OX(D) is an invertible sheaf, as shown
in the next several exercises. (In fact the OX(D) construction can be useful even if
OX(D) is not an invertible sheaf, but this won’t concern us here. An example of an
OX(D) that is not an invertible sheaf is given in Exercise 15.2.G.)

15.2.E. IMPORTANT EXERCISE. Suppose L is an invertible sheaf, and s is a non-
zero rational section of L .
(a) Describe an isomorphism O(div s) ∼= L . Hint: let U be an open set on which
O(div s) ∼= O . Show that such U cover X. For each such U, define φU : O(div s)(U) →
L (U) sending a rational function t to st. Show that this is an isomorphism (with
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the obvious inverse map of division by s). Explain why the φU glue (this should
be pretty clear), and argue that this map is a sheaf isomorphism.
(b) Let σ be the map from K(X) to the rational sections of L , where σ(t) is the
rational section of OX(D) ∼= L defined via (15.2.2.1). Show that the isomorphism
of (a) can be chosen such that σ(1) = s. (Hint: the map in part (a) sends 1 to s.)

15.2.3. Definition. If D is a Weil divisor on (Noetherian normal irreducible) X
such D = div s for some rational function s, we say that D is principal. Principal
divisors clearly form a subgroup of Weil X; denote this group or principal divisors
Prin X. If X can be covered with open sets Ui such that on Ui, D is principal, we
say that D is locally principal.

15.2.4. Important observation. As a consequence of Exercise 15.2.E(a) (taking
L = O), if D is principal, then O(D) ∼= O . (Diagram (15.2.6.1) will imply that
the converse holds: if O(D) ∼= O , then D is principal.) Thus if D is locally prinici-
pal, OX(D) is locally isomorphic to OX, so OX(D) is an invertible sheaf.

15.2.F. IMPORTANT EXERCISE. Show the converse: if OX(D) is an invertible sheaf,
show that D is locally principal. Hint: use σ(1), where σ was defined in Exer-
cise 15.2.E(b).

15.2.5. Remark. In definition (15.2.2.1), it may seem cleaner to consider those s
such that div s ≥ D|U. The reason for the convention comes from our desire that
divσ(1) = D.

15.2.G. LESS IMPORTANT EXERCISE: A WEIL DIVISOR THAT IS NOT LOCALLY PRIN-
CIPAL. Let X = Spec k[x, y, z]/(xy − z2), a cone, and let D be the ruling z = x = 0.
Show that D is not locally principal. (Hint: consider the stalk at the origin. Use the
Zariski tangent space, see Problem 13.1.3.) In particular OX(D) is not an invertible
sheaf.

15.2.H. IMPORTANT EXERCISE. If X is Noetherian and factorial, show that for any
Weil divisor D, O(D) is invertible. (Hint: It suffices to deal with the case where
D is irreducible, and to cover X by open sets so that on each open set U there is a
function whose divisor is [Y ∩ U]. One open set will be X − Y. Next, we find an
open set U containing an arbitrary x ∈ Y, and a function on U. As OX,x is a unique
factorization domain, the prime corresponding to 1 is codimension 1 and hence
principal by Lemma 12.1.6. Let f ∈ K(X) be a generator. It is regular at x, and it
has a finite number of zeros and poles, and through x, [Y] is the only zero. Let U
be X minus all the others zeros and poles.)

15.2.I. EXERCISE (THE EXAMPLE OF §15.1). Let D = {x0 = 0} be a hyperplane
divisor on Pn

k . Show that OPn
k
(mD) ∼= OPn

k
(m). For this reason, O(1) is sometimes

called the hyperplane class in Pic X. (Of course, x0 can be replaced by any linear
form.)

15.2.6. The class group. We can now get a handle on the Picard group. Define the
class group of X, Cl X, by Weil X/ Prin X. By taking the quotient of the inclusion
(15.2.0.1) by Prin X, we have the inclusion Pic X ↪→ Cl X. This is summarized in the
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convenient and enlightening diagram

(15.2.6.1) {(L , s)}/Γ(X,OX)×

/{(OX,s)}

%%

! " div $$ Weil X

/ Prin X

%%
Pic X {L }

! " $$ Cl X

This diagram is very important, and although it is short to state, it takes time to
internalize. (If X is Noetherian and regular in codimension 1 but not necessarily
normal, our arguments show that we have a similar diagram, except the horizontal
maps are not necessarily inclusions.)

In particular, if A is a unique factorization domain, then all Weil divisors on
Spec A are principal by Lemma 12.1.6, so Cl Spec A = 0, and hence Pic Spec A = 0.

As k[x1, . . . , xn] has unique factorization, Cl(An
k ) = 0, so Pic(An

k ) = 0 . Ge-

ometers might find this believable: “Cn is a contractible manifold, and hence
should have no nontrivial line bundles”. (Aside: for this reason, you might expect
that An

k also has no vector bundles. This is the Quillen-Suslin Theorem, formerly
known as Serre’s conjecture, part of Quillen’s work leading to his 1978 Fields
Medal. For a short proof by Vaserstein, see [L, p. 850].)

Removing subset of X of codimension greater 1 doesn’t change the class group,
as it doesn’t change the Weil divisor group or the principal divisors. (Warning: it
can affect the Picard group, Exercise 15.2.P.)

Removing a subset of codimension 1 changes the Weil divisor group in a con-
trollable way. For example, suppose Z is an irreducible codimension 1 subset of X.
Then we clearly have an exact sequence:

0 $$ Z
1)→ [Z] $$ Weil X $$ Weil(X − Z) $$ 0.

When we take the quotient by principal divisors, we lose exactness on the left, and
get an excision exact sequence for class groups:

(15.2.6.2) Z
1)→ [Z] $$ Cl X $$ Cl(X − Z) $$ 0.

(Do you see why?)
For example, if X is an open subscheme of An, Pic X = {0}.
As another application, let X = Pn

k , and Z be the hyperplane x0 = 0. We have

Z $$ Cl Pn
k

$$ Cl An
k

$$ 0

from which Cl Pn
k is generated by the class [Z], and Pic Pn

k is a subgroup of this.
By Exercise 15.2.I, [Z] (→ O(1), and as O(n) is nontrivial for n != 0 (Exer-

cise 15.1.B), [Z] is not torsion in Cl Pn
k . Hence Pic Pn

k ↪→ Cl Pn
k is an isomorphism,

and Pic Pn
k

∼= Z , with generator O(1). The degree of an invertible sheaf on Pn is

defined using this: define deg O(d) to be d.
We have gotten good mileage from the fact that the Picard group of the spec-

trum of a unique factorization domain is trivial. More generally, Exercise 15.2.H
gives us:

15.2.7. Proposition. — If X is Noetherian and factorial, then for any Weil divisor D,
O(D) is invertible, and hence the map Pic X → Cl X is an isomorphism.
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This makes the connection to the class group in number theory precise, see
Exercise 14.1.K; see also §15.2.10. (I want to think this through and edit this.)

15.2.8. Mild but important generalization: twisting line bundles by divisors. The above
constructions can be extended, with OX replaced by an arbitrary invertible sheaf,
as follows. Let L be an invertible sheaf on a normal Noetherian scheme X. Then
define L (D) by OX(D) ⊗ L .

15.2.J. EASY EXERCISE. (a) Show that sections of L (D) can be interpreted as
rational sections of L have zeros and poles constrained by D, just as in (15.2.2.1):

Γ(U,L (D)) := {t rational section of L : div |Ut + D|U ≥ 0} ∪ {0}.

(b) Suppose D1 and D2 are locally principal. Show that (O(D1))(D2) ∼= O(D1 +
D2).

15.2.9. Fun examples: hypersurface complements, and quadric surfaces.
We can now actually calculate some Picard and class groups. First, a useful

observation: notice that you can restrict invertible sheaves on X to any subscheme
Y, and this can be a handy way of checking that an invertible sheaf is not triv-
ial. Effective Cartier divisors (§9.1.2) sometimes restrict too: if you have effective
Cartier divisor on X, then it restricts to a closed subscheme on Y, locally cut out by
one equation. If you are fortunate and this equation doesn’t vanish on any associ-
ated point of Y, then you get an effective Cartier divisor on Y. You can check that
the restriction of effective Cartier divisors corresponds to restriction of invertible
sheaves.

15.2.K. EXERCISE: A TORSION PICARD GROUP. Suppose that Y is an irreducible
degree d hypersurface of Pn

k . Show that Pic(Pn
k − Y) ∼= Z/d. (For differential

geometers: this is related to the fact that π1(Pn
k − Y) ∼= Z/d.) Hint: (15.2.6.2).

The next two exercises explore consequences of Exercise 15.2.K, and provide
us with some examples promised in Exercise 6.4.M.

15.2.L. EXERCISE. Keeping the same notation, assume d > 1 (so Pic(Pn − Y) != 0),
and let H0, . . . , Hn be the n + 1 coordinate hyperplanes on Pn. Show that Pn − Y
is affine, and Pn − Y − Hi is a distinguished open subset of it. Show that the
Pn − Y − Hi form an open cover of Pn − Y. Show that Pic(Pn − Y − Hi) = 0. Then
by Exercise 15.2.Q, each Pn − Y − Hi is the Spec of a unique factorization domain,
but Pn − Y is not. Thus the property of being a unique factorization domain is not
an affine-local property — it satisfies only one of the two hypotheses of the Affine
Communication Lemma 6.3.2.

15.2.M. EXERCISE. Keeping the same notation as the previous exercise, show that
on Pn − Y, Hi (restricted to this open set) is an effective Cartier divisor that is not
cut out by a single equation. (Hint: Otherwise it would give a trivial element of
the class group.)

15.2.N. EXERCISE: PICARD GROUP OF P1×P1. Let X = P1
k×kP1

k
∼= Proj k[w, x, y, z]/(wz−

xy), a smooth quadric surface (Figure 9.2) (see Example 10.5.2). Show that Pic X ∼=
Z ⊕ Z as follows: Show that if L = {∞} × P1 ⊂ X and M = P1 × {∞} ⊂ X, then
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X − L − M ∼= A2. This will give you a surjection Z ⊕ Z $ Cl X. Show that O(L)
restricts to O on L and O(1) on M. Show that O(M) restricts to O on M and O(1)
on L. (This exercise takes some time, but is enlightening.)

15.2.O. EXERCISE. Show that irreducible smooth projective surfaces (over k) can
be birational but not isomorphic. Hint: show P2 is not isomorphic to P1×P1 using
the Picard group. (Aside: we will see in Exercise 22.2.D that the Picard group of
the “blown up plane” is Z2, but in Exercise 22.2.E we will see that the blown up
plane is not isomorphic to P1 × P1, using a little more information in the Picard
group.)

This is unlike the case for curves: birational irreducible smooth projective
curves (over k) must be isomorphic, as we will see in Theorem 18.4.3. Nonetheless,
any two surfaces are related in a simple way: if X and X ′ are projective, nonsin-
gular, and birational, then X can be sequentially blown up at judiciously chosen
points, and X ′ can too, such that the two results are isomorphic. (Blowing up will
be discussed in Chapter 19.)

15.2.P. EXERCISE: PICARD GROUP OF THE CONE. Let X = Spec k[x, y, z]/(xy −
z2), a cone, where char k != 2. (The characteristic hypothesis is not necessary for
the result, but is included so you can use Exercise 6.4.H to show normality of
X.) Show that Pic X = {1}, and Cl X ∼= Z/2. (Hint: show that the ruling Z =
{x = z = 0} generates Cl X by showing that its complement D(x) is isomorphic
to an open subset of A2

k. Show that 2[Z] = div(x) and hence principal, and that
Z is not principal, Exercise 15.2.G. (Remark: you know enough to show that X −
{(0, 0, 0)} is factorial. So although the class group is insensitive to removing loci of
codimension greater than 1, §15.2.6, this is not true of the Picard group.)

The Picard group of the “blown up projective plane” will be computed in Ex-
ercise 22.2.D.

15.2.10. More on class groups and unique factorization.
As mentioned in §6.4.5, there are few commonly used means of checking that

a ring is a unique factorization domain. The next exercise is one of them, and it is
useful. For example, it implies the classical fact that for rings of integers in number
fields, the class group is the obstruction to unique factorization (see Exercise 14.1.K
and Proposition 15.2.7).

15.2.Q. EXERCISE. Suppose that A is a Noetherian integral domain. Show that A is
a unique factorization domain if and only if A is integrally closed and Cl Spec A =
0. (One direction is easy: we have already shown that unique factorization do-
mains are integrally closed in their fraction fields. Also, Lemma 12.1.6 shows
that all codimension 1 primes of a unique factorization domain are principal, so
that implies that Cl Spec A = 0. It remains to show that if A is integrally closed
and Cl Spec A = 0, then all codimension 1 prime ideals are principal, as this
characterizes unique factorization domains (Proposition 12.3.5). Hartogs’ theo-
rem 12.3.10 may arise in your argument.) This is the third important characteri-
zation of unique factorization domains promised in §6.4.5.

My final favorite method of checking that a ring is a unique factorization do-
main (§6.4.5) is Nagata’s Lemma. It is also the least useful.
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15.2.R. !! EXERCISE (NAGATA’S LEMMA). Suppose A is a Noetherian domain,
x ∈ A an element such that (x) is prime and Ax = A[1/x] is a unique factorization
domain. Then A is a unique factorization domain. (Hint: Exercise 15.2.Q. Use
the short exact sequence [(x)] → Cl Spec A → Cl Ax → 0 (15.2.6.2) to show that
Cl Spec A = 0. Show that A[1/x] is integrally closed, then show that A is integrally
closed as follows. Suppose Tn + an−1Tn−1 + · · · + a0 = 0, where ai ∈ A, and
T ∈ K(A). Then by integral closure of Ax, we have that T = r/xm, where if m > 0,
then r /∈ x. Then we quickly get a contradiction if m > 0.)

This leads to a fun algebra fact promised in Remark 13.3.3. Suppose k is an
algebraically closed field of characteristic not 2. Let A = k[x1, . . . , xn]/(x2

1 + · · · +
x2

m) where m ≤ n. When m ≤ 2, we get some special behavior. (If m = 0, we get
affine space; if m = 1, we get a nonreduced scheme; if m = 2, we get a reducible
scheme that is the union of two affine spaces.) If m ≥ 3, we have verified that
Spec A is normal, in Exercise 6.4.I(b).

In fact, if m ≥ 3, then A is a unique factorization domain unless m = 4 (Ex-
ercise 6.4.K; see also Exercise 13.1.D). The failure at 4 comes from the geometry
of the quadric surface: we have checked that in Spec k[w, x, y, z]/(wz − xy), there
is a codimension 1 prime ideal — the cone over a line in a ruling — that is not
principal.

We already understand the case m = 3: A = k[x, y, z,w1, . . . , wn−3]/(x2+y2−
z2) is a unique factorization domain, as it is normal (basically Exercise 6.4.I(b)) and
has class group 0 (by essentially the same argument as for Exercise 15.2.P).

15.2.S. EXERCISE (THE CASE m ≥ 5). Suppose that k is algebraically closed of
characteristic not 2. Show that if m ≥ 3, then A = k[a, b, x1, . . . , xn]/(ab − x2

1 −
· · ·− x2

m) is a unique factorization domain, by using Nagata’s Lemma with x = a.

15.3 ! Effective Cartier divisors “=” invertible ideal sheaves

We now give a completely different means of describing invertible sheaves on
a scheme. One advantage of this over Weil divisors is that it can give line bun-
dles on generically nonreduced schemes (if a scheme is nonreduced everywhere,
it can’t be regular at any codimension 1 prime). But we won’t use this so it is less
important.

Suppose D ↪→ X is a closed subscheme such that corresponding ideal sheaf I
is an invertible sheaf. Then I is locally trivial; suppose U is a trivializing affine
open set Spec A. Then the closed subscheme exact sequence (14.5.5.1)

0 → I → OX → OD → 0

corresponds to
0 → I → A → A/I → 0

with I ∼= A as A-modules. Thus I is generated by a single element, say a, and this
exact sequence starts as

0 $$ A
×a $$ A

As multiplication by a is injective, a is not a zerodivisor. We conclude that D is lo-
cally cut out by a single equation, that is not a zerodivisor. This was the definition
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of effective Cartier divisor given in §9.1.2. This argument is clearly reversible, so we
have a quick new definition of effective Cartier divisor (an ideal sheaf I that is an
invertible sheaf — or equivalently, the corresponding closed subscheme).

15.3.A. EASY EXERCISE. Show that a is unique up to multiplication by a unit.

In the case where X is locally Noetherian, we can use the language of associ-
ated points, so we can restate this definition as: D is locally cut out by a single
equation, not vanishing at any associated point of X.

We now define an invertible sheaf corresponding to D. The seemingly obvious
definition would be to take ID, but instead we define the invertible sheaf O(D)
corresponding to an effective Cartier divisor to be the dual: I ∨

D . (The reason for
the dual is Exercise 15.3.B.) The ideal sheaf ID is sometimes denoted O(−D). We
have an exact sequence

0 → O(−D) → O → OD → 0.

The invertible sheaf O(D) has a canonical section sD: Tensoring 0 → I → O
with I ∨ gives us O → I ∨. (Easy unimportant fact: instead of tensoring I → O
with I ∨, we could have dualized I → O , and we would get the same section.)

15.3.B. IMPORTANT AND SURPRISINGLY TRICKY EXERCISE. Recall that a section of
a locally free sheaf on X cuts out a closed subscheme of X (Exercise 14.1.H). Show
that this section sD cuts out D. (Compare this to Remark 15.2.5.)

This construction is “invertible”.

15.3.C. EXERCISE. Suppose L is an invertible sheaf, and s is a section that is not
locally a zerodivisor. (Make sense of this! In particular, if X is locally Noetherian,
this means “s does not vanish at an associated point”.) Show that s = 0 cuts out
an effective Cartier divisor D, and O(D) ∼= L .

15.3.D. EXERCISE. Suppose I and J are invertible ideal sheaves (hence cor-
responding to effective Cartier divisors, say D and D ′ respectively). Show that
I J is an invertible ideal sheaf. (We define the product of two quasicoherent
ideal sheaves I J as you might expect: on each affine, we take the product of
the two corresponding ideals. To make sure this is well-defined, we need only
check that if A is a ring, and f ∈ A, and I, J ⊂ A are two ideals, then (IJ)f = IfJf

in Af.) We define the corresponding Cartier divisor to be D + D ′. Verify that
O(D + D ′) ∼= O(D) ⊗ O(D ′).

We thus have an important correspondence between effective Cartier divisors
(closed subschemes whose ideal sheaves are invertible, or equivalently locally cut
out by one non-zerodivisor, or in the locally Noetherian case, locally cut out by
one equation not vanishing at an associated point) and ordered pairs (L , s) where
L is an invertible sheaf, and s is a section that is not locally a zerodivisor (or in the
locally Noetherian case, not vanishing at an associated point). The effective Cartier
divisors form an abelian semigroup. We have a map of semigroups, from effective
Cartier divisors to invertible sheaves with sections not locally zerodivisors (and
hence also to the Picard group of invertible sheaves).
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We get lots of invertible sheaves, by taking differences of two effective Cartier
divisors. In fact we “usually get them all” — it is very hard to describe an in-
vertible sheaf on a finite type k-scheme that is not describable in such a way. For
example, there are none if the scheme is nonsingular or even factorial (basically
by Proposition 15.2.7 for factoriality; and nonsingular schemes are factorial by the
Auslander-Buchsbaum theorem 13.3.1).



CHAPTER 16

Quasicoherent sheaves on projective A-schemes

The first two sections of this chapter are relatively straightforward, and the
last two are trickier.

16.1 The quasicoherent sheaf corresponding to a graded module

We now describe quasicoherent sheaves on a projective A-scheme. Recall that
a projective A-scheme is produced from the data of Z≥0-graded ring S•, with S0 =
A, and S+ finitely generated as an A-module. The resulting scheme is denoted
Proj S•.

Let X = Proj S•. Suppose M• is a graded S• module, graded by Z. (While
reading the next section, you may wonder why we don’t grade by Z+. You will see
that it doesn’t matter. A Z-grading will make things cleaner when we produce an

M• from a quasicoherent sheaf on Proj S•.) We define the quasicoherent sheaf M̃•

as follows. (I will avoid calling it M̃, as this might cause confusion with the affine

case; but M̃• is not graded in any way.) For each f of positive degree, we define a

quasicoherent sheaf M̃•(f) on the distinguished open D(f) = {p : f(p) != 0} by

M̃•(f) := (̃Mf)0.

As in (5.5.3.1), the subscript 0 means “the 0-graded piece”. We have obvious iso-

morphisms of the restriction of M̃•(f) and M̃•(g) to D(fg), satisfying the cocycle
conditions. (Think through this yourself, to be sure you agree with the word “ob-

vious”!) By Exercise 3.7.D, these sheaves glue together to a single sheaf on M̃• on

X. We then discard the temporary notation M̃•(f).
This is clearly quasicoherent, because it is quasicoherent on each D(f), and

quasicoherence is local.

16.1.A. EXERCISE. Show that the stalk of M̃• at a point corresponding to homoge-
neous prime p ⊂ S• is isomorphic ((M•)p)0.

16.1.B. UNIMPORTANT EXERCISE. Use the previous exercise to give an alternate

definition of M̃• in terms of “compatible stalks” (cf. Exercise 5.5.J).

Given a map of graded modules φ : M• → N•, we we get an induced map of

sheaves M̃• → Ñ•. Explicitly, over D(f), the map M• → N• induces M•[1/f] →
N•[1/f], which induces φf : (M•[1/f])0 → (N•[1/f])0; and this behaves well with
respect to restriction to smaller distinguished open sets, i.e. the following diagram

343
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commutes.

(M•[1/f])0
φf $$

%%

(N•[1/f])0

%%
(M•[1/(fg)])0

φfg $$ (N•[1/(fg)])0.

Thus ∼ is a functor from the category of graded S•-modules to the category of
quasicoherent sheaves on Proj S•. We shall soon see (Exercise 16.1.D) that this isn’t
an isomorphism (or equivalence), but it is close. The relationship is akin to that
between presheaves and sheaves, and the sheafification functor.

16.1.C. EASY EXERCISE. Show that ∼ is an exact functor. (Hint: everything in the
construction is exact.)

16.1.D. EXERCISE. Show that if M• and M ′
• agree in high enough degrees, then

M̃•
∼= M̃ ′

•. Then show that the map from graded S•-modules (up to isomorphism)
to quasicoherent sheaves on Proj S• (up to isomorphism) is not a bijection. (Really:
show this isn’t an equivalence of categories.)

16.1.E. EXERCISE. Describe a map of S0-modules M0 → Γ(M̃•, X). (This foreshad-
ows the “saturation map” of §16.4.5 that takes a graded module to its saturation,
see Exercise 16.4.C.)

16.1.1. Graded ideals of S• give closed subschemes of Proj S•. Recall that a
graded ideal I• ⊂ S• yields a closed subscheme Proj S•/I• ↪→ Proj S•. For example,
suppose S• = k[w, x, y, z], so Proj S•

∼= P3. The ideal I• = (wz−xy, x2−wy, y2−xz)
yields our old friend, the twisted cubic (defined in Exercise 9.2.A)

16.1.F. EXERCISE. Show that if the functor ∼ is applied to the exact sequence of
graded S•-modules

0 → I• → S• → S•/I• → 0

we obtain the closed subscheme exact sequence (14.5.5.1) for Proj S•/I• ↪→ Proj S•.

We will soon see (Exercise 16.4.H) that all closed subschemes of Proj S• arise
in this way.

16.2 Invertible sheaves (line bundles) on projective A-schemes

Suppose that S• is generated in degree 1 (not a huge assumption, by Exer-
cise 7.4.G). Suppose M• is a graded S•-module. Define the graded module M(n)•

by M(n)m := Mn+m. Thus the quasicoherent sheaf M̃(n)• satisfies

Γ(D(f), M̃(n)•) = ((M•)f)n

where here the subscript means we take the nth graded piece. (These subscripts
are admittedly confusing!)
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16.2.A. EXERCISE. If S• = k[x0, . . . , xm], so Proj S• = Pm
k , show S̃•(n) ∼= O(n)

using transition functions (cf. §15.1).

16.2.B. IMPORTANT EXERCISE. If S• is generated in degree 1, show that OProj S•(n)
is an invertible sheaf.

If F is a quasicoherent sheaf on Proj S•, define F (n) := F ⊗ O(n). This is
often called twisting F by O(n) or by n. More generally, if L is an invertible
sheaf, then F ⊗ L is often called twisting F by L .

16.2.C. EXERCISE. Show that M̃•(n) ∼= M̃(n)•.

16.2.D. EXERCISE. Use transition functions to show that O(m+n) ∼= O(m)⊗O(n)
on any Proj S• where S• is generated in degree 1.

16.2.1. Unimportant remark. Even if S• is not generated in degree 1, then by Exer-
cise 7.4.G, Sd• is generated in degree 1 for some d. In this case, we may define the
invertible sheaves O(dn) for n ∈ Z. This does not mean that we can’t define O(1);
this depends on S•. For example, if S• is the polynomial ring k[x, y] with the usual
grading, except without linear terms (so S• = k[x2, xy, y2, x3, x2y, xy2, y3]), then
S2• and S3• are both generated in degree 1, meaning that we may define O(2) and
O(3). There is good reason to call their “difference” O(1).

16.3 Globally generated, base-point-free, and (very) ample line
bundles

Throughout this section, S• will be a finitely generated graded ring over A,
generated in degree 1. We will prove the following result.

16.3.1. Theorem. — Any coherent sheaf F on Proj S• can be presented in the form

⊕finiteO(−n) → F → 0.

Because we can work with the line bundles O(−n) in a hands-on way, this
result will give us great control over all coherent sheaves (and in particular, vector
bundles) on Proj S•. As just a first example, it will allow us to show that every
coherent sheaf on a projective k-scheme has a finite-dimensional space of global
sections (Corollary 20.1.4). (This fact will grow up to be the fact that the higher
pushforward of coherent sheaves under proper morphisms are also coherent, see
Theorem 20.7.1(d) and Grothendieck’s Coherence Theorem 20.8.1.)

Rather than proceeding directly to a proof, we use this as an excuse to intro-
duce notions that are useful in wider circumstances (global generation, base-point-
freeness, ampleness), and their interrelationships. But first we use it as an excuse
to mention an important result.

16.3.2. The Hilbert Syzygy Theorem.
Given any coherent sheaf F on Pn

k , Theorem 16.3.1 a surjection φ : ⊕finiteO(−m) →
F → 0. The kernel of the surjection is also coherent, so iterating this construction,
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we can construct an infinite resolution of F by a direct sum of line bundles:

· · ·⊕finite O(m2,j) → ⊕finiteO(m1,j) → ⊕finiteO(m0,j) → F → 0.

The Hilbert Syzygy Theorem states that there is in fact a finite resolution, of length
at most n. (The Hilbert Syzygy Theorem in fact states more.) Because we won’t
use this, we don’t give a proof, but [E, Ch. 19] has an excellent discussion. See the
comments after Theorem 4.6.5 for the original history of this result.

16.3.3. Globally generated sheaves. Suppose X is a scheme, and F is an O-
module. The most important definition of this section is the following: F is glob-
ally generated (or generated by global sections) if it admits a surjection from a
free sheaf on X:

O⊕I $$ $$ F .

Here I is some index set. The global sections in question are the images of the |I|

sections corresponding to 1 in the various summands of O⊕I
X ; those images gener-

ate the stalks of F . We say F is finitely globally generated (or generated by a
finite number of global sections) if the index set I can be taken to be finite.

More definitions in more detail: we say that F is globally generated at a point
p (or sometimes generated by global sections at p) if we can find φ : O⊕I → F
that is surjective on stalks at p:

O⊕I
p

φp $$ $$ Fp.

(It would be more precise to say that the stalk of F at p is generated by global
sections of F .) Note that F is globally generated if it is globally generated at all
points p. (Exercise 3.4.E showed that isomorphisms can be checked on the level of
stalks. An easier version of the same argument shows that surjectivity can also be
checked on the level of stalks.) Notice that we can take a single index set for all of
X, by taking the union of all the index sets for each p.

16.3.A. EASY EXERCISE (REALITY CHECK). Show that every quasicoherent sheaf
on every affine scheme is globally generated. Show that every finite type quasi-
coherent sheaf on every affine scheme is generated by a finite number of global
sections.

16.3.B. EASY EXERCISE. Show that if quasicoherent sheaves F and G are globally
generated at a point p, then so is F ⊗ G .

16.3.C. EASY BUT IMPORTANT EXERCISE. Suppose F is a finite type quasicoherent
sheaf on X.
(a) Show that F is globally generated at p if and only if “the fiber of F is generated
by global sections at p”, i.e. the map from global sections to the fiber Fp/mFp is
surjective, where m is the maximal ideal of OX,p. (Hint: Geometric Nakayama,
Exercise 14.7.D.)
(b) Show that if F is globally generated at p, then “F is globally generated near
p”: there is an open neighborhood U of p such that F is globally generated at
every point of U.
(c) Suppose further that X is a quasicompact scheme. Show that if F is globally
generated at all closed points of X, then F is globally generated at all points of X.
(Note that nonempty quasicompact schemes have closed points, Exercise 6.1.E.)
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16.3.D. EASY EXERCISE. If F is a finite type quasicoherent sheaf on X, and X is
quasicompact, show that F is globally generated if and only if it is generated by a
finite number of global sections.

16.3.E. EASY EXERCISE. An invertible sheaf L on X is globally generated if and
only if for any point x ∈ X, there is a section of L not vanishing at x. See Theo-
rem 17.4.1 for why we care.

16.3.4. Definitions. If L is an invertible sheaf on X, then those points where all
sections of L vanish are called the base points of L , and the set of base points is
called the base locus of L ; it is a closed subset of X. (We can refine this to a closed
subscheme: by taking the scheme-theoretic intersection of the vanishing loci of the
sections of L , we obtain the scheme-theoretic base locus.) The complement of the
base locus is the base-point-free locus. If L has no base-points, it is base-point-
free. By the previous discussion, (i) the base-point-free locus is an open subset of
X, and (ii) L is generated by global sections if and only if it is base-point free. By
Exercise 16.3.B, the tensor of two base-point-free line bundles is base-point-free.

(Remark: we will later see in Exercise 20.2.H that if X is a k-scheme, and L is
an invertible sheaf on X, and K/k is any field extension, then L is base-point-free
if and only if it is “base-point-free after base change to K”. You could reasonably
prove this now.)

16.3.5. Base-point-free line bundles and maps to projective space. Recall Exercise 7.3.M,
which shows that n + 1 functions on a scheme X with no common zeros yield a
map to Pn. This notion generalizes.

16.3.F. EXERCISE. Suppose s0, . . . , sn are n sections of an invertible sheaf L on a
scheme X, with no common zero. Define a corresponding map to Pn:

X
[s0;··· ;sn] $$ Pn

Hint: If U is an open subset on which L is trivial, choose a trivialization, then
translate the si into functions using this trivialization, and use Exercise 7.3.M to
obtain a morphism U → Pn. Then show that all of these maps (for different U and
different trivializations) “agree”.

(In Theorem 17.4.1, we will see that this yields all maps to projective space.)
Note that this exercise works over Z, although many readers will just work over a
particular base such as a given field k. Here is some convenient classical language
which is used in this case.

16.3.6. Definitions. A linear series on a k-scheme X is a k-vector space V (usually
finite-dimensional), an invertible sheaf L , and a linear map λ : V → Γ(X,L ). Such
a linear series is often called “V”, with the rest of the data left implicit. If the map
λ is an isomorphism, it is called a complete linear series, and is often written |L |.
The language of base-points (Definition 16.3.4) readily translates to this situation.
For example, given a linear series, any point x ∈ X on which all elements of the
linear series V vanish, we say that x is a base-point of V . If V has no base-points,
we say that it is base-point-free. The union of base-points is called the base locus
of the linear series. One can similarly define the base scheme of the linear series.
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As a reality check, you should understand why, an n + 1-dimensional linear
series on a k-scheme X with base-point-free locus U defines a morphism U → Pn

k .

16.3.7. Serre’s Theorem A. We are now able to state a celebrated result of Serre.

16.3.8. Serre’s Theorem A. — Suppose S• is generated in degree 1, and finitely gener-
ated over A = S0. Let F be any finite type quasicoherent sheaf on Proj S•. Then there
exists some n0 such that for all n ≥ n0, F (n) can be generated by a finite number of
global sections.

We could now prove Serre’s Theorem A directly, but will continue to use this
as an excuse to introduce more ideas; it will be a consequence of Theorem 16.3.12.
Before getting to Theorem 16.3.12, we note that Theorem 16.3.1 follows from The-
orem 16.3.8 as follows.

16.3.9. Proof of Theorem 16.3.1 given Theorem 16.3.8. Suppose we have m global
sections s1, . . . , sm of F (n) that generate F (n). This gives a map

⊕mO $$ F (n)

given by (f1, . . . , fm) (→ f1s1 + · · · + fmsm on any open set. Because these global
sections generate F , this is a surjection. Tensoring with O(−n) (which is exact,
as tensoring with any locally free sheaf is exact, Exercise 14.1.E) gives the desired
result. !

16.3.10. Very ampleness and ampleness.
We next introduce the notions of very ampleness and ampleness of line bun-

dles on proper A-schemes. Suppose π : X → Spec A is a proper morphism, and L
is an invertible sheaf on X. The case when A is a field is the one of most immediate
interest.

We say that L is very ample over A or π-very ample, or relatively very ample
if X = Proj S• where S• is a finitely generated graded ring over A generated in
degree 1 (Definition 5.5.3, and L ∼= OProj S•(1). One often just says very ample if
the structure morphism is clear form the context. Note that the existence of a very
ample line bundle implies that π is projective.

16.3.G. EASY EXERCISE (VERY AMPLE IMPLIES BASE-POINT-FREE). Show that a
very ample invertible sheaf L on a proper A-scheme must be base-point-free.

16.3.H. EXERCISE (VERY AMPLE ⊗ BASE-POINT-FREE IS VERY AMPLE, HENCE VERY

AMPLE ⊗ VERY AMPLE IS VERY AMPLE). Suppose L and M are invertible sheaves
on a proper A-scheme X, and L is very ample over A and M is base-point-free,
then L ⊗ M is very ample. (Hint: L gives a closed immersion X ↪→ Pm, and M
gives a morphism X → Pn. Show that the product map X → Pm × Pn is a closed
immersion, using the Cancellation Theorem 11.1.19 for closed immersions on X →
Pm × Pn → Pm. Finally, consider the composition X ↪→ Pm × Pn ↪→ Pmn+m+n,
where the last closed immersion is the Segre morphisms.)

16.3.I. EXERCISE (VERY AMPLE % VERY AMPLE IS VERY AMPLE). Suppose X and
Y are proper A-schemes, and L (resp. M ) is a very ample invertible sheaf on X
(resp. Y). If π1 : X ×A Y → X and π2 : X ×A Y → Y are the usual projections, show
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that π∗
1L ⊗ π∗

2M is very ample on X ×A Y. (The notion % is often used for this
notion: L %M := π∗

1L ⊗π∗
2M . The notation is used more generally when L and

M are quasicoherent sheaves, or indeed just sheaves on ringed spaces.)

16.3.11. Definition. We say that L is ample over A or π-ample, or relatively ample
if one of the following equivalent conditions holds.

16.3.12. Theorem. — Suppose π : X → Spec A is proper, and L is an invertible sheaf
on X. The following are equivalent.

(a) For some N > 0, L ⊗N is very ample over A.
(a’) For all n . 0, L ⊗n is very ample over A.
(b) For all finite type quasicoherent sheaves F , there is an n0 such that for n ≥ n0,

F ⊗ L ⊗n is globally generated.
(c) As f runs over the section of L ⊗n (n > 0), the open subsets Xf = {x ∈ X :

f(x) != 0} form a base for the topology of X.
(c’) As f runs over the section of L ⊗n (n > 0), those open subsets Xf which are

affine form a base for the topology of X.

(Variants of this Theorem 16.3.12 in the “absolute” and “relative” settings will
be given in Theorems 16.3.16 and 18.3.9 respectively.)

Properties (a) and (a’) relate to projective geometry, and property (b) relates to
global generation (stalks). Properties (c) and (c’) are somehow more topological,
and while they may seem odd, they will provide the connection between (a)/(a’)
and (b). Note that (c) and (c’) make no reference to the structure morphism π. In
Theorem 20.6.1, we will meet a cohomological criterion (due, unsurprisingly, to
Serre) later. Kodaira also gives a criterion for ampleness in the complex category:
if X is a complex projective variety, then an invertible sheaf L on X is ample if and
only if it admits a Hermitian metric with curvature positive everywhere.

The different flavor of these conditions gives some indication that ampleness
is better-behaved than very ampleness in a number of ways. We mention without
proof another property: if f : X → T is a finitely presented proper morphism,
then those points on T where the fiber is ample forms an open subset of T (see
[EGA, III1.4.7.1] in the locally Noetherian case, and [EGA, IV3.9.5.4] in general).
We won’t use this fact, but it is good to know.

Before getting to the proof, we give some sample applications. We begin by
noting that the fact that (a) implies (b) gives Serre’s Theorem A (Theorem 16.3.8).

16.3.J. IMPORTANT EXERCISE. Suppose L and M are invertible sheaves on a
proper A-scheme X, and L is ample. Show that L ⊗n ⊗ M is very ample for
n . 0. (Hint: use both (a) and (b) of Theorem 16.3.12, and Exercise 16.3.H.)

16.3.K. IMPORTANT EXERCISE. Show that every line bundle on a projective A-
scheme X is the difference of two very ample line bundles. More precisely, for any
invertible sheaf L on X, we can find two very ample invertible sheaves M and N
such that L ∼= M ⊗ N ∨. (Hint: use the previous Exercise.)

16.3.L. EXERCISE (AMPLE ⊗ AMPLE IS AMPLE, AMPLE ⊗ BASE-POINT-FREE IS AM-
PLE. Suppose L and M are invertible sheaves on a proper A-scheme X, and L
is ample. Show that if M is ample or base-point-free, then L ⊗ M is ample.
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16.3.M. LESS IMPORTANT EXERCISE. Solve Exercise 16.3.I with “very ample” re-
placed by “ample”.

16.3.13. Proof of Theorem 16.3.12 in the case X is Noetherian. Note: Noetherian
hypotheses are used at only one point in the proof, and we explain how to remove
them, and give a reference for the details.

Obviously, (a’) implies (a).
Clearly (c’) implies (c). We now show that (c) implies (c’). Suppose we have a

point x in an open subset U of X. We seek an affine Xf containing x and contained
in U. By shrinking U, we may assume that U is affine. From (c), U contains some
Xf. But this Xf is affine, as it is the complement of the vanishing locus of a sec-
tion of a line bundle on an affine scheme (Exercise 8.3.F), so (c’) holds. Note for
future reference that the equivalence of (c) and (c’) did not require the hypothesis
of properness.

We next show that (a) implies (c). Given a closed subset Z ⊂ X, and a point x
of the complement X \ Z, we seek a section of some L ⊗N that vanishes on Z and
not on x. The existence of such a section follows from the fact that V(I(Z)) = Z
(Exercise 5.5.E(c)): there is some element of I(Z) that does not vanish on x.

We next show that (b) implies (c). Suppose we have a point x in an open subset
U of X. We seek a section of L ⊗N that doesn’t vanish at x, but vanishes on X \ U.
Let I be the sheaf of ideals of functions vanishing on X \ U (the quasicoherent
sheaf of ideals cutting out X \ U, with reduced structure). As X is Noetherian, I
is finite type, so by (b), I ⊗ L ⊗N is generated by global sections for some N, so
there is some section of it not vanishing at x. (Noetherian note: This is the only part
of the argument where we use Noetherian hypotheses. They can be removed as
follows. Show that for a quasicompact quasiseparated scheme, every ideal sheaf is
generated by its finite type subideal sheaves. Indeed, any quasicoherent sheaf on
a quasicompact quasiseparated scheme is the union of its finite type quasicoherent
subsheaves, see [EGA’, (6.9.9)] or [GW, Cor. 10.50]. One of these finite type ideal
sheaves doesn’t vanish at x; use this as I instead.)

We now have to start working harder.
We next show that (c’) implies (b). We wish to show that F ⊗ L ⊗n is globally

generated for n . 0.
We first show that (c’) implies that for some N, L ⊗N is globally generated,

as follows. For each closed point x ∈ X, there is some f ∈ Γ(X,L ⊗N(x)) not
vanishing at x, so x ∈ Xf. (Don’t forget that quasicompact schemes have closed
points, Exercise 6.1.E!) As x varies, these Xf cover all of X. Use quasicompactness
of X to select a finite number of these Xf that cover X. To set notation, say these are

Xf1
, . . . , Xfn

, where fi ∈ Γ(X,L ⊗Ni). By replacing fi with f
⊗(

∏
j Nj)/Ni

i , we may
assume that they are all sections of the same power L ⊗N of L (N =

∏
j Nj). Then

L ⊗N is generated by these global sections.
We next show that it suffices to show that for all finite type quasicoherent

sheaves F , F ⊗ L ⊗mN is globally generated for m . 0. For if we knew this, we
could apply it to F , F ⊗L , . . . , F ⊗L ⊗(N−1) (a finite number of times), and the
result would follow. For this reason, we can replace L by L ⊗N. In other words,
to show that (c’) implies (b), we may also assume the additional hypothesis that
L is globally generated.
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For each closed point x, choose an affine neighborhood of the form Xf, us-
ing (c’). Then F |Xf

is generated by a finite number of global sections (Easy Ex-
ercise 16.3.A). By Exercise 14.3.H, each of these generators can be expressed as a
quotient of a section (over X) of F ⊗L ⊗M(x) by fM(x). (Note: we can take a single
M(x) for each x.) Then F ⊗ L ⊗M(x) is globally generated at x by a finite number
of global sections. By Exercise 16.3.C(b), F ⊗ L ⊗M(x) is globally generated at all
points in some neighborhood Ux of x. As L is also globally generated, this implies
that F ⊗ L ⊗M ′

is globally generated at all points of Ux for M ′ ≥ M(x) (cf. Easy
Exercise 16.3.B). From quasicompactness of X, a finite number of these Ux cover X,
so we are done (by taking the maximum of these M(x)).

Our penultimate step is to show that (c’) implies (a). Choose a cover of (quasi-
compact) X by n affine open subsets Xa1

, . . . , Xan
, where a1, . . . , an are all sections

of powers of L . By replacing each section with a suitable power, we may assume
that they are all sections of the same power of L , say L ⊗N. Say Xai

= Spec Ai,
where (using that π is finite type) Ai = Spec B[ai1, . . . , aiji

]/Ii. By Exercise 14.3.H,
each aij is of the form sij/a

mij

i , where sij ∈ Γ(X,L ⊗mij) (for some mij). Let

m = maxi,j mij. Then for each i, j, aij = (sija
m−mij

i )/am
i . For convenience, let

bi = am
i , and bij = sija

m−mij

i ; these area all global sections of L ⊗mN. Now con-
sider the linear series generated by the bi and bij. As the D(bi) = Xai

cover X, this
linear series is base-point-free, and hence (by Exercise 16.3.F) gives a morphism to
PQ (where Q = $bi + $bij − 1). Let x1, . . . , xn, . . . , xij, . . . be the projective coordi-
nates on PQ, so f∗xi = bi, and f∗xij = bij. Then the morphism of affine schemes
Xai

→ D(xi) is a closed immersion, as the associated maps of rings is a surjection
(the generator aij of Ai is the image of xij/xi).

At this point, we note for future reference that we have shown the following.
If X → Spec A is finite type, and L satisfies (c)=(c’), then X is an open immer-
sion into a projective A-scheme. (We did not use separatedness.) We conclude
our proof that (c’) implies (a) by using properness to show that the image of this
open immersion into a projective A-scheme is in fact closed, so X is a projective
A-scheme.

Finally, we note that (a) and (b) together imply (a’): if L ⊗N is very ample (from
(a)), and L ⊗n is base-point-free for n ≥ n0 (from (b)), then L ⊗n is very ample for
n ≥ n0 + N by Exercise 16.3.H. !

We conclude this discussion by remarking that ample line bundles pull back
under finite morphisms to ample line bundles. To make sense of this, we must
first make sense of pulling back quasicoherent sheaves, so we leave this until Ex-
ercise 17.3.I.

16.3.14. !! Semiample line bundles. Just as an invertible sheaf is ample if some
tensor power of it is very ample, an invertible sheaf is said to be semiample if
some tensor power of it is base-point-free. We won’t use this notion.

16.3.15. ! Ampleness in the absolute setting. (We will not use this section in
any serious way later.) Note that global generation is already an absolute notion,
i.e. is defined for a quasicoherent sheaf on a scheme, with no reference to any
morphism. An examination of the proof of Theorem 16.3.12 shows that ampleness
may similarly be interpreted in an absolute setting. We make this precise. Suppose
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L is an invertible sheaf on a quasicompact scheme X. We say that L is ample if as f
runs over the section of L ⊗n (n > 0), the open subsets Xf = {x ∈ X : f(x) != 0} form
a base for the topology of X. (We emphasize that quasicompactness in X is part of
the condition of ampleness of L .) For example, (i) if X is an affine scheme, every
invertible sheaf is ample, and (ii) if X is a projective A-scheme, O(1) is ample.

16.3.N. EASY EXERCISE (PROPERTIES OF ABSOLUTE AMPLENESS). (a) Fix a posi-
tive integer n. Show that L is ample if and only if L ⊗n is ample.
(b) Show that if Z ↪→ X is a closed immersion, and L is ample on X, then L |Z is
ample on Z.

The following result will give you some sense of how ampleness behaves. We
will not use it, and hence omit the proof (which is given in [Stacks, tag 01Q3].
However, many parts of the proof are identical to (or generalize) the correspond-
ing arguments in Theorem 16.3.12. The labeling of the statements parallels the
labelling of the statements in Theorem 16.3.12.

16.3.16. Theorem (cf. Theorem 16.3.12). — Suppose L is an invertible sheaf on a
quasicompact scheme X. The following are equivalent.

(b) X is quasiseparated, and for every finite type quasicoherent sheaf F , there is an
n0 such that for n ≥ n0, F ⊗ L ⊗n is globally generated.

(c) As f runs over the section of L ⊗n (n > 0), the open subsets Xf = {x ∈ X :
f(x) != 0} form a base for the topology of X (i.e. L is ample).

(c’) As f runs over the section of L ⊗n (n > 0), those open subsets Xf which are
affine form a base for the topology of X.

(d) Let S• be the graded ring ⊕n≥0Γ(X,L ⊗n). (Warning: S• need not be finitely
generated.) Then the open sets Xs with s ∈ S+ cover X, and the associated map
X → Proj S is an open immersion. (Warning: Proj S is not necessarily finite
type.)

Part (d) implies that X is separated (and thus quasiseparated).

16.3.17. ! Transporting global generation, base-point-freeness, and ampleness
to the relative situation.

These notions can be “relativized”. We could do this right now, but we wait
until §18.3.7, when we will have defined the notion of a projective morphism, and
thus a “relatively very ample” line bundle.

16.4 ! Quasicoherent sheaves and graded modules

(This section answers some fundamental questions, but it is surprisingly tricky.
You may wish to skip this section, or at least the proofs, on first reading, unless you
have a particular need for them.)

Throughout this section, S• is a finitely generated graded algebra generated in
degree 1, so in particular O(n) is defined for all n.

We know how to get quasicoherent sheaves on Proj S• from graded S•-modules.
We will now see that we can get them all in this way. We will define a functor Γ•
from (the category of) quasicoherent sheaves on Proj S• to (the category of) graded
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S•-modules that will attempt to reverse the ∼ construction. They are not quite in-
verses, as ∼ can turn two different graded modules into the same quasicoherent
sheaf (see for example Exercise 16.1.D). But we will see a natural isomorphism

Γ̃•(F ) ∼= F . In fact Γ•(M̃•) is a better (“saturated”) version of M•, and there is a

saturation functor M• → Γ•(M̃•) that is akin to groupification and sheafification
— it is adjoint to the forgetful functor from saturated graded modules to graded
modules. And thus we come to the fundamental relationship between ∼ and Γ•:
they are an adjoint pair.

graded S•-modules

∼

EENNNN
NNN

NNN
NNN

NNN

saturate

88

QCohProj S•

equivalence

Γ• **OO
OOO

OOO
OOO

OOO
O

saturated graded S•-modules

forget

OO

We now make some of this precise, but as little as possible to move forward. In
particular, we will show that every quasicoherent sheaf on a projective A-scheme
arises from a graded module (Corollary 16.4.2), and that every closed subscheme
of Proj S• arises from a graded ideal I• ⊂ S• (Exercise 16.4.H).

16.4.1. Definition of Γ•. When you do Essential Exercise 15.1.C (on global sections
of OPm

k
(n)), you will suspect that in good situations,

Mn
∼= Γ(Proj S•, M̃(n)).

Motivated by this, we define

Γn(F ) := Γ(Proj S•,F (n)).

16.4.A. EXERCISE. Describe a morphism of S0-modules Mn → Γ(Proj S•, M̃(n)•),
extending the n = 0 case of Exercise 16.1.E.

16.4.B. EXERCISE. Show that Γ•(F ) is a graded S•-module. (Hint: consider Sn →
Γ(Proj S•,O(n)).)

16.4.C. EXERCISE. Show that the map M• → Γ•(M̃•) arising from the previous
two exercises is a map of S•-modules. We call this the saturation map.

16.4.D. EXERCISE. (a) Show that the saturation map need not be injective, nor
need it be surjective. (Hint: S• = k[x], M• = k[x]/x2 or M• = xk[x].)
(b) On the other hand, show that if M• is finitely generated, then the saturation
map is an isomorphism in large degree. In other words, show that there exists an

n0 such that Mn → Γ(Proj S•, M̃(n)•), is an isomorphism for n ≥ n0.

16.4.E. EXERCISE. Show that Γ• gives a functor from the category of quasicoherent
sheaves on Proj S• to the category of graded S•-modules. In other words, if F →
G is a morphism of quasicoherent sheaves on Proj S•, describe the natural map
Γ•F → Γ•G , and show that such maps respect the identity and composition.
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Now that we have defined the saturation map M• → Γ•M̃•, we will describe

a map Γ̃•F → F . While subtler to define, it will have the advantage of being an
isomorphism.

16.4.F. EXERCISE. Define the natural map Γ̃•F → F as follows. First describe the
map on sections over D(f). Note that sections of the left side are of the form m/fn

where m ∈ Γn deg f(F ), and m/fn = m ′/fn ′

if there is some N with fN(fn ′

m −
fnm ′) = 0. Sections on the right are implicitly described in Exercise 14.3.H. Show
that your map behaves well on overlaps D(f) ∩ D(g) = D(fg).

16.4.G. EXERCISE. Show that the natural map Γ̃•F → F is an isomorphism,
by showing that it is an isomorphism of sections over D(f) for any f. First show
surjectivity, using Exercise 14.3.H to show that any section of F over D(f) is of the
form m/fn where m ∈ Γn deg f(F ). Then verify that it is injective.

16.4.2. Corollary. — Every quasicoherent sheaf on a projective A-scheme arises from the
∼ construction.

16.4.H. EXERCISE. Show that each closed subscheme of Proj S• arises from a
graded ideal I• ⊂ S•. (Hint: Suppose Z is a closed subscheme of Proj S•. Consider
the exact sequence 0 → IZ → OProj S• → OZ → 0. Apply Γ•, and then ∼. Be careful:
Γ• is left-exact, but not necessarily exact.)

For the first time, we see that every closed subscheme of a projective scheme
is cut out by homogeneous equations. This is the analogue of the fact that every
closed subscheme of an affine scheme is cut out by equations. It is disturbing that
it is so hard to prove this fact.

16.4.I. ! EXERCISE (Γ• AND ∼ ARE ADJOINT FUNCTORS). Describe a natural bijec-

tion Hom(M•, Γ•F ) ∼= Hom(M̃•,F ), as follows.

(a) Show that maps M• → Γ•F are the “same” as maps ((M•)f)0 → ((Γ•F )f)0

as f varies through S+, that are “compatible” as f varies, i.e. if D(g) ⊂
D(f), there is a commutative diagram

((M•)f)0
$$

%%

((Γ•F )f)0

%%
((M•)g)0

$$ ((Γ•F )g)0

More precisely, give a bijection between Hom(M•, Γ•F ) and the set of
compatible maps

(
Hom((M•)f)0 → ((Γ•F )f)0

)

f∈S+

.

(b) Describe a bijection between the set of compatible maps (Hom((M•)f)0 →
((Γ•F )f)0)f∈S+ and the set of compatible maps Γ(D(f), M̃•) → Γ(D(f),F ).

16.4.3. Remark. We will show later (in Exercise 20.1.C) that under Noetherian
hypotheses, if F is a coherent sheaf on Proj S•, then Γ•F is a coherent S•-module.
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Thus the close relationship between quasicoherent sheaves on Proj S• and graded
S•-modules respects coherence.

16.4.4. The special case M• = S•. We have a saturation map S• → Γ•S̃•, which is a

map of S•-modules. But Γ•S̃• has the structure of a graded ring (basically because
we can multiply sections of O(m) by sections of O(n) to get sections of O(m + n),
see Exercise 16.2.D).

16.4.J. EXERCISE. Show that the map of graded rings S• → Γ•S̃• induces (via the

construction of Essential Exercise 7.4.0.1) an isomorphism Proj Γ•S̃• → Proj S•, and
under this isomorphism, the respective O(1)’s are identified.

This addresses the following question: to what extent can we recover S• from
(Proj S•,O(1))? The answer is: we cannot recover S•, but we can recover its “satu-
ration”. And better yet: given a projective A-scheme π : X → Spec A, along with
O(1), we obtain it as a Proj of a graded algebra in a canonical way, via

X ∼= Proj (⊕n≥0Γ(X,O(n))) .

There is one last worry you might have, which is assuaged by the following
exercise.

16.4.K. EXERCISE. Suppose X = Proj S• → Spec A is a projective A-scheme. Show
that (⊕n≥0Γ(X,O(n))) is a finitely generated A-algebra. (Hint: S• and (⊕n≥0Γ(X,O(n)))
agree in sufficiently high degrees, by Exercise 16.4.D.)

16.4.5. ! Saturated S•-modules. We end with a remark: different graded S•-
modules give the same quasicoherent sheaf on Proj S•, but the results of this sec-
tion show that there is a “best” (saturated) graded module for each quasicoher-
ent sheaf, and there is a map from each graded module to its “best” version,

M• → Γ•M̃•. A module for which this is an isomorphism (a “best” module) is
called saturated. We won’t use this term later.

This “saturation” map M• → Γ•M̃• is analogous to the sheafification map,
taking presheaves to sheaves. For example, the saturation of the saturation equals
the saturation.

There is a bijection between saturated quasicoherent sheaves of ideals on Proj S•

and closed subschemes of Proj S•.





CHAPTER 17

Pushforwards and pullbacks of quasicoherent sheaves

17.1 Introduction

Suppose B → A is a morphism of rings. Then there is an obvious functor
ModA → ModB: if M is an A-module, you can create a B-module MB by simply
treating it as a B-module. There is an equally obvious functor ModB → ModA: if
N is a B-module, you can create an A-module N ⊗B A. These functors are adjoint:
we have isomorphisms

HomA(N ⊗B A,M) ∼= HomB(N,MB)

functorial in both arguments. These constructions behave well with respect to lo-
calization (in an appropriate sense), and hence work (often) in the category of qua-
sicoherent sheaves on schemes (and indeed always in the category of O-modules
on ringed spaces, see Remark 17.3.9, although we won’t particularly care). The
easier construction (M (→ MB) will turn into our old friend pushforward. The
other (N (→ A ⊗B N) will be a relative of pullback, whom I’m reluctant to call an
“old friend”.

17.2 Pushforwards of quasicoherent sheaves

The main moral of this section is that in “reasonable” situations, the pushfor-
ward of a quasicoherent sheaf is quasicoherent, and that this can be understood in
terms of one of the module constructions defined above. We begin with a motivat-
ing example:

17.2.A. EXERCISE. Let f : Spec A → Spec B be a morphism of affine schemes,
and suppose M is an A-module, so M̃ is a quasicoherent sheaf on Spec A. Give an

isomorphism f∗M̃ → M̃B. (Hint: There is only one reasonable way to proceed:
look at distinguished open sets.)

In particular, f∗M̃ is quasicoherent. Perhaps more important, this implies that
the pushforward of a quasicoherent sheaf under an affine morphism is also quasi-
coherent.

17.2.B. EXERCISE. If π : X → Y is an affine morphism, show that π∗ is an exact
functor QCohX → QCohY .

357
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The following result, proved earlier, generalizes the fact that the pushforward
of a quasicoherent sheaf under an affine morphism is also quasicoherent.

17.2.1. Theorem (Exercise 14.3.I). — Suppose π : X → Y is a quasicompact quasisepa-
rated morphism, and F is a quasicoherent sheaf on X. Then π∗F is a quasicoherent sheaf
on Y.

Coherent sheaves don’t always push forward to coherent sheaves. For exam-
ple, consider the structure morphism f : A1

k → Spec k, corresponding to k (→ k[t].
Then f∗OA1

k
is the k[t], which is not a finitely generated k-module. But in good

situations, coherent sheaves do push forward. For example:

17.2.C. EXERCISE. Suppose f : X → Y is a finite morphism of Noetherian schemes.
If F is a coherent sheaf on X, show that f∗F is a coherent sheaf. Hint: Show first
that f∗OX is finite type. (Noetherian hypotheses are stronger than necessary, see
Remark 20.1.6, but this suffices for most purposes.)

Once we define cohomology of quasicoherent sheaves, we will quickly prove
that if F is a coherent sheaf on Pn

k , then Γ(Pn
k ,F ) is a finite-dimensional k-module,

and more generally if F is a coherent sheaf on Proj S•, then Γ(Proj S•,F ) is a coher-
ent A-module (where S0 = A). This is a special case of the fact the “pushforwards
of coherent sheaves by projective morphisms are also coherent sheaves”. (The no-
tion of projective morphism, a relative version of Proj S• → Spec A, will be defined
in §18.3.)

More generally, pushforwards of coherent sheaves by proper morphisms are
also coherent sheaves (Theorem 20.8.1).

17.3 Pullbacks of quasicoherent sheaves

The notion of the pullback of a quasicoherent sheaf can be confusing on first
(and second) glance. I will try to introduce it in two ways. One is directly in terms
of thinking of quasicoherent sheaves in terms of modules over rings correspond-
ing to affine open sets, and is suitable for direct computation. The other is elegant
and functorial in terms of adjoints, and applies to ringed spaces in general. Both
perspectives have advantages and disadvantages, and it is worth seeing both.

We note here that pullback to a closed subscheme or an open subscheme is
often called restriction.

17.3.1. Construction/description of the pullback. Suppose π : X → Y is a mor-
phism of schemes, and G is a quasicoherent sheaf on Y. We want to define the
pullback quasicoherent sheaf π∗G on X in terms of affine open sets on X and Y.
Suppose Spec A ⊂ X, Spec B ⊂ Y are affine open sets, with π(Spec A) ⊂ Spec B.
Suppose G |Spec B

∼= Ñ. Perhaps motivated by the fact that pullback should relate
to tensor product, we want

Γ(Spec A,π∗G ) = N ⊗B A.

Our main goal will be to show that the A-module on the right is independent of
our choice of Spec B. Then we are largely done with the construction of π∗G , as
N⊗B A behaves well with respect to localization at some f ∈ A (cf. Exercise 14.3.D
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characterizing quasicoherent sheaves in terms of distinguished restrictions). True,
not every Spec A has image contained in some Spec B. (Can you think of an exam-
ple? Hint: A2 − {(0, 0)} → P1.) But we can cover X with such Spec A — choose
a cover of Y by Spec Bu’s, and for each Bi, cover π−1(Spec Bi) with Spec Aij. (To
make this work, we have to be careful about what we mean by the sentence “this
is independent of our choice of Spec B.” We sort this out by Exercise 17.3.D.)

17.3.2. We begin this project by fixing an affine open subset Spec B ⊂ Y, and use it
to define sections over any affine open subset Spec A ⊂ π−1(Spec B). To avoid con-
fusion, let φ = π|π−1(Spec B). We show that this gives us a quasicoherent sheaf φ∗G
on π−1(Spec B), by showing that these sections behave well with respect to distin-
guished restrictions (Exercise 14.3.D again). First, note that if Spec Af ⊂ Spec A is
a distinguished open set, then

Γ(Spec Af,φ
∗G ) = N ⊗B Af = (N ⊗B A)f = Γ(Spec A,φ∗G )f

where “=” means “canonical isomorphism”. Define the restriction map Γ(Spec A,φ∗G ) →
Γ(Spec Af,φ

∗G ),

(17.3.2.1) Γ(φ∗G , Spec A) → Γ(φ∗G , Spec A) ⊗A Af,

by α (→ α ⊗ 1 (of course). Thus φ∗G is (or: extends to) a quasicoherent sheaf on
π−1(Spec B).

We have now defined a quasicoherent sheaf on π−1(Spec B), for all affine open
Spec B ⊂ Y. We want to show that this construction, as Spec B varies, glues into a
single quasicoherent sheaf on X.

You are welcome to do this gluing appropriately, for example using the dis-
tinguished affine base of Y. This can get a little confusing, so we will follow an
alternate universal property approach, yielding a construction that parallels the
elegance of our construction of the fibered product.

17.3.3. Universal property definition of pullback. If π : X → Y, and G is a quasi-
coherent sheaf on Y, we temporarily abuse notation, and redefine the pullback π∗G
using the following adjointness universal property: for any OX-module F , there
is a bijection HomOX

(π∗G ,F ) ↔ HomOY
(G ,π∗F ), and these bijections are func-

torial in F . By universal property nonsense, this determines π∗G up to unique
isomorphism; we just need to make sure that it exists. (Notice that we avoid wor-
rying about whether the pushforward of a quasicoherent sheaf is quasicoherent by
just working in a larger category.)

17.3.A. IMPORTANT EXERCISE. If Y is affine, then the construction of the quasi-
coherent sheaf in §17.3.2 satisfies this universal property of pullback of G . Thus
calling this sheaf π∗G is justified. (Hint: Interpret both sides of the alleged bijection
explicitly. The adjointness in the ring/module case should turn up.)

We next show that if π∗G satisfies the universal property (for the morphism
π : X → Y), then if j : V ↪→ Y is any open subset, and U = π−1(V) ↪→ X, then π∗G |U
satisfies the universal property for π|U : U → V , so π∗G |U deserves to be called
π|∗U(G |V) (or more precisely, we have a canonical isomorphism). You will notice
that we really need to work with O-modules, not just with quasicoherent sheaves.
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17.3.4. To do this, we introduce a new construction on sheaves. Suppose W is
an open subset of a topological space Z, with inclusion k : W ↪→ Z, and H is
an OW-module. Define the extension by zero of H (over Z), denoted k!H , as
follows: for open set U ⊂ Z, k!H (U) = H (U) if U ⊂ W, and 0 otherwise (with
the obvious restriction maps). Note that k!H is an OZ-module, and k!H |W and
H are canonically isomorphic.

17.3.B. EASY EXERCISE. If H ′ is an OZ-module, describe an isomorphism

HomOW
(H ′|W ,H ) ↔ HomOW

(H ′, k!H ),

functorial in H and H ′.

17.3.C. EASIER EXERCISE. Continuing the notation i : U ↪→ X, j : V ↪→ Y above, if
F ′ is an OX describe a bijection HomOU

(π∗G |U,F ′) ↔ HomOV
(G |V , (π|U)∗F ′),

functorial in F ′. Hint: Justify the isomorphisms

HomOU
(π∗G |U,F ′) ∼= HomOX

(π∗G , i!F
′)

∼= HomOY
(G ,π∗i!F

′)
∼= HomOY

(G , j!(π|U)∗F
′)

∼= HomOV
(G |V , (π|U)∗F

′).

Hence show/conclude that the pullback exists if Y is an open subset of an affine
scheme.

17.3.D. EXERCISE. Show that the pullback always exists, following the idea be-
hind the construction of the fibered product.

The following is immediate from the universal property.

17.3.5. Proposition. — Suppose π : X → Y is a quasicompact, quasiseparated mor-
phism. Then pullback is left-adjoint to pushforward for quasicoherent sheaves: there is an
isomorphism

(17.3.5.1) HomOX
(π∗G ,F ) ∼= HomOY

(G ,π∗F ),

natural in both arguments.

The “quasicompact and quasiseparated” hypotheses are just to ensure that π∗

indeed sends QCohX to QCohY (Theorem 14.3.I).
We have now described a quasicoherent sheaf π∗G on X whose behavior on

affines mapping to affines was as promised. This is all you will need to prove the
following useful properties of the pullback.

17.3.6. Theorem. — Suppose π : X → Y is a morphism of schemes, and G is a quasico-
herent sheaf on Y.

(1) (pullback preserves the structure sheaf) There is a canonical isomorphism π∗OY
∼=

OX.
(2) (pullback preserves finite type quasicoherent sheaves) If G is a finite type quasi-

coherent sheaf, so is π∗G . Hence if X is locally Noetherian, and G is coherent,
then so is π∗G . (It is not always true that the pullback of a coherent sheaf is
coherent, and the interested reader can think of a counterexample.)

(3) (pullback preserves vector bundles) If G is locally free sheaf of rank r, then so is
π∗G . (In particular, the pullback of an invertible sheaf is invertible.)
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(4) (functoriality in the morphism) If φ : W → X is a morphism of schemes, then
there is a canonical isomorphism φ∗π∗G ∼= (π ◦ φ)∗G .

(5) (functoriality in the quasicoherent sheaf) π∗ is a functor QCohY → QCohX.
(6) (pulling back a section) Hence as a section of G is the data of a map OY → G ,

by (1) and (5), if s : OY → G is a section of G then there is a natural section
π∗s : OX → π∗G of π∗G . The pullback of the locus where s vanishes is the locus
where the pulled-back section π∗s vanishes.

(7) (pullback on stalks) If π : X → Y, π(x) = y, then pullback induces an isomor-
phism

(π∗G )x
∼ $$ Gy ⊗OY,y

OX,x .

(8) (pullback on fibers) Pullback of fibers are given as follows: if π : X → Y, where
π(x) = y, then

π∗G /mX,xπ
∗G ∼= (G /mY,yG ) ⊗OY,y/mY,y

OX,x/mX,x.

(9) (pullback preserves tensor product) π∗(G ⊗OY
G ′) = π∗G ⊗OX

π∗G ′. (Here G ′

is also a quasicoherent sheaf on Y.)
(10) Pullback is a right-exact functor.

All of the above are interconnected in obvious ways that you should be able
to prove by hand. (As just one example: the stalk of a pulled back section, (6), is
the expected element of the pulled back stalk, (7).) In fact much more is true, that
you should be able to prove on a moment’s notice, such as for example that the
pullback of the symmetric power of a locally free sheaf is naturally isomorphic to
the symmetric power of the pullback, and similarly for wedge powers and tensor
powers.

17.3.E. IMPORTANT EXERCISE. Prove Theorem 17.3.6. Possible hints: You may
find it convenient to do right-exactness (10) early; it is related to right-exactness
of ⊗. For the tensor product fact (8), show that (M ⊗B A) ⊗ (N ⊗B A) ∼= (M ⊗
N) ⊗B A, and that this behaves well with respect to localization. The proof of
the fiber fact (8) is as follows. Given a ring map B → A with [m] (→ [n], show
that (N ⊗B A) ⊗A (A/m) ∼= (N ⊗B (B/n)) ⊗B/n (A/m) by showing both sides are
isomorphic to N ⊗B (A/m).

17.3.F. UNIMPORTANT EXERCISE. Verify that the following is a example showing
that pullback is not left-exact: consider the exact sequence of sheaves on A1, where
p is the origin:

0 → OA1(−p) → OA1 → O |p → 0.

(This is the closed subscheme exact sequence for p ∈ A1, and corresponds to the
exact sequence of k[t]-modules 0 → tk[t] → k[t] → k → 0. Warning: here O |p is
not the stalk Op; it is the structure sheaf of the scheme p.) Restrict to p.

17.3.G. EXERCISE (THE PUSH-PULL FORMULA, CF. EXERCISE 20.7.B). Suppose
f : Z → Y is any morphism, and π : X → Y as usual is quasicompact and separated.
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Suppose F is a quasicoherent sheaf on X. Suppose

(17.3.6.1) W
f ′

$$

π ′

%%

X

π

%%
Z

f $$ Y

is a commutative diagram. Describe is a natural morphism f∗π∗ → π ′
∗(f

′)∗F of
sheaves on Z. (Possible hint: first do the special case where (17.3.6.1) is a fiber
diagram.)

By applying the above exercise in the special case where Z is a point y of Y, we
see that there is a natural map from the fiber of the pushforward to the sections
over the fiber:

(17.3.6.2) π∗F ⊗ κ(y) → H0(π−1(y),F |π−1(y)).

One might hope that π∗F “glues together” the fibers H0(π−1(y),F |π−1(y)), and
this is too much to ask, but at least there is a map (17.3.6.2). (In fact, under just the
right circumstances, (17.3.6.2) is an isomorphism; more on this later.)

17.3.H. EXERCISE (PROJECTION FORMULA, TO BE GENERALIZED IN EXERCISE 20.7.E).
Suppose π : X → Y is quasicompact and separated, and E , F are quasicoherent
sheaves on X and Y respectively.
(a) Describe a natural morphism (π∗E ) ⊗ F → π∗(E ⊗ π∗F ). (Hint: the FHHF
Theorem, Exercise 2.6.H.)
(b) If F is locally free, show that this natural morphism is an isomorphism. (Hint:
what if F is free?)

17.3.I. IMPORTANT EXERCISE (USED REPEATEDLY). Suppose f : X → Y is a finite
morphism of proper A-schemes, and L is an ample line bundle on Y. Show that
f∗L is ample on X. Hint: use the criterion of Theorem 16.3.12(b). Suppose F is a
finite type quasicoherent sheaf on X. We wish to show that F ⊗ (f∗L )⊗n is glob-
ally generated for n . 0. Note that (f∗F ) ⊗ L ⊗n is globally generated for n . 0

by ampleness of L on Y, i.e. there exists a surjection O⊕I
Y

$$ $$ (f∗F ) ⊗ L ⊗n ,

where I is some index set. Show that O⊕I
X

∼= f∗(O⊕I
Y ) $$ f∗(f∗F ⊗ L ⊗n) is sur-

jective. The projection formula (Exercise 17.3.H) yields an isomorphism f∗(f∗F ⊗
L ⊗n) ∼= f∗(f∗F )⊗ (f∗L )⊗n. Show (using only affineness of f) that f∗f∗F → F is

surjective. Connect these pieces together to describe a surjection O⊕I
X

$$ $$ F ⊗ (f∗L )⊗n .

(Remark for those who have read about ampleness in the absolute setting in §16.3.15:
the argument applies in that situation, i.e. with “proper A-schemes” changed to
“schemes”, without change. The only additional thing to note is that ampleness
of L on Y implies that Y is quasicompact from the definition, and separated from
Theorem 16.3.16(d). A relative version of this result appears in §18.3.8. It can be
generalized even further, with “f finite” replaced by “f quasiaffine” — to be de-
fined in §18.3.11 — see [EGA, II.5.1.12].)

17.3.7. Remark: flatness. Given π : X → Y, if the functor π∗ from quasicoherent
sheaves on Y to quasicoherent sheaves on X is also left-exact (hence exact), we will
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say that π is a flat morphism. This is an incredibly important notion, and we will
come back to it in Chapter 25.

17.3.8. Remark: pulling back ideal sheaves. There is one subtlety in pulling back
quasicoherent ideal sheaves. Suppose i : X ↪→ Y is a closed immersion, and π :
Y ′ → Y is an arbitrary morphism. Let X ′ := X ×Y Y ′. As “closed immersion pull
back” (§10.2.1), the pulled back map i ′ : X ′ → Y ′ is a closed immersion. Now π∗

induces canonical isomorphisms π∗OY
∼= OY ′ and π∗OX

∼= OX ′ , but it is not always
true that π∗IX/Y = IX ′/Y ′ . (Exercise 17.3.F yields an example.) This is because
the application of π∗ to the closed subscheme exact sequence 0 → IX/Y → OY →
OX → 0 yields something that is a priori only left-exact: π∗IX/Y → OY ′ → OX ′ →
0. Thus, as IX ′/Y ′ is the kernel of OY ′ → OX ′ , we see that IX ′/Y is the image of
π∗IX/Y in OY ′ . We can also see this explicitly from Exercise 10.2.B: affine-locally,
the ideal of the pullback is generated by the pullback of the ideal.

Note also that if π is flat (Remark 17.3.7), then π∗IX/Y → IX ′/Y ′ is an isomor-
phism.

17.3.9. !! Pullback for ringed spaces. (This is conceptually important but distracting
for our exposition; we encourage the reader to skip this, at least on the first read-
ing.) Pullbacks and pushforwards may be defined in the category of O-modules
on ringed spaces. We define pushforward in the usual way (Exercise 7.2.B), and
then define the pullback of an O-module using the adjoint property. Then one
must show that it exists.

Here is a construction that always works in the category of ringed spaces.
Suppose we have a morphism of ringed spaces π : X → Y, and an OY-module
G . Then π−1G is a π−1OY-module (on the topological space X), and OX is also
an π−1OY-module (this module structure is part of the definition of morphism of
ringed space). Then define

(17.3.9.1) π∗G = π−1G ⊗π−1OY
OX.

The interested reader is welcome to show that this definition, applied to quasico-
herent sheaves, is the same as ours.

17.3.J. EXERCISE. Show that π∗ and π∗ are adjoint functors between the category
of OX-modules and the category of OY-modules. Hint: Justify the following equal-
ities.

HomOX
(π−1G ⊗π−1OY

OX,F ) = Homπ−1OY
(π−1G ,F )

= HomOY
(G ,π∗F )

Once one defines quasicoherent sheaves on a ringed space, one may show
that the pullback of a quasicoherent sheaf is quasicoherent, but we won’t need
this fact.

17.4 Invertible sheaves and maps to projective schemes

Theorem 17.4.1, the converse or completion to Exercise 16.3.F, will give one
reason why line bundles are crucially important: they tell us about maps to projec-
tive space, and more generally, to quasiprojective A-schemes. Given that we have
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had a hard time naming any non-quasiprojective schemes, they tell us about maps
to essentially all schemes that are interesting to us.

17.4.1. Important theorem. — For a fixed scheme X, maps X → Pn are in bijection
with the data (L , s0, . . . , sn), where L is an invertible sheaf and s0, . . . , sn are sections
of L with no common zeros, up to isomorphisms of this data.

(This works over Z or indeed any base.) Informally: morphisms to Pn cor-
respond to n + 1 sections of a line bundle, not all vanishing at any point, mod-
ulo global sections of O∗

X, as multiplication by a unit gives an automorphism of
L . This is one of those important theorems in algebraic geometry that is easy to
prove, but quite subtle in its effect on how one should think. It takes some time to
properly digest.

17.4.2. The theorem describes all morphisms to projective space, and hence by the
Yoneda philosophy, this can be taken as the definition of projective space: it defines
projective space up to unique isomorphism. Projective space Pn (over Z) is the moduli
space of a line bundle L along with n+1 sections with no common zeros. (Can you give
an analogous definition of projective space over X, denoted Pn

X?)
Every time you see a map to projective space, you should immediately simul-

taneously keep in mind the invertible sheaf and sections.
Maps to projective schemes can be described similarly. For example, if Y ↪→ P2

k

is the curve x2
2x0 = x3

1 − x1x2
0, then maps from a scheme X to Y are given by an

invertible sheaf on X along with three sections s0, s1, s2, with no common zeros,
satisfying s2

2s0 − s3
1 + s1s2

0 = 0. We make this precise in Exercise 17.4.A.
Here more precisely is the correspondence of Theorem 17.4.1. If you have n+1

sections, then away from the intersection of their zero-sets, we have a morphism.
Conversely, if you have a map to projective space f : X → Pn, then we have n + 1
sections of OPn(1), corresponding to the hyperplane sections, x0, . . . , xn+1. then
f∗x0, . . . , f∗xn+1 are sections of f∗OPn(1), and they have no common zero.

So to prove this, we just need to show that these two constructions compose
to give the identity in either direction.

Proof. Given n + 1 sections s0, . . . , sn of an invertible sheaf. We get trivializations
on the open sets where each section doesn’t vanish. The transition functions are
precisely si/sj on Ui ∩Uj. We pull back O(1) by this map to projective space, This
is trivial on the distinguished open sets. Furthermore, f∗D(xi) = D(si). Moreover,
si/sj = f∗(xi/xj). Thus starting with the n + 1 sections, taking the map to the
projective space, and pulling back O(1) and taking the sections x0, . . . , xn, we
recover the si’s. That’s one of the two directions.

Correspondingly, given a map f : X → Pn, let si = f∗xi. The map [s0; · · · ; sn]
is precisely the map f. We see this as follows. The preimage of Ui is D(si) =
D(f∗xi) = f∗D(xi). So the right open sets go to the right open sets. And D(si) →
D(xi) indeed corresponds to the ring map f∗ : xj/xi (→ sj/si. !

17.4.3. Remark: Extending Theorem 17.4.1 to rational maps. Suppose s0, . . . , sn are
sections of an invertible sheaf L on a scheme X. Then Theorem 17.4.1 yields a
morphism X − V(s1, . . . , sn) → Pn. In particular, if X is integral, and the si are not
all 0, this data yields a rational map X ""# Pn.
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17.4.A. IMPORTANT EXERCISE. Suppose S• is a finitely generated graded A-
algebra, generated in degree 1. If Y is an A-scheme, give a bijection between A-
morphisms Y → Proj S• and the following data (up to isomorphism):

• maps of graded rings f : S• → ⊕n≥0Γ(X,L ⊗n), where L is an invertible
sheaf globally generated by f(S1),

• where two such maps are considered the same if they agree in sufficiently
high degree (i.e. if the two maps agree in degree higher than n0 for some
n0).

(It will take some thought to extract this from Theorem 17.4.1. Your bijection will
be functorial in Y.)

17.4.B. EXERCISE (AUTOMORPHISMS OF PROJECTIVE SPACE). Show that all the
automorphisms of projective space Pn

k correspond to (n + 1) × (n + 1) invert-
ible matrices over k, modulo scalars (also known as PGLn+1(k)). (Hint: Sup-
pose f : Pn

k → Pn
k is an automorphism. Show that f∗O(1) ∼= O(1). Show that

f∗ : Γ(Pn,O(1)) → Γ(Pn,O(1)) is an isomorphism.)

Exercise 17.4.B will be useful later, especially for the case n = 1. In this case,
these automorphisms are called fractional linear transformations. (For experts: why
did I not state that previous exercise over an arbitrary base ring A? Where does
the argument go wrong in that case?)

17.4.C. EXERCISE. Show that Aut(P1
k) is strictly three-transitive on k-points, i.e.

given two triplets (p1, p2, p3) and (q1, q2, q3) each of distinct (k-)points of P1,
there is precisely one automorphism of P1 sending pi to qi (i = 1, 2, 3).

Here are more examples of these ideas in action.

17.4.4. Example: the tautological rational map from affine space to projective space. Con-
sider the n+ 1 functions x0, . . . , xn on An+1 (otherwise known as n+ 1 sections of
the trivial bundle). They have no common zeros on An+1 − 0. Hence they deter-
mine a morphism An+1 − 0 → Pn. (We discussed this morphism in Exercise 7.3.E,
but now we don’t need tedious gluing arguments.)

17.4.5. Example: the Veronese embedding is |OPn(d)|. Consider the line bundle
OPn(m) on Pn. We have checked that the number of sections of this line bun-
dle are

(
n+m

m

)
, and they correspond to homogeneous degree m polynomials in the

projective coordinates for Pn. Also, they have no common zeros (as for example
the subset of sections xm

0 , xm
1 , . . . , xm

n have no common zeros). Thus the complete

linear series is base-point-free, and determines a morphism Pn → P(n+m
m )−1. This

is the Veronese embedding (Definition 9.2.8). For example, if n = 2 and m = 2, we
get a map P2 → P5.

Remark 9.2.8 showed that this is a closed immersion. The following is a more
general method of checking that maps to projective space are closed immersion.

17.4.D. LESS IMPORTANT EXERCISE. Suppose π : X → Pn
A corresponds to an

invertible sheaf L on X, and sections s0, . . . , sn. Show that π is a closed immersion
if and only if

(i) each open set Xsi
is affine, and
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(ii) for each i, the map of rings A[y0, . . . , yn] → Γ(Xsi
,O) given by yj (→ sj/si

is surjective.

17.4.6. Example: Maps P1 → Pn. Recall that the image of the Veronese morphism
when n = 1 is called a rational normal curve of degree m (Exercise 9.2.J). Our map is
P1 → Pm given by [x;y] → [xm; xm−1y; · · · ; xym−1;ym].

17.4.E. EXERCISE. If the image scheme-theoretically lies in a hyperplane of projec-
tive space, we say that it is degenerate (and otherwise, non-degenerate). Show that
a base-point-free linear series V with invertible sheaf L is non-degenerate if and
only if the map V → Γ(X,L ) is an inclusion. Hence in particular a complete linear
series is always non-degenerate.

17.4.F. EXERCISE. Suppose we are given a map π : P1
k → Pn

k where the correspond-
ing invertible sheaf on P1

k is O(d). (We will later call this a degree d map.) Show
that if d < n, then the image is degenerate. Show that if d = n and the image is
nondegenerate, then the image is isomorphic (via an automorphism of projective
space, Exercise 17.4.B) to a rational normal curve.

17.4.G. EXERCISE: AN EARLY LOOK AT INTERSECTION THEORY, RELATED TO BÉZOUT’S

THEOREM. A classical definition of the degree of a curve in projective space
is as follow: intersect it with a “general” hyperplane, and count the number of
points of intersection, with appropriate multiplicity. We interpret this in the case
of π : P1

k → Pn
k . Show that there is a hyperplane H of Pn

k not containing π(P1
k).

Equivalently, π∗H ∈ Γ(P1,OP1(d)) is not 0. Show that the number of zeros of π∗H
is precisely d. (You will have to define “appropriate multiplicity”.) What does it
mean geometrically if π is a closed immersion, and π∗H has a double zero? Can
you make sense of this even if π is not a closed immersion?) Thus this classical
notion of degree agrees with the notion of degree in Exercise 17.4.F. (See Exer-
cise 9.2.E for another case of Bézout’s theorem. Here we intersect a degree d curve
with a degree 1 hyperplane; there we intersect a degree 1 curve with a degree d
hyperplane. Exercise 20.5.M will give a common generalization.)

17.4.7. Example: The Segre morphism revised. The Segre morphism can also be
interpreted in this way. This is a useful excuse to define some notation. Suppose
F is a quasicoherent sheaf on a Z-scheme X, and G is a quasicoherent sheaf on
a Z-scheme Y. Let πX, πY be the projections from X ×Z Y to X and Y respectively.
Then F % G is defined to be π∗

XF ⊗π∗
YG . In particular, OPm×Pn(a, b) is defined to

be OPm(a)%OPn(b) (over any base Z). The Segre morphism Pm×Pn → Pmn+m+n

corresponds to the complete linear series for the invertible sheaf O(1, 1).
When we first saw the Segre morphism in §10.5, we saw (in different lan-

guage) that this complete linear series is base-point-free. We also checked by hand
(§10.5.1) that it is a closed immersion, essentially by Exercise 17.4.D.

Recall that if L and M are both base-point-free invertible sheaves on a scheme
X, then L ⊗ M is also base-point-free (Exercise 16.3.B, see also Definition 16.3.4).
We may interpret this fact using the Segre morphism (under reasonable hypothe-
ses on X). If φL : X → PM is a morphism corresponding to a (base-point-free)
linear series based on L , and φM : X → PN is a morphism corresponding to
a linear series on M , then the Segre morphism yields a morphism X → PM ×
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PN → P(M+1)(N+1)−1, which corresponds to a base-point-free series of sections of
L ⊗ M .

17.4.H. FUN EXERCISE. Show that any map from projective space to a smaller pro-
jective space is constant (over a field). Hint: show that if m < n then m non-empty
hypersurfaces in Pn have non-empty intersection. For this, use the fact that any
non-empty hypersurface in Pn

k has non-empty intersection with any subscheme of
dimension at least 1.

17.4.I. EXERCISE. Show that a base-point-free linear series V on X corresponding
to L induces a morphism to projective space X → PV∨ = Proj⊕nL ⊗n. The
resulting morphism is often written

X
|V | $$ Pn .

17.4.8. !! A proper nonprojective k-scheme — and gluing schemes along closed
subschemes.

We conclude by using what we have developed to describe an example of a
scheme that is proper but not projective (promised in Remark 11.3.6). We use a
construction that looks so fundamental that you may be surprised to find that we
won’t use it in any meaningful way later.

Fix an algebraically closed field k. For i = 1, 2, let Xi
∼= P3

k, Zi be a line in Xi,
and Z ′

i be a nonsingular conic in Xi disjoint from Xi (both Zi and Z ′
i isomorphic

to P1
k). The construction of §17.4.9 will allow us to glue X1 to X2 so that Z1 is

identified with Z ′
2 and Z ′

1 is identified with Z2. (You will be able to make this
precise after reading §17.4.9.) The result, call it X, is proper, by Exercise 17.4.M.

Then X is not projective. For if it were, then it would be embedded in projec-
tive space by some invertible sheaf L . If X is embedded, then X1 is too, so L must
restrict to an invertible sheaf on X1 of the form OX1

(n1), where n1 > 0. You can
check that the restriction of L to Z1 is OZ1

(n1), and the restriction of L to Z ′
1 is

OZ ′
1
(2n1). Symmetrically, the restriction of L to Z2 is OZ2

(n2) for some n2 > 0,
and the restriction of L to Z ′

2 is OZ ′
2
(2n2). But after gluing, Z1 = Z ′

2, and Z ′
1 = Z2,

so we have n1 = 2n2 and 2n1 = n2, which is impossible.

17.4.9. Gluing two schemes together along isomorphic closed subschemes.
It is straightforward to show that you can glue two schemes along isomor-

phic open subschemes. (More precisely, if X1 and X2 are schemes, with open sub-
schemes U1 and U2 respectively, and an isomorphism U1

∼= U2, you can make
sense of gluing X1 and X2 along U1

∼= U2. You should think this through.) You
can similarly glue two schemes along isomorphic closed subschemes. We now
make this precise. Suppose Z1 ↪→ X1 and Z2 ↪→ X2 are closed immersions, and

φ : Z1
∼ $$ Z2 is an isomorphism. We will explain how to glue X1 to X2 along

φ. The result will be called X1

∐
φ X2.

17.4.10. Motivating example. Our motivating example is if Xi = Spec Ai and

Zi = Spec Ai/Ii, and φ corresponds to φ! : A2/I2
∼ $$ A1/I1 . Then the result

will be Spec R, where R is the ring of consisting of ordered pairs (a1, a2) ∈ A1×A2
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that “agree via φ”. More precisely, this is a fibered product of rings:

R := A1 ×φ!:A1/I1→A2/I2
A2.

17.4.11. The general construction, as a locally ringed space. In our general situation,
we might wish to cover X1 and X2 by open charts of this form. We would then
have to worry about gluing and choices, so to avoid this, we instead first construct
X1

∐
φ X2 as a locally ringed space. As a topological space, the definition is clear:

we glue the underlying sets together along the underlying sets of Z1
∼= Z2, and

topologize it so that a subset of X1

∐
φ X2 is open if and only if its restrictions to

X1 and X2 are both open. For convenience, let Z be the image of Z1 (or equivalently
Z2) in X1

∐
φ X2. We next define the stalk of the structure sheaf at any point x ∈

X1

∐
φ X2. If x ∈ Xi \ Z = (X1

∐
φ X2) \ X3−i (hopefully the meaning of this is

clear), we define the stalk as OX,x. If x ∈ X1 ∩ X2, we define the stalk to consist of
elements (s1, s2) OX1,x × OX2,x such that agree in OZ1,x

∼= OZ2,x. The meaning of
everything in this paragraph will be clear to you if you can do the following.

17.4.J. EXERCISE. Define the structure sheaf of OX1

∐
φ X2

in terms of compatible
germs. (What should it mean for germs to be compatible? Hint: for z ∈ Z, suppose
we have open subsets U1 of X1 and U2 of X2, with U1 ∩ Z = U2 ∩ Z, so U1 and
U2 glue together to give an open subset U of X1

∐
φ X2. Suppose we also have

functions f1 on X1 and f2 on U2 that “agree on U ∩ Z” — what does that mean?
Then we declare that the germs of the “function on U obtained by gluing together
f1 and f2” are compatible.) Show that the resulting ringed space is a locally ringed
space.

We next want to show that the locally ringed space X1

∐
φ X2 is a scheme.

Clearly it is a scheme away from Z. We first verify a special case.

17.4.K. EXERCISE. Show that in Example 17.4.10 the construction of §17.4.11 in-
deed yields Spec(A1 ×φ! A2).

17.4.L. EXERCISE. In the general case, suppose x ∈ Z. Show that there is an
affine open subset Spec Ai ⊂ Xi such that Z ∩ Spec A1 = Z ∩ Spec A2. Then use
Exercise 17.4.J to show that X1

∐
φ X2 is a scheme in a neighborhood of x, and thus

a scheme.

17.4.12. Remarks. (a) As the notation suggests, this is a fibered coproduct in
the category of schemes, and indeed in the category of locally ringed spaces. We
won’t need this fact, but you can prove it if you wish; it isn’t hard. Unlike the
situation for products, fibered coproducts don’t exist in general in the category of
schemes. Miraculously (and for reasons that are specific to schemes), the resulting
cofibered diagram is also a fibered diagram. This has pleasant ramifications. For
example, this construction “behaves well with respect to” (or “commutes with”)
base change; this can help with Exercise 17.4.M(a), but if you use it, you have to
prove it.

(b) Here are some interesting questions to think through: Can we recover the
gluing locus from the “glued scheme” X1

∐
φ X2 and the two closed subschemes

X1 and X2? (Yes.) When is a scheme the gluing of two closed subschemes along
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their scheme-theoretic intersection? (When their scheme-theoretic union is the en-
tire scheme.)

(c) You might hope that if you have a single scheme X with two disjoint closed
subschemes W ′ and W ′′, and an isomorphism W ′ → W ′′, then you should be able
to glue X to itself along W ′ → W ′′. This construction doesn’t work, and indeed it
may not be possible. You can still make sense of the quotient as an algebraic space,
which I will not define here.

17.4.M. EXERCISE. We continue to use the notation Xi, φ, etc. Suppose we are
working in the category of A-schemes.

(a) If X1 and X2 are universally closed, show that X1

∐
φ X2 is as well.

(b) If X1 and X2 are separated, show that X1

∐
φ X2 is as well.

(c) If X1 and X2 are finite type over A, show that X1

∐
φ X2 is as well. (Hint:

Reduce to the “affine” case of the Motivating Example 17.4.10. Choose
generators x1, . . . , xn of A1, and y1, . . . , yn, such that xi modulo I1

agrees with yi modulo I2 via φ. Choose generators g1, . . . , gm of I2.
Show that (xi, yi) and (0, gi) generate R ⊂ A1 × A2, as follows. Sup-
pose (a1, a2) ∈ R. Then there is some polynomial m such that a1 =
m(x1, . . . , xn). Hence (a1, a2) − m((x1, y1), . . . , (xn, yn)) = (0, a ′

2) for
some a ′

2 ∈ I2. Then a ′
2 can be written as

∑m
i=1 (i(y1, . . . , yn)gi. But then

(0, a ′
2) =

∑m
i=1 (i((x1, y1), . . . , (xn, yn))(0, gi).)

Thus if X1 and X2 are proper, so is X1

∐
φ X2.

17.5 The Curve-to-projective Extension Theorem

We now use the main theorem of the previous section, Theorem 17.4.1, to
prove something useful and concrete.

17.5.1. The Curve-to-projective Extension Theorem. — Suppose C is a pure dimen-
sion 1 Noetherian scheme over a base S, and p ∈ C is a nonsingular closed point of it.
Suppose Y is a projective S-scheme. Then any morphism C \ {p} → Y extends to C → Y.

In practice, we will use this theorem when S = k, and C is a k-variety.
Note that if such an extension exists, then it is unique: the nonreduced locus

of C is a closed subset (Exercise 9.3.F). Hence by replacing C by an open neigh-
borhood of p that is reduced, we can use the Reduced-to-Separated theorem 11.2.1
that maps from reduced schemes to separated schemes are determined by their
behavior on a dense open set. Alternatively, maps to a separated scheme can be
extended over an effective Cartier divisor in at most one way (Exercise 11.2.E).

The following exercise show that the hypotheses are necessary.

17.5.A. EXERCISE. In each of the following cases, prove that the morphism C \
{p} → Y cannot be extended to a morphism C → Y.

(a) Projectivity of Y is necessary. Suppose C = A1
k, p = 0, Y = A1

k, and C\{p} →
Y is given by “t (→ 1/t”.

(b) One-dimensionality of C is necessary. Suppose C = A2
k, p = (0, 0), Y = P1

k,
and C \ {p} → Y is given by (x, y) (→ [x;y].
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(c) Non-singularity of C is necessary. Suppose C = Spec k[x, y]/(y2−x3), p = 0,
Y = P1

k, and C \ {p} → Y is given by (x, y) (→ [x;y].

We remark that by combining this (easy) theorem with the (hard) valuative
criterion of properness (Theorem 13.5.6), one obtains a proof of the properness
of projective space bypassing the (tricky) Fundamental Theorem of Elimination
Theory 8.4.7.

The central idea of the proof may be summarized as “clear denominators”, as
illustrated by the following motivating example. Suppose you have a morphism
from A1 − {0} to projective space, and you wanted to extend it to A1. Suppose the
map was given by t (→ [t4 + t−3; t−2 + 4t]. Then of course you would “clear the
denominators”, and replace the map by t (→ [t7 + 1; t + t4]. Similarly, if the map
was given by t (→ [t2 + t3; t2 + t4], you would divide by t2, to obtain the map
t (→ [1 + t; 1 + t2].

Proof. We begin with some quick reductions. We can assume S is affine, say Spec R
(by shrinking S and C). The nonreduced locus of C is closed and doesn’t contain
p (Exercise 9.3.F), so by replacing C by an appropriate neighborhood of p, we may
assume that C is reduced and affine.

We next reduce to the case where Y = Pn
R . Choose a closed immersion Y → Pn

R .
If the result holds for Pn, and we have a morphism C → Pn with C \ {p} mapping
to Y, then C must map to Y as well. Reason: we can reduce to the case where
the source is an affine open subset, and the target is An

R ⊂ Pn
R (and hence affine).

Then the functions vanishing on Y ∩ An
R pull back to functions that vanish at the

generic point of C and hence vanish everywhere on C (using reducedness of C),
i.e. C maps to Y.

Choose a uniformizer t ∈ m−m2 in the local ring of C at p. This is an element of
K(C)×, with a finite number of poles (from Exercise 13.4.G on finiteness of number
of zeros and poles). The complement of these finite number of points is an open
neighborhood of p, so by replacing C by a smaller open affine neighborhood of
p, we may assume that t is a function on C. Then V(t) is also a finite number
of points (including p), again from Exercise 13.4.G)so by replacing C by an open
affine neighborhood of p in C \ V(t) ∪ p, we may assume that p is only zero of the
function t (and of course t vanishes to multiplicity 1 at p).

We have a map C \ {p} → Pn
R , which by Theorem 17.4.1 corresponds to a line

bundle L on C \ {p} and n + 1 sections of it with no common zeros in C \ {p}. Let
U be a nonempty open set of C \ {p} on which L ∼= O . Then by replacing C by
U∪p, we interpret the map to Pn as n+1 rational functions f0, . . . , fn, defined away
away from p, with no common zeros away from p. Let N = mini(valp fi). Then
t−Nf0, . . . , t−Nfn are n+1 functions with no common zeros. Thus they determine
a morphism C → Pn extending C \ {p} → Pn as desired. !

17.5.B. EXERCISE (USEFUL PRACTICE). Suppose X is a Noetherian k-scheme, and
Z is an irreducible codimension 1 subvariety whose generic point is a nonsingular
point of X (so the local ring OX,Z is a discrete valuation ring). Suppose X ""# Y
is a rational map to a projective k-scheme. Show that the domain of definition of
the rational map includes a dense open subset of Z. In other words, rational maps
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from Noetherian k-schemes to projective k-schemes can be extended over nonsin-
gular codimension 1 sets. (We have seen this principle in action, see Exercise 7.5.I
on the Cremona transformation.)

17.6 ! The Grassmannian as a moduli space

In §7.7, we gave a preliminary description of the Grassmannian. We are now
in a position to give a better definition.

We describe the “Grassmannian functor” of G(k, n), then show that it is repre-
sentable. The construction works over an arbitrary base scheme, so we work over
the final object Spec Z. (You should think through what to change if you wish to
work with, for example, complex schemes.) The functor is defined as follows. To
a scheme B, we associate the set of locally free rank k quotients of the rank n free sheaf,
up to isomorphism. An isomorphism of two such quotients φ : O⊕n

B → Q → 0 and
φ ′ : O⊕n

B → Q ′ → 0 is an isomorphism σ : Q → Q ′ such that the diagram

O⊕n φ $$

φ ′
77H

HH
HH

HH
H Q

σ

%%
Q ′

commutes. By Exercise 14.5.B(b), kerφ is locally free of rank n − k. (Thus if you
prefer, you can consider the functor to take B to short exact sequences 0 → S →
O⊕n → Q → 0 of locally free sheaves over B.)

It may surprise you that we are considering rank k quotients of a rank n sheaf,
not rank k subobjects, given that the Grassmannian should parametrize k-dimensional
subspace of an n-dimensional space. This is done for several reasons. One is that
the kernel of a surjective map of locally free sheaves must be locally free, while
the cokernel of an injective map of locally free sheaves need not be locally free
(Exercise 14.5.B(b) and (c) respectively). Another reason: we will later see that the
geometric incarnation of this problem indeed translates to this. We can already
see a key example here: if k = 1, our definition yields one-dimensional quotients
O⊕n → L → 0. But this is precisely the data of n sections of L , with no common
zeros, which by Theorem 17.4.1 (the functorial description of projective space) cor-
responds precisely to maps to Pn, so the k = 1 case parametrizes what we want.

We now show that the Grassmannian functor is representable for given n and
k. Throughout the rest of this section, a k-subset is a subset of {1, . . . , n} of size k.

17.6.A. EXERCISE. (a) Suppose I is a k-subset. Make the following statement
precise: there is an open subfunctor G(k, n)I of G(k, n) where the k sections of Q
corresponding to I (of the n sections of Q coming from the surjection φ : O⊕n →
Q) are linearly independent. Hint: in a trivializing neighborhood of Q, where we

can choose an isomorphism Q
∼ $$ O⊕k , φ can be interpreted as a k×n matrix

M, and this locus is where the determinant of the k × k matrix consisting of the
I columns of M is nonzero. Show that this locus behaves well under transitions
between trivializations.
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(b) Show that these open subfunctors G(k, n)I cover the functor G(k, n) (as I runs
through the k-subsets).

Hence by Exercise 10.1.I, to show G(k, n) is representable, we need only show
that G(k, n)I is representable for arbitrary I. After renaming the summands of
O⊕n, without loss of generality we may as well assume I = {1, . . . , k}.

17.6.B. EXERCISE. Show that G(k, n){1...,k} is represented by Ank as follows. (You
will have to make this precise.) Given a surjection φ : O⊕n → Q, let φi : O → Q
be the map from the ith summand of O⊕n. (Really, φi is just a section of Q.) For
the open subfunctor G(k, n)I, show that

φ1 ⊕ · · ·⊕ φk : O⊕k → Q

is an isomorphism. For a scheme B, the bijection G(k, n)I(B) ↔ Ank is given as
follows. Given an element φ ∈ G(k, n)I(B), for j ∈ {k + 1, . . . , n}, φj = a1jφ1 +
a2jφ2+· · ·+akjφk, where aij are functions on B. But k(n−k) functions on B is the
same as a map to Ak(n−k) (Exercise 7.6.C). Conversely, given k(n − k) functions
aij (1 ≤ i ≤ k < j ≤ n), define a surjection φ : O⊕n → ⊕⊕k as follows: (φ1 . . . ,φk)
is the identity, and φj = a1jφ1 + a2jφ2 + · · · + akjφk for j > k.

You have now shown that G(k, n) is representable, by covering it with
(
n
k

)

copies of Ak(n−k). (You might wish to relate this to the description you gave in
§7.7.) In particular, the Grassmannian over a field is smooth, and irreducible of
dimension k(n − k). (Once we define smoothness in general, the Grassmannian

over any base will be smooth over that base, because Ak(n−k)
B → B will always be

smooth.)

17.6.1. The Plücker embedding.
By applying ∧k to a surjection φ : O⊕n → Q (over an arbitrary base B), we

get a surjection ∧kφ : O⊕(n
k) → det Q (Exercise 14.5.G). But a surjection from a

rank N free sheaf to a line bundle is the same as a map to PN−1 (Theorem 17.4.1).

17.6.C. EXERCISE. Use this to describe a map P : G(k, n) → P(n
k)−1. (This is just a

tautology: a natural transformation of functors induces a map of the representing
schemes. This is Yoneda’s Lemma, although if you didn’t do Exercise 2.3.Y, you
may wish to do it by hand. But once you do, you may as well go back to prove
Yoneda’s Lemma and do Exercise 2.3.Y, because the argument is just the same!)

17.6.D. EXERCISE. The projective coordinate on P(n
k)−1 corresponding to the Ith

factor of O⊕(n
k) may be interpreted as the determinant of the map φI : O⊕k → Q,

where the O⊕k consists of the summands of O⊕n corresponding to I. Make this
precise.

17.6.E. EXERCISE. Show that the standard open set UI of P(n
k)−1 corresponding to

k-subset I (i.e. where the corresponding coordinate doesn’t vanish) pulls back to
the open subscheme G(k, n)I ⊂ G(k, n). Denote this map PI : G(k, n)I → UI.

17.6.F. EXERCISE. Show that PI is a closed immersion as follows. We may deal
with the case I = {1, . . . , k}. Note that G(k, n)I is affine — you described it Spec Z[aij]1≤i≤k<j≤n

in Exercise 17.6.B. Also, UI is affine, with coordinates xI ′/I, as I ′ varies over the
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other k-subsets. You want to show that the map

P!
I : Z[xI ′/I]I ′⊂{1,...,n},|I ′|=k}/(xI/I − 1) → Z[aij]1≤i≤k<j≤n

is a surjection. By interpreting the map φ : O⊕n → O⊕k as a k×n matrix M whose
left k columns are the identity matrix and whose remaining entries are aij (1 ≤ i ≤
k < j ≤ n), interpret P!

I as taking xI ′/I to the determinant of the k × k submatrix
corresponding to the columns in I ′. For each (i, j) (with 1 ≤ i ≤ k < j ≤ n), find
some I ′ so that xI ′/I (→ ±aij. (Let I ′ = {1, . . . , i − 1, i + 1, . . . , k, j}.)

Hence G(k, n) ↪→ P(n
k)−1 is projective over Z.

17.6.2. Remark: The Plücker equations. The equations of G(k, n) → P(n
k)−1 are

particularly nice. There are quadratic relations among the k × k minors of a k ×
(n−k) matrix, called the Plücker relations. By our construction, they are equations
satisfied by G(k, n). It turns out that these equations cut out G(k, n), and in fact
generate the homogeneous ideal of G(k, n), but this takes more work.

17.6.G. !! EXERCISE (GRASSMANNIAN BUNDLES). Suppose F is a rank n locally
free sheaf on a scheme X. Define the Grassmannian bundle G(k,F ) over X. In-
tuitively, if F is a varying family of n-dimensional vector spaces over X, G(k,F )
should parametrize k-dimensional quotients of the fibers. You may want to define
the functor first, and then show that it is representable. Your construction will
behave well under base change.





CHAPTER 18

Relative versions of Spec and Proj, and projective
morphisms

In this chapter, we will use universal properties to define two useful construc-
tions, Spec of a sheaf of algebras A , and Proj of a sheaf of graded algebras A• on
a scheme X. These will both generalize (globalize) our constructions of Spec of
A-algebras and Proj of graded A-algebras. We will see that affine morphisms are
precisely those of the form Spec A → X, and so we will define projective morphisms
to be those of the form Proj A• → X.

In both cases, our plan is to make a notion we know well over a ring work
more generally over a scheme. The main issue is how to glue the constructions
over each affine open subset together. The slick way we will proceed is to give
a universal property, then show that the affine construction satisfies this univer-
sal property, then that the universal property behaves well with respect to open
subsets, then to use the idea that let us glue together the fibered product (or nor-
malization) together to do all the hard gluing work. The most annoying part of
this plan is finding the right universal property, especially in the Proj case.

18.1 Relative Spec of a (quasicoherent) sheaf of algebras

Given an A-algebra, B, we can take its Spec to get an affine scheme over Spec A:
Spec B → Spec A. We will now see universal property description of a globaliza-
tion of that notation. Consider an arbitrary scheme X, and a quasicoherent sheaf of
algebras B on it. We will define how to take Spec of this sheaf of algebras, and we
will get a scheme Spec B → X that is “affine over X”, i.e. the structure morphism is
an affine morphism. You can think of this in two ways.

18.1.1. First, and most concretely, for any affine open set Spec A ⊂ X, Γ(Spec A,B)
is some A-algebra; call it B. Then above Spec A, Spec B will be Spec B.

18.1.2. Second, it will satisfy a universal property. We could define the A-scheme
Spec B by the fact that maps to Spec B (from an A-scheme Y, over Spec A) corre-
spond to maps of A-algebras B → Γ(Y,OY) (this is our old friend Exercise 7.3.F).
The universal property for β : Spec B → X generalizes this. Given a morphism
π : Y → X, the X-morphisms Y → Spec B are in functorial (in Y) bijection with

375
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morphisms α making

OX

PP88
88
88
88

77$
$$

$$
$$

$

B
α $$ π∗OY

commute. Here the map OX → π∗OY is that coming from the map of ringed spaces,
and the map OX → B comes from the OX-algebra structure on B. (For experts: it
needn’t be true that π∗OY is quasicoherent, but that doesn’t matter.)

By universal property nonsense, this data determines β : Spec B → X up to
unique isomorphism, assuming that it exists.

Fancy translation: in the category of X-schemes, β : Spec B → X represents the
functor

(π : Y → X) % $$ {(α : B → π∗OY)}.

18.1.A. EXERCISE. Show that if X is affine, say Spec A, and B = B̃, where B
is an A-algebra, then Spec B → Spec A satisfies this universal property. (Hint:
Exercise 7.3.F.)

18.1.3. Proposition. — Suppose β : Spec B → X satisfies the universal property for
(X,B), and U ↪→ X is an open subset. Then β|U : Spec B ×X U = (Spec B)|U → U
satisfies the universal property for (U,B|U).

Proof. For convenience, let V = Spec B ×X U. A U-morphism Y → V is the same
as an X-morphism Y → Spec B (where by assumption Y → X factors through
U). By the universal property of Spec B, this is the same information as a map
B → π∗OY , which by the universal property definition of pullback (§ 17.3.3) is
the same as π∗B → OY , which is the same information as (π|U)∗B → OY . By
adjointness again this is the same as B|U → (πU)∗OY . !

Combining the above Exercise and Proposition, we have shown the existence
of Spec B in the case that Y is an open subscheme of an affine scheme.

18.1.B. EXERCISE. Show the existence of Spec B in general, following the philoso-
phy of our construction of the fibered product, normalization, and so forth.

We make some quick observations. First Spec B can be “computed affine-
locally on X”. We also have an isomorphism φ : B → β∗OSpec B.

18.1.C. EXERCISE. Given an X-morphism

Y

π
>>P

PP
PP

PP
P

f $$ Spec B

β
;;GG
GG
GG
GG

X

show that α is the composition

B
φ $$ β∗OSpec B $$ β∗f∗OY = π∗OY .

The Spec construction gives an important way to understand affine morphisms.
Note that Spec B → X is an affine morphism. The “converse” is also true:
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18.1.D. EXERCISE. Show that if f : Z → X is an affine morphism, then we have a
natural isomorphism Z ∼= Spec f∗OZ of X-schemes.

Hence we can recover any affine morphism in this way. More precisely, a
morphism is affine if and only if it is of the form Spec B → X.

18.1.E. EXERCISE (Spec BEHAVES WELL WITH RESPECT TO BASE CHANGE). Sup-
pose f : Z → X is any morphism, and B is a quasicoherent sheaf of algebras on X.
Show that there is a natural isomorphism Z ×X Spec A ∼= Spec f∗B.

18.1.4. Definition. An important example of this Spec construction is the total
space of a finite rank locally free sheaf F , which we define to be Spec Sym• F∨.

18.1.F. EXERCISE. Show that the total space of F is a vector bundle, i.e. that given
any point p ∈ X, there is a neighborhood p ∈ U ⊂ X such that Spec Sym• F∨|U ∼=
An

U. Show that F is isomorphic to the sheaf of sections of the total space Spec Sym• F∨.
(Possible hint: use transition functions.) For this reason, the total space is also
called the vector bundle associated to a locally free sheaf F . (Caution: some au-
thors, e.g. [Stacks, tag 01M2], call Spec Sym• F , the dual of this vector bundle, the
vector bundle associated to F .)

In particular, if F = O⊕n
X , then Spec Sym• F∨ is called An

X, generalizing our
earlier notions of An

A. As the notion of free sheaf behaves well with respect to base
change, so does the notion of An

X, i.e. given X → Y, An
Y ×Y X ∼= An

X. (Aside: you
may notice that the construction Spec Sym• can be applied to any coherent sheaf
F (without dualizing, i.e. Spec Sym• F ). This is sometimes called the abelian cone
associated to F . This concept can be useful, but we won’t need it.)

18.1.G. EXERCISE. Suppose f : Spec B → X is a morphism. Show that the category
of quasicoherent sheaves on Spec B is equivalent to the category of quasicoherent
sheaves on X with the structure of B-modules (quasicoherent B-modules on X).

This is useful if X is quite simple but Spec B is complicated. We will use this
before long when X ∼= P1, and Spec B is a more complicated curve.

18.1.H. EXERCISE (THE TAUTOLOGICAL BUNDLE ON Pn IS O(−1)). Suppose k is a
field. Define the subset X ⊂ An+1

k × Pn
k corresponding to “points of An+1

k on the
corresponding line of Pn

k ”, so that the fiber of the map π : X → Pn corresponding
to a point l = [x0; · · · ; xn] is the line in An+1

k corresponding to l, i.e. the scalar
multiples of (x0, . . . , xn). Show that π : X → Pn

k is (the line bundle corresponding
to) the invertible sheaf O(−1). (Possible hint: work first over the usual affine open
sets of Pn

k , and figure out transition functions.) For this reason, O(−1) is often
called the tautological bundle of Pn

k (even over an arbitrary base, not just a field).
(Side remark: The projection X → An+1

k is the blow-up of An+1
k at the “origin”, see

Exercise 10.2.M.)

18.2 Relative Proj of a sheaf of graded algebras
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In parallel with Spec , we define a relative version of Proj, denoted Proj (called
“relative Proj” or “sheaf Proj”). To find the right universal property, we examine
Exercise 17.4.A closely.

18.2.1. Hypotheses on S•. We will apply this construction to a quasicoherent sheaf
S• of graded algebras on X, so we first determine what hypotheses are necessary,
by consulting the definition of Proj. (i) We require that S0 = OX. We require that
S• locally satisfy the hypotheses of Exercise 17.4.A. Precisely, we require that (ii)
S1 is finite type, and (iii) S• is “generated in degree 1”. The cleanest way to make
sense of the latter condition is to require the natural map

Sym•
OX

S1 → S•

to be surjective. Because we have checked that the Sym• construction may be
computed affine locally (§14.5.3), we can check generation in degree 1 on any affine
cover.

The X-scheme and line bundle (β : Proj S• → X,O(1)) is required to satisfy
the following universal property. Given π : Y → X, commuting diagrams

Y
f $$

π
>>P

PP
PP

PP
P Proj S•

β
;;LL
LL
LL
LL
L

X

correspond to the choice of an invertible sheaf L on Y, and maps α : S• →
⊕∞

n=0π∗L ⊗n, up to isomorphism of (L ,α), except that two such α are identified
if they locally agree in sufficiently high degree (given any point of X, there is a
neighborhood of the point and an n0, so that they agree for n ≥ n0). Further, L is
required to be locally generated by α(S1): the composition π∗S1 → π∗π∗L → L
is surjective. (Perhaps more explicitly: given any y ∈ Y, there is a neighborhood of
π(y) so that the stalk of L at y is generated by the image of a section of S1 above
that open set.)

As usual, if (β : Proj S• → X,O(1)) exists, it is unique up to unique isomor-
phism. We now show that it exists, in analogy with Spec .

18.2.A. IMPORTANT EXERCISE. Show that if X is affine and S• satisfies the hy-
potheses of §18.2.1, then there exists some (β,O(1)) satisfying the universal prop-
erty. (Hint: Exercise 17.4.A. It should be clear to you what construction to use!) In
doing this exercise, you will recognize each part of this tortured universal property
as coming from the universal property for maps to Proj S•.

18.2.B. EXERCISE. Show that if (β,O(1)) exists for some X and S•, and if U ⊂ X
is an open subset, then (β,O(1)) exists for U and S•|U (and may be obtained by
taking the construction over X and restricting to U).

The previous two exercises imply that Proj S•, should it exist, can thus be “com-
puted affine locally”. We are left with the gluing problem.

18.2.C. IMPORTANT EXERCISE: Proj EXISTS. Show that (β : Proj S• → X,O(1))
exists.
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18.2.D. EXERCISE. Describe a map of graded quasicoherent sheaves φ : S• →
⊕nβ∗O(n), which is locally an isomorphism in high degrees (given any point of
X, there is a neighborhood of the point and an n0, so that φn is an isomorphism
for n ≥ n0), so that any α (in the universal property above) factors as

S•
φ $$ ⊕β∗O(n) $$ ⊕β∗f∗L ⊗n = ⊕π∗L ⊗n.

18.2.E. EXERCISE (Proj BEHAVES WELL WITH RESPECT TO BASE CHANGE). Sup-
pose S• is a quasicoherent sheaf of graded algebras on X satisfying the required
hypotheses above for Proj S• to exist. Let f : Y → X be any morphism. Give a
natural isomorphism

(Proj f∗S•,OProj f∗S•(1)) ∼= (Y ×X Proj S•, g
∗OProj S•(1))

where g is the “top” morphism in the base change diagram

Y ×X Proj S•
g $$

%%

Proj S•

%%
Y

f $$ X.

18.2.2. Definition. If F is a finite type quasicoherent sheaf on X, then Proj Sym• F
is called its projectivization, and is denoted PF . Clearly this construction behaves

well with respect to base change. Define Pn
X := P(O⊕(n+1)

X ). (Then Pn
Spec A agrees

with our earlier definition of Pn
A.) More generally, if F is locally of free of rank

n + 1, then PF is a projective bundle or Pn-bundle over X. As a special case of
this: if X is a nonsingular curve and F is locally free of rank 2, then PF is called a
ruled surface over C. If X is further isomorphic to P1, PF is called a Hirzebruch
surface. Grothendieck proved that all vector bundles on P1 split as a direct sum
of line bundles (which are all of the form O(n), so each Hirzebruch surface is of
the form P(O(n1) ⊕ O(n2)). It will follow from Exercise 18.2.G below that this
depends only on n2 − n1. The Hirzebruch surface P(O ⊕ O(n)) (n ≥ 0) is often
denoted Fn. We will discuss the Hirzebruch surfaces in greater length in §22.2.4.

18.2.F. EXERCISE. Given the data of (Proj S•,O(1)), describe a canonical closed
immersion

Proj S•

77$
$$

$$
$$

$$

i $$ PS1

QQQQ
QQ
QQ
QQ

X

and an isomorphism OProj S•(1) ∼= i∗OPS1
(1) arising from the surjection Sym• S1 →

S•. The importance of this exercise lies in the fact that we cannot recover S• from
the data of (Proj S•,O(1)), but the canonical closed immersion into Pβ∗O(1) can
be recovered.

18.2.G. EXERCISE. Suppose L is an invertible sheaf on X, and S• is a quasico-
herent sheaf of graded algebras on X satisfying the required hypotheses above for
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Proj S• to exist. Define S ′
• = ⊕n=0 (Sn ⊗ L ⊗n). Then S ′

• has a natural algebra
structure inherited from S•; describe it. Give a natural isomorphism of X-schemes

(Proj S ′
• ,OProj S ′

•
(1)) ∼= (Proj S•,OProj S•(1) ⊗ π∗L ),

where π : Proj S• → X is the structure morphism. In other words, informally
speaking, the Proj is the same, but the O(1) is twisted by L . In particular, if V
is a finite rank locally free sheaf on X, then you will have described a canonical
isomorphism PV ∼= P(L ⊗ V ).

18.2.H. ! EXERCISE (CF. EXERCISE 9.2.Q). Show that Proj (S•[t]) ∼= Spec S•

∐
Proj S•,

where Spec S• is an open subscheme, and Proj S• is a closed subscheme. Show
that Proj S• is an effective Cartier divisor, corresponding to the invertible sheaf
OProj S•(1). (This is the generalization of the projective and affine cone.)

18.3 Projective morphisms

In §18.1, we reinterpreted affine morphisms: X → Y is an affine morphism if
there is an isomorphism X ∼= Spec B of Y-schemes for some quasicoherent sheaf of
algebras B on Y. We will define the notion of a projective morphism similarly.

You might think because projectivity is such a classical notion, there should be
some obvious definition, that is reasonably behaved. But this is not the case, and
there are many possible variant definitions of projective (see [Stacks, tag 01W8]).
All are imperfect, including the accepted definition we give here. Although pro-
jective morphisms are preserved by base change, we will manage to show that
they are preserved by composition only when the target is quasicompact (Exer-
cise 18.3.B), and we will manage to show that the notion is local on the base only
when we add the data of a line bundle, and even then only under locally Noether-
ian hypotheses (§18.3.4).

18.3.1. Definition. A morphism X → Y is projective if there is an isomorphism

X
∼ $$

>>P
PP

PP
PP

P Proj S•

;;LL
LL
LL
LL
L

Y

for a quasicoherent sheaf of algebras S• on Y (satisfying the hypotheses of §18.2.1:
S• is generated in degree 1, and S1 is finite type). We say X is a projective Y-
scheme, or projective over Y. This generalizes the notion of a projective A-scheme.

18.3.2. Warnings. First, notice that O(1), an important part of the definition of Proj ,
is not mentioned. (I would prefer that it be part of the definition, but this isn’t
accepted practice.) As a result, the notion of affine morphism is affine-local on the
target, but the notion of projectivity or a morphism is not clearly affine-local on
the target. (In Noetherian circumstances, with the additional data of the invertible
sheaf O(1), it is, as we will see in §18.3.4. We will also later see an example showing
that the property of being a projective is not local, §25.7.7.)
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Second, [Ha, p. 103] gives a different definition of projective morphism; we
follow the more general definition of Grothendieck. These definitions turn out to
be the same in nice circumstances. (An example: finite morphisms are not always
projective in the sense of [Ha].)

18.3.A. EXERCISE (USEFUL CHARACTERIZATION OF PROJECTIVE MORPHISMS). Sup-
pose L is an invertible sheaf on X, and f : X → Y is a morphism. Show that f is
projective, with O(1) ∼= L , if and only if there exist a finite type quasicoherent
sheaf S1 on Y, a closed immersion i : X ↪→ PS1 (over Y, i.e. commuting with the
maps to Y), and an isomorphism i∗OPS1

(1) ∼= L . Hint: Exercise 18.2.F.

18.3.3. Definition: Quasiprojective morphisms. In analogy with projective and
quasiprojective A-schemes (§5.5.5), one may define quasiprojective morphisms. If
Y is quasicompact, we say that π : X → Y is quasiprojective if π can be expressed as
a quasicompact open immersion into a scheme projective over Y. (The general def-
inition of quasiprojective is slightly delicate — see [EGA, II.5.3] — but we won’t
need it.) This isn’t a great notion, as for example it isn’t clear to me that it is local
on the base.

18.3.4. Properties of projective morphisms.
We start to establish a number of properties of projective morphisms. First,

the property of a morphism being projective is clearly preserved by base change,
as the Proj construction behaves well with respect to base change (Exercise 18.2.E).
Also, projective morphisms are proper: properness is local on the target (Theo-
rem 11.3.4(b)), and we saw earlier that projective A-schemes are proper over A
(Theorem 11.3.5). In particular (by definition of properness), projective morphisms
are separated, finite type, and universally closed.

Exercise 18.3.G (in a future optional section) implies that if π : X → Y is a
proper morphism of locally Noetherian schemes, and L is an invertible sheaf on
X, the question of whether π is a projective morphism with L as O(1) is local on
Y.

18.3.B. EXERCISE (THE COMPOSITION OF PROJECTIVE MORPHISMS IS PROJECTIVE,
IF THE FINAL TARGET IS QUASICOMPACT). Suppose π : X → Y and ρ : Y → Z are
projective morphisms, and Z is quasicompact. Show that π ◦ ρ is projective. Hint:
the criterion for projectivity given in Exercise 18.3.A will be useful. (i) Deal first
with the case where Z is affine. Build the following commutative diagram, thereby
finding a closed immersion X ↪→ PF⊕n over Z. In this diagram, all inclusions are
closed immersions, and all script fonts refer to finite type quasicoherent sheaves.

X

π

**++
++

++
++

++
++

++
++

++
++

! " $$ PE

442
22

22
22

22
22

! " (†) $$ Pn−1
Z ×Z Y

%%

! " $$ Pn−1
Z ×Z PF

%%

! " Segre

cf. Ex. 10.5.D
$$ P (F⊕n)

RR

Y

ρ

%%

! " $$ PF

CCEEE
EE
EE
EE
EE
EE
EE

Z
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Construct the closed immersion (†) as follows. Suppose M is the very ample line
bundle on Y over Z. Then M is ample, and so by Theorem 16.3.12, for m . 0, E ⊗
M⊗m is generated by a finite number of global sections. Suppose O⊕n

Y
$$ $$ E ⊗ M⊗m

is the corresponding surjection. This induces a closed immersion P(E ⊗M⊗m) ↪→
Pn−1

Y . But P(E ⊗ M⊗m) ∼= PE (Exercise 18.2.G), and Pn−1
Y = Pn−1

Z ×Z Y. (ii) Un-
wind this diagram to show that (for Z affine) if m . 0, if L is π-very ample and
M is ρ-very ample, then for m . 0, L ⊗ M⊗m is (ρ ◦ π)-very ample. Then deal
with the general case by covering Z with a finite number of affines.

18.3.5. Caution: Consequences of projectivity not being “reasonable” in the sense of
§8.0.1. Because the property of being projective is preserved by base change
(§18.3.4), and composition to quasicompact targets (Exercise 18.3.B), the property of
being projective is “usually” preserved by products (Exercise 10.4.F): if f : X → Y
and f ′ : X ′ → Y are projective, then so is f × f ′ : X × X ′ → Y × Y ′, so long as
Y × Y ′ is quasicompact. Also, if you follow through the proof of the Cancellation
Theorem 11.1.19 for properties of morphisms, you will see that if f : X → Y is a
morphisms, g : Y → Z is separated (so the diagonal δg is a closed immersion and
hence projective), and g ◦ f is projective, and Y is quasicompact, then f is projective.

18.3.C. EXERCISE. Show that a morphism (over Spec k) from a projective k-
scheme to a separated k-scheme is always projective. (Hint: the Cancellation The-
orem 11.1.19 for projective morphisms, cf. Caution 18.3.5.)

18.3.6. Finite morphisms are projective.

18.3.D. IMPORTANT EXERCISE: FINITE MORPHISMS ARE PROJECTIVE (CF. EXERCISE

8.3.J). Show that finite morphisms are projective as follows. Suppose Y → X is
finite, and that Y = Spec B where B is a finite type quasicoherent sheaf on X.
Describe a sheaf of graded algebras S• where S0

∼= OX and Sn
∼= B for n > 0.

Describe an X-isomorphism Y ∼= Proj S•.

In particular, closed immersions are projective. We have the sequence of im-
plications for morphisms

closed immersion ⇒ finite ⇒ projective ⇒ proper.

We know that finite morphisms are projective (Exercise 18.3.D), and have finite
fibers (Exercise 8.3.K). We will show the converse in Theorem 20.1.8, and state the
extension to proper morphisms immediately after.

18.3.7. ! Global generation and (very) ampleness in the relative setting.
We extend the discussion of §16.3 to the relative setting, in order to give our-

selves the language of relatively base-point-freeness. With the exception of Exer-
cise 18.3.G (mentioned briefly in §18.3.4), we won’t use this discussion later, so
on a first reading you should jump directly to §18.3.4. But these ideas come up
repeatedly in the research literature.

Suppose π : X → Y is a quasicompact quasiseparated morphism. In F is
a quasicoherent sheaf on X, we say that F is relatively globally generated or
globally generated with respect to π if the natural map of quasicoherent sheaves
π∗π∗F → F is surjective. (Quasicompactness and quasiseparatedness are needed
ensure that π∗F is a quasicoherent sheaf, Exercise 14.3.I). But these hypotheses
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are not very restrictive. Global generation is most useful only in the quasicom-
pact setting, and most people won’t be bothered by quasiseparated hypotheses.
Unimportant aside: these hypotheses can be relaxed considerably. If π : X → Y
is a morphism of locally ringed spaces — not necessarily schemes — with no other
hypotheses, and F is a quasicoherent sheaf on X, then we say that F is relatively
globally generated or globally generated with respect to π if the natural map
π∗π∗F → F of OX-modules is surjective.)

Thanks to our hypotheses, as the natural map π∗π∗F → F is of quasicoherent
sheaves, the condition of being relatively globally generated is affine-local on Y.

Suppose now that L is a locally free sheaf on X, and π : X → Y is a morphism.
We say that L is relatively base-point-free or base-point-free with respect to π if
it is relatively globally generated.

18.3.E. EXERCISE. Suppose L is a finite rank locally free sheaf on L , π : X → Y is
a quasicompact separated morphism, and π∗L is finite type on Y. (We will later
show in Theorem 20.8.1 that this latter statement is true if π is proper and Y is
Noetherian. This is much easier if π is projective, see Theorem 20.7.1. We could
work hard and prove it now, but it isn’t worth the trouble.) Describe a canonical
morphism f : X → PL . (Possible hint: this generalizes the fact that base-point-
free line bundles give maps to projective space, so generalize that argument, see
§16.3.5.)

We say that L is relatively ample or π-ample or relatively ample with re-
spect to π if for every affine open subset Spec B of Y, L |π−1(Spec B) is ample on

π−1(Spec B) over B, or equivalently (by §16.3.15). L |π−1(Spec B) is (absolutely) am-

ple on π−1(Spec B). By the discussion in §16.3.15, if L is ample then π is neces-
sarily quasicompact, and (by Theorem 16.3.16) separated; if π is affine, then all
invertible sheaves are ample; and if π is projective, then the corresponding O(1)
is ample. By Exercise 16.3.N, L is π-ample if and only if L ⊗n is π-ample, and if
Z ↪→ X is a closed immersion, then L |Z is ample over Y.

From Theorem 16.3.16(d) implies that we have a natural open immersion X →
Proj

Y
⊕f∗L ⊗d. (Do you see what this map is? Also, be careful: ⊕f∗L ⊗d need not

be a finitely generated graded sheaf of algebras, so we are using the Proj construc-
tion where one of the usual hypotheses doesn’t hold.)

The notions of relative global generation and relative ampleness are most use-
ful in the proper setting, because of Theorem 16.3.12. Suppose π : X → Y is proper.
If L is an invertible sheaf on X, then we say that L is very ample (with respect
to π), or (awkwardly) π-very ample if we can write X = Proj

Y
S• where S• is a

quasicoherent sheaf of algebras on Y satisfying the hypotheses of §18.2.1: S1 is
finite type, and Sym• S1 → S• is surjective (S• is “generated in degree 1”). (The
notion of very ampleness can be extended to more general situations, see for ex-
ample [Stacks, tag 01VM]. But this is of interest only to people with particularly
refined tastes.)

18.3.8. Many statements of §16.3 carry over without change. For example, we have
the following. Suppose π : X → Y is proper, F and G are quasicoherent sheaves
on X, and L and M are invertible sheaves on X. If π is affine, then F is relatively
globally generated (from Easy Exercise 16.3.A). If F and G are relatively globally
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generated, so is F⊗G (Easy Exercise 16.3.B). If L is π-very ample, then it is π-base-
point-free (Easy Exercise 16.3.G). If L is π-very ample, and M is π-base-point-free
(if for example it is π-very ample), then L ⊗ M is π-very ample (Exercise 16.3.H).
Exercise 17.3.I extends immediately to show that if

X
f $$

ρ
--?

??
??

??
? Y

π
((@@
@@
@@
@@

S

is a finite morphism of S-schemes, and if L is a π-ample invertible sheaf on Y, then
f∗L is ρ-ample.

By the nature of the statements, some of the statements of §16.3 require quasi-
compactness hypotheses on Y, or other patches. For example:

18.3.9. Theorem. — Suppose π : X → Y is proper, L is an invertible sheaf on X, and Y
is quasicompact. The following are equivalent.

(a) For some N > 0, L ⊗N is π-very ample.
(a’) For all n . 0, L ⊗n is π-very ample.
(b) For all finite type quasicoherent sheaves F , there is an n0 such that for n ≥ n0,

F ⊗ L ⊗n is relatively globally generated.
(c) The invertible sheaf L is π-ample.

18.3.F. EXERCISE. Prove Theorem 18.3.9 using Theorem 16.3.12. (Unimportant
remark: The proof of Theorem 16.3.12 used Noetherian hypotheses, but as stated
there, they can be removed.)

After doing the above Exercise, it will be clear how to adjust the statement of
Theorem 18.3.9 if you need to remove the quasicompactness assumption on Y.

18.3.G. EXERCISE (A USEFUL EQUIVALENT DEFINITION OF VERY AMPLENESS UN-
DER NOETHERIAN HYPOTHESES). Suppose π : X → Y is a proper morphism, Y
is locally Noetherian (hence X is too, as f is finite type), and L is an invertible
sheaf on X. Suppose that you know that in this situation π∗L is finite type. (We
will later show this, as described in Exercise 18.3.E.) Show that L is very ample
if and only if (i) L is relatively base-point-free, and (ii) the canonical Y-morphism
i : X → Pπ∗L of Exercise 18.3.E is a closed immersion. Conclude that the notion
of very ampleness is affine-local on Y (it may be checked on any affine cover Y), if
Y is locally Noetherian and π is proper.

As a consequence, Theorem 18.3.9 implies the notion of ampleness is affine-
local on Y (if π is proper and Y is locally Noetherian).

18.3.10. !! Ample vector bundles. The notion of an ample vector bundle is useful in
some parts of the literature, so we define it, although we won’t use the notion. A
locally free sheaf E on a scheme X is ample if O(1) on its projectivization PE → X
is ample over X.

18.3.11. !! Quasiaffine morphisms.
Because we have introduced quasiprojective morphisms (Definition 18.3.3),

we briefly introduce quasiaffine morphisms (and quasiaffine schemes), as some
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readers may have cause to use them. Many of these ideas could have been intro-
duced long before, but because we will never use them, we deal with them all at
once.

A scheme X is quasiaffine if it admits a quasicompact open immersion into an
affine scheme. This implies that X is quasicompact and separated. Note that if X
is Noetherian (the most relevant case for most people), then any open immersion
is of course automatically quasicompact.

18.3.H. EXERCISE. Show that X is quasiaffine if and only if the canonical map
X → Spec Γ(X,OX) (defined in Exercise 7.3.F and the paragraph following it) is a
quasicompact open immersion. Thus a quasiaffine scheme comes with a canonical
quasicompact open immersion into an affine scheme. Hint: Let A = Γ(X,OX) for
convenience. Suppose X → Spec R is a quasicompact open immersion. We wish
to show that X → Spec A is a quasicompact open immersion. Factor X → Spec R
through X → Spec A → Spec R. Show that X → Spec A is an open immersion in
a neighborhood of any chosen point x ∈ X, as follows. Choose r ∈ R such that
x ⊂ D(r) ⊂ X. Notice that if Xr = {y ∈ X : r(y) != 0}, then Γ(Xr,OX) = Γ(X,OX)r

by Exercise 14.3.H, using the fact that X is quasicompact and quasiseparated. Use
this to show that the map Xr → Spec Ar is an isomorphism.

It is not hard to show that X is quasiaffine if and only if OX is ample, but we
won’t use this fact.

A morphism π : X → Y is quasiaffine if the inverse image of every affine
open subset of Y is a quasiaffine scheme. By Exercise 18.3.H, this is equivalent to
π being quasicompact and separated, and the natural map X → Spec π∗OX being
a quasicompact open immersion. This implies that the notion of quasiaffineness
is local on the target (may be checked on an open cover), and also affine-local on
a target (one may choose an affine cover, and check that the preimages of these
open sets are quasiaffine). Quasiaffine morphisms are preserved by base change:
if a morphism X ↪→ Z over Y is a quasicompact open immersion into an affine
Y-scheme, then for any W → Y, X ×Y W ↪→ Z ×Y W is a quasicompact open
immersion into an affine W-scheme. (Interestingly, Exercise 18.3.H is not the right
tool to use to show this base change property.)

One may readily check that quasiaffine morphisms are preserved by compo-
sition [Stacks, tag 01SN]. Thus quasicompact locally closed immersions are quasi-
affine. If X is affine, then X → Y is quasiaffine if and only if it is quasicompact (as
the preimage of any affine open subset of Y is an open subset of an affine scheme,
namely X). In particular, from the Cancellation Theorem 11.1.19 for quasicompact
morphisms, any morphism from an affine scheme to a quasiseparated scheme is
quasiaffine.

18.4 Applications to curves

We now apply what we have learned to curves.

18.4.1. Theorem. — Every integral curve C finite type over a field k has a birational
model that is a nonsingular projective curve.
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C ′

P1

FIGURE 18.1. Constructing a projective nonsingular model of a
curve C over k via a finite cover of P1

Proof. We can assume C is affine. By the Noether Normalization Lemma 12.2.3, we
can find some x ∈ K(C)\k with K(C)/k(x) a finite field extension. By identifying a
standard open of P1

k with Spec k[x], and taking the normalization of P1 in the func-
tion field of K(C) (Definition 10.6.I), we obtain a finite morphisms C ′ → P1, where
C ′ is a curve (dim C ′ = dim P1 by Exercise 12.1.D), and nonsingular (it is reduced
hence nonsingular at the generic point, and nonsingular at the closed points by
the main theorem on discrete valuation rings in §13.4). Also, C ′ is birational to C
as they have isomorphic function fields (Exercise 7.5.D).

Finally, C ′ → P1
k is finite (Exercise 10.6.L) hence projective (Exercise 18.3.D),

and P1
k → Spec k is projective, so as composition of projective morphisms (to a

quasicompact target) are projective (Exercise 18.3.B), C ′ → k is projective. !

18.4.2. Theorem. — If C is an irreducible nonsingular curve, finite type over a field k,
then there is an open immersion C ↪→ C ′ into some projective nonsingular curve C ′ (over
k).

Proof. We first prove the result in the case where C is affine. Then we have a
closed immersion C ↪→ An, and we consider An as a standard open set of Pn.
Taking the scheme-theoretic closure of C in Pn, we obtain a projective integral

curve C, containing C as an open subset. The normalization C̃ of C is a finite

morphism (finiteness of integral closure, Theorem 10.6.3(b)), so C̃ is Noetherian,
and nonsingular (as normal Noetherian dimension 1 rings are discrete valuation
rings, §13.4). Moreover, by the universal property of normalization, normalization
of C doesn’t affect the normal open set C, so we have an open subset C, so we

have an open immersion C ↪→ C̃. Finally, C̃ → C is finite hence projective, and

C → Spec k is projective, so (by Exercise 18.3.B) C̃ is projective.
We next consider the case of general C. Let C1 by any nonempty affine open

subset of C. By the discussion in the previous paragraph, we have a nonsingular

projective compactification C̃1. The Curve-to-projective Extension Theorem 17.5.1
(applied successively to the finite number of points C \ {C1}) implies that the mor-

phism C1 ↪→ C̃1 extends to a birational morphism C → C̃1. Because points of
a nonsingular curve are determined by their valuation (Exercise 13.5.B, this is an
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inclusion of sets. Because the topology on curves is stupid (cofinite), it expresses

C as an open subset of C̃. But why is it an open immersion of schemes?
We show it is an open immersion near a point p ∈ C as follows. Let C2 be

an affine neighborhood of p in C. We repeat the construction we used on C1, to
obtain the following diagram, with open immersions marked.

C1#"

%%

* +

!!#
##

##
##

#
C2,
-

PP88
88
88
88

" #

%%

C

--)
))

))
))

)

((::
::
::
::

C̃1 C̃2

By the Curve-to-projective Extension theorem 17.5.1, the map C1 → C̃2 extends

to π12 : C̃1 → C̃2, and we similarly have a morphism π21 : C̃2 → C̃1, extending

C2 → C̃1. The composition π21 ◦ π12 is the identity morphism (as it is the identity
rational map, see Theorem 11.2.1). The same is true for π12 ◦ π21, so π12 and π21

are isomorphisms. The enhanced diagram

C1#"

%%

* +

!!#
##

##
##

#
C2,
-

PP88
88
88
88

" #

%%

C

--)
))

))
))

)

((::
::
::
::

C̃1
++ $$ C̃2

commutes (by Theorem 11.2.1 again, implying that morphisms of reduced sepa-

rated schemes are determined by their behavior on dense open sets). But C2 → C̃1

is an open immersion (in particular, at p), so C → C̃1 is an open immersion there
as well. !

18.4.A. EXERCISE. Show that all nonsingular proper curves over k are projective.

18.4.3. Theorem (various categories of curves are the same). — The following
categories are equivalent.

(i) irreducible nonsingular projective curves over k, and surjective k-morphisms.
(ii) irreducible nonsingular projective curves over k, and dominant k-morphisms.

(iii) irreducible nonsingular projective curves over k, and dominant rational maps
over k.

(iv) irreducible reduced curves finite type over k, and dominant rational maps over
k.

(v) the opposite category of finitely generated fields of transcendence degree 1 over
k, and k-homomorphisms.

All morphisms and maps in the following discussion are assumed to be de-
fined over k.
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This Theorem has a lot of implications. For example, each quasiprojective
reduced curve is birational to precisely one projective nonsingular curve. Also,
thanks to §7.5.9, we know for the first time that there exist finitely generated tran-
scendence degree 1 extensions of C that are not generated by a single element. We
even have an example, related to Fermat’s Last Theorem, from Exercise 7.5.J: the
extension generated over C by three variables x, y, and z satisfying xn + yn = zn,
where n > 2.

(Aside: The interested reader can tweak the proof below to show the following
variation of the theorem: in (i)–(iv), consider only geometrically irreducible curves,
and in (v), consider only fields K such that k ∩ K = k in K. This variation allows
us to exclude “weird” curves we may not want to consider. For example, if k = R,
then we are allowing curves such as P1

C which are not geometrically irreducible,
as P1

C ×R C ∼= P1
C

∐
P1

C.)

Proof. Any surjective morphism is a dominant morphism, and any dominant mor-
phism is a dominant rational map, and each nonsingular projective curve is a
quasiprojective curve, so we have shown (i) → (ii) → (iii) → (iv). To get from
(iv) to (i), suppose we have a dominant rational map C1 ""# C2 of irreducible
reduced curves. Replace C1 by a dense open set so the rational map is a mor-
phism C1 → C2. This induces a map of normalizations C̃1 → C̃2 of nonsingular

irreducible curves. Let C̃i be a nonsingular projective compactification of C̃i (for

i = 1, 2), as in Theorem 18.4.2. Then the morphism C̃1 → C̃2 extends to a mor-

phism C̃1 → C̃2 by the Curve-to-Projective Extension Theorem 17.5.1, producing
a morphism in category (i).

18.4.B. EXERCISE. Put the above pieces together to describe equivalences of cate-
gories (i) through (iv).

It remains to connect (v). This is essentially the content of Exercise 7.5.D; de-
tails are left to the reader. !

18.4.4. Degree of a projective morphism from a curve to a nonsingular curve.
You might already have a reasonable sense that a map of compact Riemann

surfaces has a well-behaved degree, that the number of preimages of a point of
C ′ is constant, so long as the preimages are counted with appropriate multiplicity.
For example, if f locally looks like z (→ zm = y, then near y = 0 and z = 0 (but
not at z = 0), each point has precisely m preimages, but as y goes to 0, the m
preimages coalesce. Enlightening Example 10.3.3 showed this phenomenon in a
more complicated context.

We now show the algebraic version of this fact. Suppose f : C → C ′ is a
surjective (or equivalently, dominant) map of nonsingular projective curves. We
will show that f has a well-behaved degree, in a sense that we will now make
precise.

First we show that f is finite. Theorem 20.1.8 (finite = projective + finite fibers)
implies this, but we haven’t proved it yet. So instead we show the finiteness of f as
follows. Let C ′′ be the normalization of C ′ in the function field of C. Then we have
an isomorphism K(C) ∼= K(C ′′) which leads to birational maps C ++ $$III C ′′ which
extend to morphisms as both C and C ′′ are nonsingular and projective (by the
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Curve-to-projective Extension Theorem 17.5.1). Thus this yields an isomorphism
of C and C ′′. But C ′′ → C is a finite morphism by the finiteness of integral closure
(Theorem 10.6.3).

18.4.5. Proposition. — Suppose that π : C → C ′ is a finite morphism, where C is a
(pure dimension 1) curve, and C ′ is a nonsingular curve. Then π∗OC is locally free of
finite rank.

The nonsingularity hypothesis on C ′ is necessary: the normalization of a nodal
curve (Figure 8.4) is an example where most points have one preimage, and one
point (the node) has two.

Also, to be sure you have the right picture in mind: if C ′ is an irreducible curve,
and C is nonempty, finiteness forces surjectivity. (Do you see why? Exercise 12.2.C
may help.)

18.4.6. Definition. If C ′ is irreducible, the rank of this locally free sheaf is the
degree of π.

18.4.C. EXERCISE. Recall that the degree of a rational map from one irreducible
curve to another is defined as the degree of the function field extension (Defini-
tion 7.5.6). Show that (with the notation of Proposition 18.4.5) if C and C ′ are
irreducible, the degree of π as a rational map is the same as the rank of π∗OC.

18.4.7. Remark for those with complex-analytic background (algebraic degree = analytic
degree). If C → C ′ is a finite map of nonsingular complex algebraic curves, Propo-
sition 18.4.5 establishes that algebraic degree as defined above is the same as ana-
lytic degree (counting preimages, with multiplicity).

18.4.D. EXERCISE. We use the notation of Proposition 18.4.5. Suppose p is a point
of C ′. The scheme-theoretic preimage π∗p of p is a dimension 0 scheme over k.

(a) Suppose C ′ is finite type over a field k, and n is the dimension of the
structure sheaf of π∗p as k-vector space. Show that n = (degπ)(deg p).
(The degree of a point was defined in §6.3.8.)

(b) Suppose that C is nonsingular, and π−1p = {p1, . . . , pm}. Suppose t is a
uniformizer of the discrete valuation ring OC ′,p. Show that

degπ =
m∑

i=1

(valpi
π∗t) deg(κ(pi)/κ(p)),

where deg(κ(pi)/κ(p)) denotes the degree of the field extension of the
residue fields.

(Can you extend (a) to remove the hypotheses of working over a field? If you are
a number theorist, can you recognize (b) in terms of splitting primes in extensions
of rings of integers in number fields?)

18.4.E. EXERCISE. Suppose that C is an irreducible nonsingular curve, and s is
a nonzero rational function on C. Show that the number of zeros of s (counted
with appropriate multiplicity) equals the number of poles. Hint: recognize this
as the degree of a morphism s : C → P1. (In the complex category, this is an
important consequence of the Residue Theorem. Another approach is given in
Exercise 20.4.D.)
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18.4.8. Revisiting Example 10.3.3. Proposition 18.4.5 and Exercise 18.4.D make
precise what general behavior we observed in Example 10.3.3. Suppose C ′ is irre-
ducible, and that d is the rank of this allegedly locally free sheaf. Then the fiber
over any point of C with residue field K is the Spec of an algebra of dimension d
over K. This means that the number of points in the fiber, counted with appropri-
ate multiplicity, is always d.

As a motivating example, we revisit Example 10.3.3, the map Q[y] → Q[x]
given by x (→ y2, the projection of the parabola x = y2 to the x-axis. We observed
the following.

(i) The fiber over x = 1 is Q[y]/(y2 − 1), so we get 2 points.
(ii) The fiber over x = 0 is Q[y]/(y2) — we get one point, with multiplicity 2,

arising because of the nonreducedness.
(iii) The fiber over x = −1 is Q[y]/(y2 + 1) ∼= Q(i) — we get one point, with

multiplicity 2, arising because of the field extension.
(iv) Finally, the fiber over the generic point Spec Q(x) is Spec Q(y), which is

one point, with multiplicity 2, arising again because of the field extension
(as Q(y)/Q(x) is a degree 2 extension).

We thus see three sorts of behaviors ((iii) and (iv) are really the same). Note that
even if you only work with algebraically closed fields, you will still be forced to
this third type of behavior, because residue fields at generic points are usually not
algebraically closed (witness case (iv) above).

18.4.9. Proof of Proposition 18.4.5 in the case C is integral. To emphasize the main
idea in the proof, we prove it in the case where C is integral. You can remove this
hypothesis in Exercise 18.4.F. (We will later see that what matters here is that the
morphism is finite and flat.) A key idea, useful in other circumstances, is to reduce
to the case of a discrete valuation ring (when C ′ is the Spec of a discrete valuation
ring).

The question is local on the target, so we may assume that C ′ is affine. We may
also assume C ′ is integral (by Exercise 6.4.B).

Our plan is as follows: by Important Exercise 14.7.J, if the rank of the finite
type quasicoherent sheaf π∗OC is constant, then (as C ′ is reduced) π∗OC is locally
free. We will show this by showing the rank at any closed point p of C ′ is the same
as the rank at the generic point.

If F is a quasicoherent sheaf on Spec A, and p ⊂ A is a prime ideal, then the
rank of F at [p] is (by definition) the dimension (as a vector space) of the pullback
of F under Spec κ([p]) = Spec Ap/pAp → Spec A. Thus on an integral scheme C ′,
if we wish to compare the rank at a point p and the generic point η of C ′, we can
pull back to Spec OC ′,p, and compute there, as the inclusions of the spectra of both
residue fields factor through this intermediate space:

Spec κ(p)

SS33
33

33
33

33
3

Spec OC ′,p
$$ C ′

Spec κ(η)

00RRRRRRRRRRR
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Thus we may assume C ′ is the spectrum of a discrete valuation ring.
Now π∗OC is finite type (Exercise 17.2.C — Noetherianness is implicit in our

hypothesis of nonsingularity) and π∗OC is torsion-free (as Γ(C,OC) is an integral
domain). By Remark 13.4.17, any finitely generated torsion free module over a
discrete valuation ring is free, so we are done. !

18.4.F. EXERCISE (REMOVING THE INTEGRALITY HYPOTHESIS). Prove Proposi-
tion 18.4.5 without the “integral” hypothesis added in the proof. (Hint: the key
fact used in the last paragraph was that the uniformizer t pulled back from C ′ was
not a zerodivisor. But if it was, then V(π∗t) would be dimension 1, whereas the
pullback of a point π−1(V(t)) must be dimension 0, by finiteness.)

18.4.10. Remark: Flatness. Everything we have discussed since the start of §18.4.4
is secretly about flatness, as you will see in §25.4.8.





CHAPTER 19

! Blowing up a scheme along a closed subscheme

We next discuss an important construction in algebraic geometry, the blow-up
of a scheme along a closed subscheme (cut out by a finite type ideal sheaf). We
won’t use this much in later chapters, so feel free to skip this topic for now. But it
is an important tool. For example, one can use it to resolve singularities, and more
generally, indeterminacy of rational maps. In particular, blow-ups can be used to
relate birational varieties to each other.

We will start with a motivational example that will give you a picture of the
construction in a particularly important (and the historically earliest) case, in §19.1.
We will then see a formal definition, in terms of a universal property, §19.2. The
definition won’t immediately have a clear connection to the motivational example.
We will deduce some consequences of the definition (assuming that the blow-up
actually exists). We then prove that the blow-up exists, by describing it quite ex-
plicitly, in §19.3. As a consequence, we will find that the blow-up morphism is
projective, and we will deduce more consequences from this. In §19.4, we will do
a number of explicit computations, to see various sorts of applications, and to see
that many things can be computed by hand.

19.1 Motivating example: blowing up the origin in the plane

We will to generalize the following notion, which will correspond to “blowing up”
the origin of A2

k (Exercise 10.2.M). We will be informal. Consider the subset of
A2 × P1 corresponding to the following. We interpret P1 as parametrizing the
lines through the origin. Consider the subvariety Bl(0,0) A2 := {(p ∈ A2, [(] ∈ P1) :
p ∈ ()}, which is the data of a point p in the plane, and a line ( containing both
p and the origin. Algebraically: let x and y be coordinates on A2, and X and Y
be projective coordinates on P1 (“corresponding” to x and y); we will consider the
subset Bl(0,0) A2 of A2 × P1 corresponding to xY − yX = 0. We have the useful
diagram

Bl(0,0) A2 ! " $$

β
SSA

AA
AA

AA
AA

AA
A2 × P1

%%

$$ P1

A2

You can verify that it is smooth over k (§13.2.4) directly (you can now make the
paragraph after Exercise 10.2.M precise), but here is a informal argument, using
the projection Bl(0,0) A2 → P1. The projective line P1 is smooth, and for each point

393
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[(] in P1, we have a smooth choice of points on the line (. Thus we are verifying
smoothness by way of a fibration over P1.

We next consider the projection to A2, β : Bl(0,0) A2 → A2. This is an iso-
morphism away from the origin. Loosely speaking, if p is not the origin, there is
precisely one line containing p and the origin. On the other hand, if p is the origin,
then there is a full P1 of lines containing p and the origin. Thus the preimage of
(0, 0) is a curve, and hence a divisor (an effective Cartier divisor, as the blown-up
surface is nonsingular). This is called the exceptional divisor of the blow-up.

If we have some curve C ⊂ A2 singular at the origin, it can be potentially
partially desingularized, using the blow-up, by taking the closure of C \ {(0, 0)} in
Bl(0,0) A2. (A desingularization or a resolution of singularities of a variety X is a
proper birational morphism X̃ → X from a nonsingular scheme.) For example, the
curve y2 = x3 + x2, which is nonsingular except for a node at the origin, then we
can take the preimage of the curve minus the origin, and take the closure of this
locus in the blow-up, and we will obtain a nonsingular curve; the two branches of
the node downstairs are separated upstairs. (You can check this in Exercise 19.4.B
once we have defined things properly. The result will be called the proper trans-
form (or strict transform) of the curve.) We are interested in desingularizations for
many reasons. For example, we will soon understand nonsingular curves quite
well (Chapter 21), and we could hope to understand other curves through their
desingularizations. This philosophy holds true in higher dimension as well.

More generally, we can blow up An at the origin (or more informally, “blow
up the origin”), getting a subvariety of An × Pn−1. Algebraically, If x1, . . . , xn

are coordinates on An, and X1, . . . , Xn are projective coordinates on Pn−1, then
the blow-up Bl"0 An is given by the equations xiXj − xjXi = 0. Once again, this is
smooth: Pn−1 is smooth, and for each point [(] ∈ Pn−1, we have a smooth choice
of p ∈ (.

We can extend this further, by blowing up An+m along a coordinate m-plane
An by adding m more variables xn+1, . . . , xn+m to the previous example; we get
a subset of An+m × Pn−1.

Because in complex geometry, smooth submanifolds of smooth manifolds lo-
cally “look like” coordinate m-planes in n-space, you might imagine that we could
extend this to blowing up a nonsingular subvariety of a nonsingular variety. In the
course of making this precise, we will accidentally generalize this notion greatly,
defining the blow-up of any finite type sheaf of ideals in a scheme. In general,
blowing up may not have such an intuitive description as in the case of blowing
up something nonsingular inside something nonsingular — it can do great vio-
lence to the scheme — but even then, it is very useful. The result will be very
powerful, and will touch on many other useful notions in algebra (such as the
Rees algebra).

Our description will depend only the closed subscheme being blown up, and
not on coordinates. That remedies a defect was already present in the first example,
of blowing up the plane at the origin. It is not obvious that if we picked different
coordinates for the plane (preserving the origin as a closed subscheme) that we
wouldn’t have two different resulting blow-ups.

As is often the case, there are two ways of understanding this notion, and each
is useful in different circumstances. The first is by universal property, which lets
you show some things without any work. The second is an explicit construction,
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which lets you get your hands dirty and compute things (and implies for example
that the blow-up morphism is projective).

The motivating example here may seem like a very special case, but if you
understand the blow-up of the origin in n-space well enough, you will understand
blowing up in general.

19.2 Blowing up, by universal property

We now define the blow-up by a universal property. The disadvantage of starting
here is that this definition won’t obviously be the same as (or even related to) the
examples of §19.1.

Suppose X ↪→ Y is a closed subscheme corresponding to a finite type sheaf
of ideals. (If Y is locally Noetherian, the “finite type” hypothesis is automatic, so
Noetherian readers can ignore it.)

The blow-up of X ↪→ Y is a fiber diagram

(19.2.0.1) EXY
! " $$

%%

BlX Y

β

%%
X

! " $$ Y

such that EXY (the scheme-theoretical pullback of X on Y) is an effective Cartier
divisor (defined in §9.1.2) on BlX Y, such any other such fiber diagram

(19.2.0.2) D
! " $$

%%

W

%%
X

! " $$ Y,

where D is an effective Cartier divisor on W, factors uniquely through it:

D
! " $$

%%

W

%%
EXY

! " $$

%%

BlX Y

%%
X

! " $$ Y.

We call BlX Y the blow-up (of Y along X, or of Y with center X). (A somewhat
archaic term for this is monoidal transformation; we won’t use this.) We call EXY
the exceptional divisor of the blow-up. (Bl and β stand for “blow-up”, and E
stands for “exceptional”.)

By a typical universal property argument, if the blow-up exists, it is unique up
to unique isomorphism. (We can even recast this more explicitly in the language of
Yoneda’s lemma: consider the category of diagrams of the form (19.2.0.2), where
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morphisms are diagrams of the form

D
! " $$

""!!
!!

!!
!!

!!
!!

!!
!

=="
"
"
"
"
"
"
"
"
"
"
"
"
" W

""==
==

==
==

==
==

==
=

##S
S
S
S
S
S
S
S
S
S
S
S
S
S
S

D ′ !
"

$$

QQQQ
QQ
QQ
QQ

W ′

QQTT
TT
TT
TT

X
! " $$ Y.

Then the blow-up is a final object in this category, if one exists.)
If Z ↪→ Y is any closed subscheme of Y, then the (scheme-theoretic) pullback

β−1Z is called the total transform of Z. We will soon see that β is an isomorphism

away from X (Observation 19.2.2). β−1(Z − X) is called the proper transform or
strict transform of Z. (We will use the first terminology. We will also define it in
a more general situation.) We will soon see (in the Blow-up closure lemma 19.2.6)
that the proper transform is naturally isomorphic to BlZ∩X Z, where Z ∩ X is the
scheme-theoretic intersection.

We will soon show that the blow-up always exists, and describe it explicitly.
We first make a series of observations, assuming that the blow up exists.

19.2.1. Observation. If X is the empty set, then BlX Y = Y. More generally, if
X is an effective Cartier divisor, then the blow-up is an isomorphism. (Reason:
idY : Y → Y satisfies the universal property.)

19.2.A. EXERCISE. If U is an open subset of Y, then BlU∩X U ∼= β−1(U), where
β : BlX Y → Y is the blow-up.

Thus “we can compute the blow-up locally.”

19.2.B. EXERCISE. Show that if Yα is an open cover of Y (as α runs over some
index set), and the blow-up of Yα along X∩ Yα exists, then the blow-up of Y along
X exists.

19.2.2. Observation. Combining Observation 19.2.1 and Exercise 19.2.A, we see
that the blow-up is an isomorphism away from the locus you are blowing up:

β|BlX Y−EXY : BlX Y − EXY → Y − X

is an isomorphism.

19.2.3. Observation. If X = Y, then the blow-up is the empty set: the only map
W → Y such that the pullback of X is a Cartier divisor is ∅ ↪→ Y. In this case we
have “blown Y out of existence”!

19.2.C. EXERCISE (BLOW-UP PRESERVES IRREDUCIBILITY AND REDUCEDNESS). Show
that if Y is irreducible, and X doesn’t contain the generic point of Y, then BlX Y is
irreducible. Show that if Y is reduced, then BlX Y is reduced.

19.2.4. Existence in a first nontrivial case: blowing up a locally principal closed
subscheme.

We next see why BlX Y exists if X ↪→ Y is locally cut out by one equation. As the
question is local on Y (Exercise 19.2.B), we reduce to the affine case Spec A/(t) ↪→
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Spec A. (A good example to think through is A = k[x, y]/(xy) and t = x.) Let

I = ker(A → At) = {a ∈ A : tna = 0 for some n > 0},

and let φ : A → A/I be the projection.

19.2.D. EXERCISE. Show that φ(t) is not a zerodivisor in A/I.

19.2.E. EXERCISE. Show that β : Spec A/I → Spec A is the blow up of Spec A
along Spec A/t. In other words, show that

Spec A/(t, I) $$

%%

Spec A/I

β

%%
Spec A/t $$ Spec A

is a “blow up diagram” (19.2.0.1). Hint: In checking the universal property reduce
to the case where W (in (19.2.0.2)) is affine. Then solve the resulting problem about
rings. Depending on how you proceed, you might find Exercise 11.2.E, about the
uniqueness of extension of maps over effective Cartier divisors, helpful.

19.2.F. EXERCISE. Show that Spec A/I is the scheme-theoretic closure of D(t) in
Spec A.

Thus you might geometrically interpret Spec A/I → Spec A as “shaving off
any fuzz supported in V(t)”. In the Noetherian case, this can be interpreted as
removing those associated points in V(t). This is intended to be vague, and you
should think about how to make it precise only if you want to.

19.2.5. The Blow-up closure lemma.
Suppose we have a fibered diagram

W
! " cl. imm. $$

%%

Z

%%
X

! " cl. imm. $$ Y

where the bottom closed immersion corresponds to a finite type ideal sheaf (and
hence the upper closed immersion does too). The first time you read this, it may
be helpful to consider only the special case where Z → Y is a closed immersion.

Then take the fibered product of this square by the blow-up β : BlX Y → Y, to
obtain

Z ×Y EXY
! " $$

%%

Z ×Y BlX Y

%%
EXY

! " Cartier $$ BlX Y.

The bottom closed immersion is locally cut out by one equation, and thus the same
is true of the top closed immersion as well. However, the local equation on Z ×Y

BlX Y need not be a non-zerodivisor, and thus the top closed immersion is not
necessarily an effective Cartier divisor.

Let Z be the scheme-theoretic closure of Z×Y BlX Y \W ×Y BlX Y in Z×Y BlX Y.
(As W ×Y BlX Y is locally principal, we are in precisely the situation of §19.2.4, so
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the scheme-theoretic closure is not mysterious.) Note that in the special case where
Z → Y is a closed immersion, Z is the proper transform, as defined in §19.2. For
this reason, it is reasonable to call Z the proper transform of Z even if Z isn’t a closed
immersion. Similarly, it is reasonable to call Z×Z BlX Y the total transform of Z even
if Z isn’t a closed immersion.

Define EZ ↪→ Z as the pullback of EXY to Z, i.e. by the fibered diagram

EZ
! " $$

" #

cl. imm.

%%

Z" #

cl. imm.

%%

proper transform

Z ×Y EXY
! "loc. prin.

$$

%%

Z ×Y BlX Y

%%

total transform

EXY
! " Cartier $$ BlX Y.

Note that EZ is an effective Cartier divisor on Z. (It is locally cut out by one equa-
tion, pulled back from a local equation of EXY on BlX Y. Can you see why this is
not locally a zerodivisor?)

19.2.6. Blow-up closure lemma. — (BlZ W,EZW) is canonically isomorphic to
(Z, EZ). More precisely: if the blow-up BlX Y exists, then (Z, EZ) is the blow-up of W
along Z.

This will be very useful. We make a few initial comments. The first three apply
to the special case where Z → W is a closed immersion, and the fourth comment
basically tells us we shouldn’t have concentrated on this special case.

(1) First, note that if Z → Y is a closed immersion, then this states that the
proper transform (as defined in §19.2) is the blow-up of Z along the scheme-theoretic
intersection W = X ∩ Z.

(2) In particular, it lets you actually compute blow-ups, and we will do lots
of examples soon. For example, suppose C is a plane curve, singular at a point p,
and we want to blow up C at p. Then we could instead blow up the plane at p
(which we have already described how to do, even if we haven’t yet proved that it
satisfies the universal property of blowing up), and then take the scheme-theoretic
closure of C \ {p} in the blow-up.

(3) More generally, if W is some nasty subscheme of Z that we wanted to blow-
up, and Z were a finite type k-scheme, then the same trick would work. We could
work locally (Exercise 19.2.A), so we may assume that Z is affine. If W is cut
out by r equations f1, . . . , fr ∈ Γ(OZ), then complete the f’s to a generating set
f1, . . . , fn of Γ(OZ). This gives a closed immersion Y ↪→ An such that W is the
scheme-theoretic intersection of Y with a coordinate linear space Ar.

19.2.7. (4) Most generally still, this reduces the existence of the blow-up to a spe-
cific special case. (If you prefer to work over a fixed field k, feel free to replace Z by
k in this discussion.) Suppose that for each n, Bl(x1,...,xn) Spec Z[x1, . . . , xn] exists.
Then I claim that the blow-up always exists. Here’s why. We may assume that Y is
affine, say Spec B, and X = Spec B/(f1, . . . , fn). Then we have a morphism Y → An

Z

given by xi (→ fi, such that X is the scheme-theoretic pullback of the origin. Hence
by the blow-up closure lemma, BlX Y exists.
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19.2.G. ! TRICKY EXERCISE. Prove the Blow-up Closure Lemma 19.2.6. Hint:
obviously, construct maps in both directions, using the universal property. Con-
structing the following diagram may or may not help.

EZ
! " Cartier $$

CCEEE
EE
EE
EE
EE
EE
EE
E . /

TTU
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U

Z . /

TTV
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V

UUWWWW
WWW

WWW
WWW

WWW
WWW

WWW

EWZ

VVX
X
X
X
X
X
X
X
X
X
X
X
X
X
X

//YYYY
YYY

YYY
YYY

YYY
YYY

YYY
YYY

! " Cartier $$ BlW Z

WWZ
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z

XX[[[[
[[[[

[[[[
[[[[

[[[[
[[[[

[[[[
[[

Z ×Y EXY
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NNN

NNN
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NNN
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U
U
U
U
U
U
U
U
U
U
U
U
U
U
U

! " loc. prin.
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WWW
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W

WW\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\

W

VV]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
! " $$ Z

TTU
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U

EXY

UUWWWW
WWW

WWW
WWW

WWW
WWW

WWW
W

! " Cartier $$ BlX Y

UU^^^^
^^^

^^^
^^^

^^^
^^^

^^^
^

X
! " $$ Y

Hooked arrows indicate closed immersions; and when morphisms are further-
more locally principal or even effective Cartier, they are so indicated. Exercise 11.2.E,
on the uniqueness of extension of maps over effective Cartier divisors, may or may
not help as well. Note that if Z → Y is actually a closed immersion, then so is
Z ×Y BlX Y → BlX Y and hence Z → BlX Y.

19.3 The blow-up exists, and is projective

19.3.1. It is now time to show that the blow up always exists. We will see two
arguments, which are enlightening in different ways. Both will imply that the
blow-up morphism is projective, and hence quasicompact, proper, finite type, and
separated. In particular, if Y → Z is quasicompact (resp. proper, finite type, sepa-
rated), so is BlX Y → Z. (And if Y → Z is projective, and Z is quasicompact, then
BlX Y → Z is projective. See the solution to Exercise 18.3.B for the reason for this an-
noying extra hypothesis.) The blow-up of a k-variety is a k-variety (using the fact
that reducedness is preserved, Exercise 19.2.C), and the blow-up of a irreducible
k-variety is a irreducible k-variety (using the fact that irreducibility is preserved,
also Exercise 19.2.C),

Approach 1. As explained in §19.2.7, it suffices to show that BlV(x1,...,xn) Spec Z[x1, . . . , xn]
exists. But we know what it is supposed to be: the locus in Spec Z[x1, . . . , xn] ×
Proj Z[X1, . . . , Xn] cut out by the equations xiXj − xjXi = 0. We will show this by
the end of the section.

Approach 2. We can describe the blow-up all at once as a Proj .
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19.3.2. Theorem (Proj description of the blow-up). — Suppose X ↪→ Y is a closed
subscheme cut out by a finite type quasicoherent sheaf of ideals I ↪→ OY . Then

Proj
(
OY ⊕ I ⊕ I 2 ⊕ I 3 ⊕ · · ·

)
→ Y

satisfies the universal property of blowing up.

(We made sense of products of ideal sheaves, and hence I n, in Exercise 15.3.D.)
We will prove Theorem 19.3.2 soon (§19.3.3), after seeing what it tells us. Be-

cause I is finite type, the graded sheaf of algebras has degree 1 piece that is finite
type. The graded sheaf of algebras is also clearly generated in degree 1. Thus the
sheaf of algebras satisfy the hypotheses of §18.2.1.

But first, we should make sure that the preimage of X is indeed an effective
Cartier divisor. We can work affine-locally (Exercise 19.2.A), so we may assume
that Y = Spec B, and X is cut out by the finitely generated ideal I. Then

BlX Y = Proj
(
B ⊕ I ⊕ I2 ⊕ · · ·

)
.

(You may recall that the ring B ⊕ I ⊕ · · · is called the Rees algebra of the ideal I in
B, §13.6.1.) We are slightly abusing notation by using the notation BlX Y, as we
haven’t yet shown that this satisfies the universal property.

The preimage of X isn’t just any effective Cartier divisor; it corresponds to the
invertible sheaf O(1) on this Proj . Indeed, O(1) corresponds to taking our graded
ring, chopping off the bottom piece, and sliding all the graded pieces to the left by
1 (§16.2); it is the invertible sheaf corresponding to the graded module

I ⊕ I2 ⊕ I3 ⊕ · · ·

(where that first summand I has grading 0). But this can be interpreted as the
scheme-theoretic pullback of X, which corresponds to the ideal I of B:

I
(
B ⊕ I ⊕ I2 ⊕ · · ·

)
↪→ B ⊕ I ⊕ I2 ⊕ · · · .

Thus the scheme-theoretic pullback of X ↪→ Y to Proj (OY ⊕I ⊕I 2 ⊕ · · · ), the
invertible sheaf corresponding to I ⊕I 2⊕I 3⊕ · · · , is an effective Cartier divisor
in class O(1). Once we have verified that this construction is indeed the blow-up,
this divisor will be our exceptional divisor EXY.

Moreover, we see that the exceptional divisor can be described beautifully as
a Proj over X:

(19.3.2.1) EXY = Proj
X

(
B/I ⊕ I/I2 ⊕ I2/I3 ⊕ · · ·

)
.

We will later see (§19.4.12) that in good circumstances (if X is a local complete
intersection in something nonsingular, or more generally a local complete inter-
section in a Cohen-Macaulay scheme) this is a projectivization of a vector bundle
(the “projectivized normal bundle”).

19.3.3. Proof of the universal property, Theorem 19.3.2. Let’s prove that this Proj
construction satisfies the universal property. Then Approach 1 will also follow, as
a special case of Approach 2.

19.3.4. Aside: why approach 1?. Before we begin, you may be wondering why
we bothered with Approach 1. One reason is that you may find it more comfort-
able to work with this one nice ring, and the picture may be geometrically clearer
to you (in the same way that thinking about the Blow-up Closure Lemma 19.2.6



September 6, 2011 draft 401

in the case where Z → Y is a closed immersion is more intuitive). Another rea-
son is that, as you will find in the exercises, you will see some facts more easily
in this explicit example, and you can then pull them back to more general exam-
ples. Perhaps most important, Approach 1 lets you actually compute blow-ups
by working affine locally: if f1, . . . , fn are elements of a ring A, cutting a sub-
scheme X = Spec A/(f1, . . . , fn) of Y = Spec A, then BlX Y can be interpreted as
a closed subscheme of Pn−1

A , by pulling back from BlV(x1,...,xn) Spec Z[x1, . . . , xn],
and taking the closure of the locus “above X” as dictated by the Blow-up Closure
Lemma 19.2.6.

Proof. Reduce to the case of affine target Spec R with ideal I ⊂ R. Reduce to the
case of affine source, with principal effective Cartier divisor t. (A principal effec-
tive Cartier divisor is locally cut out by a single non-zerodivisor.) Thus we have re-
duced to the case Spec S → Spec R, corresponding to f : R → S. Say (x1, . . . , xn) =
I, with (f(x1), . . . , f(xn)) = (t). We will describe one map Spec S → Proj R[I] that
will extend the map on the open set Spec St → Spec R. It is then unique, by Ex-
ercise 11.2.E. We map R[I] to S as follows: the degree one part is f : R → S, and
f(Xi) (where Xi corresponds to xi, except it is in degree 1) goes to f(xi)/t. Hence
an element X of degree d goes to X/(td). On the open set D+(X1), we get the map
R[X2/X1, . . . , Xn/X1]/(x2−X2/X1x1, . . . , xiXj−xjXi, . . . ) → S (where there may be
many relations) which agrees with f away from D(t). Thus this map does extend
away from V(I). !

Here are some applications and observations arising from this construction of
the blow-up. First, we can verify that our initial motivational examples are indeed
blow-ups. For example, blowing up A2 (with coordinates x and y) at the origin
yields: B = k[x, y], I = (x, y), and Proj(B ⊕ I ⊕ I2 ⊕ · · · ) = Proj B[X, Y] where the
elements of B have degree 0, and X and Y are degree 1 and “correspond to” x and
y respectively.

19.3.5. Normal bundles to exceptional divisors. We will soon see that the normal bun-
dle to a Cartier divisor D is the (space associated to the) invertible sheaf O(D)|D,
the invertible sheaf corresponding to the D on the total space, then restricted to
D (Exercise 23.2.H). Thus in the case of the blow-up of a point in the plane, the
exceptional divisor has normal bundle O(−1). (As an aside: Castelnuovo’s crite-
rion states that conversely given a smooth surface containing E ∼= P1 with normal
bundle O(−1), E can be blown-down to a point on another smooth surface.) In
the case of the blow-up of a nonsingular subvariety of a nonsingular variety, the
blow up turns out to be nonsingular (a fact discussed soon in §19.4.12), and the
exceptional divisor is a projective bundle over X, and the normal bundle to the
exceptional divisor restricts to O(−1).

19.3.A. HARDER BUT ENLIGHTENING EXERCISE. If X ↪→ Pn is a projective scheme,
show that the exceptional divisor of the blow up the affine cone over X (§9.2.11) at
the origin is isomorphic to X, and that its normal bundle (§19.3.5) is isomorphic to
OX(−1). (In the case X = P1, we recover the blow-up of the plane at a point. In
particular, we recover the important fact that the normal bundle to the exceptional
divisor is O(−1).)
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19.3.6. The normal cone. Partially motivated by (19.3.2.1), we make the following
definition. If X is a closed subscheme of Y cut out by I , then the normal cone NXY
of X in Y is defined as

NXY := Spec
X

(
OY/I ⊕ I /I 2 ⊕ I 2/I 3 ⊕ · · ·

)
.

This can profitably be thought of as an algebro-geometric version of a “tubular
neighborhood”. But some cautions are in order. If Y is smooth, NXY may not be
smooth. (You can work out the example of Y = A2

k and X = V(xy).) And even if X
and Y is smooth, then although NXY is smooth (as we will see shortly, §19.4.12), it
doesn’t “embed” in any way in Y.

If X is a closed point p, then the normal cone is called the tangent cone to
Y at p. The projectivized tangent cone is the exceptional divisor EXY (the Proj
of the same graded sheaf of algebras). Following §9.2.12, the tangent cone and
the projectivized tangent cone can be put together in the projective completion
of the tangent cone, which contains the tangent cone as an open subset, and the
projectivized tangent cone as a complementary effective Cartier divisor.

19.3.B. EXERCISE. Suppose Y = Spec k[x, y]/(y2 − x2 − x3) (the bottom of Fig-
ure 8.4). Assume (to avoid distraction) that char k != 2. Show that the tangent
cone to Y at the origin is isomorphic to Spec k[x, y]/(y2 −x2). Thus, informally, the
tangent cone “looks like” the original variety “infinitely magnified”.

We will later see that at a smooth point of Y, the tangent cone may be identified
with the tangent space, and the normal cone may often be identified with the total
space of the normal bundle (see §19.4.12).

19.3.C. EXERCISE. Suppose S• is a finitely generated graded algebra over a field
k. Exercise 19.3.A gives an isomorphism of Proj S• with the exceptional divisor to
the blow-up of Spec S• at the origin. Show that the tangent cone to Spec S• at the
origin is isomorphic Spec S• itself. (Your geometric intuition should lead you to
find these facts believable.)

The following construction is key to the modern understanding of intersection
theory in algebraic geometry, as developed by Fulton and MacPherson, [F].

19.3.D. ! EXERCISE: DEFORMATION TO THE NORMAL CONE. Suppose Y is a k-
variety, and X ↪→ Y is a closed subscheme.
(a) Show that the exceptional divisor of β : BlX×0(Y × P1) → Y × P1 is isomorphic
to the projective completion of the normal cone to X in Y.
(b) Let π : BlX×0(Y × P1) → P1 be the composition of β with the projection to P1.
Show that π∗(0) is the scheme-theoretic union of BlX Y with the projective comple-
tion of the normal cone to X and Y, and the intersection of these two subschemes
may be identified with EXY, which is a closed subscheme of BlX Y in the usual way
(as the exceptional divisor of the blow-up BlX Y → Y), and a closed subscheme of
the projective completion of the normal cone as described in Exercise 9.2.Q.

The map
BlX×0(Y × P1) \ BlX Y → P1

is called the deformation to the normal cone (short for deformation of Y to the normal
cone of X in Y). Notice that the fiber above every k-point away from 0 ∈ P1 is
canonically isomorphic to Y, and the fiber over 0 is the normal cone. Because this
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family is “nice” (more precisely, flat, the topic of Chapter 25), we can prove things
about general Y (near X) by way of this degeneration.

19.4 Examples and computations

In this section we will do a number of explicit of examples, to get a sense of
how blow-ups behave, how they are useful, and how one can work with them
explicitly. To avoid distraction, all of the following discussion takes place over
an algebraically closed field k of characteristic 0, although these hypotheses are
often not necessary. The examples and exercises are loosely arranged in a number
of topics, but the topics are not in order of importance.

19.4.1. Example: Blowing up the plane along the origin. Let’s first blow up
the plane A2

k along the origin, and see that the result agrees with our discussion
in §19.1. Let x and y be the coordinates on A2

k. The blow-up is Proj k[x, y, X, Y]
where xY − yX = 0. (Here x and y have degree 0 and X and Y have degree 1.)
This is naturally a closed subscheme of A2

k ×P1
k, cut out (in terms of the projective

coordinates X and Y on P1
k) by xY − yX = 0. We consider the two usual patches on

P1
k: [X;Y] = [s; 1] and [1; t]. The first patch yields Spec k[x, y, s]/(sy − x), and the

second gives Spec k[x, y, t]/(y − xt). Notice that both are nonsingular: the first is
naturally Spec k[y, s] ∼= A2

k, the second is Spec k[x, t] ∼= A2
k.

Let’s describe the exceptional divisor. We first consider the first (s) patch. The
ideal is generated by (x, y), which in our ys-coordinates is (ys, y) = (y), which
is indeed principal. Thus on this patch the exceptional divisor is generated by y.
Similarly, in the second patch, the exceptional divisor is cut out by x. (This can be
a little confusing, but there is no contradiction!) This explicit description will be
useful in working through some of the examples below.

19.4.A. EXERCISE. Let p be a k-valued point of P2
k. Exhibit an isomorphism be-

tween Blp P2
k and the Hirzebruch surface F1 = PP1(OP1⊕OP1(1)) (Definition 18.2.2).

(The map Blp P2
k → P1 informally corresponds to taking a point to the line connect-

ing it to the origin. Do not be afraid: You can do this by explicitly working with
coordinates.)

19.4.2. Resolving singularities.

19.4.3. The proper transform of a nodal curve (Figure 19.1). (You may wish to flip
to Figure 8.4 while thinking through this exercise.) Consider next the curve y2 =
x3 + x2 inside the plane A2

k. Let’s blow up the origin, and compute the total and
proper transform of the curve. (By the Blow-up Closure Lemma 19.2.6, the latter
is the blow-up of the nodal curve at the origin.) In the first patch, we get y2 −
s2y2 − s3y3 = 0. This factors: we get the exceptional divisor y with multiplicity
two, and the curve 1 − s2 − y3 = 0. You can easily check that the proper transform
is nonsingular. Also, notice that the proper transform C̃ meets the exceptional
divisor at two points, s = ±1. This corresponds to the two tangent directions at
the origin (as s = x/y).



404 Math 216: Foundations of Algebraic Geometry

19.4.B. EXERCISE (FIGURE 19.1). Describe both the total and proper transform of
the curve C given by y = x2 − x in Bl(0,0) A2. Show that the proper transform of
C is isomorphic to C. Interpret the intersection of the proper transform of C with
the exceptional divisor E as the slope of C at the origin.

19.4.C

C

E

C̃Bl(0,0) A2

A2
C

E

C̃C̃

E

C

19.4.3 19.4.B

FIGURE 19.1. Resolving curve singularities (§19.4.3, Exer-
cise 19.4.B, and Exercise 19.4.C)

19.4.C. EXERCISE: BLOWING UP A CUSPIDAL PLANE CURVE (CF. EXERCISE 10.6.F).
Describe the proper transform of the cuspidal curve C given by y2 = x3 in the
plane A2

k. Show that it is nonsingular. Show that the proper transform of C meets
the exceptional divisor E at one point, and is tangent to E there.

The previous two exercises are the first in an important sequence of singulari-
ties, which we now discuss.

19.4.D. EXERCISE: RESOLVING An CURVE SINGULARITIES. Resolve the singularity
y2 = xn+1 in A2, by first blowing up its singular point, then considering its proper
transform and deciding what to do next.

19.4.4. Definition: An curve singularities. You will notice that your solution to
Exercise 19.4.D depends only on the “power series expansion” of the singularity
at the origin, and not on the precise equation. For example, if you compare your
solution to Exercise 19.4.B with the n = 1 case of Exercise 19.4.D, you will see
that they are “basically the same”. A k-curve singularity analytically isomorphic
(in the sense of Definition 13.7.2) to that of Exercise 19.4.D is called an An curve
singularity. Thus by Definition 13.7.2, an A1-singularity (resp. A2-singularity, A3-
singularity) is a node (resp. cusp, tacnode).

19.4.E. EXERCISE (WARM-UP TO EXERCISE 19.4.F). Blow up the cone point z2 =
x2 + y2 (Figure 4.4) at the origin. Show that the resulting surface is nonsingular.
Show that the exceptional divisor is isomorphic to P1. (Remark: you can check
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that the normal bundle to this P1 is not O(−1), as is the case when you blow up a
point on a smooth surface, see §19.3.5; it is O(−2).)

19.4.F. EXERCISE (RESOLVING An SURFACE SINGULARITIES). Resolve the singu-
larity z2 = y2 +xn+1 in A3 by first blowing up its singular point, then considering
its proper transform, and deciding what to do next. (A k-surface singularity an-
alytically isomorphic this is called an An surface singularity. This exercise is a
bit time consuming, but is rewarding in that it shows that you can really resolve
singularities by hand.)

19.4.5. Remark: ADE-surface singularities and Dynkin diagrams (see Figure 19.2). A
k-singularity analytically isomorphic to z2 = x2 + yn+1 (resp. z2 = x3 + y4,
z2 = x3 + xy3, z2 = x3 + y5) is called a Dn surface singularity (resp. E6, E7,
E8 surface singularity). You can guess the definition of the corresponding curve
singularity. If you (minimally) desingularize each of these surfaces by sequentially
blowing up singular points as in Exercise 19.4.F, and look at the arrangement of
exceptional divisors (the various exceptional divisors and how they meet), you
will discover the corresponding Dynkin diagram. More precisely, if you create a
graph, where the vertices correspond to exceptional divisors, and two vertices are
joined by an edge if the two divisors meet, you will find the underlying graph
of the corresponding Dynkin diagram. This is the start of several very beautiful
stories.

· · ·An

E8

· · ·

FIGURE 19.2. The exceptional divisors for resolutions of some
ADE surface singularities, and their corresponding dual graphs
(see Remark 19.4.5)

19.4.6. Remark: Resolution of singularities. Hironaka’s theorem on resolution of
singularities implies that this idea of trying to resolve singularities by blowing up
singular loci in general can succeed in characteristic 0. More precisely, if X is a
variety over a field of characteristic 0, then X can be resolved by a sequence of
blow-ups, where the nth blow-up is along a nonsingular subvariety that lies in the
singular locus of the variety produced after the (n−1)st stage (see [Hir], and [Ko]).
As of this writing, it is not known if an analogous statement is true in positive
characteristic, but de Jong’s Alteration Theorem [dJ] gives a result which is good
enough for most applications. Rather than producing a birational proper map
X̃ → X from something nonsingular, it produces a proper map from something
nonsingular that is generically finite (and the corresponding extension of function
fields is separable).

Here are some other exercises related to resolution of singularities.



406 Math 216: Foundations of Algebraic Geometry

19.4.G. EXERCISE. Blowing up a nonreduced subscheme of a nonsingular scheme
can give you something singular, as shown in this example. Describe the blow up
of the ideal (y, x2) in A2

k. Show that you get an A1 surface singularity (basically,
the cone point).

19.4.H. EXERCISE. Desingularize the tacnode y2 = x4, not in two steps (as in
Exercise 19.4.D), but in a single step by blowing up (y, x2).

19.4.I. EXERCISE (RESOLVING A SINGULARITY BY AN UNEXPECTED BLOW-UP). Sup-
pose Y is the cone x2 + y2 = z2, and X is the ruling of the cone x = 0, y = z. Show
that BlX Y is nonsingular. (In this case we are blowing up a codimension 1 locus
that is not an effective Cartier divisor (Problem 13.1.3). But it is an effective Cartier
divisor away from the cone point, so you should expect your answer to be an
isomorphism away from the cone point.)

19.4.J. EXERCISE. Show that the multiplicity of the exceptional divisor in the
total transform of a subscheme Z of An when you blow up the origin is the lowest
degree that appears in a defining equation of Z. (For example, in the case of the
nodal and cuspidal curves above, Example 19.4.3 and Exercise 19.4.C respectively,
the exceptional divisor appears with multiplicity 2.) This is called the multiplicity
of the singularity of Z at the origin. It actually depends only on Z, and not on An.
This can be shown by reinterpreting it as the smallest m such that Symm m/m2 →
mm/mm+1 is not an isomorphism, if Z is singular, and 1 otherwise. In this guise,
it makes sense in more generality, such as for a closed point of a k-smooth variety.
The multiplicity of a subscheme Z at a point p is denoted multp Z.

19.4.7. Resolving rational maps.

19.4.K. EXERCISE (UNDERSTANDING THE BIRATIONAL MAP P2 ++ $$III P1 × P1 VIA

BLOW-UPS). Let p and q be two distinct k-points of P2
k, and let r be a k-point

of P1
k × P1

k. Describe an isomorphism Bl{p,q} P2
k ↔ Blr P1

k × P1
k. (Possible hint:

Consider lines ( through p and m through q; the choice of such a pair corresponds
to the parametrized by P1

k × P1
k. A point s of P2 not on line pq yields a pair of

lines (ps, qs) of P1
k × P1

k. Conversely, a choice of lines ((,m) such that neither (
and m is line pq yields a point s = ( ∩ m ∈ P2

k. This describes a birational map

P2
k
++ $$III P1

k × P1
k . Exercise 19.4.A is related.)

Exercise 19.4.K is an example of the general phenomenon explored in the next
two exercises.

19.4.L. HARDER BUT USEFUL EXERCISE (BLOW-UPS RESOLVE BASE LOCI OF RATIO-
NAL MAPS TO PROJECTIVE SPACE). Suppose we have a scheme Y, an invertible
sheaf L , and a number of sections s0, . . . , sn of L (a linear series, Definition 16.3.6).
Then away from the closed subscheme X cut out by s0 = · · · = sn = 0 (the base
locus of the linear series), these sections give a morphism to Pn. Show that this
morphism extends uniquely to a morphism BlX Y → Pn, where this morphism
corresponds to the invertible sheaf (β∗L )(−EXY), where β : BlX Y → Y is the
blow-up morphism. In other words, “blowing up the base scheme resolves this
rational map”. Hint: it suffices to consider an affine open subset of Y where L is
trivial. Uniqueness might use Exercise 11.2.E.
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19.4.8. Remarks. (i) This exercise immediately implies that blow-ups can be used
to resolve rational maps to projective schemes Y ""# Z ↪→ Pn.

(ii) The following interpretation is enlightening. The linear series on Y pulls
back to a linear series on BlX Y, and the base locus of the linear series on Y pulls
back to the base locus on BlX Y. The base locus on BlX Y is EXY, an effective Cartier
divisor. Because EXY is not just locally principal, but also locally a non-zerodivisor,
it can be “divided out” from the β∗si (yielding a section of (β∗L )(−EXY), thereby
removing the base locus, and leaving a base-point-free linear series. (In a sense
that can be made precise through the universal property, this is the smallest “modi-
fication” of Y that can remove the base locus.) If X is already Cartier (as for example
happens with any nontrivial linear system if Y is a nonsingular pure-dimensional
curve), then we can remove a base locus by just “dividing out X”.

19.4.9. Examples. (i) The rational map Pn ""# Pn−1 given by [x0; · · · ; xn] ""#

[x1; · · · ; xn], defined away from p = [1; 0; · · · ; 0], is resolved by blowing up p. Then
by the Blow-up Closure Lemma 19.2.6, if Y is any locally closed subscheme of Pn,
we can project to Pn−1 once we blow up p in Y, and the invertible sheaf giving the
map to Pn−1 is (somewhat informally speaking) β∗(OPn(1)) ⊗ O(−EpY).

(ii) Consider two general cubic equations C1 and C2 in three variables, yield-
ing two cubic curves in P2. We shall see that they are smooth, and meet in 9 points
p1, . . . , p9 (using our standing assumption that we work over an algebraically
closed field). Then [C1;C2] gives a rational map P2 ""# P1. To resolve the ra-
tional map, we blow up p1, . . . , p9. The result is (generically) an elliptic fibration
Blp1,...,p9

P2 → P1. (This is by no means a complete argument.)
(iii) Fix six general points p1, . . . , p6 in P2. There is a four-dimensional vector

space of cubics vanishing at these points, and they vanish scheme-theoretically
precisely at these points. This yields a rational map P2 ""# P3, which is resolved
by blowing up the six points. The resulting morphism turns out to be a closed
immersion, and the image in P3 is a (smooth) cubic surface. This is the famous
fact that the blow up of the plane at six general points may be represented as a
(smooth) cubic in P3. (Again, this argument is not intended to be complete.)

In reasonable circumstances, Exercise 19.4.L has an interpretation in terms of
graphs of rational maps.

19.4.M. EXERCISE. Suppose s0, . . . , sn are sections of an invertible sheaf L
on an integral scheme X, not all 0. By Remark 17.4.3, this data gives a rational
map φ : X ""# Pn. Give an isomorphism between the graph of φ (§11.2.4) and
BlV(s0,...,sn) X.

You may enjoy exploring the previous idea by working out how the Cremona
transformation P2 ""# P2 (Exercise 7.5.I) can be interpreted in terms of the graph
of the rational map [x;y; z] ""# [1/x; 1/y; 1/z].

19.4.N. ! EXERCISE. Resolve the rational map

Spec k[w, x, y, z]/(wz − xy)
[w;x] $$IIIIII P1

k

from the cone over the quadric surface to the projective line. Let X be the resulting
variety, and π : X → Spec k[w, x, y, z]/(wz−xy). the projection to the cone over the
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quadric surface. Show that π is an isomorphism away from the cone point, and
that the preimage of the cone point is isomorphic to P1 (and thus has codimension
2, and thus is different from the resolution obtained by simply blowing up the
cone point). This is an example of a small resolution. (A small resolution X → Y
is a resolution where the space of points of Y where the fiber has dimension r is
of codimension greater than 2r. We will not use this notion again in any essential
way.) Notice that this resolution of the morphism involves blowing up the base
locus w = x = 0, which is a cone over one of the lines on the quadric surface
wz = xy. We are blowing up an effective Weil divisor, which is necessarily not
Cartier as the blow-up is not an isomorphism. In Exercise 13.1.D, we saw that
(w, x) was not principal, while here we see that (w, x) is not even locally principal.

19.4.10. Remark: non-isomorphic small resolutions. If you instead resolved the map
[w;y], you would obtain a similar looking small resolution π ′ : X ′ → Spec k[w, x, y, z]/(wz−
xy) (it is an isomorphism away from the origin, and the fiber over the origin is P1).
But it is different! More precisely, there is no morphism X → X ′ making the fol-
lowing the diagram commute.

X

π

""++
++

++
++

++
++

++
+ $$ X ′

π ′

CCFFF
FF
FF
FF
FF
FF
FF

Spec k[w, x, y, z]/(wz − xy)

19.4.11. Factorization of birational maps. We end our discussion of resolution of
rational maps by noting that just as Hironaka’s theorem states that one may re-
solve all singularities of varieties in characteristic by a sequence of blow-ups along
smooth centers, the weak factorization theorem (first proved by Włoldarczyk) states
that any two birational varieties X and Y in characteristic 0 may be related by blow-
ups and blow-downs along smooth centers. More precisely, there are varieties X0,
. . . , Xn, X01, . . . , X(n−1)n, with X0 = X and Xn = Y, with morphisms Xi(i+1) → Xi

and Xi(i+1) → Xi+1 (0 ≤ i < n) which are blow-ups of smooth subvarieties.

19.4.12. The blow-up of a local complete intersection in a k-smooth variety.
We now examine the case of a reduced local complete intersection in a k-

smooth variety. Suppose A is a finitely generated algebra over a field k, such
that Spec A is nonsingular of pure dimension n. Suppose further that f1, . . . , fm

cut out an integral complete intersection Z := Spec A/I in Spec A (I = (f1, . . . , fm))
of codimension m (§13.3.4). Then we have a commutative diagram

BlZ Spec A
! " cl. imm. $$

44A
AA

AA
AA

AA
A

Pm−1
A

II77
77
77
77
7

Spec A
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(cf. §19.3.4). Pulling back by the closed immersion Z ↪→ A, we have

EZ Spec A
! " α

cl. imm.
$$

664
44

44
44

44
4

Pm−1
Z

QQTT
TT
TT
TT

Z

Now EZ Spec A is an effective Cartier divisor, hence of pure dimension n − 1.
But Pm−1

Z is of dimension m− 1+ dim Z = n− 1, and is integral. Hence the closed
immersion EZ Spec A ↪→ Pm−1

Z is an isomorphism.

19.4.O. EXERCISE. Remove the hypothesis “Z irreducible” from the above discus-
sion.

We now extract a couple of results from this.

19.4.13. Theorem. — Suppose X ↪→ Y is a closed immersion of k-smooth varieties. Then
BlX Y is k-smooth.

Proof. By Theorem 13.3.5, X ↪→ Y is a local complete intersection, so the above
discussion applies. We need only check the points of EXY, as BlY \EXY ∼= Y \ X

is k-smooth. But EXY ∼= Pm−1
Z is an effective Cartier divisor, and is nonsingular

of dimension n − 1. By the slicing criterion for nonsingularity (Exercise 13.2.B), it
follows that Y is nonsingular along EXY. !

Furthermore, we also proved that for any reduced complete intersection Z in
a nonsingular scheme Y, EZY is a Pn−1-bundle over Z. We will later identify this
as the projectivized normal bundle of Z in Y, and will remove the reducedness
hypothesis.





CHAPTER 20

Čech cohomology of quasicoherent sheaves

This topic is surprisingly simple and elegant. You may think cohomology
must be complicated, and that this is why it appears so late in these notes. But you
will see that we need very little background. After defining schemes, we could
have immediately defined quasicoherent sheaves, and then defined cohomology,
and verified that it had many useful properties.

20.1 (Desired) properties of cohomology

Rather than immediately defining cohomology of quasicoherent sheaves, we first
discuss why we care, and what properties it should have.

As Γ(X, ·) is a left-exact functor, if 0 → F → G → H → 0 is a short exact
sequence of sheaves on X, then

0 → F (X) → G (X) → H (X)

is exact. We dream that this sequence continues to the right, giving a long exact
sequence. More explicitly, there should be some covariant functors Hi (i ≥ 0) from
quasicoherent sheaves on X to groups such that H0 is the global section functor Γ ,
and so that there is a “long exact sequence in cohomology”.

(20.1.0.1) 0 $$ H0(X,F ) $$ H0(X,G ) $$ H0(X,H )

$$ H1(X,F ) $$ H1(X,G ) $$ H1(X,H ) $$ · · ·

(In general, whenever we see a left-exact or right-exact functor, we should hope
for this, and in good cases our dreams will come true. The machinery behind this
usually involves derived functors, which we will discuss in Chapter 24.)

Before defining cohomology groups of quasicoherent sheaves explicitly, we
first describe their important properties, which are in some ways more important
than the formal definition. The boxed properties will be the important ones.

Suppose X is a separated and quasicompact A-scheme. For each quasicoherent
sheaf F on X, we will define A-modules Hi(X,F ). In particular, if A = k, they are
k-vector spaces. In this case, we define hi(X,F ) = dimk Hi(X,F ) (where k is left
implicit on the left side).

(i) Each Hi is a covariant functor in the sheaf F extending the usual covari-
ance for H0(X, ·): F → G induces Γ(X,F ) → Γ(X,G ).

(ii) The functor H0 is identified with functor Γ : H0(X,F ) = Γ(X,F ).

411
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(iii) If 0 → F → G → H → 0 is a short exact sequence of quasicoherent

sheaves on X, then we have a long exact sequence (20.1.0.1). The maps Hi(X,F ) →

Hi(X,G ) come from covariance, and similarly for Hi(X,G ) → Hi(X,H ). The con-
necting homomorphisms Hi(X,H ) → Hi+1(X,F ) will have to be defined.

(iv) If f : X → Y is any morphism of quasicompact separated schemes, and F

is a quasicoherent sheaf on X, then there is a natural morphism Hi(Y, f∗F ) → Hi(X,F )

extending Γ(Y, f∗F ) → Γ(X,F ). (Note that f is quasicompact and separated
by the Cancellation Theorem 11.1.19 for quasicompact and separated morphisms,
taking Z = Spec k in the statement of the Cancellation Theorem, so f∗F is in-
deed a quasicoherent sheaf by Exercise 14.3.I.) We will later see this as part of a
larger story, the Leray spectral sequence (Exercise 24.4.E). If G is a quasicoherent
sheaf on Y, then setting F := f∗G and using the adjunction map G → f∗f

∗G
and covariance of (ii) gives a natural pullback map Hi(Y,G ) → Hi(X, f∗G ) (via
Hi(Y,G ) → Hi(Y, f∗f

∗G ) → Hi(X, f∗G )) extending Γ(Y,G ) → Γ(X, f∗G ). In this
way, Hi is a “contravariant functor in the space”.

(v) If f : X → Y is an affine morphism, and F is a quasicoherent sheaf on X,

the natural map of (iv) is an isomorphism: Hi(Y, f∗F )
∼ $$ Hi(X,F ) . When

f is a closed immersion and Y = PN
A , this isomorphism translates calculations on

arbitrary projective A-schemes to calculations on PN
A .

(vi) If X can be covered by n affines, then Hi(X,F ) = 0 for i ≥ n for all F . In

particular, on affine schemes, all higher (i > 0) quasicoherent cohomology groups
vanish. The vanishing of H1 in this case, along with the long exact sequence (iii)
implies that Γ is an exact functor for quasicoherent sheaves on affine schemes,
something we already knew (Exercise 14.4.A). It is also true that if dim X = n,
then Hi(X,F ) = 0 for all i > n and for all F (dimensional vanishing). We will
prove this for projective A-schemes (Theorem 20.2.6) and even quasiprojective A-
schemes (Exercise 20.2.I). See §20.2.8 for discussion of the general case.

20.1.1. Side remark: the cohomological criterion for affineness. The converse to (vi) in
the case when n = 1 is Serre’s cohomological criterion for affineness: in reasonable
circumstances, a scheme, all of whose higher cohomology groups vanish for all
quasicoherent sheaves, must be affine.

(vii) The functor Hi behaves well under direct sums, and more generally un-

der colimits: Hi(X, lim−→ Fj) = lim−→ Hi(X,Fj).

(viii) We will also identify the cohomology of all O(m) on Pn
A:

20.1.2. Theorem. —

• H0(Pn
A,OPn

A
(m)) is a free A-module of rank

(
n+m

n

)
if i = 0 and m ≥ 0, and 0

otherwise.
• Hn(Pn

A,OPn
A
(m)) is a free A-module of rank

(
−m−1

−n−m−1

)
if m ≤ −n − 1, and 0

otherwise.
• Hi(Pn

A,OPn
A
(m)) = 0 if 0 < i < n.

We already have shown the first statement in Essential Exercise 15.1.C.
Theorem 20.1.2 has a number of features that will be the first appearances of

facts that we will prove later.
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• The cohomology of these bundles vanish above n ((vi) above)
• These cohomology groups are always finitely-generated A-modules. This

will be true for all coherent sheaves on projective A-schemes (Theorem 20.1.3(i)),
and indeed (with more work) on proper A-schemes (Theorem 20.8.1).

• The top cohomology group vanishes for m > −n − 1. (This is a first
appearance of Kodaira vanishing.)

• The top cohomology group is one-dimensional for m = −n − 1 if A = k.
This is the first appearance of the dualizing sheaf.

• There is a natural duality

Hi(X,O(m)) × Hn−i(X,O(−n − 1 − m)) → Hn(X,O(−n − 1))

This is the first appearance of Serre duality.

Before proving these facts, let’s first use them to prove interesting things, as
motivation.

By Theorem 16.3.1, for any coherent sheaf F on Pn
A we can find a surjection

O(m)⊕j → F , which yields the exact sequence

(20.1.2.1) 0 → G → O(m)⊕j → F → 0

for some coherent sheaf G . We can use this to prove the following.

20.1.3. Theorem. — (i) For any coherent sheaf F on a projective A-scheme X where A
is Noetherian, Hi(X,F ) is a coherent (finitely generated) A-module.
(ii) (Serre vanishing) Furthermore, for m . 0, Hi(X,F (m)) = 0 for all i > 0 (even
without Noetherian hypotheses).

A slightly fancier version of Serre vanishing will be given later.

Proof. Because cohomology of a closed scheme can be computed on the ambient
space ((v) above), we may immediately reduce to the case X = Pn

A.
(i) Consider the long exact sequence:

0 $$ H0(Pn
A,G ) $$ H0(Pn

A,O(m)⊕j) $$ H0(Pn
A,F ) $$

H1(Pn
A,G ) $$ H1(Pn

A,O(m)⊕j) $$ H1(Pn
A,F ) $$ · · ·

· · · $$ Hn−1(Pn
A,G ) $$ Hn−1(Pn

A,O(m)⊕j) $$ Hn−1(Pn
A,F ) $$

Hn(Pn
A,G ) $$ Hn(Pn

A,O(m)⊕j) $$ Hn(Pn
A,F ) $$ 0

The exact sequence ends here because Pn
A is covered by n + 1 affines ((vi) above).

Then Hn(Pn
A,O(m)⊕j) is finitely generated by Theorem 20.1.2, hence Hn(Pn

A,F )
is finitely generated for all coherent sheaves F . Hence in particular, Hn(Pn

A,G )
is finitely generated. As Hn−1(Pn

A,O(m)⊕j) is finitely generated, and Hn(Pn
A,G )

is too, we have that Hn−1(Pn
A,F ) is finitely generated for all coherent sheaves F .

We continue inductively downwards.
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(ii) Twist (20.1.2.1) by O(N) for N . 0. Then

Hn(Pn
A,O(m + N)⊕j) = ⊕jH

n(Pn
A,O(m + N)) = 0

(by (vii) above), so Hn(Pn
A,F (N)) = 0. Translation: for any coherent sheaf, its top

cohomology vanishes once you twist by O(N) for N sufficiently large. Hence this
is true for G as well. Hence from the long exact sequence, Hn−1(Pn

A,F (N)) = 0
for N . 0. As in (i), we induct downwards, until we get that H1(Pn

A,F (N)) = 0.
(The induction stops here, as it is not true that H0(Pn

A,O(m + N)⊕j) = 0 for large
N — quite the opposite.) !

20.1.A. !! EXERCISE FOR THOSE WHO LIKE NON-NOETHERIAN RINGS. Prove part
(i) in the above result without the Noetherian hypotheses, assuming only that A
is a coherent A-module (A is “coherent over itself”). (Hint: induct downwards
as before. Show the following in order: Hn(Pn

A,F ) finitely generated, Hn(Pn
A,G )

finitely generated, Hn(Pn
A,F ) coherent, Hn(Pn

A,G ) coherent, Hn−1(Pn
A,F ) finitely

generated, Hn−1(Pn
A,G ) finitely generated, etc.)

In particular, we have proved the following, that we would have cared about
even before we knew about cohomology.

20.1.4. Corollary. — Any projective k-scheme has a finite-dimensional space of global
sections. More generally, if A is Noetherian and F is a coherent sheaf on a projective
A-scheme, then H0(X,F ) is a coherent A-module.

(We will generalize this in Theorem 20.7.1.) I want to emphasize how remark-
able this proof is. It is a question about global sections, i.e. H0, which we think
of as the most down to earth cohomology group, yet the proof is by downward
induction for Hn, starting with n large.

Corollary 20.1.4 is true more generally for proper k-schemes, not just projec-
tive k-schemes (see Theorem 20.8.1).

Here are some important consequences. They can also be shown directly, with-
out the use of cohomology, but with much more elbow grease. We begin with the
analogue of the following fact in complex analysis: the only holomorphic func-
tions on a compact complex manifold are locally constant (because of the maxi-
mum principle).

20.1.B. EXERCISE (THE ONLY FUNCTIONS ON PROJECTIVE INTEGRAL SCHEMES ARE

CONSTANTS). Suppose X is a projective integral scheme over an algebraically
closed field. Show that h0(X,OX) = 1. Hint: show that H0(X,OX) is a finite-
dimensional k-algebra, and a domain. Hence show it is a field. (For experts: the
same argument holds with the weaker hypotheses where X is proper, geometri-
cally connected and geometrically reduced (§10.4.2), over an arbitrary field. The
key facts needed are the extension of Corollary 20.1.4 to proper morphisms men-
tioned above, given in Theorem 20.8.1, and Exercise 20.2.G.)

20.1.5. As a partial converse, if h0(X,OX) = 1, then X is connected (why?), but
need not be reduced: witness the subscheme in P2 cut out by x2 = 0. (For experts:
the geometrically connected hypothesis is necessary, as X = Spec C is a projective
integral R-scheme, with h0(X,OX) = 2. Similarly, a nontrivial purely inseparable
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field extension can be used to show that the geometrically reduced hypothesis is
also necessary.)

20.1.C. EXERCISE (THE S•-MODULE ASSOCIATED TO A COHERENT SHEAF ON Proj S•

IS COHERENT, PROMISED IN REMARK 16.4.3). Suppose S• is a finitely generated
graded ring generated in degree 1 over a Noetherian ring A, and F is a coherent
sheaf on Proj S•. Show that Γ•F is a coherent S•-module. (Feel free to remove the
generation in degree 1 hypothesis.)

20.1.D. CRUCIAL EXERCISE (PUSHFORWARDS OF COHERENTS ARE COHERENT).
Suppose f : X → Y is a projective morphism of Noetherian schemes. Show that the
pushforward of a coherent sheaf on X is a coherent sheaf on Y. (See Grothendieck’s
Coherence Theorems 20.7.1 and 20.8.1 for generalizations.)

20.1.6. Unimportant remark, promised in Exercise 17.2.C. As a consequence, if f :
X → Y is a finite morphism, and OY is coherent over itself, then f∗ sends coherent
sheaves on X to coherent sheaves on Y.

Finite morphisms are affine (from the definition) and projective (18.3.D). We
can now show that this is a characterization of finiteness.

20.1.7. Corollary. — If π : X → Y is projective and affine and Y is locally Noetherian,
then π is finite.

We will see in Exercise 20.8.A that the projective hypotheses can be relaxed to
proper.

Proof. By Exercise 20.1.D, π∗OX is coherent and hence finite type. !

The following result was promised in §18.3.6, and has a number of useful con-
sequences.

20.1.8. Theorem (projective + finite fibers = finite). — Suppose π : X → Y with Y
Noetherian. Then π is projective and finite fibers if and only if it is finite. Equivalently, π
is projective and quasifinite if and only it is finite.

(Recall that quasifinite = finite fibers + finite type. But projective includes finite
type.) It is true more generally that (with Noetherian hypotheses) proper + finite
fibers = finite, [EGA, III.4.4.2].

Proof. We show π is finite near a point y ∈ Y. Fix an affine open neighborhood
Spec A of y in Y. Pick a hypersurface H in Pn

A missing the preimage of y, so H ∩ X
is closed. Let H ′ = π∗(H ∩ X), which is closed, and doesn’t contain y. Let U =
Spec A − H ′, which is an open set containing y. Then above U, π is projective and
affine, so we are done by Corollary 20.1.7. !

20.1.E. EXERCISE. Suppose L is basepoint free, and hence induces some mor-
phism φ : X → Pn. Then L is ample if and only if φ is finite. (Hint: if φ is finite,
use Exercise 17.3.I. If φ is not finite, show that there is a curve C contracted by π,
using Theorem 20.1.8. Show that L has degree 0 on C.)
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20.1.F. EXERCISE (UPPER SEMICONTINUITY OF FIBER DIMENSION ON THE TARGET,
FOR PROJECTIVE MORPHISMS). Use a similar argument as in Theorem 20.1.8 to
prove upper semicontinuity of fiber dimension of projective morphisms: suppose π :
X → Y is a projective morphism where Y is locally Noetherian (or more generally
OY is coherent over itself). Show that {y ∈ Y : dim f−1(y) > k} is a Zariski-
closed subset of Y. In other words, the dimension of the fiber “jumps over Zariski-
closed subsets” of the target. (You can interpret the case k = −1 as the fact that
projective morphisms are closed, which is basically the Fundamental Theorem of
Elimination Theory 8.4.7, cf. §18.3.4.) This exercise is rather important for having a
sense of how projective morphisms behave. (The case of varieties was done earlier,
in Theorem 12.4.2(b). This approach is much simpler.)

The final exercise of the section is on a different theme.

20.1.G. EXERCISE. Suppose 0 → F → G → H → 0 is an exact sequence of
coherent sheaves on projective X with F coherent. Show that for n . 0,

0 → H0(X,F (n)) → H0(X,G (n)) → H0(X,H (n)) → 0

is also exact. (Hint: for n . 0, H1(X,F (n)) = 0.)

20.2 Definitions and proofs of key properties

This section could be read much later; the facts we will use are all stated in
the previous section. However, the arguments are not complicated, so you want
to read this right away. As you read this, you should go back and check off all the
facts in the previous section, to assure yourself that you understand everything
promised.

20.2.1. Čech cohomology. Čech cohomology in general settings is defined using
a limit over finer and finer covers of a space. In our algebro-geometric setting, the
situation is much cleaner, and we can use a single cover.

Suppose X is quasicompact and separated, for example if X is quasiprojective
over A. In particular, X may be covered by a finite number of affine open sets, and
the intersection of any two affine open sets is also an affine open set (by separated-
ness, Proposition 11.1.8). We will use quasicompactness and separatedness only
in order to ensure these two nice properties.

Suppose F is a quasicoherent sheaf, and U = {Ui}
n
i=1 is a finite collection

of affine open sets covering X. For I ⊂ {1, . . . , n} define UI = ∩i∈IUi, which is
affine by the separated hypothesis. (The strong analogy for those who have seen
cohomology in other contexts: cover a topological space X with a finite number
of open sets Ui, such that all intersections ∩i∈IUi are contractible.) Consider the
Čech complex

(20.2.1.1) 0 →
∏

|I| = 1
I ⊂ {1, . . . , n}

F (UI) → · · · →
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∏

|I| = i
I ⊂ {1, . . . , n}

F (UI) →
∏

|I| = i + 1
I ⊂ {1, . . . , n}

F (UI) → · · · .

The maps are defined as follows. The map from F (UI) → F (UJ) is 0 unless
I ⊂ J, i.e. J = I ∪ {j}. If j is the kth element of J, then the map is (−1)k−1 times the
restriction map resUI,UJ

.

20.2.A. EASY EXERCISE (FOR THOSE WHO HAVEN’T SEEN ANYTHING LIKE THE

ČECH COMPLEX BEFORE). Show that the Čech complex is indeed a complex, i.e.
that the composition of two consecutive arrows is 0.

Define Hi
U (X,F ) to be the ith cohomology group of the complex (20.2.1.1).

Note that if X is an A-scheme, then Hi
U (X,F ) is an A-module. We have almost

succeeded in defining the Čech cohomology group Hi, except our definition seems
to depend on a choice of a cover U .

20.2.B. EASY EXERCISE. Show that H0
U (X,F ) = Γ(X,F ). (Hint: use the sheaf

axioms for F .)

20.2.C. EXERCISE. Suppose 0 → F1 → F2 → F3 → 0 is a short exact sequence
of sheaves on a topological space, and U is an open cover such that on any inter-
section of open subsets in U , the sections of F2 surject onto F3. (Note that this
applies in our case!) Show that we get a “long exact sequence of cohomology for
Hi

U ”.

20.2.2. Theorem/Definition. — Our standing assumption is that X is quasicompact
and separated. Hi

U (X,F ) is independent of the choice of (finite) cover {Ui}. More pre-
cisely, for any two covers {Ui} ⊂ {Vi}, the maps Hi

{Vi}(X,F ) → Hi
{Ui}(X,F ) induced

by the natural maps of Čech complexes (20.2.1.1) are isomorphisms. Define the Čech coho-
mology group Hi(X,F ) to be this group.

If you are unsure of what the “natural maps of Čech complexes” is, by (20.2.3.1)
it should become clear.

20.2.3. For experts: maps of complexes inducing isomorphisms on cohomology
groups are called quasiisomorphisms. We are actually getting a finer invariant than
cohomology out of this construction; we are getting an element of the derived cate-
gory of A-modules.

Proof. We need only prove the result when |{Vi}| = |{Ui}| + 1. We will show
that if {Ui}1≤i≤n is a cover of X, and U0 is any other open set, then the map
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Hi
{Ui}0≤i≤n

(X,F ) → Hi
{Ui}1≤i≤n

(X,F ) is an isomorphism. Consider the exact se-

quence of complexes

(20.2.3.1) 0

%%

0

%%

0

%%

· · · $$
∏

|I| = i − 1
0 ∈ I

F(UI) $$

%%

∏

|I| = i
0 ∈ I

F(UI) $$

%%

∏

|I| = i + 1
0 ∈ I

F(UI) $$

%%

· · ·

· · · $$
∏

|I| = i − 1
F(UI) $$

%%

∏

|I| = i
F(UI) $$

%%

∏

|I| = i + 1
F(UI) $$

%%

· · ·

· · · $$
∏

|I| = i − 1
0 /∈ I

F(UI) $$

%%

∏

|I| = i
0 /∈ I

F(UI) $$

%%

∏

|I| = i + 1
0 /∈ I

F(UI) $$

%%

· · ·

0 0 0

Throughout, I ⊂ {0, . . . , n}. The bottom two rows are Čech complexes with respect
to two covers, and the map between them induces the desired map on cohomology.
We get a long exact sequence of cohomology from this short exact sequence of
complexes (Exercise 2.6.C). Thus we wish to show that the top row is exact and
thus has vanishing cohomology. (Note that U0 ∩Uj is affine by our separatedness
hypothesis, Proposition 11.1.8.) But the ith cohomology of the top row is precisely
Hi

{Ui∩U0}i>0
(Ui,F ) except at step 0, where we get 0 (because the complex starts

off 0 → F (U0) →
∏n

j=1 F (U0 ∩ Uj)). So it suffices to show that higher Čech
groups of affine schemes are 0. Hence we are done by the following result. !

20.2.4. Theorem. — The higher Čech cohomology Hi
U (X,F ) of an affine A-scheme X

vanishes (for any affine cover U , i > 0, and quasicoherent F ).

Serre describes this as a partition of unity argument.

Proof. (The following argument can be made shorter using spectral sequences,
but we avoid this for the sake of clarity.) We want to show that the “extended”
complex

(20.2.4.1) 0 → F (X) →
∏

|I|=1

F (UI) →
∏

|I|=2

F (UI) → · · ·

(where the global sections F (X) have been appended to the start) has no cohomol-
ogy, i.e. is exact. We do this with a trick.
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Suppose first that some Ui, say U0, is X. Then the complex is the middle row
of the following short exact sequence of complexes
(20.2.4.2)

0 $$ 0 $$

%%

∏
|I|=1,0∈I F (UI) $$

%%

∏
|I|=2,0∈I F (UI) $$

%%

· · ·

0 $$ F (X) $$

%%

∏
|I|=1 F (UI) $$

%%

∏
|I|=2 F (UI) $$

%%

· · ·

0 $$ F (X) $$
∏

|I|=1,0/∈I F (UI) $$
∏

|I|=2,0/∈I F (UI) $$ · · ·

The top row is the same as the bottom row, slid over by 1. The corresponding long
exact sequence of cohomology shows that the central row has vanishing cohomol-
ogy. (You should show that the “connecting homomorphism” on cohomology is
indeed an isomorphism.) This might remind you of the mapping cone construction
(Exercise 2.7.E).

We next prove the general case by sleight of hand. Say X = Spec R. We wish
to show that the complex of A-modules (20.2.4.1) is exact. It is also a complex of R-
modules, so we wish to show that the complex of R-modules (20.2.4.1) is exact. To
show that it is exact, it suffices to show that for a cover of Spec R by distinguished
open sets D(fi) (1 ≤ i ≤ r) (i.e. (f1, . . . , fr) = 1 in R) the complex is exact. (Trans-
lation: exactness of a sequence of sheaves may be checked locally.) We choose a
cover so that each D(fi) is contained in some Uj = Spec Aj. Consider the complex
localized at fi. As

Γ(Spec A,F )f = Γ(Spec(Aj)f,F )

(by quasicoherence of F , Exercise 14.3.D), as Uj ∩ D(fi) = D(fi), we are in the
situation where one of the Ui’s is X, so we are done. !

We have now proved properties (i)–(iii) of the previous section.

20.2.D. EXERCISE (PROPERTY (v)). Suppose f : X → Y is an affine morphism,
and Y is a quasicompact and separated A-scheme (and hence X is too, as affine
morphisms are both quasicompact and separated). If F is a quasicoherent sheaf
on X, describe a natural isomorphism Hi(Y, f∗F ) ∼= Hi(X,F ). (Hint: if U is an
affine cover of Y, “f−1(U )” is an affine cover X. Use these covers to compute the
cohomology of F .)

20.2.E. EXERCISE (PROPERTY (iv)). Suppose f : X → Y is any quasicompact
separated morphism, F is a quasicoherent sheaf on X, and Y is a quasicompact
separated A-scheme. The hypotheses on f ensure that f∗F is a quasicoherent sheaf
on Y. Describe a natural morphism Hi(Y, f∗F ) → Hi(X,F ) extending Γ(Y, f∗F ) →
Γ(X,F ). (Aside: this morphism is an isomorphism for i = 0, but need not be an
isomorphism for higher i: consider i = 1, X = P1

k, F = O(−2), and let Y be a point
Spec k.)

20.2.F. UNIMPORTANT EXERCISE. Prove Property (vii) of the previous section.
(This can be done by hand. Hint: in the category of modules over a ring, taking
the colimit over a directed sets is an exact functor, §2.6.11.)
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20.2.5. Useful facts about cohomology for k-schemes.

20.2.G. EXERCISE (COHOMOLOGY AND CHANGE OF BASE FIELD). Suppose X is
a quasicompact separated k-scheme, and F is a coherent sheaf on X. Give an
isomorphism

Hi(X,F ) ⊗k K ∼= Hi(X ×Spec k Spec K,F ⊗k K)

for all i, where K/k is any field extension. Here F ⊗k k means the pullback of F
to X ×Spec k Spec K. Hence hi(X,F ) = hi(X ×Spec k Spec K,F ⊗k K). If i = 0 (tak-
ing H0 = Γ ), show the result without the quasicompact and separated hypotheses.
(This is useful for relating facts about k-schemes to facts about schemes over al-
gebraically closed fields. Your proof might use vector spaces — i.e. linear algebra
— in a fundamental way. If it doesn’t, you may prove something more general, if
k → K is replaced by a flat ring map B → A. Recall that B → A is flat if ⊗BA is an
exact functor ModB → ModA. A hint for this harder exercise: the FHHF theorem,
Exercise 2.6.H. See Exercise 20.7.B(b) for the next generalization of this.)

20.2.H. EXERCISE (BASE-POINT-FREENESS IS INDEPENDENT OF EXTENSION OF BASE

FIELD). Suppose X is a scheme over a field k, L is an invertible sheaf on X, and
K/k is a field extension. Show that L is base-point-free if and only if its pullback
to X⊗Spec k Spec K is base-point-free. (Hint: Exercise 20.2.G with i = 0 implies that
a basis of sections of L over k becomes, after tensoring with K, a basis of sections
of L ⊗k K.)

20.2.6. Theorem (dimensional vanishing for quasicoherent sheaves on projec-
tive k-schemes). — Suppose X is a projective k-scheme, and F is a quasicoherent sheaf
on X. Then Hi(X,F ) = 0 for i > dim X.

In other words, cohomology vanishes above the dimension of X. It turns out
that n affine open sets are necessary. (One way of proving this is by showing that
the complement of an affine set is always pure codimension 1.)

Proof. Suppose X ↪→ PN, and let n = dim X. We show that X may be covered by
n affine open sets. Exercise 12.3.C shows that there are n effective Cartier divisors
on PN such that their complements U0, . . . , Un cover X. Then Ui is affine, so
Ui ∩ X is affine, and thus we have covered X with n affine open sets. !

20.2.7. ! Dimensional vanishing more generally. Using the theory of blowing up
(Chapter 19), Theorem 20.2.6 can be extended to quasiprojective k-schemes. Sup-
pose X is a quasiprojective k-variety of dimension n. We show that X may be
covered by n + 1 affine open subsets. As X is quasiprojective, there is some pro-
jective variety Y with an open immersion X ↪→ Y. By replacing Y with the closure
of X in Y, we may assume that dim Y = n. Put any subscheme structure Z on
the complement of X in Y (for example the reduced subscheme structure, §9.3.8).
Let Y ′ = BlZ Y. Then Y ′ is a projective variety (§19.3.1), which can be covered by
n+1 affine open subsets. The complement of X in Y ′ is an affective Cartier divisor
(EZY), so the restriction to X of each of these affine open subsets of Y is also affine,
by Exercise 8.3.F. (You might then hope that any dimension n variety can be cov-
ered by n + 1 affine open subsets. This is not true. For each integer m, there is a
threefold that requires at least m affine open sets to cover it, see [RV, Ex. 4.9].)
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(Here is a fact useful in invariant theory, which can be proved in the same way.
Suppose p1, . . . , . . . , pn are closed points on a quasiprojective k-variety X. Then
there is an affine open subset of X containing all of them.)

20.2.I. EXERCISE (DIMENSIONAL VANISHING FOR QUASIPROJECTIVE VARIETIES).
Suppose X is a quasiprojective k-scheme of dimension d. Show that for any quasi-
coherent sheaf F on X, Hi(X,F ) = 0 for i > d.

20.2.8. Dimensional vanishing most generally. Dimensional vanishing is even true
in much greater generality. To state it, we need to define cohomology with the
more general machinery of derived functors (Chapter 24). If X is a Noetherian
topological space (§4.6.3) and F is any sheaf of abelian groups on X, we have
Hi(X,F ) = 0 for all i > dim X. (See [Ha, Theorem III.2.7] for Grothendieck’s
elegant proof.) In particular, if X is a k-variety of dimension n, we always have
dimensional vanishing, even for crazy varieties that can’t be covered with n + 1
affine open subsets (§20.2.7).

20.3 Cohomology of line bundles on projective space

We now finally prove the last promised basic fact about cohomology, property
(viii) of §20.1, Theorem 20.1.2, on the cohomology of line bundles on projective
space. More correctly, we will do one case and you will do the rest.

We begin with a warm-up that will let you (implicitly) see some of the struc-
ture that will arise in the proof. It also gives good practice in computing cohomol-
ogy groups.

20.3.A. EXERCISE. Compute the cohomology groups Hi(A2
k \ {(0, 0)},O). (Hint:

the case i = 0 was done in Example 5.4.1. The case i > 1 is clear from property
(vi) above.) In particular, show that H1(A2

k \ {(0, 0)},O) != 0, and thus give another
proof (see §5.4.3) of the fact that A2

k\{(0, 0)} is not affine. (Cf. Serre’s cohomological
criterion for affineness, Remark 20.1.1.)

20.3.1. Remark. Essential Exercise 15.1.C and the ensuing discussion showed that
H0(Pn

A,OPn
A
(m)) should be interpreted as the homogeneous degree m polynomi-

als in x0, . . . , xn (with A-coefficients). Similarly, Hn(Pn
A,OPn

A
(m)) should be inter-

preted as the homogeneous degree m Laurent polynomials in x0, . . . , xn, where in
each monomial, each xi appears with degree at most −1.

20.3.2. Proof of Theorem 20.1.2 for n = 2. We take the standard cover U0 = D(x0),
. . . , Un = D(xn) of Pn

A.

20.3.B. EXERCISE. If I ⊂ {1, . . . , n}, then give an isomorphism (of A-modules)
of Γ(O(m), UI) with the Laurent monomials (in x0, . . . , xn, with coefficients in
A) where each xi for i /∈ I appears with non-negative degree. Your construction
should be such that the restriction map Γ(O(m), UI) → Γ(O(m), UJ) (I ⊂ J) corre-
sponds to the natural inclusion: a Laurent polynomial in Γ(O(m), UI) maps to the
same Laurent polynomial in Γ(O(m), UJ).
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The Čech complex for O(m) is the degree m part of
(20.3.2.1)

0 $$ A[x0, x1, x2, x−1
0 ] × A[x0, x1, x2, x−1

1 ] × A[x0, x1, x2, x−1
2 ] $$

A[x0, x1, x2, x−1
0 , x−1

1 ] × A[x0, x1, x2, x−1
1 , x−1

2 ] × A[x0, x1, x2, x−1
0 , x−1

2 ]

$$ A[x0, x1, x2, x−1
0 , x−1

1 , x−1
2 ] $$ 0.

Rather than consider O(m) for each m independently, it is notationally simpler
to consider them all at once, by considering F = ⊕m∈ZO(m): the Čech complex
for F is (20.3.2.1). It is useful to write which UI corresponds to which factor (see
(20.3.2.2) below). The maps (from one factor of one term to one factor of the next)
are all natural inclusions, or negative of natural inclusions, and in particular pre-
serve degree.

We extend (20.3.2.1) by replacing the 0 → on the left by 0 → A[x0, x1, x2] →:
(20.3.2.2)

H0 U0 U1 U2 U012

0 $$ A[x0, x1, x2] $$ · · · $$ · · · $$ A[x0, x1, x2, x−1
0

, x−1
1

x−1
2

] $$ 0.

20.3.C. EXERCISE. Show that if (20.3.2.2) is exact, except that at U012 the coho-
mology/cokernel is A[x−1

0 , x−1
1 , x−1

2 ], then Theorem 20.1.2 holds for n = 2. (Hint:
Remark 20.3.1.)

Because the maps in (20.3.2.2) preserve multidegree (degrees of each xi inde-
pendently), we can study exactness of (20.3.2.2) monomial by monomial.

The “0-positive” case. Consider first the monomial xa0

0 xa1

1 xa2

2 , where the expo-
nents ai are all negative. Then (20.3.2.2) in this multidegree is:

0 $$ 0H0
$$ 00 × 01 × 02

$$ 001 × 012 × 002
$$ A012

$$ 0.

Here the subscripts serve only to remind us which “Čech” terms the factors cor-
respond to. (For example, A012 corresponds to the coefficient of xa0

0 xa1

1 xa2

2 in
A[x0, x1, x2, x−1

0 , x−1
1 , x−1

2 ].) Clearly this complex only has (co)homology at the
U012 spot, as desired.

The “1-positive” case. Consider next the case where two of the exponents, say
a0 and a1, are negative. Then the complex in this multidegree is

0 $$ 0H0
$$ 00 × 01 × 02

$$ A01 × 012 × 002
$$ A012

$$ 0,

which is clearly exact.
The “2-positive” case. We next consider the case where one of the exponents, say

a0, is negative. Then the complex in this multidegree is

0 $$ 0H0
$$ A0 × 01 × 02

$$ A01 × 012 × A02
$$ A012

$$ 0

With a little thought (paying attention to the signs on the arrows A → A), you
will see that it is exact. (The subscripts, by reminding us of the subscripts in the
original Čech complex, remind us what signs to take in the maps.)
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The “3-positive” case. Finally, consider the case where none of the exponents are
negative. Then the complex in this multidegree is

0 $$ AH0
$$$$ A0 × A1 × A2

$$ A01 × A12 × A02
$$ A012

$$ 0

We wish to show that this is exact. We write this complex as the middle of a short
exact sequence of complexes:
(20.3.2.3)

0 $$

%%

0 $$

%%

A2

%%

$$ A02 × A12
$$

%%

A012

%%

$$ 0

%%
0 $$

%%

AH0
$$

%%

A0 × A1 × A2
$$

%%

A01 × A12 × A02
$$

%%

A012
$$

%%

0

%%
0 $$ AH0

$$ A0 × A1
$$ A01

$$ 0 $$ 0

Thus we get a long exact sequence in cohomology (Theorem 2.6.5). But the top
and bottom rows are exact (basically from the 2-positive case), i.e. cohomology-
free, so the middle row must be exact too.

20.3.D. EXERCISE. Prove Theorem 20.1.2 for general n. (I could of course just
have given you the proof for general n, but seeing the argument in action may be
enlightening. In particular, your argument may be much shorter. For example, the
1-positive case could be done in the same way as the 2-positive case, so you will
not need n + 1 separate cases if you set things up carefully.)

20.3.3. Remarks. (i) In fact we don’t really need the exactness of the top and bottom
rows of (20.3.2.3); we just need that they are the same, just as with (20.2.4.2).

(ii) This argument is basically the proof that the reduced homology of the
boundary of a simplex S (known in some circles as a “sphere”) is 0, unless S is the
empty set, in which case it is one-dimensional. The “empty set” case corresponds
to the “0-positive” case.

20.3.E. EXERCISE. Show that Hi(Pm
k ×k Pn

k ,O(a, b)) =
∑i

j=0 Hj(Pm
k ,O(a)) ⊗k

Hi−j(Pn
k ,O(b)). (Can you generalize this Kunneth-type formula further?)

20.4 Riemann-Roch, degrees of coherent sheaves, arithmetic
genus, and Serre duality

We have seen some powerful uses of Čech cohomology, to prove things about
spaces of global sections, and to prove Serre vanishing. We will now see some
classical constructions come out very quickly and cheaply.

In this section, we will work over a field k. Suppose F is a coherent sheaf on
a projective k-scheme X. Recall the notation (§20.1) hi(X,F ) := dimk Hi(X,F ).
By Theorem 20.1.3, hi(X,F ) is finite. (The arguments in this section will extend
without change to proper X once we have this finiteness for proper morphisms, by
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Grothendieck’s Coherence Theorem 20.8.1.) Define the Euler characteristic

χ(X,F ) :=
dim X∑

i=0

(−1)ihi(X,F ).

We will see repeatedly here and later that Euler characteristics behave better than
individual cohomology groups. As one sign, notice that for fixed n, and m ≥ 0,

h0(Pn
k ,O(m)) =

(
n + m

m

)
=

(m + 1)(m + 2) · · · (m + n)

n!
.

Notice that the expression on the right is a polynomial in m of degree n. (For later
reference, notice also that the leading coefficient is mn/n!.) But it is not true that

h0(Pn
k ,O(m)) =

(m + 1)(m + 2) · · · (m + n)

n!
for all m — it breaks down for m ≤ −n − 1. Still, you can check (using Theo-
rem 20.1.2) that

χ(Pn
k ,O(m)) =

(m + 1)(m + 2) · · · (m + n)

n!
.

So one lesson is this: if one cohomology group (usual the top or bottom) behaves
well in a certain range, and then messes up, likely it is because (i) it is actually
the Euler characteristic which behaves well always, and (ii) the other cohomology
groups vanish in that cetain range.

In fact, we will see that it is often hard to calculate cohomology groups (even
h0), but it can be easier calculating Euler characteristics. So one important way
of getting a hold of cohomology groups is by computing the Euler characteristics,
and then showing that all the other cohomology groups vanish. Hence the ubiquity
and importance of vanishing theorems. (A vanishing theorem usually states that a
certain cohomology group vanishes under certain conditions.) We will see this in
action when discussing curves. (One of the first applications will be (21.2.4.1).)

The following exercise shows another way in which Euler characteristic be-
haves well: it is additive in exact sequences.

20.4.A. EXERCISE. Show that if 0 → F → G → H → 0 is an exact sequence of
coherent sheaves on a projective k-scheme X, then χ(X,G ) = χ(X,F ) + χ(X,H ).
(Hint: consider the long exact sequence in cohomology.) More generally, if

0 → F1 → · · · → Fn → 0

is an exact sequence of sheaves, show that
n∑

i=1

(−1)iχ(X,Fi) = 0.

20.4.1. The Riemann-Roch Theorem for line bundles on a nonsingular projec-
tive curve. Suppose D :=

∑
p∈C ap[p] is a divisor on a nonsingular projective

curve C over a field k (where ap ∈ Z, and all but finitely many ap are 0). Define
the degree of D by

deg D =
∑

ap deg p.

(The degree of a point p was defined in §6.3.8, as the degree of the field extension
of the residue field over k.)
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20.4.B. ESSENTIAL EXERCISE: THE RIEMANN-ROCH THEOREM FOR LINE BUN-
DLES ON A NONSINGULAR PROJECTIVE CURVE. Show that

χ(C,OC(D)) = deg D + χ(C,OC)

by induction on
∑

|ap| (where D =
∑

ap[p] as above). Hint: to show that χ(C,OC(D)) =
deg p + χ(C,OC(D − p)), tensor the closed subscheme exact sequence

0 → OC(−p) → OC → O |p → 0

(where O |p is the structure sheaf of the scheme p, not the stalk OC,p) by OC(D),
and use additivity of Euler characteristics in exact sequences (Exercise 20.4.A).

As every invertible sheaf L is of the form OC(D) for some D (see §15.2), this
exercise is very powerful.

20.4.C. IMPORTANT EXERCISE. Suppose L is an invertible sheaf on a nonsingular
projective curve C over k. Define the degree of L as χ(C,L ) − χ(C,OC). Let s be
a non-zero rational section on C. Let D be the divisor of zeros and poles of s:

D :=
∑

p∈C

vp(s)[p]

Show that deg L = deg D. In particular, the degree can be computed by counting
zeros and poles of any section not vanishing on a component of C.

20.4.D. EXERCISE. Give a new solution to Exercise 18.4.E (roughly, a nonzero
rational function on a projective curve has the same number of zeros and poles,
counted appropriately) using the ideas above.

20.4.E. EXERCISE. If L and M are two line bundles on a nonsingular projective
curve C, show that deg L ⊗M = deg L + deg M . (Hint: choose rational sections
of L and M .)

20.4.F. EXERCISE. Suppose f : C → C ′ is a degree d morphism of integral
projective nonsingular curves, and L is an invertible sheaf on C ′. Show that
degC f∗L = d degC ′ L . Hint: compute deg

L
using any non-zero rational sec-

tion s of L , and compute deg f∗L using the rational section f∗s of f∗L . Note that
zeros pull back to zeros, and poles pull back to poles. Reduce to the case where
L = O(p) for a single point p. Use Exercise 18.4.D.

20.4.G. !! EXERCISE (COMPLEX-ANALYTIC INTERPRETATION OF DEGREE; ONLY

FOR THOSE WITH SUFFICIENT ANALYTIC BACKGROUND). Suppose X is a con-
nected nonsingular projective complex curve. Show that the degree map is the
composition of group homomorphisms

Pic X $$ Pic Xan
c1 $$ H2(Xan, Z)

∩[Xan]$$ H0(Xan, Z) ∼= Z.

Hint: show it for a generator O(p) of the group Pic X, using explicit transition
functions. (The first map was discussed in Exercise 14.1.J. The second map is
takes a line bundle to its first Chern class, and can be interpreted as follows. The
transition functions for a line bundle yield a Čech 1-cycle for O∗

Xan
; this yields a

map Pic Xan → H1(Xan,O∗
Xan

). Combining this with the map H1(Xan,O∗
Xan

) →
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H2(Xan, Z) from the long exact sequence in cohomology corresponding to the ex-
ponential exact sequence (3.4.9.1) yields the first Chern class map.)

20.4.2. Arithmetic genus.
Motivated by geometry, we define the arithmetic genus of a scheme X as 1 −

χ(X,OX). This is sometimes denoted pa(X). For irreducible reduced curves over
an algebraically closed field, as h0(X,OX) = 1 (Exercise 20.1.B), pa(X) = h1(X,OX).
(In higher dimension, this is a less natural notion.)

We can restate the Riemann-Roch formula for curves (Exercise 20.4.B) as:

h0(C,L ) − h1(C,L ) = deg L − pa(C) + 1.

This is the most common formulation of the Riemann-Roch formula.

20.4.3. Miracle. If C is a nonsingular irreducible projective complex curve, then
the corresponding complex-analytic object, a compact Riemann surface, has a no-
tion called the genus g, which is the number of holes (see Figure 20.1). Mirac-
ulously, g = pa in this case (see Exercise 23.5.H), and for this reason, we will
often write g for pa when discussing nonsingular (projective irreducible) curves,
over any field. We will discuss genus further in §20.5.3, when we will be able to
compute it in many interesting cases. (Warning: the arithmetic genus of P1

C as an
R-variety is −1!)

FIGURE 20.1. A genus 3 Riemann surface

20.4.4. Serre duality.
Another common version of Riemann-Roch involves Serre duality, which un-

like Riemann-Roch is hard.

20.4.5. Theorem (Serre duality for smooth projective varieties). — Suppose X is
a geometrically irreducible smooth k-variety, of dimension n. Then there is an invertible
sheaf K on X such that

hi(X,F ) = hn−i(X,K ⊗ F∨)

for all i ∈ Z and all coherent sheaves F .

20.4.6. This is a simpler version of a better statement, which we will prove later
((29.1.1.1) and Important Exercise 29.5.E. The dualizing sheaf K is the determinant
of the cotangent bundle ΩX/k of X, but we haven’t yet defined the cotangent bun-
dle. (We will discuss differentials, and the cotangent bundle, in Chapter 23.) This
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equality is a consequence of a perfect pairing

Hi(X,F ) × Hn−i(X,K ⊗ F∨) → Hn(X,K ) ∼= k.

We remark that smoothness can be relaxed, to the condition of being Cohen-Macaulay.

For our purposes, it suffices to note that h1(C,L ) = h0(C,K ⊗ L ∨), where
K is the (invertible) sheaf of differentials ΩX/k. Then the Riemann-Roch formula
can be rewritten as

h0(C,L ) − h0(K ⊗ L ∨) = deg L − pa(C) + 1.

If L = O(D), just as it is convenient to interpret h0(C,L ) as rational functions
with zeros and poles constrained by D, it is convenient to interpret h0(K ⊗L ∨) =
h0(K (−D)) as rational differentials with zeros and poles constrained by D (in the
opposite way).

20.4.H. EXERCISE (ASSUMING SERRE DUALITY). Suppose C is a geometrically
integral smooth curve over k.

(a) Show that h0(C,KC) is the genus g of C.
(b) Show that deg K = 2g − 2. (Hint: Riemann-Roch for L = K .)

20.4.7. Aside: a special case. If C = P1
k, Exercise 20.4.H implies that KC

∼= O(−2).
And indeed, h1(P1,O(−2)) = 1. Moreover, we also have a natural perfect pairing

H0(P1,O(n)) × H1(P1,O(−2 − n)) → k.

We can interpret this pairing as follows. If n < 0, both factors on the left are 0,
so we assume n > 0. Then H0(P1,O(n)) corresponds to homogeneous degree
n polynomials in x and y, and H1(P1,O(−2 − n)) corresponds to homogeneous
degree −2 − n Laurent polynomials in x and y so that the degrees of x and y are
both at most n − 1 (see Remark 20.3.1). You can quickly check that the dimension
of both vector spaces are n + 1. The pairing is given as follows: multiply the
polynomial by the Laurent polynomial, to obtain a Laurent polynomial of degree
−2. Read off the co-efficient of x−1y−1. (This works more generally for Pn

k ; see the
discussion after the statement of Theorem 20.1.2.)

20.4.I. EXERCISE (AMPLE DIVISORS ON A CONNECTED SMOOTH PROJECTIVE VARI-
ETY ARE CONNECTED). Suppose X is a connected smooth projective k-variety, and
D is an ample divisor. Show that D is connected. (Hint: Suppose D = V(s), where
s is a section of an ample invertible sheaf. Then V(sn) = V(s) for all n > 0, so we
may replace L with a high power of our choosing. Use the long exact sequence
for 0 → OX(−nD) → OX → OV(sn) → 0 to show that for n . 0, h0(OVsn ) = 1.

Once we know that Serre duality holds for Cohen-Macaulay projective schemes,
this result will automatically extend to these schemes when s is an effective Cartier
divisor (and with a little thought will extend to show that all ample divisors on
such schemes). On the other hand, the result is false if X is the union of two
randomly chosen 2-planes in P4 (why?), so this will imply that X is not Cohen-
Macaulay.

20.4.8. Degree of a line bundle, and degree and rank of a coherent sheaf.
Suppose C is an irreducible reduced projective curve (pure dimension 1, over

a field k). If F is a coherent sheaf on C, define the rank of F , denoted rank F , to
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be its rank at the generic point of C (see §14.7.4 for the definition of rank at a point).

20.4.J. EASY EXERCISE. Show that the rank is additive in exact sequences: if
0 → F → G → H → 0 is an exact sequence of coherent sheaves, show that
rank F − rank G + rank H = 0.

Define the degree of F by

(20.4.8.1) deg F = χ(C,F ) − (rank F ) · χ(C,OC).

If F is an invertible sheaf (or if more generally the rank is the same on each
irreducible component), we can drop the irreducibility hypothesis.

This generalizes the notion of the degree of a line bundle on a nonsingular
curve (Important Exercise 20.4.C).

20.4.K. EASY EXERCISE. Show that degree (as a function of coherent sheaves on a
fixed curve C) is additive in exact sequences.

20.4.L. EXERCISE. Show that the degree of a vector bundle is the degree of its
determinant bundle (cf. Exercise 14.5.H).

The statement (20.4.8.1) is often called Riemann-Roch for coherent sheaves (or
vector bundles) on a projective curve.

20.4.9. Extending this to proper curves.

20.4.M. EXERCISE. Suppose X is a projective curve over a field k, and F is a
coherent sheaf on C. Show that χ(L ⊗ F ) − χ(F ) is the sum over the irreducible
components Ci of C of the degree L on Cred

i times the length of F at the generic
point ηi of Ci (the length of Fηi

as an Oηi
-module). Hints: (1) First reduce to the

case where F is scheme-theoretically supported on Cred, by showing that both
sides of the alleged equality are additive in short exact sequences, and using the
filtration

0 = I rF ⊂ I r−1F ⊂ · · · ⊂ I F ⊂ F

of F , where I is the ideal sheaf cutting out Cred in C. Thus we need only consider
the case where C is reduced. (2) As L is projective, we can write L ∼= O(

∑
nipi)

where the pi are nonsingular points distinct from the associated points of Fi. Use
this avatar of L , and perhaps induction on the number of pi.

In Exercise 20.6.C, we will see that all proper curves over k are projective, so
“projective” can be replaced by “proper” in this exercise. In this guise, we will use
it when discussing intersection theory in Chapter 22.

20.4.10. ! Numerical equivalence, the Néron-Severi group, nef line bundles, and
the nef and ample cones.

The notion of a degree on a line bundle leads to important and useful notions.
Suppose X is a proper k-variety, and L is an invertible sheaf on X. If i : C ↪→
X is a one-dimensional closed subscheme of X, define the degree of L on C by
degC L := degC i∗L . If degC L = 0 for all C, we say that L is numerically
trivial.

20.4.N. EASY EXERCISE.
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(a) Show that L is numerically trivial if and only if degC L = 0 for all inte-
gral curves C in X.

(b) Show that if π : X → Y is a proper morphism, and L is a numerically
trivial invertible sheaf on Y, then π∗L is numerically trivial on X.

(c) Show that L is numerically trivial if and only if L is numerically trivial
on each of the irreducible components of X.

(d) Show that if L and L ′ are numerically trivial, then L ⊗ L ′ is numeri-
cally trivial. Show that if L and L ′ are numerically trivial, then L ⊗L ′

and L ∨ are both numerically trivial.

20.4.11. Numerical equivalence. By part (d), the numerically trivial invertible
sheaves form a subgroup of Pic X, denoted Picτ X. The resulting equivalence on
line bundles is called numerical equivalence. Two lines bundles equivalent mod-
ulo the subgroup of numerically trivial line bundles are called numerically equiv-
alent. A property of invertible sheaves stable under numerical equivalence is said
to be a numerical property. We will see that “nefness” and ampleness are numerical
properties (Definition 20.4.12 and Remark 22.3.2 respectively).

We will later define the Néron-Severi group NS(X) of X as Pic X modulo alge-
braic equivalence (Exercise 25.7.C). (We will define algebraic equivalence once we
have discussed flatness.) The highly nontrivial Néron-Severi Theorem (or The-
orem of the Base) states that NS(X) is a finitely generated group. The group
Pic X/ Picτ X is denoted N1(X). We will see (in the chapter on flatness) that it
is a quotient of NS(X), so it is also finitely generated. As the group N1(X) is
clearly abelian and torsion-free, it is finite free Z-module (by the classification of
finitely generated modules over a principal ideal domain, see §1.2). The rank of
N1(X) is called the Picard number, and is denoted ρ(X) (although we won’t have
need of this notion). For example, ρ(Pn) = 1 and ρ((P1)n) = n. We let define
N1

Q(X) := N1(X)⊗Z Q (so ρ(X) = dimQ N1
Q(X)), and call the elements of this group

Q-line bundles, for lack of any common term in the literature.

20.4.O. !! EXERCISE (FINITENESS OF PICARD NUMBER IN THE COMPLEX CASE,
ONLY FOR THOSE WITH SUFFICIENT BACKGROUND). Show (without the Néron-
Severi Theorem) that if X is a complex proper variety, then ρ(X) is finite, by inter-
preting it as a subquotient of H2(X, Z). Hint: show that the image of (L , C) under
the map H2(X, Z) × H2(X, Z) → H0(X, Z) → Z is degC L .

20.4.12. Definition. We say that an invertible sheaf L is numerically effective, or
nef if for all such C, degC L ≥ 0. Clearly nefness is a numerical property.

20.4.P. EASY EXERCISE.

(a) Show that L is nef if and only if degC L ≥ 0 for all integral curves C in
X.

(b) Show that if π : X → Y is a proper morphism, and L is a nef invertible
sheaf on Y, then π∗L is nef on X.

(c) Show that L is nef if and only if L is nef on each of the irreducible
components of X.

(d) Show that if L and L ′ are nef, then L ⊗L ′ is nef. Thus the nef elements
of Pic X form a semigroup.

(e) Show that ample invertible sheavesare nef.
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(f) Suppose n ∈ Z+. Show that L is nef if and only if L ⊗n is nef.

20.4.Q. EXERCISE. Define what it means for a Q-line bundle to be nef. Show that
the nef Q-line bundles form a closed cone in N1

Q(X). This is called the nef cone.

It is a surprising fact that whether an invertible sheaf L on X is ample depends
only on its class in N1

Q(X), i.e. on how it intersects the curves in X. Because of this
(as for any n ∈ Z+, L is ample if and only if L ⊗n is ample, see Theorem 16.3.12), it
makes sense to define when a Q-line bundle is ample. Then by Exercise 16.3.L, the
ample divisors form a cone in N1

Q(X), necessarily contained in the nef cone by Ex-
ercise 20.4.P(e). It turns out that if X is projective, the ample divisors are precisely
the interior of the nef cone. The new facts in this paragraph are a consequence of
Kleiman’s numerical criterion for ampleness, Theorem 22.3.6.

20.4.R. EXERCISE. Describe the nef cones of P2
k and P1

k ×k P1
k. (Notice in the latter

case that the two boundaries of the cone correspond to linear series contracting one
of the P1’s. This is true in general: informally speaking, linear series corresponding
to the boundaries of the cone give interesting contractions. Another example will
be given in Exercise 22.2.F.)

20.5 Hilbert polynomials, genus, and Hilbert functions

If F is a coherent sheaf on X, define the Hilbert function of F by

hF (n) := h0(X,F (n)).

The Hilbert function of X is the Hilbert function of the structure sheaf.

20.5.A. EXERCISE. Suppose p1, . . . , pm are m distinct closed points of Pn
k

. Find
the Hilbert function of the structure sheaf of the union of the pi in the following
two cases:
(a) p1, . . . , pm span a projective space of dimension m−1 (the maximum possible).
(b) p1, . . . , pm are collinear (lie on a P1).
In particular, show that the Hilbert function of 3 distinct points in P2 depends on
whether they are collinear or not, but in both cases the Hilbert function is “eventu-
ally always 3”.

The ancients were aware that the Hilbert function is “eventually polynomial”,
i.e. for large enough n, it agrees with some polynomial, called the Hilbert polyno-
mial (and denoted pF (n) or pX(n)). This polynomial contains lots of interesting
geometric information, as we will soon see. In modern language, we expect that
this “eventual polynomiality” arises because the Euler characteristic should be a
polynomial, and that for n . 0, the higher cohomology vanishes. This is indeed
the case, as we now verify.

20.5.1. Theorem. — If F is a coherent sheaf on a projective k-scheme X ↪→ Pn
k ,

χ(X,F (m)) is a polynomial of degree equal to dim Supp F . Hence by Serre vanishing
(Theorem 20.1.3 (ii)), for m . 0, h0(X,F (m)) is a polynomial of degree dim Supp F .
In particular, for m . 0, h0(X,OX(m)) is polynomial with degree = dim X.
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Here OX(m) is the restriction or pullback of OPn
k
(1). Both the degree of the 0

polynomial and the dimension of the empty set is defined to be −1. In particular,
the only coherent sheaf with Hilbert polynomial 0 is the zero-sheaf.

This argument uses the notion of associated primes of (finitely generated)
modules (over a Noetherian ring); see Theorem 6.5.4. (The resolution given by the
Hilbert Syzygy Theorem, §16.3.2, can give a shorter proof; but we haven’t proved
the Hilbert Syzygy Theorem.)

20.5.B. EASY EXERCISE. Using the results of §6.5, define the notion of associated
points of a coherent sheaf on a locally Noetherian scheme.

Proof. Define pF (m) = χ(X,F (m)). We will show that pF (m) is a polynomial of
the desired degree.

We first use Exercise 20.2.G to reduce to the case where k is algebraically
closed, and in particular infinite. (This is one of those cases where even if you
are concerned with potentially arithmetic questions over some non-algebraically
closed field like Fp, you are forced to consider the “geometric” situation where the
base field is algebraically closed.)

The coherent sheaf F has a finite number of associated points. We show a
useful fact that we will use again.

20.5.C. EXERCISE. Suppose X is a projective k-scheme with k infinite, and F is
a coherent sheaf on X. Show that if L is a very ample invertible sheaf on X, then
there is an effective divisor D on X with L ∼= O(D), and where D does not meet
the associated points of F . (Hint: show that given any finite set of points of Pn

k ,
there is a hyperplane not containing any of them.)

Thus there is a hyperplane x = 0 (x ∈ Γ(X,O(1))) missing this finite number
of points. (This is where we use the infinitude of k.)

Then the map F (−1)
×x $$ F is injective (on any affine open subset, F cor-

responds to a module, and x is not a zerodivisor on that module, as it doesn’t
vanish at any associated point of that module, see Theorem 6.5.4(c)). Thus we
have a short exact sequence

(20.5.1.1) 0 $$ F (−1) $$ F $$ G $$ 0

where G is a coherent sheaf.

20.5.D. EXERCISE. Show that Supp G = Supp F ∩ V(x). (Hint: show that
F (−1) → F is an isomorphism away from V(x), and hence G = 0 on this lo-
cus. If p ∈ V(x), show that the F (−1)|x → F |x is the 0 map, and hence F |x → G |x
is an isomorphism.)

Hence dim Supp G = dim Supp F−1 by Krull’s Principal Ideal Theorem 12.3.3
unless F = 0 (in which case we already know the result, so assume this is not the
case).

Twisting (20.5.1.1) by O(m) yields

0 $$ F (m − 1) $$ F (m) $$ G (m) $$ 0
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Euler characteristics are additive in exact sequences, from which pF (m)−pF (m−
1) = pG (m). Now pG (m) is a polynomial of degree dim Supp F − 1.

The result is then a consequence from the following elementary fact about
polynomials in one variable.

20.5.E. EXERCISE. Suppose f and g are functions on the integers, f(m + 1) −
f(m) = g(m) for all m, and g(m) is a polynomial of degree d ≥ 0. Show that f is a
polynomial of degree d + 1.

!

Definition. The Hilbert polynomial pF (m) was defined in the above proof.
If X ⊂ Pn is a projective k-scheme, define pX(m) := pOX

(m).

Example 1. pPn(m) =
(
m+n

n

)
, where we interpret this as the polynomial (m +

1) · · · (m + n)/n!.

Example 2. Suppose H is a degree d hypersurface in Pn. Then from the closed
subscheme exact sequence

0 $$ OPn(−d) $$ OPn $$ OH
$$ 0,

we have

pH(m) = pPn(m) − pPn(m − d) =

(
m + n

n

)
−

(
m + n − d

n

)
.

(Note: implicit in this argument is the fact that if i : H ↪→ Pn is the closed immer-
sion, then (i∗OH)⊗OPn(m) ∼= i∗(OH⊗i∗OPn(m)). This follows from the projection
formula, Exercise 17.3.H(b).)

20.5.F. EXERCISE. Show that the twisted cubic (in P3) has Hilbert polynomial
3m + 1. (The twisted cubic was defined in Exercise 9.2.A.)

20.5.G. EXERCISE. More generally, find the Hilbert polynomial for the dth Veronese
embedding of Pn (i.e. the closed immersion of Pn in a bigger projective space by
way of the line bundle O(d), §9.2.6).

20.5.H. EXERCISE. Suppose X ⊂ Y ⊂ Pn
k are a sequence of closed subschemes.

(a) Show that pX(m) ≤ pY(m) for m . 0. Hint: let IX/Y be the ideal sheaf
of X in Y. Consider the exact sequence

0 $$ IX/Y(m) $$ OY(m) $$ OX(m) $$ 0.

(b) If pX(m) = pY(m) for m . 0, show that X = Y. Hint: Show that if the
Hilbert polynomial of IX/Y is 0, then IX/Y must be the 0 sheaf. (Handy
trick: For m . 0, IX/Y(m) is generated by global sections and is also 0.
This of course applies with I replaced by any coherent sheaf.)

This fact will be used several times in Chapter 21.

From the Hilbert polynomial, we can extract many invariants, of which two
are particularly important. The first is the degree. The degree of a projective k-
scheme of dimension n to be leading coefficient of the Hilbert polynomial (the
coefficient of mn) times n!.
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Using the examples above, we see that the degree of Pn in itself is 1. The
degree of the twisted cubic is 3.

20.5.I. EXERCISE. Show that the degree is always an integer. Hint: by induction,
show that any polynomial in m of degree k taking on only integer values must
have coefficient of mk an integral multiple of 1/k!. Hint for this: if f(x) takes on
only integral values and is of degree k, then f(x + 1) − f(x) takes on only integral
values and is of degree k − 1.

20.5.J. EXERCISE. Show that the degree of a degree d hypersurface (Definition 9.2.2)
is d (preventing a notational crisis).

20.5.K. EXERCISE. Suppose a curve C is embedded in projective space via an
invertible sheaf of degree d (as defined in §20.4.8). In other words, this line bundle
determines a closed immersion. Show that the degree of C under this embedding
is d, preventing another notational crisis. (Hint: Riemann-Roch, Exercise 20.4.B.)

20.5.L. EXERCISE. Show that the degree of the dth Veronese embedding of Pn is
dn.

20.5.M. EXERCISE (BÉZOUT’S THEOREM, GENERALIZING EXERCISES 9.2.E AND 17.4.G).
Suppose X is a projective scheme of dimension at least 1, and H is a degree d hyper-
surface not containing any associated points of X. (For example, if X is a projective
variety, then we are just requiring H not to contain any irreducible components of
X.) Show that deg H∩X = d deg X. (As an example, we have Bézout’s theorem for
plane curves: if C and D are plane curves of degrees m and n respectively, with no
common components, then C and D meet at mn points, counted with appropriate
multiplicity.)

This is a very handy theorem! For example: if two projective plane curves of
degree m and degree n share no irreducible components, then they intersect in
mn points, counted with appropriate multiplicity. The notion of multiplicity of
intersection is just the degree of the intersection as a k-scheme.

20.5.N. EXERCISE. Classically, the degree of a complex projective variety of di-
mension n was defined as follows. We slice the variety with n generally chosen
hyperplanes. Then the intersection will be a finite number of points. The degree
is this number of points. Use Bézout’s theorem to make sense of this in a way that
agrees with our definition of degree. You will need to assume that k is infinite.

Thus the classical definition of the degree, which involved making a choice
and then showing that the result is independent of choice, has been replaced by
making a cohomological definition involving Euler characteristics. This is analo-
gous to how the degree of a line bundle was initially defined (as the degree of a
divisor, Important Exercise 20.4.C) is better defined in terms of Euler characteris-
tics (§20.4.8).

20.5.2. Revisiting an earlier example. We revisit the enlightening example of Exam-
ple 10.3.3 and §18.4.8: let k = Q, and consider the parabola x = y2. We intersect it
with the four lines, x = 1, x = 0, x = −1, and x = 2, and see that we get 2 each time
(counted with the same convention as with the last time we saw this example).
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If we intersect it with y = 2, we only get one point — but that’s because this
isn’t a projective curve, and we really should be doing this intersection on P2

k, and
in this case, the conic meets the line in two points, one of which is “at ∞”.

20.5.O. EXERCISE. Show that the degree of the d-fold Veronese embedding of
Pn is dn in a different way from Exercise 20.5.L as follows. Let vd : Pn → PN

be the Veronese embedding. To find the degree of the image, we intersect it with
n hyperplanes in PN (scheme-theoretically), and find the number of intersection
points (counted with multiplicity). But the pullback of a hyperplane in PN to Pn is
a degree d hypersurface. Perform this intersection in Pn, and use Bézout’s theorem
(Exercise 20.5.M).

20.5.3. Genus.
There is another central piece of information residing in the Hilbert polyno-

mial. Notice that pX(0) is the arithmetic genus χ(X,OX), an intrinsic invariant of
the scheme X, independent of the projective embedding.

Imagine how amazing this must have seemed to the ancients: they defined
the Hilbert function by counting how many “functions of various degrees” there
are; then they noticed that when the degree gets large, it agrees with a polynomial;
and then when they plugged 0 into the polynomial — extrapolating backwards, to
where the Hilbert function and Hilbert polynomials didn’t agree — they found a
magic invariant! Furthermore, in the case when X is a complex curve, this invari-
ant was basically the topological genus!

We can now see a large family of curves over an algebraically closed field that
is provably not P1! Note that the Hilbert polynomial of P1 is (m + 1)/1 = m + 1,
so χ(OP1) = 1. Suppose C is a degree d curve in P2. Then the Hilbert polynomial
of C is

pP2(m) − pP2(m − d) = (m + 1)(m + 2)/2 − (m − d + 1)(m − d + 2)/2.

Plugging in m = 0 gives us −(d2 − 3d)/2. Thus when d > 2, we have a curve
that cannot be isomorphic to P1! (And it is not hard to show that there exists a
nonsingular degree d curve, Exercise 13.2.J.)

Now from 0 → OP2(−d) → OP2 → OC → 0, using h1(OP2(d)) = 0, we have
that h0(C,OC) = 1. As h0 − h1 = χ, we have

(20.5.3.1) h1(C,OC) = (d − 1)(d − 2)/2.

We now revisit an interesting question we first saw in §7.5.9. If k is an alge-
braically closed field, is every finitely generated transcendence degree 1 extension
of k isomorphic to k(x)? In that section, we found ad hoc (but admittedly beauti-
ful) examples showing that the answer is “no”. But we now have a better answer.
The question initially looks like an algebraic question, but we now recognize it as a
fundamentally geometric one. There is an integer-valued cohomological invariant
of such field extensions that is has good geometric meaning: the genus.

Equation (20.5.3.1) yields examples of curves of genus 0, 1, 3, 6, 10, . . . (corresponding
to degree 1 or 2, 3, 4, 5, . . . ). This begs some questions, such as: are there curves of
other genera? (We will see soon, in §21.4.5, that the answer is yes.) Are there other
genus 0 curves? (Not if k is algebraically closed, but sometimes yes otherwise —
consider x2+y2+z2 = 0 in P2

R, which has no R-points and hence is not isomorphic
to P1

R — we will discuss this more in §21.3.) Do we have all the curves of genus 3?
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(Almost all, but not quite. We will see more in §21.6.) Do we have all the curves of
genus 6? (We are missing “most of them”.)

Caution: The Euler characteristic of the structure sheaf doesn’t distinguish be-
tween isomorphism classes of projective schemes, nonsingular, over algebraically
closed fields. For example, P2 and P1 × P1 both have Euler characteristic 1 (see
Theorem 20.1.2 and Exercise 20.3.E), but are not isomorphic — Pic P2 ∼= Z (§15.2.6)
while Pic P1 × P1 ∼= Z ⊕ Z (Exercise 15.2.N).

20.5.4. Complete intersections.
We define a complete intersection in Pn inductively as follows. Pn is a com-

plete intersection in itself. A closed subscheme Xr ↪→ Pn of dimension r (with
r < n) is a complete intersection if there is a complete intersection Xr+1, and Xr is
an effective Cartier divisor in class OXr+1

(d).

20.5.P. EXERCISE. Show that if X is a complete intersection of dimension r in Pn,
then Hi(X,OX(m)) = 0 for all 0 < i < r and all m. Show that if r > 0, then
H0(Pn,O(m)) → H0(X,O(m)) is surjective. (Hint: long exact sequences.)

Now Xr is the divisor of a section of OXr+1
(m) for some m. But this section is

the restriction of a section of O(m) on Pn. Hence Xr is the scheme-theoretic inter-
section of Xr+1 with a hypersurface. Thus inductively Xr is the scheme-theoretic
intersection of n − r hypersurfaces. (By Bézout’s theorem, Exercise 20.5.M, deg Xr

is the product of the degree of the defining hypersurfaces.)

20.5.Q. EXERCISE (POSITIVE-DIMENSIONAL COMPLETE INTERSECTIONS ARE CON-
NECTED). Show that complete intersections of positive dimension are connected.
(Hint: show that h0(X,OX) = 1.) For experts: this argument will even show that
they are geometrically connected (§10.4.2), using Exercise 20.1.B.

20.5.R. EXERCISE. Find the genus of the complete intersection of 2 quadrics in P3
k.

20.5.S. EXERCISE. More generally, find the genus of the complete intersection of a
degree m surface with a degree n surface in P3

k. (If m = 2 and n = 3, you should
get genus 4. We will see in §21.7 that in some sense most genus 4 curves arise in
this way. You might worry about whether there are any nonsingular curves of this
form. You can check this by hand, but Bertini’s Theorem 26.5.2 will save us this
trouble.)

20.5.T. EXERCISE. Show that the rational normal curve of degree d in Pd is not a
complete intersection if d > 2. (Hint: If it were the complete intersection of d − 1
hypersurfaces, what would the degree of the hypersurfaces be? Why could none
of the degrees be 1?)

20.5.U. EXERCISE. Show that the union of two distinct planes in P4 is not a com-
plete intersection. Hint: it is connected, but you can slice with another plane and
get something not connected (see Exercise 20.5.Q).

This is another important scheme in algebraic geometry that is an example of
many sorts of behavior. We will see it again!
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20.6 ! Serre’s cohomological characterization of ampleness

Theorem 16.3.12 gave a number of characterizations of ampleness, in terms of
projective geometry, global generation, and the Zariski topology. Here is another
characterization, this time cohomological, under Noetherian hypotheses. Because
(somewhat surprisingly) we won’t use this result much (and mainly the fact that
all proper curves over k are projective, Exercise 20.6.C), this section is starred.

20.6.1. Theorem (Serre’s cohomological criterion for ampleness). — Suppose A
is a Noetherian ring, X is a proper A-scheme, and L is an invertible sheaf on X. Then the
following are equivalent.

(a-c) The invertible sheaf L is ample on X (over A).
(e) For all coherent sheaves F on X, there is an n0 such that for n ≥ n0, Hi(X,F⊗

L ⊗n) = 0 for all i > 0.

The label (a-c) is in intended to reflect the statement of Theorem 16.3.12. We
avoid the label (d) because it appeared in Theorem 16.3.16. Before getting to the
proof, we motivate this result by giving some applications. (As a warm-up, you
can give a second solution to Exercise 17.3.I in the Noetherian case, using the affine-
ness of f to show that Hi(Y,F ⊗ L ⊗m) = Hi(X, f∗F ⊗ L ⊗m).)

20.6.A. EXERCISE. Suppose X is a proper A-scheme, and L is an invertible sheaf
on X. Show that L is ample on X if and only if L |Xred is ample on Xred. Hint: for
the “only if” direction, use Exercise 17.3.I. For the “if” direction, let I be the ideal
sheaf cutting out the closed subscheme Xred in X. Filter F by powers of I :

0 = I rF ⊂ I r−1F ⊂ · · · ⊂ I F ⊂ F .

(Essentially the same filtration appeared in Exercise 20.4.M, for similar reasons.)
Show that each quotient I nF/I n−1F , twisted by a high enough power of L ,
has no higher cohomology. Use descending induction on n to show each part
I nF of the filtration (and hence in particular F ) has this property as well.

20.6.B. EXERCISE. Suppose X is a proper A-scheme, and L is an invertible sheaf
on X. Show that L is ample on X if and only if L is ample on each component.
Hint: follow the outline of the solution to the previous exercise, taking instead
I as the ideal sheaf of one component. Perhaps first reduce to the case where
X = Xred.

20.6.C. EXERCISE. Show that every proper curve over a field k is projective as
follows. Recall that every nonsingular integral proper curve is projective (Exer-
cise 18.4.A). Show that every reduced integral proper curve is projective. (Hint:
Exercise 17.3.I.) Show that on any reduced integral proper curve C, you can find a
very ample divisor supported only of nonsingular points of C. Show that every re-
duced proper curve is projective. (Hint: Exercise 20.6.B.) Show that every proper
curve C is projective. (Hint: Exercise 20.6.A. To apply it, you will have to find a
line bundle on C that you will show is ample.)

20.6.D. EXERCISE. (In Exercise 21.2.E, we will show that on a projective nonsingu-
lar integral curve, an invertible sheaf is ample if and only if it has positive degree.
Use this fact in this exercise. There will be no logical circularity.) Show that a line
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bundle on a projective curve is ample if and only if it has positive degree on each
component.

20.6.2. Very ample versus ample. The previous exercises don’t work with “ample”
replaced by “very ample”, which shows again how the notion of ampleness is
better-behaved than very ampleness.

20.6.3. Proof of Theorem 20.6.1. For the fact that (a-c) implies (e), use the fact that
L ⊗N is very ample for some N (Theorem 16.3.12(a)), and apply Serre vanishing
(Theorem 20.1.3(ii)) to F , F ⊗ L , . . . , and F ⊗ L ⊗(N−1).

So we now assume (e), and show that L is ample by criterion (b) of Theo-
rem 16.3.12: we will show that for any coherent sheaf F on X, F⊗L ⊗n is globally
generated for n . 0.

We begin with a special case: we will show that L ⊗n is globally generated
(i.e. base-point-free) for n . 0. To do this, it suffices to show that every closed
point p has a neighborhood U so that there exists some Np so that n ≥ Np, L ⊗n

is globally generated for all points of Up. (Reason: by quasicompactness, every
closed subset of X contains a closed point, by Exercise 6.1.E. So as p varies over
the closed points of X, these Up cover X. By quasicompactness again, we can cover
X by a finite number of these Up. Let N be the maximum of the corresponding Np.
Then for n ≥ N, L ⊗n is globally generated in each of these Up, and hence on all
of X.)

Let p be a closed point of X. For all n, mp⊗L ⊗n is coherent (by our Noetherian
hypotheses). By (e), there exists some n0 so that for n ≥ n0, H1(X,mp ⊗L ⊗n) = 0.
By the long exact sequence arising from the closed subscheme exact sequence

0 → mp ⊗ L ⊗n → L ⊗n → L ⊗n|p → 0,

we have that L ⊗n is globally generated at p for n ≥ n0. By Exercise 16.3.C(b),
there is an open neighborhood V0 of p such that L ⊗n0 is globally generated at all
points of V0. Thus L ⊗kn0 is globally generated at all points of V0 for all positive
integers k (using Easy Exercise 16.3.B). For each i ∈ {1, . . . , n0 −1}, there is an open
neighborhood Vi of p such that L ⊗(n0+i) is globally generated at all points of Vi

(again by Exercise 16.3.C(b)). We may take each Vi to be contained in V0. By Easy
Exercise 16.3.B, L ⊗(kn0+n0+i) is globally generated at every point of Vi (as this is
the case for L ⊗kn0 and L ⊗(n0+i)). Thus in the open neighborhood Up := ∩n−1

i=0 Vi,
L ⊗n is globally generated for n ≥ Np := 2n0.

We have now shown that there exists some N such that for n ≥ N, L ⊗n is
globally generated. Now suppose F is a coherent sheaf. To conclude the proof,
we will show that F ⊗L ⊗n is globally generated for n . 0. This argument has a
similar flavor to what we have done so far, so we give it as an exercise.

20.6.E. EXERCISE. Suppose p is a closed point of X.

(a) Show that for n . 0, F ⊗ L ⊗n is globally generated at p.
(b) Show that there exists an open neighborhood Up of p such that for n . 0,

F ⊗ L ⊗n is globally generated at every point of Up. Caution: while it
is true that by Exercise 16.3.C(b), for each n . 0, there is some neighbor-
hood Vn of p such that F ⊗ L ⊗n is globally generated there, it need not
be true that

(20.6.3.1) ∩n/0 Vn
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is an open set. You may need to use the fact that L ⊗n is globally gener-
ated for n ≥ N to replace (20.6.3.1) by a finite intersection.

20.6.F. EXERCISE. Conclude the proof of Theorem 20.6.1 by showing that F⊗L ⊗n

is globally generated for n . 0. !

20.6.4. Aside: Serre’s cohomological characterization of affineness. Serre gave a charac-
terization of affineness similar in flavor to Theorem 20.6.1. Because we won’t use
it, we omit the proof. (One is given in [Ha, Thm. III.3.7].)

20.6.5. Theorem (Serre’s cohomological characterization of affineness). — Sup-
pose X is a Noetherian separated scheme. Then the following are equivalent.

(a) The scheme X is affine.
(b) For any quasicoherent sheaf F on X, Hi(X,F ) = 0 for all i > 0.
(c) For any coherent sheaf of ideals I on X, H1(X,I ) = 0.

Clearly (a) implies (b) implies (c) (the former from Property (vi) of §20.1) with-
out any Noetherian assumptions, so the real substance is in the implication from
(c) to (a).

Serre proved an analogous result in complex analytic geometry: Stein spaces
are also characterized by the vanishing of cohomology of coherent sheaves.

20.7 Higher direct image sheaves

Cohomology groups were defined for X → Spec A where the structure mor-
phism is quasicompact and separated; for any quasicoherent F on X, we defined
Hi(X,F ). We will now define a “relative” version of this notion, for quasicom-
pact and separated morphisms π : X → Y: for any quasicoherent F on X, we
will define Riπ∗F , a quasicoherent sheaf on Y. (Now would be a good time to do
Exercise 2.6.H, the FHHF Theorem, if you haven’t done it before.)

We have many motivations for doing this. In no particular order:

(1) It “globalizes” what we did before with cohomology.
(2) If 0 → F → G → H → 0 is a short exact sequence of quasicoherent

sheaves on X, then we know that 0 → π∗F → π∗G → π∗H is exact, and
higher pushforwards will extend this to a long exact sequence.

(3) We will later see that this will show how cohomology groups vary in fam-
ilies, especially in “nice” situations. Intuitively, if we have a nice family
of varieties, and a family of sheaves on them, we could hope that the co-
homology varies nicely in families, and in fact in “nice” situations, this
is true. (As always, “nice” usually means “flat”, whatever that means.
We will see that Euler characteristics are locally constant in proper flat
families in §25.7, and the Cohomology and Base Change Theorem 25.8.5
will show that in particularly good situations, dimensions of cohomology
groups are constant.)

All of the important properties of cohomology described in §20.1 will carry over
to this more general situation. Best of all, there will be no extra work required.
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In the notation Rjf∗F for higher pushforward sheaves, the “R” stands for
“right derived functor”, and corresponds to the fact that we get a long exact se-
quence in cohomology extending to the right (from the 0th terms). In Chapter 24,
we will see that in good circumstances, if we have a left-exact functor, there is a
long exact sequence going off to the right, in terms of right derived functors. Sim-
ilarly, if we have a right-exact functor (e.g. if M is an A-module, then ⊗AM is a
right-exact functor from the category of A-modules to itself), there may be a long
exact sequence going off to the left, in terms of left derived functors.

Suppose π : X → Y, and F is a quasicoherent sheaf on X. For each Spec A ⊂ Y,
we have A-modules Hi(π−1(Spec A),F ). We will show that these patch together
to form a quasicoherent sheaf. We need check only one fact: that this behaves well
with respect to taking distinguished open sets. In other words, we must check
that for each f ∈ A, the natural map Hi(π−1(Spec A),F ) → Hi(π−1(Spec A),F )f

(induced by the map of spaces in the opposite direction — Hi is contravariant
in the space) is precisely the localization ⊗AAf. But this can be verified easily: let
{Ui} be an affine cover of π−1(Spec A). We can compute Hi(π−1(Spec A),F ) using
the Čech complex (20.2.1.1). But this induces a cover Spec Af in a natural way: If
Ui = Spec Ai is an affine open for Spec A, we define U ′

i = Spec(Ai)f. The resulting
Čech complex for Spec Af is the localization of the Čech complex for Spec A. As
taking cohomology of a complex commutes with localization (as discussed in the
FHHF Theorem, Exercise 2.6.H), we have defined a quasicoherent sheaf on Y by
the characterization of quasicoherent sheaves in §14.3.3.

Define the ith higher direct image sheaf or the ith (higher) pushforward
sheaf to be this quasicoherent sheaf.

20.7.1. Theorem. —

(a) Riπ∗ is a covariant functor from the category of quasicoherent sheaves on X to
the category of quasicoherent sheaves on Y.

(b) We can identify R0π∗ with π∗F .
(c) (the long exact sequence of higher pushforward sheaves) A short exact

sequence 0 → F → G → H → 0 of sheaves on X induces a long exact
sequence

0 $$ R0π∗F $$ R0π∗G $$ R0π∗H $$

R1π∗F $$ R1π∗G $$ R1π∗H $$ · · ·

of sheaves on Y.
(d) (projective pushforwards of coherent are coherent: Grothendieck’s coherence the-

orem for projective morphisms) If π is a projective morphism and OY is coherent
on Y (this hypothesis is automatic for Y locally Noetherian), and F is a coherent
sheaf on X, then for all i, Riπ∗F is a coherent sheaf on Y.

Proof. Because it suffices to check each of these results on affine open sets, they all
follow from the analogous statements in Čech cohomology (§20.1). !

The following result is handy, and essentially immediate from our definition.
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20.7.A. EASY EXERCISE. Show that if π is affine, then for i > 0, Riπ∗F = 0.

This is in fact a characterization of affineness. Serre’s criterion for affineness
states that if f is quasicompact and separated, then f is affine if and only if f∗ is an
exact functor from the category of quasicoherent sheaves on X to the category of
quasicoherent sheaves on Y. We won’t use this fact.

20.7.2. How higher pushforwards behave with respect to base change.

20.7.B. EXERCISE (HIGHER PUSHFORWARDS AND BASE CHANGE). (a) Suppose
f : Z → Y is any morphism, and π : X → Y as usual is quasicompact and separated.
Suppose F is a quasicoherent sheaf on X. Let

(20.7.2.1) W
f ′

$$

π ′

%%

X

π

%%
Z

f $$ Y

be a fiber diagram. Describe a natural morphism f∗(Riπ∗F ) → Riπ ′
∗(f

′)∗F of
sheaves on Z. (Hint: the FHHF Theorem, Exercise 2.6.H.)
(b) (cohomology commutes with affine flat base change) If f : Z → Y is an affine
morphism, and for a cover Spec Ai of Y, where f−1(Spec Ai) = Spec Bi, Bi is a flat
A-algebra (§2.6.10: ⊗ABi is exact), and the diagram in (a) is a fiber diagram, show
that the natural morphism of (a) is an isomorphism. (Exercise 20.2.G was a special
case of this exercise. You can likely generalize this to non-affine morphisms — the
Cohomology and Flat Base Change Theorem 25.2.8 — but we wait until Chapter 25
to discuss flatness at length.)

20.7.C. EXERCISE (CF. EXERCISE 17.3.G). Prove Exercise 20.7.B(a) without the
hypothesis that (20.7.2.1) is a fiber diagram, but adding the requirement that π ′ is
quasicompact and separated (just so our definition of Riπ ′

∗ applies). In the course
of the proof, you will see a map arising in the Leray spectral sequence. (Hint: use
Exercise 20.7.B(a).)

A useful special case of Exercise 20.7.B(a) is the following.

20.7.D. EXERCISE. If y ∈ Y, describe a natural morphism Riπ∗i(Y,π∗F ) ⊗ κ(y) →
Hi(π−1(y),F |π−1(y)). (Hint: the FHHF Theorem, Exercise 2.6.H.)

Thus the fiber of the pushforward may not be the cohomology of the fiber, but
at least it always maps to it. We will later see that in good situations this map is
an isomorphism, and thus the higher direct image sheaf indeed “patches together”
the cohomology on fibers (the Cohomology and Base Change Theorem 25.8.5).

20.7.E. EXERCISE (PROJECTION FORMULA, GENERALIZING EXERCISE 17.3.H). Sup-
pose π : X → Y is quasicompact and separated, and E , F are quasicoherent
sheaves on X and Y respectively.
(a) Describe a natural morphism

(Riπ∗E ) ⊗ F → Riπ∗(E ⊗ π∗F ).

(Hint: the FHHF Theorem, Exercise 2.6.H.)
(b) If F is locally free, show that this natural morphism is an isomorphism.
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The following fact uses the same trick as Theorem 20.1.8 and Exercise 20.1.F.

20.7.3. Theorem (relative dimensional vanishing). — If f : X → Y is a projective
morphism and Y is Noetherian (or more generally OY is coherent over itself), then the
higher pushforwards vanish in degree higher than the maximum dimension of the fibers.

This is false without the projective hypothesis, as shown by the following exer-
cise. In particular, you might hope that just as dimensional vanishing generalized
from projective varieties to quasiprojective varieties (§20.2.7) that relative dimen-
sional vanishing would generalize from projective morphisms to quasiprojective
morphisms, but this is not the case.

20.7.F. EXERCISE. Consider the open immersion π : An − {0} → An. By direct
calculation, show that Rn−1f∗OAn−{0} != 0. (This calculation will remind you of
the proof of the Hn part of Theorem 20.1.2, see also Remark 20.3.1.)

Proof of Theorem 20.7.3. Let m be the maximum dimension of all the fibers.
The question is local on Y, so we will show that the result holds near a point p

of Y. We may assume that Y is affine, and hence that X ↪→ Pn
Y .

Let k be the residue field at p. Then f−1(p) is a projective k-scheme of di-
mension at most m. By Exercise 12.3.C we can find affine open sets D(f1), . . . ,
D(fm+1) that cover f−1(p). In other words, the intersection of V(fi) does not inter-
sect f−1(p).

If Y = Spec A and p = [p] (so k = Ap/pAp), then arbitrarily lift each fi from
an element of k[x0, . . . , xn] to an element f ′i of Ap[x0, . . . , xn]. Let F be the prod-
uct of the denominators of the f ′i; note that F /∈ p, i.e. p = [p] ∈ D(F). Then
f ′i ∈ AF[x0, . . . , xn]. The intersection of their zero loci ∩V(f ′i) ⊂ Pn

AF
is a closed

subscheme of Pn
AF

. Intersect it with X to get another closed subscheme of Pn
AF

.
Take its image under f; as projective morphisms are closed, we get a closed subset
of D(F) = Spec AF. But this closed subset does not include p; hence we can find
an affine neighborhood Spec B of p in Y missing the image. But if f ′′i are the re-
strictions of f ′i to B[x0, . . . , xn], then D(f ′′i ) cover f−1(Spec B); in other words, over
f−1(Spec B) is covered by m + 1 affine open sets, so by the affine-cover vanishing
theorem, its cohomology vanishes in degree at least m + 1. But the higher-direct
image sheaf is computed using these cohomology groups, hence the higher direct
image sheaf Rif∗F vanishes on Spec B too. !

20.7.G. EXERCISE (RELATIVE SERRE VANISHING, CF. THEOREM 20.1.3(II)). Sup-
pose π : X → Y is a proper morphism of Noetherian schemes, and L is a π-
ample invertible sheaf on X. Show that for any coherent sheaf F on X, for m . 0,
Riπ∗F ⊗ L ⊗m = 0 for all i > 0.

20.8 ! “Proper pushforwards of coherents are coherent”, and
Chow’s lemma

The proofs in this section are starred because the results aren’t absolutely nec-
essary in the rest of our discussions, and may not be worth reading right now.
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But just knowing the statement Grothendieck’s Coherence Theorem 20.8.1, (gen-
eralizing Theorem 20.7.1(d)) will allow you to immediately translate many of our
arguments about projective schemes and morphisms to proper schemes and mor-
phisms, and Chow’s Lemma is a multi-purpose tool to extend results from the
projective situation to the proper situation in general.

20.8.1. Grothendieck’s Coherence Theorem. — Suppose π : X → Y is a proper
morphism of locally Noetherian schemes. Then for any coherent sheaf F on X, Riπ∗F is
coherent on Y.

The special case of i = 0 has already been mentioned a number of times.

20.8.A. EXERCISE. Recall that finite morphisms are affine (by definition) and
proper. Use Theorem 20.8.1 to show that if π : X → Y is proper and affine and Y
is Noetherian, then π is finite. (Hint: mimic the proof of the weaker result where
proper is replaced by projective, Corollary 20.1.7.)

The proof of Theorem 20.8.1 requires two sophisticated facts. The first is the
Leray Spectral Sequence. Suppose f : X → Y and g : Y → Z are quasicompact
separated morphisms. Then for any quasicoherent sheaf F on X, there is a spectral
sequence with E2 term given by Rpg∗(R

qf∗F ) abutting to Rp+q(g◦ f)∗F . Because
this would be a reasonable (but hard) exercise in the case we need it (where Z
is affine), we will feel comfortable using it. But because we will later prove it
in Exercise 24.4.E (which applies in this situation because of Exercise 24.5.H), we
won’t prove it now.

We will also need Chow’s Lemma.

20.8.2. Chow’s Lemma. — Suppose π : X → Spec A is a proper morphism, and A is
Noetherian. Then there exists ρ : X ′ → X which is surjective and projective, such that
π ◦ ρ is also projective, and such that ρ is an isomorphism on a dense open subset of X.

Many generalizations of results from projective to proper situations go through
Chow’s Lemma. We will prove this version, and state other versions of Chow’s
Lemma, in §20.8.3. Assuming these two facts, we now prove Theorem 20.8.1 in a
series of exercises.
! Proof. The question is local on Y, so we may assume Y is affine, say Y = Spec A.
We work by induction on dim Supp F , with the base case when dim Supp F = −1
(i.e. Supp F = ∅, i.e. F = 0), which is obvious. So fix F , and assume the result is
known for all coherent sheaves with support of smaller dimension.

20.8.B. EXERCISE. Show that we may assume that Supp F = X. (Hint: the idea is
to replace X by the scheme-theoretic support of F , the smallest closed subscheme
of X on which Supp F “lives”. More precisely, it is the smallest closed subscheme
i : W ↪→ X such that there is a coherent sheaf F ′ on W, with F ∼= i∗F ′. Show that
this notion makes sense, using the ideas of §9.3, by defining it on each affine open
subset.)

We now invoke Chow’s Lemma to construct a projective morphism ρ : X ′ → X
that is an isomorphism on a dense open subset U of X (so dim X \ U < dim X), and
such that π ◦ ρ : X ′ → Spec A is projective.

Then G = ρ∗F is a coherent sheaf on X ′, ρ∗F is a coherent sheaf on X (by the
projective case, Theorem 20.7.1(d)) and the adjunction map F → ρ∗G = ρ∗ρ

∗F is
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an isomorphism on U. The kernel E and cokernel H are coherent sheaves on X
that are supported in smaller dimension:

0 → E → F → ρ∗G → H → 0.

20.8.C. EXERCISE. By the inductive hypothesis, the higher pushforwards of E
and H are coherent. Show that if all the higher pushforwards of ρ∗G are coherent,
then the higher pushforwards of F are coherent.

So we are reduced to showing that the higher pushforwards of ρ∗G are coher-
ent for any coherent G on X ′.

The Leray spectral sequence for X ′ ρ $$ X
π $$ Spec A has E2 term given

by Rpπ∗(R
qρ∗G ) abutting to Rp+q(π ◦ ρ)∗G . Now Rqρ∗G is coherent by Theo-

rem 20.7.1(d). Furthermore, as ρ is an isomorphism on a dense open subset U of
X, Rqρ∗G is zero on U, and is thus supported on the complement of U, whose di-
mension is less than that of X. Hence by our inductive hypothesis, Rpf∗(R

qφ∗G ′)
is coherent for all p, and all q ≥ 1. The only possibly noncoherent sheaves on the
E2 page are in the row q = 0 — precisely the sheaves we are interested in. Also,
by Theorem 20.7.1(d) applied to π ◦ ρ, Rp+q(π ◦ ρ)∗F is coherent.

20.8.D. EXERCISE. Show that Ep,q
n is always coherent for any n ≥ 2, q > 0. Show

that Ep,0
n is coherent for a given n ≥ 2 if and only if Ep,0

2 is coherent. Show that

Ep,q
∞ is coherent, and hence that Ep,0

2 is coherent, thereby completing the proof of
Theorem 20.8.1.

!

20.8.3. !! Proof (and other statements) of Chow’s Lemma.
We use the properness hypothesis on X → S through each of its three con-

stituent parts: finite type, separated, universally closed. The parts using separat-
edness are particularly tricky.

As X is Noetherian, it has finitely many irreducible components. Cover X with
affine open sets U1, . . . , Un. We may assume that each Ui meets each irreducible
component. (If some Ui does not meet an irreducible component Z, then take any
affine open subset Z ′ of Z − X − Z, and replace Ui by Ui ∪ Z ′.) Then U := ∩iUi is
a dense open subset of X. As each Ui is finite type over A, we can choose a closed
immersion Ui ⊂ Ani

A . Let Ui be the (scheme-theoretic) closure of Ui in Pn−i
A .

Now we have the diagonal morphism U → X ×A

∏
Ui (where the product is

over Spec A), which is a locally closed immersion (the composition of the closed
immersion U ↪→ Un with the open immersion Un ↪→ X ×A

∏
Ui). Let X ′ be the

scheme-theoretic closure of U in X ×A

∏
Ui. Let ρ be the composed morphism
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X → X ×A

∏
Ui → X, so we have a diagram

X ′

ρ

666
66

66
66

66
66

" #

cl. imm.
%%

X ×A

∏
Ui

proj.
$$

proper

%%

X

proper

%%∏
Ui

proj.

%%

proj.
$$ S

Spec A

(where the square is Cartesian). The morphism ρ is projective (as it is the composi-
tion of two projective morphisms and X is quasicompact, Exercise 18.3.B). We will
conclude the argument by showing that ρ−1(U) = U (or more precisely, ρ is an
isomorphism above U), and that X ′ →

∏
Ui is a closed immersion (from which

the composition

X →
∏

Ui → Spec A

is projective).

20.8.E. EXERCISE. Suppose T0,, . . . , Tn are separated schemes over A with isomor-
phic open sets, which we sloppily call V in each case. Then V is a locally closed
subscheme of T0 × · · · × Tn. Let V be the closure of this locally closed subscheme.
Show that

V ∼= V ∩ (V ×A T1 ×A · · ·×A Tn)

= V ∩ (T0 ×A V ×A T2 ×A · · ·×A Tn)

= · · ·
= V ∩ (T0 ×A · · ·×A Tn−1 ×A V).

(Hint for the first isomorphism: the graph of the morphism V → T1×A · · ·×A Tn is
a closed immersion, as T1 ×A · · ·×A Tn is separated over A, by Proposition 11.1.18.
Thus the closure of V in V ×A T1 ×A · · · ×A Tn is V itself. Finally, the scheme-
theoretic closure can be computed locally, essentially by Theorem 9.3.4.)

20.8.F. EXERCISE. Using (the idea behind) the previous exercise, show that ρ−1(U) =
U.

It remains to show that X ′ →
∏

Ui is a closed immersion. Now X ′ →
∏

Ui

is closed (it is the composition of two closed maps), so it suffices to show that
X ′ →

∏
Ui is a locally closed immersion.

20.8.G. EXERCISE. Let Ai be the closure of U in

Bi := X ×A U1 ×A · · ·×A Ui ×A · · ·Un

(only the ith term is missing the bar), and let Ci be the closure of U in

Di := U1 ×A · · ·×A Ui ×A · · ·Un.
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Show that there is an isomorphism Ai → Ci induced by the projection Bi → Di.
Hint: note that the section Di → Bi of the projection Bi → Di, given informally by
(t1, . . . , tn) (→ (ti, t1, . . . , tn), is a closed immersion, as it can be interpreted as the
graph of a map to a separated scheme (over A). So U can be interpreted as a locally
closed subscheme of Di, which in turn can be interpreted as a closed subscheme
of Bi. Thus the closure of U in Di may be identified with its closure in Bi.

As the Ui cover X, the ρ−1(Ui) cover X. But ρ−1(Ui) = Ai (closure can be be
computed locally — the closure of U in Bi is the intersection of Bi with the closure
X of U in X ×A U1 ×A · · ·Un).

Hence over each Ui, we get a closed immersion of Ai ↪→ Di, and thus X ′ →∏
Ui is a locally closed immersion as desired. !

20.8.4. Other versions of Chow’s Lemma. We won’t use these versions, but their
proofs are similar to what we have already shown.

20.8.H. EXERCISE. By suitably crossing out lines in the proof above, weaken the
hypothesis “X → Spec A proper” to “X → Spec A finite type and separated”, at
the expense of weakening the conclusion “π ◦ ρ is projective” to “π ◦ ρ is quasipro-
jective”.

20.8.I. EXERCISE. Prove the generalization where Spec A is replaced by an arbi-
trary Noetherian scheme.

I intend to add other versions here later. If you have favorites (ideally ones you have
used), please feel free to nominate them!





CHAPTER 21

Application: Curves

We now use what we have developed to study something explicit — curves.
Throughout this chapter, we will assume that all curves are projective, geometri-
cally integral, nonsingular curves over a field k. We will sometimes add the hy-
pothesis that k is algebraically closed. Most people are happy with working over
algebraically closed fields, and those people should ignore the adverb “geometri-
cally”.

We certainly don’t need the massive machinery we have developed in order to
understand curves, but with the perspective we have gained, the development is
quite clean. The key ingredients we will need are as follows. We use a criterion for
a morphism to be a closed immersion, that we prove in §21.1. We use the “black
box” of Serre duality (to be proved in Chapter 29). In §21.2, we use this background
to observe a very few useful facts, which we will use repeatedly. Finally, in the
course of applying them to understand curves of various genera, we develop the
theory of hyperelliptic curves in a hands-on way (§21.4), in particular proving a
special case of the Riemann-Hurwitz formula.

If you are jumping into this chapter without reading much beforehand, you should
skip §21.1 (taking Theorem 21.1.1 as a black box). Depending on your background, you
may want to skip §21.2 as well (taking the crucial observations as a black box).

21.1 A criterion for a morphism to be a closed immersion

We will repeatedly use a criterion for when a morphism is a closed immersion,
which is not special to curves. This is the hardest fact proved in this chapter. Before
stating it, we recall some facts about closed immersions. Suppose f : X → Y is a
closed immersion. Then f is projective, and it is injective on points. This is not
enough to ensure that it is a closed immersion, as the example of the normalization
of the cusp shows (Figure 10.3). Another example is the following.

21.1.A. EXERCISE (FROBENIUS). Suppose char k = p, and π is the map π : A1
k →

A1
k given by x (→ xp. Show that π is a bijection on points, and even induces an

isomorphism of residue fields on closed points, yet is not a closed immersion.

The additional information you need is that the tangent map is an isomor-
phism at all closed points.

21.1.B. EXERCISE. Show (directly, not invoking Theorem 21.1.1) that in the two
examples described above (the normalization of a cusp and the Frobenius mor-
phism), the tangent map is not an isomorphism at all closed points.

447



448 Math 216: Foundations of Algebraic Geometry

21.1.1. Theorem. — Suppose k = k, and f : X → Y is a projective morphism of finite-
type k-schemes that is injective on closed points and injective on tangent vectors at closed
points. Then f is a closed immersion.

Remark: “injective on closed points and tangent vectors at closed points” means
that f is unramified (under these hypotheses). (We will defined unramified in
§23.4.5; in general unramified morphisms need not be injective.)

The example Spec C → Spec R shows that we need the hypothesis that k
is algebraically closed in Theorem 21.1.1. Those allergic to algebraically closed
fields should still pay attention, as we will use this to prove things about curves
over k where k is not necessarily algebraically closed (see also Exercises 10.2.K
and 21.1.E).

We need the hypothesis that the morphism be projective, as shown by the
example of Figure 21.1. It is the normalization of the node, except we erase one of
the preimages of the node. We map A1 to the plane, so that its image is a curve
with one node. We then consider the morphism we get by discarding one of the
preimages of the node. Then this morphism is an injection on points, and is also
injective on tangent vectors, but it is not a closed immersion. (In the world of
differential geometry, this fails to be an embedding because the map doesn’t give
a homeomorphism onto its image.)

FIGURE 21.1. We need the projective hypothesis in Theorem 21.1.1

Theorem 21.1.1 appears to be fundamentally a statement about varieties, but
it isn’t. We will reduce it to the following result.

21.1.2. Theorem. — Suppose f : X → Y is a finite morphism of Noetherian schemes
whose degree at every point of Y (§14.7.5) is 0 or 1. Then f is a closed immersion.

Once we know the meaning of “unramified”, this will translate to: “unrami-
fied + finite = closed immersion for Noetherian schemes”.

21.1.C. EXERCISE. Suppose f : X → Y is a finite morphism whose degree at every
point of Y is 0 or 1. Show that f is injective on points (easy). If x ∈ X is any point,
show that f induces an isomorphism of residue fields κ(f(x)) → κ(x). Show that f
induces an injection of tangent spaces. Thus key hypotheses of Theorem 21.1.1 are
implicitly in the hypotheses of Theorem 21.1.2.
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21.1.3. Reduction of Theorem 21.1.1 to Theorem 21.1.2. The property of being a closed
immersion is local on the base, so we may assume that Y is affine, say Spec B.

I next claim that f has finite fibers, not just finite fibers above closed points: the
fiber dimension for projective morphisms is upper semicontinuous (Exercise 20.1.F),
so the locus where the fiber dimension is at least 1 is a closed subset, so if it is non-
empty, it must contain a closed point of Y. Thus the fiber over any point is a
dimension 0 finite type scheme over that point, hence a finite set.

Hence f is a projective morphism with finite fibers, thus finite by Corollary 20.1.8.
But the degree of a finite morphism is upper semicontinuous, (§14.7.5), and is

at most 1 at closed points of Y, hence is at most 1 at all points.

21.1.4. Proof of Theorem 21.1.2. Reduction to Y affine. The problem is local on Y, so
we may assume Y is affine, say Y = Spec B. Thus X is affine too, say Spec A, and f
corresponds to a ring morphism B → A. We wish to show that this is a surjection
of rings, or (equivalently) of B-modules.

Reduction to Y local. We will how that for any maximal ideal n of B, Bn → An is
a surjection of Bn-modules. (This implies that B → A is a surjection. Here is why:
if K is the cokernel, so B → A → K → 0, then we wish to show that K = 0. Now
A is a finitely generated B-module, so K is as well, being the image of A. Thus
Supp K is a closed set. If K != 0, then Supp K is non-empty, and hence contains a
closed point [n]. Then Kn != 0, so from the exact sequence Bn → An → Kn → 0,
Bn → An is not a surjection.) Thus it remains to deal the case where Y is Spec of a
local ring (B, n).

So far this argument is a straightforward sequence of reduction steps and facts
we know well. But things now start to get subtle.

Then show that X is local, X = Spec Am. If An = 0, Bn trivially surjects onto
An, so assume An != 0. We next show that An = A ⊗B Bn is a local ring. Proof:
An != 0, so An has a prime ideal. Any point p of Spec An maps to some point
of Spec Bn, which has [n] in its closure. Thus by the Lying Over Theorem 8.2.5
(Spec An → Spec Bn is a finite morphism as it is obtained by base change from
Spec A → Spec B), there is a point q in the closure of p that maps to [n]. But by the
“degree at most 1 at every point” hypothesis there is at most one point of Spec An

mapping to [n], which we denote [m]. Thus we have shown that m contains all
other prime ideals of Spec An, so An is a local ring.

Finally, we apply Nakayama twice. We complete the argument backwards, in
order to motivate the clever double invocation of Nakayama. We wish to show
that the sequence B → A → 0 of B-modules is exact. If the image of 1 ∈ B
generates A as a B-module modulo the maximal ideal n of B, we would be done, by
Nakayama’s lemma (using the local ring B). But we also know that B/n → A/m is
an isomorphism, as f induces an isomorphism of residue fields (Exercise 21.1.C).
So it suffices to show that A/m = A/n, i.e. that the injection nA → mA is also
a surjection. By our Noetherian hypotheses, n and m are finitely generated A-
modules. Now injectivity of tangent vectors (Exercise 21.1.C) means surjectivity of
cotangent vectors, so n/n2 → m/m2 is a surjection, hence n → m/m2 is a surjection,
so nA → mA is a surjection modulo m. Hence by Nakayama’s lemma using the
local ring A, we indeed have that nAn = mAn. !
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21.1.D. EXERCISE. Use Theorem 21.1.1 to show that the dth Veronese morphism
from Pn

k , corresponding to the complete linear series |OPn
k
(d)|, is a closed immer-

sion. Do the same for the Segre morphism from Pm
k ×Spec k Pn

k . (This is just for prac-
tice for using this criterion. This is a weaker result than we had before; we have
earlier checked both of these statements over an arbitrary base ring in Remark 9.2.8
and §10.5 respectively, and we are now checking it only over algebraically closed
fields. However, see Exercise 21.1.E below.)

Exercise 10.2.K can be used to extend Theorem 21.1.1 to general fields k, not
necessarily algebraically closed.

21.1.E. LESS IMPORTANT EXERCISE. Using the ideas from this section, prove that
the dth Veronese morphism from Pn

Z (over the integers!), is a closed immersion.
(Again, we have done this before. This exercise is simply to show that these meth-
ods can easily extend to work more generally.)

21.2 A series of crucial observations

We are now ready to start understanding curves in a hands-on way. We will
repeatedly make use of the following series of crucial remarks, and it will be im-
portant to have them at the tip of your tongue.

In what follows, C will be a projective, geometrically nonsingular, geometri-
cally integral curve over a field k, and L is an invertible sheaf on C. (Often, what
matters is integrality rather than geometric integrality, but most readers aren’t wor-
rying about this distinction, and those that are can weaken hypotheses as they see
fit.)

21.2.1. Reminder: Serre duality. Serre duality (Theorem 20.4.5) on a geometri-
cally irreducible nonsingular genus g curve C over k involves an invertible sheaf
K (of degree 2g − 2, with g sections, Exercise 20.4.H), such that for any coherent
sheaf F on C, hi(C,F ) = h1−i(X,K ⊗F∨) for i = 0, 1. (Better: there is a duality
between the two cohomology groups.)

21.2.2. Negative degree line bundles have no section. h0(C,L ) = 0 if deg L <
0. Reason: deg L is the number of zeros minus the number of poles (suitably
counted) of any rational section (Important Exercise 20.4.C). If there is a regular
section (i.e. with no poles), then this is necessarily non-negative. Refining this
argument gives:

21.2.3. Degree 0 line bundles, and recognizing when they are trivial. h0(C,L ) =
0 or 1 if deg L = 0, and if h0(C,L ) = 1 then L ∼= OC. Reason: if there is a sec-
tion s, it has no poles, and hence no zeros, because deg L = 0. Then div s = 0,
so L ∼= OC(div s) = OC. (Recall how this works, cf. Important Exercise 15.2.E: s
gives a trivialization for the invertible sheaf. We have a natural bijection for any
open set Γ(U,L ) ↔ Γ(U,OU), where the map from left to right is s ′ (→ s ′/s, and
the map from right to left is f (→ sf.) Conversely, for a geometrically integral pro-
jective variety, h0(O) = 1. (Exercise 20.1.B shows this for k algebraically closed,
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and Exercise 20.2.G shows that cohomology commutes with base field extension.)

Serre duality turns these statements about line bundles of degree at most 0
into statements about line bundles of degree at least 2g − 2.

21.2.4. We know h0(C,L ) if the degree is sufficiently high. If deg L > 2g − 2,
then

(21.2.4.1) h0(C,L ) = deg L − g − 1.

So we know h0(C,L ) if deg L . 0. (This is important — remember this!) Reason:
h1(C,L ) = h0(C,K ⊗L ∨); but K ⊗L ∨ has negative degree (as K has degree
2g−2), and thus this invertible sheaf has no sections. The result then follows from
the Riemann-Roch theorem 20.4.B.

21.2.A. USEFUL EXERCISE (RECOGNIZING K AMONG DEGREE 2g − 2 LINE BUN-
DLES). Suppose L is a degree 2g − 2 invertible sheaf. Show that it has g − 1 or g
sections, and it has g sections if and only if L ∼= K .

21.2.5. Twisting L by a (degree 1) point changes h0 by at most 1. Suppose p
is any closed point of degree 1 (i.e. the residue field of p is k). Then h0(C,L ) −
h0(C,L (−p)) = 0 or 1. (The twist of L by a divisor, such as L (−p), was defined
in §15.2.8.) Reason: consider 0 → OC(−p) → OC → O |p → 0, tensor with L (this
is exact as L is locally free) to get

0 → L (−p) → L → L |p → 0.

Then h0(C,L |p) = 1, so as the long exact sequence of cohomology starts off

0 → H0(C,L (−p)) → H0(C,L ) → H0(C,L |p),

we are done.

21.2.6. A numerical criterion for L to be base-point-free. Suppose for this
remark that k is algebraically closed, so all closed points have degree 1 over k.
Then if h0(C,L ) − h0(C,L (−p)) = 1 for all closed points p, then L is base-point-
free, and hence induces a morphism from C to projective space (Theorem 17.4.1).
Reason: given any p, our equality shows that there exists a section of L that does
not vanish at p — so by definition, p is not a base-point of L .

21.2.7. Next, suppose p and q are distinct (closed) points of degree 1. Then
h0(C,L ) − h0(C,L (−p − q)) = 0, 1, or 2 (by repeating the argument of Re-
mark 21.2.5 twice). If h0(C,L ) − h0(C,L (−p − q)) = 2, then necessarily
(21.2.7.1)

h0(C,L ) = h0(C,L (−p)) + 1 = h0(C,L (−q)) + 1 = h0(C,L (−p − q)) + 2.

Then the linear series L separates points p and q, i.e. the corresponding map f to
projective space satisfies f(p) != f(q). Reason: there is a hyperplane of projective
space passing through p but not passing through q, or equivalently, there is a
section of L vanishing at p but not vanishing at q. This is because of the last
equality in (21.2.7.1).
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21.2.8. By the same argument as above, if p is a (closed) point of degree 1, then
h0(C,L ) − h0(C,L (−2p)) = 0, 1, or 2. I claim that if this is 2, then map corre-
sponds to L (which is already seen to be base-point-free from the above) separates
the tangent vectors at p. To show this, we need to show that the cotangent map is
surjective. To show surjectivity onto a one-dimensional vector space, I just need to
show that the map is non-zero. So I need to give a function on the target vanishing
at the image of p that pulls back to a function that vanishes at p to order 1 but not
2. In other words, we want a section of L vanishing at p to order 1 but not 2. But
that is the content of the statement h0(C,L (−p)) − h0(C,L (−2p)) = 1.

21.2.9. Criterion for L to be very ample. Combining some of our previous
comments: suppose C is a curve over an algebraically closed field k, and L is
an invertible sheaf such that for all closed points p and q, not necessarily distinct,
h0(C,L ) − h0(C,L (−p − q)) = 2, then L gives a closed immersion into projective
space, as it separates points and tangent vectors, by Theorem 21.1.1.

21.2.B. EXERCISE. Suppose that k is algebraically closed, so the previous remark
applies. Show that C \ {p} is affine. (Hint: Show that if k . 0, then O(kp) is base-
point-free and has at least two linearly independent sections, one of which has
divisor kp. Use these two sections to map to P1 so that the set-theoretic preimage
of ∞ is p. Argue that the map is finite, and that C \ {p} is the preimage of A1.)

21.2.10. Conclusion. We can combine much of the above discussion to give the
following useful fact. If k is algebraically closed, then deg L ≥ 2g implies that L
is base-point-free (and hence determines a morphism to projective space). Also,
deg L ≥ 2g+1 implies that this is in fact a closed immersion (so L is very ample).
Remember this!

21.2.C. EXERCISE. Show that an invertible sheaf L on projective, nonsingular
integral curve over k is ample if and only if deg L > 0.

(This can be extended to curves over general fields using Exercise 21.2.D be-
low.) Thus there is a blunt purely numerical criterion for ampleness of line bun-
dles on curves. This generalizes to projective varieties of higher dimension; this is
called Nakai’s criterion for ampleness, Theorem 22.3.1.

21.2.D. EXERCISE (EXTENSION TO NON-ALGEBRAICALLY CLOSED FIELDS). Show
that the statements in §21.2.10 hold even without the hypothesis that k is alge-
braically closed. (Hint: to show one of the facts about some curve C and line bun-
dle L , consider instead C⊗Spec k Spec k. Then show that if the pullback of L here
has sections giving you one of the two desired properties, then there are sections
downstairs with the same properties. You may want to use facts that we have used,
such as the fact that base-point-freeness is independent of extension of base field,
Exercise 20.2.H, or that the property of an affine morphism over k being a closed
immersion holds if and only if it does after an extension of k, Exercise 10.2.K.)

21.2.E. EXERCISE (ON A PROJECTIVE NONSINGULAR INTEGRAL CURVE, AMPLE =
POSITIVE DEGREE). Suppose L is an invertible sheaf on a projective, geometri-
cally nonsingular, geometrically integral curve C (over k). Show that L is ample
if and only if it has positive degree. (This was promised in Exercise 20.6.D.)
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We are now ready to take these facts and go to the races.

21.3 Curves of genus 0

We are now ready to (in some form) answer the question: what are the curves
of genus 0?

In §7.5.8, we saw a genus 0 curve (over a field k) that was not isomorphic to P1:
x2 +y2 +z2 = 0 in P2

R. (It has genus 0 by (20.5.3.1).) We have already observed that
this curve is not isomorphic to P1

R, because it doesn’t have an R-valued point. On
the other hand, we haven’t seen a genus 0 curve over an algebraically closed field
with this property. This is no coincidence: the lack of an existence of a k-valued
point is the only obstruction to a genus 0 curve being P1.

21.3.1. Proposition. — Suppose C is genus 0, and C has a k-valued (degree 1) point.
Then C ∼= P1

k.

Thus we see that all genus 0 (integral, nonsingular) curves over an algebraically
closed field are isomorphic to P1.

Proof. Let p be the point, and consider L = O(p). Then deg L = 1, so we can
apply what we know above: first, h0(C,L ) = 2 (Remark 21.2.4), and second,
these two sections give a closed immersion into P1

k (Remark 21.2.10). But the only
closed immersion of a curve into the integral curve P1

k is an isomorphism! !

As a bonus, Proposition 21.3.1 implies that x2+y2+z2 = 0 in P2
R has no line bun-

dles of degree 1 over R; otherwise, we could just apply the above argument to the
corresponding line bundle. This example shows us that over a non-algebraically
closed field, there can be genus 0 curves that are not isomorphic to P1

k. The next
result lets us get our hands on them as well.

21.3.2. Claim. — All genus 0 curves can be described as conics in P2
k.

Proof. Any genus 0 curve has a degree −2 line bundle — the canonical bundle
K . Thus any genus 0 curve has a degree 2 line bundle: L = K ∨. We apply
Remark 21.2.10: deg L = 2 ≥ 2g + 1, so this line bundle gives a closed immersion
into P2. !

21.3.A. EXERCISE. Suppose C is a genus 0 curve (projective, geometrically integral
and nonsingular). Show that C has a point of degree at most 2. (The degree of a
point was defined in §6.3.8.)

The geometric means of finding Pythagorean triples presented in §7.5.7 looked
quite different, but was really the same. There was a genus 0 curve C (a plane
conic) with a k-valued point p, and we proved that it was isomorphic to P1

k. The
line bundle used to show the isomorphism wasn’t the degree 1 line bundle OC(p);
it was the degree 1 line bundle OP2(1)|C ⊗ OC(−p).

We will use the following result later.
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21.3.3. Proposition. — Suppose C is not isomorphic to P1
k (with no restrictions on the

genus of C), and L is an invertible sheaf of degree 1. Then h0(C,L ) < 2.

Proof. Otherwise, let s1 and s2 be two (independent) sections. As the divisor of
zeros of si is the degree of L , each vanishes at a single point pi (to order 1). But
p1 != p2 (or else s1/s2 has no poles or zeros, i.e. is a constant function, i.e. s1 and
s2 are dependent). Thus we get a map C → P1 which is base-point-free. This
is a finite degree 1 map of nonsingular curves, which hence induces a degree 1
extension of function fields, i.e. an isomorphism of function fields, which means
that the curves are isomorphic. But we assumed that C is not isomorphic to P1

k. !

21.3.4. Corollary. — If C is a projective nonsingular geometrically integral curve over
k, and p and q are degree 1 points, then OC(p) ∼= OC(q) if and only if p = q.

21.3.B. EXERCISE. Show that if k is algebraically closed, then C has genus 0 if and
only if all degree 0 line bundles are trivial.

21.4 Hyperelliptic curves

We next discuss an important class of curves, the hyperelliptic curves. In this
section, we assume k is algebraically closed of characteristic not 2. (These hypothe-
ses can be relaxed, at some cost.)

A (projective nonsingular irreducible) genus g curve C is hyperelliptic if it
admits a double cover of (i.e. degree 2, necessarily finite, morphism to) P1

k. For
convenience, when we say C is hyperelliptic, we will implicitly have in mind a
choice of double cover π : C → P1. (We will later see that if g ≥ 2, then there is at
most one such double cover, Proposition 21.4.7, so this is not a huge assumption.)
The map π is called the hyperelliptic map.

By Exercise 18.4.D, the preimage of any closed point p of P1 consists of either
one or two points. If $(π−1p) = 1, we say p is a branch point, and π−1p is a
ramification point of π. (The notion of ramification will be defined more generally
in §23.4.5.)

21.4.1. Theorem (hyperelliptic Riemann-Hurwitz formula). — Suppose k = k and
char k != 2, π : C → P1

k is a double cover by a projective nonsingular irreducible genus g
curve over k. Then π has 2g + 2 branch points.

This is a special case of the Riemann-Hurwitz formula, which we will state
and prove in §23.5. You may have already heard about genus 1 complex curves
double covering P1, branched over 4 points.

To prove Theorem 21.4.1, we prove the following.

21.4.2. Proposition. — Assume char k != 2 and k = k. Given n distinct points
p1, . . . , pr ∈ P1, there is precisely one double cover branched at precisely these points if r
is even, and none if r is odd.
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Proof. Pick points 0 and ∞ of P1 distinct from the r branch points. All r branch
points are in P1 − ∞ = A1 = Spec k[x]. Suppose we have a double cover of A1,
C ′ → A1, where x is the coordinate on A1. This induces a quadratic field extension
K over k(x). As char k != 2, this extension is Galois. Let σ : K → K be the Galois
involution. Let y be an element of K such that σ(y) = −y, so 1 and y form a basis
for K over the field k(x), and are eigenvectors of σ. Now σ(y2) = y2, so y2 ∈ k(x).
We can replace y by an appropriate k(x)-multiple so that y2 is a polynomial, with
no repeated factors, and monic. (This is where we use the hypothesis that k is
algebraically closed, to get leading coefficient 1.)

Thus y2 = xN+aN−1xN−1+ · · ·+a0, where the polynomial on the right (call it
f(x)) has no repeated roots. The Jacobian criterion (in the guise of Exercise 13.2.D)
implies that this curve C ′

0 in A2 = Spec k[x, y] is nonsingular. Then C ′
0 is normal

and has the same function field as C. Thus C ′
0 and C ′ are both normalizations of

A1 in the finite field extension generated by y, and hence are isomorphic. Thus we
have identified C ′ in terms of an explicit equation.

The branch points correspond to those values of x for which there is exactly
one value of y, i.e. the roots of f(x). In particular, N = n, and f(x) = (x−p1) · · · (x−
pr), where the pi are interpreted as elements of k.

Having mastered the situation over A1, we return to the situation over P1. We
will examine the branched cover over the affine open set P1\{0} = Spec k[u], where
u = 1/x. The previous argument applied to Spec k[u] rather than Spec k[x] shows
that any such double cover must be of the form

C ′′ = Spec k[z, u]/(z2 − (u − 1/p1) · · · (u − 1/pr)) = Spec k[z, u]/(z2 − urf(1/u))

→ Spec k[u] = A1.

So if there is a double cover over all of P1, it must be obtained by gluing C ′′ to
C ′ over the gluing of Spec k[x] to Spec k[u] to obtain P1.

Thus in K(C), we must have

z2 = urf(1/u) = f(x)/xr = y2/xr

from which z2 = y2/xr.
If r is even, considering K(C) as generated by y and x, there are two possible

values of z: z = ±y2/xr/2. After renaming z by −z if necessary, there is a single
way of gluing these two patches together (we choose the positive square root).

If r is odd, the result follows from Exercise 21.4.A below. !

21.4.A. EXERCISE. Show that x does not have a square root in the field k(x)[y]/(y2−
f(x)), where f is a polynomial with non-zero roots p1, . . . , pr. (Possible hint: why
is
√

3 /∈ Q(
√

2)?)

For future reference, we collect here our explicit (two-affine) description of the
hyperelliptic cover C → P1.

(21.4.2.1) Spec k[x, y]/(y2 − f(x))

%%

z=y/xr/2

y=z/ur/2
Spec k[u, z]/(z2 − urf(1/u))

%%
Spec k[x]

u=1/x

x=1/u
Spec k[u]



456 Math 216: Foundations of Algebraic Geometry

21.4.3. If k is not algebraically closed. If k is not algebraically closed (but of char-
acteristic not 2), the above argument shows that if we have a double cover of A1,
then it is of the form y2 = af(x), where f is monic, and a ∈ k×/(k×)2. You may be
able to use this to show that (assuming the k× != (k×)2) a double cover is not deter-
mined by its branch points. Moreover, this failure is classified by k×/(k×)2. Thus
we have lots of curves that are not isomorphic over k, but become isomorphic over
k. These are often called twists of each other.

(In particular, once we define elliptic curves, you will be able to show that
there exist two elliptic curves over Q with the same j-invariant, that are not iso-
morphic, see Exercise 21.8.D.)

21.4.4. Back to proving the hyperelliptic Riemann-Hurwitz formula, Theorem 21.4.1.
Our explicit description of the unique double cover of P1 branched over r dif-
ferent points will allow us to compute the genus, thereby completing the proof of
Theorem 21.4.1.

We continue the notation (21.4.2.1) of the proof of Proposition 21.4.2. Suppose
P1 has affine cover by Spec k[x] and Spec k[u], with u = 1/x, as usual. Suppose
C → P1 is a double cover, given by y2 = f(x) over Spec k[x], where f has degree
r, and z2 = urf(1/u). Then C has an affine open cover by Spec k[x, y]/(y2 − f(x))

and Spec k[u, z]/(z2 − urf(1/u)). The corresponding Čech complex for OC is

0 $$ k[x, y]/(y2 − f(x)) × k[u, z]/(z2 − urf(u))
d $$

(
k[x, y]/(y2 − f(x))

)
x

$$ 0.

The degree 1 part of the complex has basis consisting of monomials xnyε, where
n ∈ Z and ε = 0 or 1. To compute the genus g = h1(C,OC), we must compute
coker d. We can use the first factor k[x, y]/(y2 − f(x)) to hit the monomials xnyε

where n ∈ Z≥0, and ε = 0 or 1. The image of the second factor is generated by ele-
ments of the form umzε, where m ≥ 0 and ε = 0 or 1. But umzε = x−m(y/xr/2)ε.
By inspection, the cokernel has basis generated by monomials x−1y, x−2y, . . . ,
x−r/2+1y, and thus has dimension r/2 − 1. Hence g = r/2 − 1, from which Theo-
rem 21.4.1 follows. !

21.4.5. Curves of every genus. As a consequence of the hyperelliptic Riemann-
Hurwitz formula (Theorem 21.4.1), we see that there are curves of every genus
g ≥ 0 over an algebraically closed field of characteristic 0: to get a curve of genus
g, consider the branched cover branched over 2g + 2 distinct points. The unique
genus 0 curve is of this form, and we saw above that every genus 2 curve is of this
form. We will soon see that every genus 1 curve (reminder: over an algebraically
closed field!) is too (§21.8.5). But it is too much to hope that all curves are of
this form, and we will soon see (§21.6.2) that there are genus 3 curves that are not
hyperelliptic, and we will get heuristic evidence that “most” genus 3 curves are
not hyperelliptic. We will later give vague evidence (that can be made precise)
that “most” genus g curves are not hyperelliptic if g > 2 (§21.7.1).

We can also classify hyperelliptic curves. Hyperelliptic curves of genus g corre-
spond to precisely 2g+2 points on P1 modulo S2g+2, and modulo automorphisms
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of P1. Thus “the space of hyperelliptic curves” has dimension

2g + 2 − dim Aut P1 = 2g − 1.

This is not a well-defined statement, because we haven’t rigorously defined “the
space of hyperelliptic curves” — an example of a moduli space. For now, take it as a
plausibility statement. It is also plausible that this space is irreducible and reduced
— it is the image of something irreducible and reduced.

21.4.B. EXERCISE. Verify that a curve C of genus at least 1 admits a degree 2
cover of P1 if and only if it admits a degree 2 invertible sheaf L with h0(C,L ) =
2. Possibly in the course of doing this, verify that if C is a curve, and L has a
degree 2 invertible sheaf with at least 2 (linearly independent) sections, then L has
precisely two sections, and that this L is base-point-free and gives a hyperelliptic
map.

21.4.6. Proposition. — If L corresponds to a hyperelliptic cover C → P1, then
L ⊗(g−1) ∼= KC.

Proof. Compose the hyperelliptic map with the (g − 1)th Veronese map:

C
L $$ P1

O
P1(g−1)

$$ Pg−1.

The composition corresponds to L ⊗(g−1). This invertible sheaf has degree 2g − 2.
The pullback H0(Pg−1,O(1)) → H0(C,L ⊗(g−1)) is injective because the image of
C in Pg−1 (a rational normal curve) is nondegenerate: if there were a hyperplane
s ∈ H0(Pg−1,O(1)) that pulled back to 0 on C, then the image of C would lie in
that hyperplane, yet a rational normal curve cannot. Thus L ⊗(g−1) has at least g
sections. But by Exercise 21.2.A, the only invertible sheaf of degree 2g − 2 with (at
least) g sections is the canonical sheaf. !

21.4.7. Proposition (a genus ≥ 2 curve can be hyperelliptic in “only one way”).
— Any curve C of genus at least 2 admits at most one double cover of P1. More precisely,
if L and M are two degree two line bundles yielding maps C → P1, then L ∼= M .

Proof. If C is hyperelliptic, then we can recover the hyperelliptic map by consider-
ing the canonical linear series given by K (the canonical map, which we will use
again repeatedly in the next few sections): it is a double cover of a degree g − 1 ra-
tional normal curve (by the previous proposition), which is isomorphic to P1. This
double cover is the hyperelliptic cover (also by the proof of the previous proposi-
tion). Thus we have uniquely recovered the map C → P1, and this map must be
induced by L and M , from which L ∼= M (recall Theorem 17.4.1, relating maps
to projective space and line bundles). !

21.5 Curves of genus 2
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21.5.1. The reason for leaving genus 1 for later. It might make most sense to jump to
genus 1 at this point, but the theory of elliptic curves is especially rich and subtle,
so we will leave it for §21.8.

In general, curves have quite different behaviors (topologically, arithmetically,
geometrically) depending on whether g = 0, g = 1, or g ≥ 2. This trichotomy
extends to varieties of higher dimension. We already have some inkling of it in
the case of curves. Arithmetically, genus 0 curves can have lots and lots of rational
points, genus 1 curves can have lots of rational points, and by Faltings’ Theorem
(Mordell’s Conjecture) any curve of genus at least 2 has at most finitely many ra-
tional points. (Thus even before Wiles’ proof of the Taniyama-Shimura conjecture,
we knew that xn + yn = zn in P2 has at most finitely many rational solutions
for n ≥ 4, as such curves have genus

(
n−1

2

)
> 1, see (20.5.3.1).) In the language

of differential geometry, Riemann surfaces of genus 0 are positively curved, Rie-
mann surfaces of genus 1 are flat, and Riemann surfaces of genus 1 are negatively
curved. It is a fact that curves of genus at least 2 have finite automorphism groups
(see for example [ACGH]), while curves of genus 1 have some automorphisms
(a one-dimensional family, see Question 21.8.15), and the unique curve of genus
0 over an algebraically closed field has a three-dimensional automorphism group
(see Exercises 17.4.B and 17.4.C).

21.5.2. Back to curves of genus 2.
Over an algebraically closed field, we saw in §21.3 that there is only one genus

0 curve. In §21.4 that there are hyperelliptic curves of genus 2. How can we get a
hold of curves of genus 2? For example, are they all hyperelliptic? “How many”
are there? We now tackle these questions.

Fix a curve C of genus g = 2. Then K is degree 2g − 2 = 2, and has 2 sec-
tions (Exercise 21.2.A). I claim that K is base-point-free. We may assume k is
algebraically closed, as base-point-freeness is independent of field extension of k
(Exercise 20.2.H). If K is not base-point-free, then if p is a base point, then K (−p)
is a degree 1 invertible sheaf with 2 sections, which Proposition 21.3.3 shows is
impossible. Thus we canonically constructed a double cover C → P1 (unique up
to automorphisms of P1, which we studied in Exercises 17.4.B and 17.4.C). Con-
versely, any double cover C → P1 arises from a degree 2 invertible sheaf with at
least 2 sections, so if g(C) = 2, this invertible sheaf must be the canonical bundle
(by the easiest case of Proposition 21.4.6).

Hence we have a natural bijection between genus 2 curves and genus 2 double
covers of P1 (up to automorphisms of P1). If the characteristic is not 2, the hyper-
elliptic Riemann-Hurwitz formula (Theorem 21.4.1) shows that the double cover
is branched over 2g + 2 = 6 geometric points. In particular, we have a “three-
dimensional space of genus 2 curves”. This isn’t rigorous, but we can certainly
show that there are an infinite number of non-isomorphic genus 2 curves.

21.5.A. EXERCISE. Fix an algebraically closed field k of characteristic 0. Show that
there are an infinite number of (pairwise) non-isomorphic genus 2 curves k.

21.5.B. EXERCISE. Show that every genus 2 curve (over any field) has finite auto-
morphism group.
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21.6 Curves of genus 3

Suppose C is a curve of genus 3. Then K has degree 2g−2 = 4, and has g = 3
sections.

21.6.1. Claim. — K is base-point-free, and hence gives a map to P2.

Proof. We check base-point-freeness by working over the algebraic closure k. For
any point p, by Riemann-Roch,

h0(C,K (−p)) − h0(C,O(p)) = deg(K (−p)) − g + 1 = 3 − 3 + 1 = 1.

But h0(C,O(p)) = 1 by Proposition 21.3.3, so

h0(C,K (−p)) = 2 = h0(C,K ) − 1.

Thus p is not a base-point of K for any p, so by Criterion 21.2.6 K is base-point-
free. !

The next natural question is: Is this a closed immersion? Again, we can check
over algebraic closure. We use our “closed immersion test” (again, see our useful
facts). If it isn’t a closed immersion, then we can find two points p and q (possibly
identical) such that

h0(C,K ) − h0(C,K (−p − q)) = 1 or 0,

i.e. h0(C,K (−p−q)) = 2. But by Serre duality, this means that h0(C,O(p+q)) = 2.
We have found a degree 2 divisor with 2 sections, so C is hyperelliptic. (Indeed, I
could have skipped that sentence, and made this observation about K (−p − q),
but I’ve done it this way in order to generalize to higher genus.) Conversely, if C is
hyperelliptic, then we already know that K gives a double cover of a nonsingular
conic in P2, and hence K does not give a closed immersion.

Thus we conclude that if (and only if) C is not hyperelliptic, then the canonical
map describes C as a degree 4 curve in P2.

Conversely, any quartic plane curve is canonically embedded. Reason: the
curve has genus 3 (see (20.5.3.1)), and is mapped by an invertible sheaf of degree
4 with 3 sections. But by Exercise 21.2.A, the only invertible sheaf of degree 2g − 2
with g sections is K .

In particular, each non-hyperelliptic genus 3 curve can be described as a quar-
tic plane curve in only one way (up to automorphisms of P2).

In conclusion, there is a bijection between non-hyperelliptic genus 3 curves,
and plane quartics up to projective linear transformations.

21.6.2. Remark. In particular, as there exist nonsingular plane quartics (Exer-
cise 13.2.J), there exist non-hyperelliptic genus 3 curves.

21.6.A. EXERCISE. Give a heuristic (non-rigorous) argument that the nonhyperel-
liptic curves of genus 3 form a family of dimension 6. (Hint: Count the dimension
of the family of nonsingular quartics, and quotient by Aut P2 = PGL(3).)

The genus 3 curves thus seem to come in two families: the hyperelliptic curves
(a family of dimension 5), and the nonhyperelliptic curves (a family of dimension
6). This is misleading — they actually come in a single family of dimension 6.
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In fact, hyperelliptic curves are naturally limits of nonhyperelliptic curves. We
can write down an explicit family. (This explanation necessarily requires some
hand-waving, as it involves topics we haven’t seen yet.) Suppose we have a hy-
perelliptic curve branched over 2g + 2 = 8 points of P1. Choose an isomorphism
of P1 with a conic in P2. There is a nonsingular quartic meeting the conic at pre-
cisely those 8 points. (This requires Bertini’s theorem 26.5.2, which we haven’t yet
discussed, so we omit the argument.) Then if f is the equation of the conic, and g
is the equation of the quartic, then f2 + t2g is a family of quartics that are nonsin-
gular for most t (nonsingularity is an open condition, as we will see). The t = 0
case is a double conic. Then it is a fact that if you normalize the family, the central
fiber (above t = 0) turns into our hyperelliptic curve. Thus we have expressed our
hyperelliptic curve as a limit of nonhyperelliptic curves.

21.6.B. UNIMPORTANT EXERCISE. A (projective) curve (over a field k) admitting
a degree 3 cover of P1 is called trigonal. Show that every non-hyperelliptic genus
3 complex curve is trigonal, by taking the quartic model in P2, and projecting to
P1 from any point on the curve. Do this by choosing coordinates on P2 so that p is
at [0; 0; 1]. (After doing this, you may find Remark 19.4.8 more enlightening. But
you certainly don’t need the machinery of blowing up to solve the problem.)

21.7 Curves of genus 4 and 5

We begin with two exercises in general genus, then specialize to genus 4.

21.7.A. EXERCISE. Assume k = k (purely to avoid distraction — feel free to
remove this hypothesis). Suppose C is a genus g curve. Show that if C is not
hyperelliptic, then the canonical bundle gives a closed immersion C ↪→ Pg−1. (In
the hyperelliptic case, we have already seen that the canonical bundle gives us a
double cover of a rational normal curve.) Hint: follow the genus 3 case. Such a
curve is called a canonical curve, and this closed immersion is called the canonical
embedding of C.

21.7.B. EXERCISE. Suppose C is a curve of genus g > 1, over a field k that is not
algebraically closed. Show that C has a closed point of degree at most 2g − 2 over
the base field. (For comparison: if g = 1, for any n, there is a genus 1 curve over Q
with no point of degree less than n!)

We next consider nonhyperelliptic curves C of genus 4. Note that deg K = 6
and h0(C,K ) = 4, so the canonical map expresses C as a sextic curve in P3. We
shall see that all such C are complete intersections of quadric surfaces and cubic
surfaces, and conversely all nonsingular complete intersections of quadrics and
cubics are genus 4 non-hyperelliptic curves, canonically embedded.

By (21.2.4.1) (Riemann-Roch and Serre duality),

h0(C,K ⊗2) = deg K ⊗2 − g + 1 = 12 − 4 + 1 = 9.

We have the restriction map H0(P3,O(2)) → H0(C,K ⊗2), and dim Sym2 Γ(C,K ) =(
4+1

2

)
= 10. Thus there is at least one quadric in P3 that vanishes on our curve C.

Translation: C lies on at least on quadric Q. Now quadrics are either double planes,
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or the union of two planes, or cones, or nonsingular quadrics. (They corresponds
to quadric forms of rank 1, 2, 3, and 4 respectively.) But C can’t lie in a plane, so Q
must be a cone or nonsingular. In particular, Q is irreducible.

Now C can’t lie on two (distinct) such quadrics, say Q and Q ′. Otherwise, as
Q and Q ′ have no common components (they are irreducible and not the same!),
Q ∩ Q ′ is a curve (not necessarily reduced or irreducible). By Bézout’s theorem
(Exercise 20.5.M), Q∩Q ′ is a curve of degree 4. Thus our curve C, being of degree
6, cannot be contained in Q ∩ Q ′. (If you don’t see why directly, Exercise 20.5.H
might help.)

We next consider cubic surfaces. By (21.2.4.1) again, h0(C,K ⊗3) = deg K ⊗3−

g + 1 = 18 − 4 + 1 = 15. Now dim Sym3 Γ(C,K ) has dimension
(
4+2

3

)
= 20. Thus

C lies on at least a 5-dimensional vector space of cubics. Now a 4-dimensional
subspace come from multiplying the quadric Q by a linear form (?w+?x+?y+?z).
But hence there is still one cubic K whose underlying form is not divisible by the
quadric form Q (i.e. K doesn’t contain Q.) Then K and Q share no component, so
K ∩ Q is a complete intersection containing C as a closed subscheme. Now K ∩ Q
and C are both degree 6 (the former by Bézout’s theorem, Exercise 20.5.M, and the
latter because C is embedded by a degree 6 line bundle, Exercise 20.5.K). Also,
K ∩ Q and C both have arithmetic genus 4 (the former by Exercise 20.5.S). These
two invariants determine the (linear) Hilbert polynomial, so K∩Q and C have the
same Hilbert polynomial. Hence C = K ∩ Q by Exercise 20.5.H.

We now show the converse, and that any nonsingular complete intersection C
of a quadric surface with a cubic surface is a canonically embedded genus 4 curve.
By Exercise 20.5.S, such a complete intersection has genus 4.

21.7.C. EXERCISE. Show that OC(1) has at least 4 sections. (Translation: C doesn’t
lie in a hyperplane.)

The only degree 2g−2 invertible sheaf with (at least) g sections is the canonical
sheaf (Exercise 21.2.A), so OC(1) ∼= KC, and C is indeed canonically embedded.

21.7.D. EXERCISE. Give a heuristic argument suggesting that the nonhyperelliptic
curves of genus 4 “form a family of dimension 9”.

On to genus 5!

21.7.E. EXERCISE. Suppose C is a nonhyperelliptic genus 5 curve. Show that the
canonical curve is degree 8 in P4. Show that it lies on a three-dimensional vec-
tor space of quadrics (i.e. it lies on 3 linearly independent independent quadrics).
Show that a nonsingular complete intersection of 3 quadrics is a canonical(ly em-
bedded) genus 5 curve.

Unfortunately, not all canonical genus 5 curves are the complete intersection of
3 quadrics in P4. But in the same sense that most genus 3 curves can be described
as plane quartics, most canonical genus 5 curves are complete intersections of 3
quadrics, and most genus 5 curves are non-hyperelliptic. The correct way to say
this is that there is a dense Zariski-open locus in the moduli space of genus 5 curves
consisting of nonhyperelliptic curves whose canonical embedding is cut out by 3
quadrics.

(Those nonhyperelliptic genus 5 canonical curves not cut out by a three-dimensional
vector space of quadrics are precisely the trigonal curves, see Exercise 21.6.B. The
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triplets of points mapping to the same point of P1 under the trigonal map turn out
to lie on a line in the canonical map. Any quadric vanishing along those 3 points
must vanish along the line — basically, any quadratic polynomial with three zeros
must be the zero polynomial.)

21.7.F. EXERCISE. Assuming the discussion above, count complete intersections
of three quadrics to give a heuristic argument suggesting that the curves of genus
5 “form a family of dimension 12”.

We have now understood curves of genus 3 through 5 by thinking of canonical
curves as complete intersections. Sadly our luck has run out.

21.7.G. EXERCISE. Show that if C ⊂ Pg−1 is a canonical curve of genus g ≥ 6,
then C is not a complete intersection. (Hint: Bézout’s theorem, Exercise 20.5.M.)

21.7.1. Some discussion on curves of general genus. However, we still have some data.
If Mg is this ill-defined “moduli space of genus g curves”, we have heuristics to
find its dimension for low g. In genus 0, over an algebraically closed field, there is
only genus 0 curve (Proposition 21.3.1), so it appears that dim M0 = 0. In genus 1,
over an algebraically closed field, we will soon see that the elliptic curves are clas-
sified by the j-invariant (Exercise 21.8.C), so it appears that dim M1 = 1. We have
also informally computed dim M2 = 3, dim M3 = 6, dim M4 = 9, dim M5 = 12.
What is the pattern? In fact in some strong sense it was known by Riemann that
dim Mg = 3g − 3 for g > 1. What goes wrong in genus 0 and genus 1? As a clue,
recall our insight when discussing Hilbert functions (§20.5) that whenever some
function is “eventually polynomial”, we should assume that it “wants to be poly-
nomial”, and there is some better function (usually an Euler characteristic) that
is polynomial, and that cohomology-vanishing ensures that the original function
and the better function “eventually agree”. Making sense of this in the case of Mg

is far beyond the scope of our current discussion, so we will content ourselves by
observing the following facts. Every nonsingular curve of genus greater than 1 has
a finite number of automorphisms — a zero-dimensional automorphism group.
Every nonsingular curve of genus 1 has a one-dimensional automorphism group
(see Question 21.8.15). And the only nonsingular curve of genus 0 has a three-
dimensional automorphism group (Exercise 17.4.C). (See Aside 23.4.9 for more
discussion.) So notice that for all g ≥ 0,

dim Mg − dim Aut Cg = 3g − 3

where Aut Cg means the automorphism group of any curve of genus g.
In fact, in the language of stacks (or orbifolds), it makes sense to say that the

dimension of the moduli space of (projective smooth geometrically irreducible)
genus 0 curves is −3, and the dimension of the moduli space of genus 1 curves is
0.

21.8 Curves of genus 1

Finally, we come to the very rich case of curves of genus 1. We will present the
theory by thinking about line bundles of steadily increasing degree.
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21.8.1. Line bundles of degree 0.
Suppose C is a genus 1 curve. Then deg KC = 2g − 2 = 0 and h0(C,KC) =

g = 1 (by Exercise 21.2.A). But the only degree 0 invertible sheaf with a section is
the structure sheaf (§21.2.3), so we conclude that KC

∼= OC.
We move on to line bundles of higher degree. Next, note that if deg L > 0,

then Riemann-Roch and Serre duality (21.2.4.1) give

h0(C,L ) = deg L − g + 1 = deg L .

21.8.2. Line bundles of degree 1.
Each degree 1 (k-valued) point q determines a line bundle O(q), and two dis-

tinct points determine two distinct line bundles (as a degree 1 line bundle has only
one section, up to scalar multiples). Conversely, any degree 1 line bundle L is of
the form O(q) (as L has a section — then just take its divisor of zeros), and it is of
this form in one and only one way.

Thus we have a canonical bijection between degree 1 line bundles and degree
1 (closed) points. (If k is algebraically closed, as all closed points have residue field
k, this means that we have a canonical bijection between degree 1 line bundles and
closed points.)

Define an elliptic curve to be a genus 1 curve E with a choice of k-valued point
p. The choice of this point should always be considered part of the definition of
an elliptic curve — “elliptic curve” is not a synonym for “genus 1 curve”. (Note: a
genus 1 curve need not have any k-valued points at all! For example, you can show
that x3+2y3+4z3 = 0 in P2

Q has no Q-points. Even faster once you are comfortable
with double covers of P1, the genus 1 curve compactifying y2 = x4 + 1 in A2

Q has

no R-points, and hence no Q-points. Of course, if k = k, then any closed point is
k-valued, by the Nullstellensatz 4.2.2.) We will often denote elliptic curves by E
rather than C.

If (E, p) is an elliptic curve, then there is a canonical bijection between the set
of degree 0 invertible sheaves (up to ismorphism) and the set of degree 1 points of
E: simply the twist the degree 1 line bundles by O(−p). Explicitly, the bijection is
given by

L % $$ div(L (p))

O(q − p) ++ %
q

But the degree 0 invertible sheaves form a group (under tensor product), so
have proved:

21.8.3. Proposition (the group law on the degree 1 points of an elliptic curve). —
The above bijection defines an abelian group structure on the degree 1 points of an elliptic
curve, where p is the identity.

From now on, we will identify closed points of E with degree 0 invertible
sheaves on E without comment.

For those familiar with the complex analytic picture, this isn’t surprising: E is
isomorphic to the complex numbers modulo a lattice: E ∼= C/Λ.

This is currently just a bijection of sets. Given that E has a much richer struc-
ture (it has a generic point, and the structure of a variety), this is a sign that there
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should be a way of defining some scheme Pic0(E), and that this should be an iso-
morphism of schemes. We will soon show (Theorem 21.8.13) that this group struc-
ture on the degree 1 points of E comes from a group variety structure on E.

21.8.4. Aside: The Mordell-Weil Theorem, group, and rank. This is a good excuse to
mention the Mordell-Weil Theorem: for any elliptic curve E over Q, the Q-points of
E form a finitely generated abelian group, often called the Mordell-Weil group. By the
classification of finitely generated abelian groups, the Q-points are a direct sum
of a torsion part, and of a free Z-module. The rank of the Z-module is called the
Mordell-Weil rank.

21.8.5. Line bundles of degree 2.
Note that OE(2p) has 2 sections, so E admits a double cover of P1 (Exercise 21.4.B).

One of the branch points is 2p: one of the sections of OE(2p) vanishes to p of order
2, so there is a point of P1 consists of p (with multiplicity 2). Assume now that
k = k and char k != 2, so we can use the hyperelliptic Riemann-Hurwitz formula
(Theorem 21.4.1), which implies that E has 4 branch points (p and three others).
Conversely, given 4 points in P1, there exists a unique double cover branched at
those 4 points (Proposition 21.4.2). Thus elliptic curves correspond to 4 distinct
points in P1, where one is marked p, up to automorphisms of P1. Equivalently,
by placing p at ∞, elliptic curves correspond to 3 points in A1, up to affine maps
x (→ ax + b.

21.8.A. EXERCISE. Show that the other three branch points are precisely the (non-
identity) 2-torsion points in the group law. (Hint: if one of the points is q, show
that O(2q) ∼= O(2p), but O(q) is not congruent to O(p).)

Thus (if the char k != 2 and k = k) every elliptic curve has precisely four 2-
torsion points. If you are familiar with the complex picture E ∼= C/Λ, this isn’t
surprising.

21.8.6. Follow-up remark. An elliptic curve with full level n-structure is an ellip-
tic curve with an isomorphism of its n-torsion points with (Z/n)2. (This notion
has problems if n is divisible by char k.) Thus an elliptic curve with full level 2
structure is the same thing as an elliptic curve with an ordering of the three other
branch points in its degree 2 cover description. Thus (if k = k) these objects are
parametrized by the λ-line, which we discuss below.

Follow-up to the follow-up. There is a notion of moduli spaces of elliptic curves
with full level n structure. Such moduli spaces are smooth curves (where this is
interpreted appropriately — they are stacks), and have smooth compactifications.
A weight k level n modular form is a section of K ⊗k where K is the canonical sheaf
of this moduli space (“modular curve”).

21.8.7. The cross-ratio and the j-invariant. If the three other points are temporar-
ily labeled q1, q2, q3, there is a unique automorphism of P1 taking p, q1, q2 to
(∞, 0, 1) respectively (as Aut P1 is three-transitive, Exercise 17.4.C). Suppose that
q3 is taken to some number λ under this map, where necessarily λ != 0, 1,∞.

The value λ is called the cross-ratio of the four-points (p, q1, q2, q3) of P1 (first
defined by Clifford, but implicitly known since the time of classical Greece).
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21.8.B. EXERCISE. Show that isomorphism class of four ordered distinct points
on P1, up to projective equivalence (automorphisms of P1), are classified by the
cross-ratio.

We have not defined the notion of moduli space, but the previous exercise illus-
trates the fact that P1 − {0, 1,∞} (the image of the cross-ratio map) is the moduli
space for four ordered distinct points of P1 up to projective equivalence.

Notice:

• If we had instead sent p, q2, q1 to (∞, 0, 1), then q3 would have been sent
to 1 − λ.

• If we had instead sent p, q1, q3 to (∞, 0, 1), then q2 would have been sent
to 1/λ.

• If we had instead sent p, q3, q1 to (∞, 0, 1), then q2 would have been sent
to 1 − 1/λ = (λ − 1)/λ.

• If we had instead sent p, q2, q3 to (∞, 0, 1), then q2 would have been sent
to 1/(1 − λ).

• If we had instead sent p, q3, q2 to (∞, 0, 1), then q2 would have been sent
to 1 − 1/(1 − λ) = λ/(λ − 1).

Thus these six values (which correspond to S3) yield the same elliptic curve,
and this elliptic curve will (upon choosing an ordering of the other 3 branch points)
yield one of these six values.

This is fairly satisfactory already. To check if two elliptic curves (E, p), (E ′, p ′)
over k = k are isomorphic, we write both as double covers of P1 ramified at p
and p ′ respectively, then order the remaining branch points, then compute their
respective λ’s (say λ and λ ′ respectively), and see if they are related by one of the
six numbers above:

(21.8.7.1) λ ′ = λ, 1 − λ, (λ − 1)/λ, 1/(1 − λ), or λ/(λ − 1).

It would be far more convenient if, instead of a “six-valued invariant” λ, there
were a single invariant (let’s call it j), such that j(λ) = j(λ ′) if and only if one of the
equalities of (21.8.7.1) holds. This j-function should presumably be algebraic, so it
would give a map j from the λ-line A1 − {0, 1} to the A1. By the Curve-to-projective
Extension Theorem 17.5.1, this would extend to a morphism j : P1 → P1. By
Exercise 18.4.D, because this is (for most λ) a 6-to-1 map, the degree of this cover
is 6 (or more correctly, at least 6).

We can make this dream more precise as follows. The elliptic curves over k
corresponds to k-valued points of P1 − {0, 1, λ}, modulo the action of S3 on λ given
above. Consider the subfield K of k(λ) fixed by S3. Then k(λ)/K is necessarily
Galois, and a degree 6 extension. We are hoping that this subfield is of the form
k(j), and if so, we would obtain the j-map P1 → P1 as described above. One could
show that K is finitely generated over k, and then invoke Lüroth’s theorem, which
we will soon prove in Example 23.5.6; but we won’t need this.

Instead, we will just hunt for such a j. Note that λ should satisfy a sextic poly-
nomial over k(λ) (or more precisely given what we know right now, a polynomial
of degree at least six), as for each j-invariant, there are six values of λ in general.
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As you are undoubtedly aware, there is such a j-invariant. Here is the formula
for the j-invariant that everyone uses:

(21.8.7.2) j = 28 (λ2 − λ + 1)3

λ2(λ − 1)2
.

You can readily check that j(λ) = j(1/λ) = j(1 − λ) = · · · , and that as j has a
degree 6 numerator and degree < 6 denominator, j indeeds determines a degree
6 map from P1 (with coordinate λ) to P1 (with coordinate j). But this complicated-
looking formula begs the question: where did this formula come from? How did
someone think of it? We will largely answer this, but we will ignore the 28 (which,
as you might imagine, arises from characteristic 2 issues, and in order to invoke
the results of §21.4 we have been assuming char k != 2).

Rather than using the formula handed to us, let’s try to guess what j is. We
won’t expect to get the same formula as (21.8.7.2), but our answer should differ by
an automorphism of the j-line (P1) — we will get j ′ = (aj + b)/(cj + d) for some
a, b, c, d.

We are looking for some j ′(λ) such that j ′(λ) = j ′(1/λ) = · · · . Hence we
want some expression in λ that is invariant under this S3-action. A first possibility
would be to take the product of the six numbers

λ · (1 − λ) ·
1

λ
·
λ − 1

λ
·

1

1 − λ
·

λ

λ − 1

This is silly, as the product is obviously 1.
A better idea is to add them all together:

λ + (1 − λ) +
1

λ
+

λ − 1

λ
+

1

1 − λ
+

λ

λ − 1

This also doesn’t work, as they add to 3 — the six terms come in pairs adding to 1.
(Another reason you might realize this can’t work: if you look at the sum, you

will realize that you will get something of the form “degree at most 3” divided by
“degree at most 2” (before cancellation). Then if j ′ = p(λ)/q(λ), then λ is a root of
a cubic over j. But we said that λ should satisfy a sextic over j ′. The only way we
avoid a contradiction is if j ′ ∈ k.)

But you will undoubtedly have another idea immediately. One good idea is
to take the second symmetric function in the six roots. An equivalent one that is
easier to do by hand is to add up the squares of the six terms. Even before doing
the calculation, we can see that this will work: it will clearly produce a fraction
whose numerator and denominator have degree at most 6, and it is not constant,
as when λ is some fixed small number (say 1/2), the sum of squares is some small
real number, while when λ is a large real number, the sum of squares will have to
be some large real number (different from the value when λ = 1/2).

When you add up the squares by hand (which is not hard), you will get

j ′ =
2λ6 − 6λ5 + 9λ4 − 8λ3 + 9λ2 − 6λ + 2

λ2(λ − 1)2
.

Indeed k(j) ∼= k(j ′): you can check (again by hand) that

2j/28 =
2λ6 − 6λ5 + 12λ4 − 14λ3 + 12λ2 − 6λ + 2

λ2(λ − 1)2
.

Thus 2j/28 − j ′ = 3.
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21.8.C. EXERCISE. Explain why genus 1 curves over an algebraically closed field
are classified by j-invariant.

21.8.D. EXERCISE. Give (with proof) two genus 1 curves over Q with the same
j-invariant that are not isomorphic. (Hint: §21.4.3.)

21.8.8. Line bundles of degree 3.
In the discussion of degree 2 line bundles 21.8.5, we assumed char k != 2 and

k = k, in order to invoke the Riemann-Hurwitz formula. In this section, we will
start with no assumptions, and add them as we need them. In this way, you will
see what partial results hold with weaker assumptions.

Consider the degree 3 invertible sheaf OE(3p). By Riemann-Roch (21.2.4.1),
h0(E,OE(3p)) = deg(3p)−g+1 = 3. As deg E > 2g, this gives a closed immersion
(Remark 21.2.10 and Exercise 21.2.D). Thus we have a closed immersion E ↪→ P2

k as
a cubic curve. Moreover, there is a line in P2

k meeting E at point p with multiplicity
3, corresponding to the section of O(3p) vanishing precisely at p with multiplicity
3. (A line in the plane meeting a smooth curve with multiplicity at least 2 is a
tangent line, see Definition 13.2.7. A line in the plane meeting a smooth curve with
multiplicity at least 3 is said to be a flex line, and that point is a flex point of the
curve.)

Choose projective coordinates on P2
k so that p maps to [0; 1; 0], and the flex line

is the line at infinity z = 0. Then the cubic is of the following form:

? x3 + 0 x2y + 0 xy2 + 0 y3

+ ? x2z + ? xyz + ? y2z = 0

+ ? xz2 + ? yz2

+ ? z3

The co-efficient of x is not 0 (or else this cubic is divisible by z). Dividing the entire
equation by this co-efficient, we can assume that the coefficient of x3 is 1. The
coefficient of y2z is not 0 either (or else this cubic is singular at x = z = 0). We
can scale z (i.e. replace z by a suitable multiple) so that the coefficient of y2z is
1. If the characteristic of k is not 2, then we can then replace y by y + ?x + ?z so
that the coefficients of xyz and yz2 are 0, and if the characteristic of k is not 3, we
can replace x by x + ?z so that the coefficient of x2z is also 0. In conclusion, if
char k != 2, 3, the elliptic curve may be written

(21.8.8.1) y2z = x3 + ax2z + bz3.

This is called the Weierstrass normal form of the curve.
We see the hyperelliptic description of the curve (by setting z = 1, or more pre-

cisely, by working in the distinguished open set z != 0 and using inhomogeneous
coordinates). In particular, we can compute the j-invariant should we want to.
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21.8.E. EXERCISE. Show that the flexes of the cubic are the 3-torsion points in the
group E. (“Flex” was defined in §21.8.8: it is a point where the tangent line meets
the curve with multiplicity at least 3 at that point. In fact, if k is algebraically closed
and char k != 3, there are nine of them. This won’t be surprising if you are familiar
with the complex story, E = C/Λ.)

21.8.9. The group law, geometrically.
The group law has a beautiful classical description in terms of the Weierstrass

form. Consider Figure 21.2. In the Weierstrass coordinates, the origin p is the only
point of E meeting the line at infinity (z = 0); in fact the line at infinity corresponds
to the tautological section of O(3p). If a line meets E at three points p1, p2, p3, then

O(p1 + p2 + p3) ∼= O(3p)

from which (in the group law) p1 + p2 + p3 = 0.
Hence to find the inverse of a point s, we consider the intersection of E with

the line sp; −s is the third point of intersection. To find the sum of two points q
and r, we consider the intersection of E with the line qr, and call the third points s.
We then compute −s by connecting s to p, obtaining q + r.

t

p

q
r

s

FIGURE 21.2. The group law on the elliptic curve, geometrically

We could give this description of a group law on a cubic curve in Weierstrass
normal form to anyone familiar with the notion of projective space, and the notion
of a group, but we would then have to prove that the construction we are giving
indeed defines a group. In particular, we would have to prove associativity, which
is not a priori clear. But in this case, we have already established that the degree 1

points form a group, by giving a bijection to Pic0 E, and we are merely interpreting
the group law on Pic0 E.
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Note that this description works even in characteristic 2 and 3; we don’t need
the cubic to be in Weierstrass normal form, and we need only that O(3p) gives a
closed immersion into P2.

21.8.10. Elliptic curves are group varieties.
We initially described the group law on the degree 1 points of an algebraic

curve in a rather abstract way. From that definition, it was not clear that over C the
group operations (addition, inverse) are continuous. But the explicit description in
terms of the Weierstrass cubic makes this clear. In fact we can observe even more:
addition and inverse are algebraic in general. Better yet, elliptic curves are group
varieties.

(This is a clue that Pic0(E) really wants to be a scheme, and not just a group.
Once the notion of “moduli space of line bundles on a variety” is made precise,
this can be shown.)

We begin with the inverse case, as a warm-up.

21.8.11. Proposition. — If char k != 2, 3, there is a morphism of k-varieties E → E
sending a (degree 1) point to its inverse, and this construction behaves well under field
extension of k.

In other words, the “inverse map” in the group law actually arises from a mor-
phism of schemes — it isn’t just a set map. (You are welcome to think through the
two remaining characteristics, and to see that essentially the same proof applies.
But the proof of Theorem 21.8.13 will give you a better sense of how to proceed.)

Proof. In characteristic not 2 or 3, it is the map (the hyperelliptic involution) y (→
−y of the Weierstrass normal form. !

The algebraic description of addition would be a big mess if we were to write
it down. We will be able to show algebraicity by a trick — not by writing it down
explicitly, but by thinking through how we could write it down explicitly. The
main part of the trick is the following proposition. We give it in some generality
just because it can be useful, but you may prefer to assume that k = k and C is a
nonsingular cubic.

21.8.12. Proposition. — Suppose C ⊂ P2
k is a geometrically integral cubic curve (so in

particular C contains no lines). Let Cns be the nonsingular points of C. There is a unique
morphism t : Cns × Cns → Cns such that

(a) if p and q are distinct nonsingular k-valued points of C, then t(p, q) is obtained
by intersecting the line pq with C, and taking the third “residual” point of inter-
section with C. More precisely, pq will meet C at three points with multiplicity
(Exercise 9.2.E), including p and q; t(p, q) is the third point.

(b) this property remains true after extension to k.

Furthermore, if p is a k-valued point of Cns, then t(2p) is where the tangent line ( to C
at p meets C again. More precisely, ( will meet C at three points with multiplicity, which
includes p with multiplicity 2; t(p, p) is the third point.

We will need property (b) because C may have few enough k-valued points
(perhaps none!) that the morphism t can not be determined by its behavior on
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them. In the course of the proof, we will see that (b) can be extended to “this
property remains true after any field extension of k”.

Proof. We first show (in this paragraph) that if p and q are distinct nonsingular
points, then the third point r of intersection of pq with C is also nonsingular. If
r = p or r = q, we are done. Otherwise, the cubic obtained by restricting C to
pq has three distinct (hence reduced, i.e. multiplicity 1) roots, p, q, and r. Thus
C ∩ pq is nonsingular at r, so r is a nonsingular point of C by the slicing criterion
for nonsingularity, Exercise 13.2.B.

We now assume that k = k, and leave the general case to the end. Fix p,
q, and r, where p != q, and r is the “third” point of intersection of pq with C.
We will describe a morphism tp,q in a neighborhood of (p, q) ∈ Cns × Cns. By
Exercise 11.2.D, showing that morphisms of varieties over k are determined by
their behavior on closed (k-valued) points, that these morphisms glue together
(uniquely) to give a morphism t, completing the proof in the case k = k.

Choose projective coordinates on P2 in such a way that U0
∼= Spec k[x1, x2]

contains p, q, and r, and the line pq is not “vertical”. More precisely, in Spec k[x1, x2],
say p = (p1, p2) (in terms of “classical coordinates” — more pedantically, p =
[(x1−p1, x2−p2)]), q = (q1, q2), r = (r1, r2), and p1 != q1. In these coordinates, the
curve C is cut out by some cubic, which we also sloppily denote C: C(x1, x2) = 0.

Now if P = (P1, P2) and Q = (Q1,Q2) are in C∩U0, we attempt to compute the
third point of intersection of PQ with C, in a way that works on an open subset of
C × C that includes (p, q). To do this explicitly requires ugly high school algebra,
but because we know how it looks, we will be able to avoid dealing with any
details!

The line PQ is given by x2 = mx1 + b, where m = P2−Q2

P1−Q1
and b = P2 − mP1

are both rational functions of P and Q. Then m and b are defined for all P and
Q such that P1 != Q1 (and hence for a neighborhood of (p, q), as p1 != q1, and as
P1 != Q1 is an open condition).

Now we solve for C∩PQ, by substituting x2 = mx1+b into C, to get C(x1,mx1+
b). This is a cubic in x1, say

γ(x1) = Ax3
1 + BX2

1 + Cx1 + D = 0.

The coefficients of γ are rational functions of P1, P2, Q1, and Q2. The cubic γ has
3 roots (with multiplicity) so long as A != 0 , which is an open algebraic condition
on m and b, and hence on P1, P2, Q1, Q2. As P,Q ∈ C ∩ PQ ∩ U0, P1 and Q1

are two of the roots of γ(x1) = 0. The sum of the roots of γ(x1) = 0 is −B/A (by
Viète’s formula), so the third root of γ is R1 := −B/A − P1 − Q1. Thus if we take
R2 = mR1 +b, we have found the third points of intersection of PQ with C (which
happily lies in U0) We have thus described a morphism from the open subset of
(Cns ∩ U0) × (Cns ∩ U0), containing (p, q), that does what we want. (Precisely,
the open subset is defined by A != 0, which can be explicitly unwound.) We have
thus completed the proof of Proposition 21.8.12 (except for the last paragraph) for
k = k. (Those who believe they are interested only in algebraically closed fields
can skip ahead.)
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We extend this to Proposition 21.8.12 for every field k except F2. Suppose
U0[x1, x2] = Spec k[x1, x2] is any affine open subset of P2

k, along with choice of co-
ordinates. (The awkward notation “[x1, x2]” is there to emphasize that the partic-
ular coordinates are used in the construction.) Then the construction above gives
a morphism defined over k from an open subset of (Cns ∩ U0[x1, x2]) × (Cns ∩
U0[x1, x2]) (note that all of the hypothetical algebra was done over k), that sends P

and Q to the third points of intersection of PQ with C. Note that this construction
commutes with any field extension, as the construction is insensitive to the field
we are working over. Thus after base change to the algebraic closure, the map also
has the property that it takes as input two points, and spits out the third point of
intersection of the line with the cubic. Furthermore, all of these maps (as U0[x1, x2]
varies over all complements U0 of lines “with k-coefficients”, and choices of coor-
dinates on U0) can be glued together: they agree on their pairwise overlaps (as
after base change to k they are the same, by our previous discussion, and two
maps that are the same after base change to k were the same to begin with by
Exercise 10.2.J), and this is what is required to glue them together (Exercise 7.2.A).

We can geometrically interpret the open subset (Cns ∩ U0[x1, x2]) × (Cns ∩
U0[x1, x2]) by examining the construction: it is defined in the locus {P = (P1, P2),Q =
(Q1,Q2)} where (i) P1 != Q1, and (ii) the third point of intersection R of PQ with C
also lies in U0.

So which points (P,Q) of Cns ×Cns are missed? Condition (i) isn’t important;
if (P,Q) satisfies (ii) but not (i), we can swap the roles of x1 and x2, and (P,Q) will
then satisfy (i). The only way (P,Q) can not be covered by one of these open sets
is if there is no U0 (a complement of a line defined over k) that includes P, Q, and
R.

21.8.F. EXERCISE. Use |k| > 2 to show that there is a linear form on P2 with
coefficients in k that misses P, Q, and R. (This is sadly not true if k = F2 — do you
see why?)

21.8.G. EXERCISE. Prove the last statement of Proposition 21.8.12.

21.8.H. !! UNIMPORTANT EXERCISE. Complete the proof by dealing with the case
k = F2. Hint: first produce the morphism t over F4. The goal is then to show that
this t is really “defined over” F2 (“descends to” F2). The morphism t is initially
described locally by considering the complement of a line defined over F4 (and
then letting the line vary). Instead, look at the map by looking at the complement
of a line and its “conjugate”. The complement of the line and its conjugate is
an affine F2-variety. The partially-defined map t on this affine variety is a priori
defined over F4, and is preserved by conjugation. Show that this partially defined
map is “really” defined over F2. (If you figure out what all of this means, you will
have an important initial insight into the theory of “descent”.)

!

We can now use this to define the group variety structure on E.

21.8.13. Theorem. — Suppose (E, p) is an elliptic curve (a nonsingular genus 1 curve
over k, with a k-valued point p). Take the Weierstrass embedding of E in P2

k, via the
complete linear series |OE(3p)|. Define the k-morphism e : Spec k → E by sending
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Spec k to p. Define the k-morphism i : E → E via q (→ t(p, q), or more precisely, as the
composition

E
(id,e) $$ E × E

t $$ E.

Define the k-morphism m : E × E → via (q, r) (→ t(p, t(q, r)). Then (E, e, i,m) is a
group variety over k.

By the construction of t, all of these morphisms “commute with arbitrary base
extension”.

Proof. We need to check that various pairs of morphisms described in §7.6.3 axioms
(i)–(iii) are equal. For example, in axiom (iii), we need to show that m ◦ (i, id) =
m ◦ (id, i); all of the axioms are clearly of this sort.

Assume first that k = k. Then each of these pairs of morphisms agree as
maps of k-points: Pic E is a group, and under the bijection between Pic E and E of
Proposition 21.8.3, the group operations translate into the maps described in the
statement of Theorem 21.8.13 by the discussion of §21.8.9.

But morphisms of k-varieties are determined by their maps on the level of
k-points (Exercise 11.2.D), so each of these pairs of morphisms are the same.

For general k, we note that from the k case, these morphisms agree after base
change to the algebraic closure. Then Exercise 10.2.J, they must agree to begin
with.

21.8.14. Features of this construction. The most common derivation of the proper-
ties of an elliptic curve are to describe it as a cubic, and describe addition using
the explicit construction with lines. Then one has to work hard to prove that the
multiplication described is associative.

Instead, we started with something that was patently a group (the degree 0
line bundles). We interpreted the maps used in the definition of the group (ad-
dition and inverse) geometrically using our cubic interpretation of elliptic curves.
This allowed us to see that these maps were algebraic.

As a bonus, we see that in some (as yet unprecise) sense, the Picard group of
an elliptic curve wants to be an algebraic variety.

21.8.I. EXERCISE. Suppose p and q are k-points of a genus 1 curve E. Show that
there is an automorphism of E sending p to q.

21.8.J. EXERCISE. Suppose (E, p) is an elliptic curve over an algebraically closed
field k of characteristic not 2. Show that the automorphism group of (E, p) is
isomorphic to Z/2, Z/4, or Z/6. (An automorphism of an elliptic curve (E, p)
over k = k is an automorphism of E fixing p scheme-theoretically, or equiva-
lently, fixing the k-valued points by Exercise 11.2.D.) Hint: reduce to the ques-
tion of automorphisms of P1 fixing a point ∞ and a set of distinct three points
{p1, p2, p3} ∈ P1 \ {∞}. (The algebraic closure of k is not essential, so feel free to
remove this hypothesis, using Exercise 10.2.J.)

21.8.15. Vague question. What are the possible automorphism groups of a genus 1
curve over an algebraically closed k of characteristic not 2? You should be able to
convince yourself that the group has “dimension 1”.
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21.8.K. IMPORTANT EXERCISE: A DEGENERATE ELLIPTIC CURVE. Consider the
genus 1 curve C ⊂ P2

k given by y2z = x3 + x2z, with the point p = [0; 1; 0]. Em-
ulate the above argument to show that C \ {[0; 0; 1]} is a group variety. Show that
it is isomorphic to Gm (the multiplicative group scheme Spec k[t, t−1], see Exer-
cise 7.6.C) with coordinate t = y/x, by showing an isomorphism of schemes, and
showing that multiplication and inverse in both group varieties agree under this
isomorphism.

21.8.L. EXERCISE: AN EVEN MORE DEGENERATE ELLIPTIC CURVE. Consider the
genus 1 curve C ⊂ P2

k given by y2z = x3, with the point p = [0; 1; 0]. Emulate
the above argument to show that C \ {[0; 0; 1]} is a group variety. Show that it
is isomorphic to A1 (with additive group structure) with coordinate t = y/x, by
showing an isomorphism of schemes, and showing that multiplication/addition
and inverse in both group varieties agree under this isomorphism.

21.8.16. Degree 4 line bundles. You have probably forgotten that we began by
studying line bundles degree by degree. The story doesn’t stop in degree 3. In the
same way that we showed that a canonically embedded nonhyperelliptic curve of
genus 4 is the complete intersection in P3

k of a quadric and a cubic (§21.7), we can
show the following.

21.8.M. EXERCISE. Show that the complete linear series for O(4p) embeds E in
P3 as the complete intersection of two quadrics. (Hint: Show the image of E is
contained in at least 2 linearly independent quadrics. Show that neither can be
reducible, so they share no components. Use Bézout’s theorem, Exercise 20.5.M.)

The beautiful structure doesn’t stop with degree 4, but it gets more compli-
cated. For example, the degree 5 embedding is not a complete intersection (of
hypersurfaces), but is the complete intersection of G(2, 5) under its Plücker em-
bedding with a five hyperplanes (or perhaps better, a codimension 5 linear space).
In seemingly different terminology, its equations are 4×4 Pfaffians of a general 5×5
skew-symmetric matrix of linear forms, although I won’t say what this means.

21.9 Counterexamples and pathologies from elliptic curves

We now give some fun counterexamples using our understanding of elliptic
curves. The main extra juice elliptic curves give us comes from the fact that elliptic
curves are the simplest varieties with “continuous Picard groups”.

21.9.1. An example of a scheme that is factorial, but such that no affine open
neighborhood of any point has ring that is a unique factorization domain.

Suppose E is an elliptic curve over C (or some other uncountable algebraically
closed field). Consider p ∈ E. The local ring OE,p is a discrete valuation ring and
hence a unique factorization domain. Then an open neighborhood of E is of the
form E − q1 − · · · − qn. I claim that its Picard group is nontrivial. Recall the exact
sequence:

Z⊕n
(a1,...,an))→a1q1+···+anqn $$ Pic E $$ Pic(E − q1 − · · · − qn) $$ 0 .
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But the group on the left is countable, and the group in the middle is uncountable,
so the group on the right is non-zero.

21.9.2. Counterexamples using the existence of a non-torsion point.
We next give a number of counterexamples using the existence of a non-torsion

point of a complex elliptic curve. We show the existence of such a point.
We have a “multiplication by n” map [n] : E → E, which sends p to np. If

n = 0, this has degree 0. If n = 1, it has degree 1. Given the complex picture of a
torus, you might not be surprised that the degree of ×n is n2. If n = 2, we have
almost shown that it has degree 4, as we have checked that there are precisely 4
points q such that 2p = 2q. All that really shows is that the degree is at least 4.
(We could check by hand that the degree is 4 is we really wanted to.)

21.9.3. Proposition. — Suppose E is an elliptic curve over a field k of characteristic not
2. For each n > 0, the “multiplication by n” map has positive degree. In other words,
there are only a finite number of n torsion points, and the [n] != [0].

Proof. We may assume k = k, as the degree of a map of curves is independent of
field extension.

We prove the result by induction; it is true for n = 1 and n = 2.
If n is odd, then assume otherwise that nq = 0 for all closed points q. Let r be

a non-trivial 2-torsion point, so 2r = 0. But nr = 0 as well, so r = (n−2[n/2])r = 0,
contradicting r != 0.

If n is even, then [×n] = [×2]◦ [×(n/2)], and by our inductive hypothesis both
[×2] and [×(n/2)] have positive degree. !

In particular, the total number of torsion points on E is countable, so if k is an
uncountable field, then E has an uncountable number of closed points (consider
an open subset of the curve as y2 = x3 + ax + b; there are uncountably many
choices for x, and each of them has 1 or 2 choices for y).

21.9.4. Corollary. — If E is a curve over an uncountable algebraically closed field of
characteristic not 2 (e.g. C), then E has a non-torsion point.

Proof. For each n, there are only finitely many n-torsion points. Thus there are (at
most) countably many torsion points. The curve E has uncountably many closed
points. (One argument for this: take a double cover π : E → P1. Then P1 has
uncountably many closed points, and π is surjective on closed points. !

21.9.5. Remark. In a sense we can make precise using cardinalities, almost all
points on E are non-torsion. You will notice that this argument breaks down over
countable fields. In fact, over F)p, all points of an elliptic curve E are torsion. (Any
point x is defined over some finite field Fpr . The points defined over Fpr form
a subgroup of E, using the explicit geometric construction of the group law, and
there are finite number of points over Fpr — certainly no more than the number
of Fpr-points of P2.) But over Q, there are elliptic curves with non-torsion points.
Even better, there are examples over Q: [2, 1, 8] is a Q-point of the elliptic curve
y2z = x3 + 4xz2 − z3 that is not torsion. The proof would carry us too far afield,
but one method is to use the Nagell-Lutz Theorem (see for example [Sil, Cor. 7.2]).
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We now use the existence of a non-torsion point to create some interesting
pathologies.

21.9.6. An example of an affine open subset of an affine scheme that is not a
distinguished open set.

We can use this to construct an example of an affine scheme X and an affine
open subset Y that is not distinguished in X. Let X = E − p, which is affine (see
Exercise 21.2.B, or better, note that the linear series O(3p) sends E to P2 in such a
way that the “line at infinity” meets E only at p; then E−p has a closed immersion
into the affine scheme A2).

Let q be another point on E so that q − p is non-torsion. Then E − p − q is
affine (Exercise 21.2.B). Assume that it is distinguished. Then there is a function f
on E−p that vanishes on q (to some positive order d). Thus f is a rational function
on E that vanishes at q to order d, and (as the total number of zeros minus poles
of f is 0) has a pole at p of order d. But then d(p − q) = 0 in Pic0 E, contradicting
our assumption that p − q is non-torsion.

21.9.7. A Picard group that has no chance of being a scheme.
We informally observed that the Picard group of an elliptic curve “wants to

be” a scheme (see §21.8.14). This is true of projective (and even proper) varieties
in general. On the other hand, if we work over C, the affine scheme E − p −
q (in the language of §21.9.6 above) has a Picard group that can be interpreted
as C modulo a lattice modulo a non-torsion point (e.g. C/〈1, i,π〉). This has no
reasonable interpretation as a manifold, let alone a variety. So the fact that the
Picard group of proper varieties turns out to be a scheme should be seen as quite
remarkable.

21.9.8. Example of a variety with non-finitely-generated ring of global sections.
We next show an example of a complex variety whose ring of global sections

is not finitely generated. (An example over Q can be constructed in the same way
using the curve of Remark 21.9.5.) This is related to Hilbert’s fourteenth problem,
although I won’t say how.

We begin with a preliminary exercise.

21.9.A. EXERCISE. Suppose X is a scheme, and L is the total space of a line bundle
corresponding to invertible sheaf L , so L = Spec⊕n≥0(L ∨)⊗n. (This construc-
tion first appeared in Definition 18.1.4.) Show that H0(L,OL) = ⊕H0(X, (L ∨)⊗n).
(Possible hint: choose a trivializing cover for L . Rhetorical question: can you
figure out the more general statement if L is a rank r locally free sheaf?)

Let E be an elliptic curve over some ground field k, N a degree 0 non-torsion
invertible sheaf on E, and P a positive-degree invertible sheaf on E. Then H0(E,N m⊗
Pn) is nonzero if and only if either (i) n > 0, or (ii) m = n = 0 (in which case the
sections are elements of k).

21.9.B. EASY EXERCISE. Show that the ring R = ⊕m,n≥0H0(E,N m ⊗ Pn) is not
finitely generated.
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21.9.C. EXERCISE. Let X be the total space of the vector bundle associated to
(N ⊕P)∨ over E. Show that the ring of global sections of X is R, and hence is not
finitely generated. (Hint: interpret X as a line bundle over a line bundle over E.)



CHAPTER 22

! Application: A glimpse of intersection theory

The only reason this Chapter appears after Chapter 21 is because we will use
Exercise 21.2.E.

22.1 Intersecting n line bundles with an n-dimensional variety

Throughout this chapter, X will be a k-variety; in most applications, X will be
projective. The central tool in this chapter is the following.

22.1.1. Definition: intersection product, or intersection number. Suppose F is a co-
herent sheaf on X with proper support (automatic if X is proper) of dimension at
most n, and L1, . . . , Ln are invertible sheaves on X. Let (L1 · L2 · · ·Ln · F ) be
the signed sum over the 2n subsets of {1, . . . , n}

(22.1.1.1)
∑

{i1,...,im}⊂{1,...,n}

(−1)mχ(L ∨
i1

⊗ · · ·⊗ L ∨
im

⊗ F ).

We call this the intersection of L1, . . . , Ln with F . (Never forget that whenever
we write (L1 · · ·Ln · F ), we are implicitly assuming that dim Supp F ≤ n.) The
case we will find most useful is if F is the structure sheaf of a subscheme Y (of
dimension at most n). In this case, we may write it (L1 · L2 · · ·Ln · Y). If the Li

are all the same, say L , one often writes (L n · F ) or (L n · Y). (Be very careful
with this confusing notation: L n does not mean L ⊗n.) In some circumstances
the convention is to omit the parentheses.

We will prove many things about the intersection product in this chapter. One
fact is left until we study flatness (Exercise 25.7.4): that it is “deformation-invariant”
— that it is constant in “nice” families.

22.1.A. EXERCISE (REALITY CHECK). Show that if L1
∼= OX then (L1 ·L2 · · ·Ln ·

F ) = 0.

The following exercise suggests that the intersection product might be inter-
esting, as it “interpolates” between two useful notions: the degree of a line bundle
on a curve, and Bezout’s theorem.

22.1.B. EXERCISE.
(a) If X is a curve, and L is an invertible sheaf on X, show that (L ·X) = degX L .
(b) Suppose k is an infinite field, X = PN, and Y is a dimension n subvariety of X. If
H1, . . . , Hn are generally chosen hypersurfaces of degrees d1, . . . , dn respectively
(so dim(H1 ∩ · · · ∩ Hn ∩ Y) = 0 by Exercise 12.3.C(d)), then by Bezout’s theorem

477
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(Exercise 20.5.M),

deg(H1 ∩ · · · ∩ Hn ∩ Y) = d1 · · ·dn deg(Y).

Show that
(OX(H1) · · ·OX(Hn) · Y) = d1 · · ·dn deg(Y).

We now describe some of the properties of the intersection product. In the
course of proving Exercise 22.1.B(b) you will in effect solve the following exercise.

22.1.C. EXERCISE. Suppose D is an effective Cartier divisor on X that restricts to
an effective Cartier divisor on Y (i.e. remains not locally a zerodivisor on Y). Show
that

(L1 · · ·Ln−1 · O(D) · Y) = (L1 · · ·Ln−1 · D).

More generally, if D is an effective Cartier divisor on X that does not meet any
associated points of F , show that

(L1 · · ·Ln−1 · O(D) · F ) = (L1 · · ·Ln−1 · F |D).

22.1.2. Definition. For this reason, if D is an effective Cartier divisor, in the symbol
for the intersection product, we often writes D instead of O(D). We interchange-
ably think of intersecting divisors rather than line bundles. For example, we will
discuss the special case of intersection theory on a surface in §22.2, and when we
intersect two curves C and D, we will write the intersection as (C ·D) or even C ·D.

22.1.D. EXERCISE. Show that the intersection product (22.1.1.1) is preserved by
field extension of k.

22.1.3. Proposition. — Assume X is projective. For fixed F , the intersection product
(L1 · · ·Ln · F ) is a symmetric multilinear function of the L1, . . . , Ln.

We remark that Proposition 22.1.3 is true without projective hypotheses. For
an argument in the proper case, see [Kl, Prop. 2]. Unlike most extensions to the
proper case, this is not just an application of Chow’s lemma; it involves a different
approach, involving a beautiful trick called dévissage.

Proof. Symmetry is clear. By Exercise 22.1.D, we may assume that k is infinite (e.g.
algebraically closed). We now prove the result by induction on n.

22.1.E. EXERCISE (BASE CASE). Prove the result when n = 1. (Hint: Exer-
cise 20.4.M.)

We now assume the result for when the support of the coherent sheaf has
dimension less than n.

We now use a trick. We wish to show that (for arbitrary L1, L ′
1 , L2, . . . , Ln,

(22.1.3.1) (L1 ·L2 · · ·Ln ·F )+(L ′
1 ·L2 · · ·Ln ·F )− ((L1⊗L ′

1 ) ·L2 · · ·Ln ·F )

is 0.

22.1.F. EXERCISE. Rewrite (22.1.3.1) as

(22.1.3.2) (L1 · L ′
1 · L2 · · ·Ln · F ).



September 6, 2011 draft 479

(There are now n + 1 line bundles appearing in the product, but this does not
contradict the definition of the intersection product, as dim Supp F ≤ n < n + 1.)

22.1.G. EXERCISE. Use the inductive hypothesis to show that (22.1.3.1) is 0 if
Ln

∼= O(D) for D an effective Cartier divisor missing the associated points of F .

In particular, if Ln is very ample, then (22.1.3.1) is 0, as Exercise 20.5.C shows
that there exists a section of Ln missing the associated points of F .

By the symmetry of its incarnation as (22.1.3.2), expression (22.1.3.1) vanishes
if L1 is very ample. Let A and B be any two very ample line bundles on X. Then
by substituting L1 = B and L ′

1 = A ⊗ B∨, using the vanishing of (22.1.3.1), we
have

(22.1.3.3) (A ⊗ B∨ · L2 · · ·Ln · F ) = (A · L2 · · ·Ln · F ) − (B · L2 · · ·Ln · F )

Both summands on the right side of (22.1.3.3) are linear in Ln, so the same is true
of the left side. But by Exercise 16.3.H, any invertible sheaf on X may be written in
the form A ⊗B∨ (“as the difference of two very amples”), so (L1 ·L2 · · ·Ln ·F ) is
linear in Ln, and thus (by symmetry) in each of the Li. (An interesting feature of
this argument is that we intended to show linearity in L1, and ended up showing
linearity in Ln.) !

We have an added bonus arising from the proof.

22.1.H. EXERCISE. Show that if dim Supp F < n + 1, and L1, L ′
1 , L2, . . . , Ln

are invertible sheaves on X, then (22.1.3.2) vanishes. In other words, the intersec-
tion product of n + 1 invertible sheaves with a coherent sheaf F vanishes if the
dim Supp F < n + 1.

22.1.4. Proposition. — The intersection product depends only on the numerical equiva-
lence classes of the Li.

We prove Proposition 22.1.4 when X is projective, as we use the fact that every
line bundles is the difference two very ample line bundles in both the proof of
Proposition 22.1.3 and in the proof of Proposition 22.1.4 itself.

Proof if X is projective. Suppose L1 is numerically equivalent to L ′
1 , and L2, . . . , Ln,

and F are arbitrary. We wish to show that (L1 ·L2 · · ·Ln ·F ) = (L ′
1 ·L2 · · ·Ln ·

F ). By Exercise 22.1.D, we may assume that k is infinite (e.g. algebraically closed).
We proceed by induction on n. The case n = 1 follows from Exercise 20.4.M (as all
proper curves are projective, Exercise 20.6.C). We assume that n > 1, and assume
the result for “smaller n”. By multilinearity of the intersection product, and the
fact that each Ln maybe written as the “difference” of two very ample invertible
sheaves (Exercise 16.3.H), it suffices to prove the result in the case when Ln is very
ample. We may write Ln = O(D), where D is an effective Cartier divisor missing
the associated points of F (Exercise 20.5.C). Then and the inductive hypothesis,

(L1 · L2 · · ·Ln · F ) = (L1 · L2 · · ·Ln−1 · F |D) (Ex. 22.1.C)

= (L ′
1 · L2 · · ·Ln−1 · F |D) (inductive hyp.)

= (L ′
1 · L2 · · ·Ln · F ) (Ex. 22.1.C).

!
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22.1.5. Asymptotic Riemann-Roch.
Recall that if Y is a proper curve, χ(Y,L ⊗m) = m degY L + χ(Y,OY) (see

(20.4.8.1)) is a linear polynomial in m, whose leading term is an intersection prod-
uct. This generalizes.

22.1.I. EXERCISE (ASYMPTOTIC RIEMANN-ROCH). Suppose F is a coherent sheaf
with dim Supp F ≤ n. Show that χ(X,L ⊗m ⊗F ) is a polynomial in L of degree
m of degree at most n. Show that the coefficient of mn in this polynomial (the
“leading term”) is (L n ·F )/n!. Hint: Exercise 22.1.H implies that (L n+1 · (L ⊗i ⊗
F )) = 0. (Careful with this notation: L n+1 doesn’t mean L ⊗(n+1), it means
L ·L · · ·L with n + 1 factors.) Expand this out using (22.1.1.1) to get a recursion
for χ(X,L ⊗m ⊗ F ). Your argument may resemble the proof of polynomiality
of the Hilbert polynomial, Theorem 20.5.1, so you may find further hints there.
Exercise 20.5.E in particular might help.

Thus if because of a “vanishing theorem” (such as Serre vanishing, Theo-
rem 20.1.3(ii)), we know that hi(X,L ⊗m ⊗ F ) = 0 for m . 0 and i > 0, then
we know h0(X,L ⊗m). In the proof of Nakai’s criterion (Theorem 22.3.1), we will
do something along these lines, but a little weaker and a little cleverer.

We know all the coefficients of this polynomial if X is a curve, by Riemann-
Roch (see (20.4.8.1)), or basically by definition. We will know/interpret all the
coefficients if X is a nonsingular projective surface and F is an invertible sheaf
when we prove Riemann-Roch for surfaces (Exercise 22.2.B(b)). To understand the
general case, we need the theory of Chern classes. The result is the Hirzebruch-
Riemann-Roch Theorem, which can be further generalized to the celebrated Grothendieck-
Riemann-Roch Theorem.

22.1.J. EXERCISE (THE PROJECTION FORMULA). Suppose π : X1 → X2 is a pro-
jective morphism of projective schemes (over a field k) of the same dimension
n, and L1, . . . , Ln are invertible sheaves on X2. Show that (π∗L1 · · ·π∗Ln) =
deg(X1/X2)(L1 · · ·Ln). (The first intersection is on X1, and the second is on X2.)
Hint: argue that by the multilinearity of the intersection product, it suffices to deal
with the case where the Li are very ample. Then choose sections of each Li, all of
whose intersection lies in the locus where π has “genuine degree deg d”. (In fact,
the result holds with projective replaced with proper.) A better hint will be added
later.

22.1.6. Remark: A more general projection formula. Suppose π : X1 → X2 is a proper
morphism of proper varieties, and F is a coherent sheaf on X1 with dim Supp F ≤
n (so dim Suppπ∗F ≤ n). Suppose also that L1, . . . , Ln are invertible sheaves on
X2. Then

(π∗L1 · · ·π∗Ln · F ) = (L1 · · ·Ln · π∗F ).

This is called the projection formula (and generalizes, in a nonobvious way, Exer-
cise 22.1.J). Because we won’t use this version of the projection formula, we omit
the proof. One is given in [Kl2, B.15].

22.1.K. EXERCISE (INTERSECTING WITH AMPLE LINE BUNDLES). Suppose X is
a projective k-variety, and L is an ample line bundle on X. Show that for any
subvariety Y of X of dimension n, (L n · Y) > 0. (Hint: use Proposition 22.1.3 and
Theorem 16.3.12 to reduce to the case where L is very ample. Then show that
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(L n · Y) = deg Y in the embedding into projective space induced by the linear
system |L |.)

Nakai’s criterion (Theorem 22.3.1) states that this characterizes ampleness.

22.1.7. !! Cohomological interpretation in the complex projective case, generalizing Exer-
cise 20.4.G. If k = C, we can interpret (L1 · · ·Ln · Y) as the degree of

(22.1.7.1) c1((L1)an) ∪ · · · ∪ c1((Ln)an) ∩ [Yan]

in H0(Yan, Z). (Recall c1((Li)an) ∈ H2(Xan, Z), as discussed in Exercise 20.4.G.)
One way of proving this is to use multilinearity of both the intersection product
and (22.1.7.1) to reduce to the case where the Ln is very ample, so Ln

∼= O(D),
where D restricts to an effective Cartier divisor E on Y. Then show that if L is an
analytic line bundle on Yan with non-zero section Ean, then c1(L )∩ [Yan] = [Ean].
Finally, use induction on n and Exercise 22.1.C.

22.2 Intersection theory on a surface

We now apply the general machinery of §22.1 to the case of a nonsingular pro-
jective surface X. (What matters is that is X is Noetherian and factorial, so Pic X →
Cl X is an isomorphism, Proposition 15.2.7. Recall that nonsingular schemes are
factorial by the Auslander-Buchsbaum Theorem 13.3.1.)

22.2.A. EXERCISE/DEFINITION. Suppose C and D are effective divisors on X
(curves).
(a) Show that

degC OX(D)|C(22.2.0.2)

= (O(C) · O(D) · X)(22.2.0.3)

= degD OX(C)|D.(22.2.0.4)

We call this the intersection number of C and D, and denote it C · D.
(b) If C and D have no components in common, show that

C · D = h0(C ∩ D,OC∩D)

where C ∩ D is the scheme-theoretic intersection of C and D on X.

We thus have three descriptions of the intersection number (22.2.0.2)–(22.2.0.4),
each with advantages and disadvantages. The Euler characteristic description
(22.2.0.3) is remarkably useful (for example, in the exercises below), but the ge-
ometry is obscured. The definition degC OX(D)|C, (22.2.0.2) is not obviously sym-
metric in C and D. The definition h0(C∩D,OC∩D) is clearly local — to each point
of C ∩ D, we have a vector space. For example, we know that in A2

k, y − x2 = 0
meets the x-axis with multiplicity 2, because h0 of the scheme-theoretic intersec-
tion (k[x, y]/(y − x2, y)) has dimension 2. (This h0 is also the length of the dimen-
sion 0 scheme, but we won’t use this terminology.)

By Proposition 22.1.3, the intersection number induces a bilinear “intersection
form”

(22.2.0.5) Pic X × Pic X → Z.
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By Asymptotic Riemann-Roch (Exercise 22.1.I), χ(X,O(nD)) is a quadratic polyno-
mial in n.

You can verify that Exercise 22.2.A recovers Bézout’s theorem for plane curves
(see Exercise 20.5.M), using χ(P2,O(n)) = (n+2)(n+1)−2 (from Theorem 20.1.2).

Before getting to a number of interesting explicit examples, we derive a couple
of fundamental theoretical facts.

22.2.B. EXERCISE. Assuming Serre duality for X (Theorem 20.4.5), prove the fol-
lowing for a smooth projective surface X. (We are mixing divisor and invertible
sheaf notation, so be careful. Here KX is a divisor corresponding to KX.)
(a) (sometimes called the adjunction formula) C · (KX + C) = 2pa(C) − 2.
(b) (Riemann-Roch for surfaces) χ(OX(D)) = D · (D − KX)/2 + χ(OX) (cf. Riemann-
Roch for curves, Exercise 20.4.B).

22.2.1. Two explicit examples: P1 × P1 and Blp P2.

22.2.C. EXERCISE: X = P1 × P1. Recall from Exercise 15.2.N that Pic(P1 × P1) =
Z( × Zm, where ( is the curve P1 × {0} and m is the curve {0} × P1. Show that the
intersection form (22.2.0.5) is given by ( · ( = m · m = 0, ( · m = 1. (Hint: You can
compute the cohomology groups of line bundles on P1 × P1 using Exercise 20.3.E,
but it is much faster to use Exercise 22.2.A(b).) What is the class of the diagonal in
P1 × P1 in terms of these generators?

22.2.D. EXERCISE: THE BLOWN UP PROJECTIVE PLANE. (You absolutely needn’t
have read Chapter 19 to do this exercise!) Let X = Blp P2 be the blow-up of P2

k at a
k-valued point (the origin, say) p — see Exercise 10.2.M, which describes the blow-
up of A2

k, and “compactify”. Interpret Pic X is generated (as an abelian group) by
( and e, where ( is a line not passing through the origin, and e is the exceptional
divisor. Show that the intersection form (22.2.0.5) is given by ( · ( = 1, e · e = −1,
and ( · e = 0. Hence show that Pic X ∼= Z( × Ze (as promised in the aside in Exer-
cise 15.2.O). In particular, the exceptional divisor has negative self-intersection.

22.2.2. Hint. Here is a possible hint to get the intersection form in Exercise 22.2.D.
The scheme-theoretic preimage in Blp P2 of a line through the origin is the scheme-
theoretic union of the exceptional divisor e and the “proper transform” m of the
line through the origin. Show that ( = e+m in Pic Blp P2 (writing the Picard group
law additively). Show that ( · m = e · m = 1 and m · m = 0.

22.2.E. EXERCISE. Show that the blown up projective plane Blp P2 in Exercise 22.2.D
is not isomorphic to P1×P1, perhaps considering their (isomorphic) Picard groups,
and identifying which classes are effective (represented by effective divisors). (This
is an example of a pair of smooth projective birational surfaces that have isomor-
phic Picard groups, but which are not isomorphic. This exercise shows that F0 is
not isomorphic to F1, as promised in Definition 18.2.2)

22.2.F. EXERCISE (CF. EXERCISE 20.4.R). Show that the nef cone (Exercise 20.4.Q)
of Blp P2 is generated by ( and m. Hint: show that ( and m are nef. By intersecting
line bundles with the curves e and (, show that nothing outside the cone spanned
by ( and m are nef. (Side remark: note that as in Exercise 20.4.R, linear series
corresponding to the boundaries of the cone give “interesting contractions”.)
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22.2.G. EXERCISE: A NONPROJECTIVE SURFACE. Show the existence of a proper
nonprojective surface over a field as follows, parallelling the construction of a
proper nonprojective threefold in §17.4.8. Take two copies of the blown up pro-
jective plane Blp P2, gluing ( on the first to e on the second, and e on the second to
( on the first. Hint: show that if L is a line bundle having positive degree on each
effective curve, then L · ( > L · e, using ( = e + m from Hint 22.2.2.

22.2.3. Fibrations.
Suppose π : X → B is a morphism from a projective surface to a nonsingular

curve and b ∈ B is a closed point. Let F = π∗b. Then OX(F) = π∗OB(b), which
is isomorphic to O on F. Thus F · F = degF OX(F) = 0: “the self-intersection of a
fiber is 0”. The same argument works without X being nonsingular, as long as you
phrase it properly: (π∗OX(b))2 = 0.

22.2.H. EXERCISE. Suppose E is an elliptic curve, with origin p. On E × E, let
∆ be the diagonal. By considering the “difference” map E × E → E, for which
π∗p = ∆, show that ∆2 = 0. Show that N1

Q(X) has rank at least 3. Show that in
general for schemes X and Y, Pic X × Pic Y → Pic(X × Y) (defined by pulling back
and tensoring) need not be isomorphism; the case of X = Y = P1 is misleading.

Remark: dimQ N1
Q(E × E) is always 3 or 4. It is 4 if there is a nontrivial endo-

morphism from E to itself (i.e. not just multiplication by some n); the additional
class comes from the graph of this endomorphism.

Our next goal is to describe the self-intersection of a curve on a ruled surface
(Exercise 22.2.J). To set this up, we have a useful preliminary result.

22.2.I. EXERCISE (THE NORMAL BUNDLE TO A SECTION OF Proj OF A RANK 2 VEC-
TOR BUNDLE. Suppose X is a scheme, and and V is a rank 2 locally free sheaf on
C. Explain how the short exact sequences

(22.2.3.1) 0 → S → V → Q → 0

on X, where S and Q have rank 1, correspond to the sections σ : X → PV to
the projection PV → X. Show that the normal bundle to σ(X) in PV is Q ⊗ S ∨.
(A generalization is stated in §23.3.7.) Hint: (i) For simplicity, it is convenient to
assume S = OX, by replacing V by V ⊗ S ∨, as the statement of the problem
respects tensoring by an invertible sheaf (see Exercise 18.2.G). (ii) Assume now
(with loss of generality) that Q ∼= OX. Then describe the section as σ : X → P1 × X,
with X mapping to the 0 section. Describe an isomorphism of OX with the normal
bundle to σ(X) → P1 × X. (Do not just say that the normal bundle “is trivial”.) (iii)
Now consider the case where Q is general. Choose trivializing neighborhoods Ui

of Q, and let gij be the the transition function for Q. On the overlap between two
trivializing neighborhoods Ui ∩Uj, determine how your two isomorphisms of OX

with Nσ(X)/P1
X

with OX from (ii) (one for Ui, one for Uj) are related. In particular,
show that they differ by gij.

22.2.J. EXERCISE (SELF-INTERSECTIONS OF SECTIONS OF RULED SURFACES). Sup-
pose C is a nonsingular curve, and V is a rank 2 locally free sheaf on C. Then
PV is a ruled surface (Definition 18.2.2). Fix a section σ of PV corresponding to a
filtration (22.2.3.1). Show that σ(C) · σ(C) = degC Q ⊗ S ∨.
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22.2.4. The Hirzebruch surfaces Fn = Proj
P1(OP1 ⊕ OP1(n)).

Recall the definition of the Hirzebruch surface Fn = Proj
P1(OP1 ⊕ OP1(n))

in Definition 18.2.2. It is a P1-bundle over P1; let π : Fn → P1 be the structure
morphism. Using Exercise 22.2.J, corresponding to

0 → O(n) → O ⊕ O(n) → O → 0,

we have a section of π of self-intersection −n; call it E ⊂ Fn. Similarly, correspond-
ing to

0 → O → O ⊕ O(n) → O(n) → 0,

we have a section C ⊂ Fn of self-intersection n. Let p be any k-valued point of P1,
and let F = π∗p.

22.2.K. EXERCISE. Show that O(F) is independent of the choice of p.

22.2.L. EXERCISE. Show that Pic Fn is generated by E and F. In the course of
doing this, you will develop “local charts” for Fn, which will help you solve later
exercises.

22.2.M. EXERCISE. Compute the intersection matrix on Pic Fn. Show that E and F
are independent, and thus Pic Fn

∼= ZE ⊕ ZF. Calculate C in terms of E and F.

22.2.N. EXERCISE. Show how to identify Fn \ E, along with the structure map π,
with the total space of the line bundle O(n) on P1, with C as the 0-section. Similarly
show how to identify Fn \ C with the total space of the line bundle O(−n) on P1;
with E as the 0-section.

22.2.O. EXERCISE. Show that h0(Fn,OFn
(C)) > 1. (As OFn

(C) has a section —
namely C — we have that h0(Fn,OFn

(C)) ≥ 1.) One way to proceed is to write
down another section using local charts for Fn.

22.2.P. EXERCISE. Show that every effective curve on Fn is a non-negative linear
combination of E and F. (Conversely, it is clear that for every nonnegative a and
b, O(aE + bF) has a section, corresponding to the effective curve “aE + bF”. The
extension of this to N1

Q is called the effective cone, and this notion, extended to
proper varieties more general, can be very useful. This exercise shows that E and
F generate the effective cone of Fn.) Hint: show that because “F moves”, any
effective curve must intersect F nonnegatively, and similarly because “C moves”
(Exercise 22.2.O), any effective curve must intersect C nonnegatively. If O(aE+bF)
has a section corresponding to an effective curve D, what does this say about a and
b?

22.2.Q. EXERCISE. By comparing effective cones, and the intersection pairing,
show that the Fn are pairwise nonisomorphic.

This is difficult to do otherwise, and foreshadows the fact that nef and effec-
tive cones are useful tools in classifying and understanding varieties general. In
particular, they are central to the minimal model program.

22.2.R. EXERCISE. Show that the nef cone of Fn is generated by C and F. (We will
soon see that by Kleiman’s criterion for ampleness, Theorem 22.3.7, that the ample
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cone is the interior of this cone, so we have now identified the ample line bundles
on Fn.)

22.2.S. EXERCISE. We have seen earlier (Exercises 22.2.F and 20.4.R) that the
boundary of the nef cone give “interesting contractions”. What are the maps given
by the two linear series corresponding to O(F) and O(C)? After this series of

exercises, you may wish to revisit Exercises 22.2.C-22.2.F, and interpret them as
special cases: F0

∼= P1 × P1 and F1
∼= Blp P2.

22.2.5. Blow-ups in general.
Exercise 22.2.D is a special case of the following.

22.2.T. EXERCISE. Suppose X is a nonsingular projective surface over k, and p is a
k-valued point. Let β : Blp X → X be the blow-up morphism, and let E = EpX be
the exceptional divisor. Consider the exact sequence

Z
γ:1)→ [E] $$ Pic Blp X

α $$ Pic(Blp X \ E) $$ 0

(from (15.2.6.2)). Note that Blp X \ E = X \ p. Show that Pic(X \ p) = Pic X. Show
that β∗ : Pic X → Pic Blp X gives a section to α. Use §19.3.5 to show that E2 = −1,
and from that show that γ is an injection. Conclude that Pic Blp X ∼= Pic X ⊕ Z.
Describe how to find the intersection matrix on N1

Q(Blp X) from that of N1
Q(X).

22.2.U. EXERCISE. Suppose D is an effective Cartier divisor (a curve) on X.
Let multp D be the multiplicity of D at p (Exercise 19.4.J), and let Dpr be the
proper transform of D. Show that π∗D = Dpr + (multp D)E as effective Cartier
divisors. More precisely, show that the product of the local equation for Dpr

and the (multp D)th power of the local equation for E is the local equation for
π∗D, and hence that (i) π∗D is an effective Cartier divisor, and (ii) π∗OX(D) ∼=
OBlp X(Dpr) ⊗ OBlp X(E)⊗(multp D). (A special case is the equation ( = e + m in
Hint 22.2.2.)

22.3 !! Nakai and Kleiman’s criteria for ampleness

Exercise 22.1.K stated that if X is projective k-variety, and L is an ample line
bundle on X, then for any subvariety Y of X of dimension n, (L n · Y) > 0. Nakai’s
criterion states that this is a characterization:

22.3.1. Theorem (Nakai’s criterion for ampleness). — If L is an invertible sheaf on
a projective k-scheme X, and for every subvariety Y of X of dimension n, (L n · Y) > 0,
then L is ample.

22.3.2. Remarks. We note that X need only be proper for this result to hold ([Kl,
Thm. III.1.1]).

Before proving Nakai’s theorem, we point out some consequences related to
§20.4.10. By Proposition 22.1.4, (L n · Y) depends only on the numerical equiva-
lence class of L , so ampleness is a numerical property. As a result, the notion of
ampleness makes sense on N1

Q(X). As the tensor product of two ample invertible
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sheaves is ample (Exercise 16.3.L), the ample Q-line bundles in N1
Q(X) form a cone,

called the ample cone of X.

22.3.3. Proposition. — If X is a projective k-scheme, the ample cone is open.

22.3.4. Warning. In the course of this proof, we introduce a standard, useful,
but confusing convention suggested by the multilinearity of the intersection prod-
uct: we write tensor product of invertible sheaves additively. This is because we
want to deal with intersections on the Q-vector space N1

Q(X). So for example by
((aL1 + bL ′

1 ) ·L2 · · ·Ln ·F ) (a, b ∈ Q), we mean a(L1 ·L2 · · ·Ln ·F ) + b(L ′
1 ·

L2 · · ·Ln ·F ). (Some people try to avoid confusion by using divisors rather than
line bundles, as we add divisors when we “multiply” the corresponding line bun-
dles. This is psychologically helpful, but may add more confusion, as one then has
to worry about the whether and why and how and when line bundles correspond
to divisors.)

Proof. Suppose A is an ample invertible sheaf on X. We will describe a small
open neighborhood of [A ] in N1

Q(X) consisting of ample Q-line bundles. Choose
invertible sheaves L1, . . . , Ln on X whose classes form a basis of N1

Q(X). By Ex-

ercise 16.3.J, there is some m such that A ⊗m ⊗ Li and A ⊗m ⊗ L ∨
i are both very

ample for all n. Thus (in the additive notation of Warning 22.3.4), A + 1
mLi and

A − 1
mLi are both ample. As the ample Q-line bundles form a cone, it follows that

A + ε1L1 + · · · + εnLn is ample for |εi| ≤ 1/m. !

22.3.5. Proof of Nakai’s criterion, Theorem 22.3.1. We prove Nakai’s criterion in
several steps.

22.3.A. UNIMPORTANT EXERCISE. Prove the case where dim X = 0.

Step 1: initial reductions. Suppose L satisfies the hypotheses of the Theorem;
we wish to show that L is ample. By Exercises 20.6.A and 20.6.B, we may assume
that X is integral. Moreover, we can work by induction on dimension, so we can
assume that L is ample on any closed subvariety. The base case is dimension 1,
which was done in Exercise 21.2.E.

Step 2: sufficiently high powers of L have sections. We show that H0(X,L ⊗m) != 0
for m . 0.

Our plan is as follows. By Asymptotic Riemann-Roch (Exercise 22.1.I), χ(X,L ⊗m) =
mn(L n)/n! + · · · grows (as a function of m) without bound. A plausible means
of attack is to show that hi(X,L ⊗m) = 0 for i > 0 and m . 0. We won’t do that,
but will do something similar.

By Exercise 16.3.H, L is the difference of two very ample line bundles, say
L ∼= A ⊗B−1 with A = O(A) and B = O(B). From 0 → O(−A) → O → OA → 0
we have

(22.3.5.1) 0 → L ⊗m(−B) → L ⊗(m+1) → L ⊗(m+1)|A → 0.

From 0 → O(−B) → O → OB → 0, we have

(22.3.5.2) 0 → L ⊗m(−B) → L ⊗m → L ⊗m|B → 0.
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Choose m large enough so that both L ⊗(m+1)|A and L ⊗m|B have vanishing
higher cohomology (i.e. h>0 = 0 for both; use the inductive hypothesis, and Serre
vanishing, Theorem 20.1.3(ii)). This implies that for i ≥ 2,

Hi(X,L ⊗m) ∼= Hi(X,L ⊗m(−B)) (long exact sequence for (22.3.5.2))
∼= Hi(X,L ⊗m+1) (long exact sequence for (22.3.5.1))

so the higher cohomology stabilizes (is constant) for large m. From

χ(X,L ⊗m) = h0(X,L ⊗m) − h1(X,L ⊗m) + constant,

H0(L ⊗m) != 0 for m . 0, completing Step 2.
So by replacing L by a suitably large multiple (ampleness is independent of

taking tensor powers, Theorem 16.3.12), we may assume L has a section D. We
now use D as a crutch.

Step 3: L ⊗m is globally generated for m . 0.
As D is effective, L ⊗m is globally generated on the complement of D: we have

a section vanishing on that big open set. Thus any base locus must be contained
in D. Consider the short exact sequence

(22.3.5.3) 0 → L ⊗(m−1) → L ⊗m → L ⊗m|D → 0

Now L |D is ample by our inductive hypothesis. Choose m so large that H1(X,L ⊗m|D) =
0 (Serre vanishing, Theorem 20.1.3(b)). From the exact sequence associated to
(22.3.5.3),

φm : H1(X,L ⊗(m−1)) → H1(X,L ⊗m)

is surjective for m . 0. Using the fact that the H1(X,L ⊗m) are finite-dimensional
vector spaces, as m grows, H1(X,L ⊗m) must eventually stabilize, so the φm are
isomorphisms for m . 0.

Thus for large m, from the long exact sequence in cohomology for (22.3.5.3),
H0(X,L ⊗m) → H0(X,L ⊗m|D) is surjective for m . 0. But H0(X,L ⊗m|D) has no
base points by our inductive hypothesis (applied to D), i.e. for any point p of D
there is a section of L ⊗m|D not vanishing at p, so H0(X,L ⊗m) has no base points
on D either, completing Step 3.

Step 4. Thus L is a base-point-free line bundle with positive degree on each
curve (by hypothesis of Theorem 22.3.1), so by Exercise 20.1.E we are done. !

The following result is the key to proving Kleiman’s numerical criterion of
ampleness, Theorem 22.3.7.

22.3.6. Kleiman’s Theorem. — Suppose X is a projective k-scheme. If L is a nef
invertible sheaf on X, then (L k · V) ≥ 0 for every irreducible subvariety V ⊂ X of
dimension k.

As usual, this extends to the proper case ([Kl, Thm. IV.2.1]). And as usual, we
postpone the proof until after we appreciate the consequences.

22.3.B. EXERCISE.
(a) Suppose X is a projective k-scheme, H is ample, and L is nef. Show that
L + εH is ample for all ε ∈ Q+. (Hint: use Nakai: ((L + εH )k · V) > 0. This
may help you appreciate the additive notation.)
(b) Conversely, if L and H are any two invertible sheaves such that L + εH is
ample for all sufficiently small ε > 0, show that L is nef. (Hint: limε→0.)
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22.3.7. Theorem (Kleiman’s numerical criterion for ampleness). — Suppose X is
a projective k-scheme.

(a) The nef cone is the closure of the ample cone.
(b) The ample cone is the interior of the nef cone.

Proof. (a) Ample invertible sheaves are nef (Exercise 20.4.P(e)), and the nef cone
is closed (Exercise 20.4.Q), so the closure of the ample cone is contained in the
cone. Conversely, each nef element of N1

Q(X) is the limit of ample classes by Exer-
cise 22.3.B, so the nef cone is contained in the closure of the ample cone.

(b) As the ample cone is open (Proposition 22.3.3), the ample cone is contained
in the interior of the nef cone. Conversely, suppose L is in the interior of the nef
cone, and H is any ample class. Then L −εH is nef for all small enough positive
ε. Then by Exercise 22.3.B, L = (L − εH ) + εH is ample. !

Suitably motivated, we prove Kleiman’s Theorem 22.3.6.

Proof. We may immediately reduce to the case where X is irreducible and reduced.
We work by induction on n := dim X. The base case n = 1 is obvious. So we
assume that (L dim V · V) ≥ 0 for all irreducible V not equal to X. We need only
show that (L n · X) ≥ 0.

Fix some very ample H on X. Consider P(t) := ((L + tH )n · X) ∈ N1
Q(X), a

polynomial in t. We wish to show that P(0) ≥ 0. Assume otherwise that P(0) < 0.

22.3.C. EXERCISE. Show that (L k · H n−k · X) ≥ 0 for all k < n. (Hint: use the
inductive hypothesis).

Thus P(t) has a negative constant term, and the remaining terms are positive,
so P(t) has precisely one positive real root t0.

22.3.D. EXERCISE. Show that for (rational) t > t0, L + tH is ample. (Hint: use
Nakai’s criterion; and use the inductive hypothesis for all but the “leading term”.)

Now let Q(t) := (L · (L + tH )n−1 · X) and R(t) := (tH · (L + tH )n−1 · X),
so P(t) = Q(t) + R(t).

22.3.E. EXERCISE. Show that Q(t) ≥ 0 for all rational t ≥ t0. Hint (which you will
have to make sense of): It suffices to show this for t > t0. Then (L +tH ) is ample,
so for N sufficiently large, N(L + tH ) is very ample. Use the idea of the proof of
Proposition 22.1.4 to intersect X with n − 1 divisors in the class of N(L + tH ) so
that “((N(L + tH ))n−1 ·X) is an effective curve C”. Then (L ·C) ≥ 0 as L is nef.

22.3.F. EXERCISE. Show that R(t0) > 0. (Hint: expand out the polynomial, and
show that all the terms are positive.)

Thus P(t0) > 0 as desired. !



CHAPTER 23

Differentials

23.1 Motivation and game plan

Differentials are an intuitive geometric notion, and we are going to figure out
the right description of them algebraically. The algebraic manifestation is some-
what non-intuitive, so it is helpful to understand differentials first in terms of ge-
ometry. Also, although the algebraic statements are odd, none of the proofs are
hard or long. You will notice that this topic could have been done as soon as we
knew about morphisms and quasicoherent sheaves. We have usually introduced
new ideas through a number of examples, but in this case we will spend a fair
amount of time discussing theory, and only then get to a number of examples.

Suppose X is a “smooth” k-variety. We would like to define a tangent bundle.
We will see that the right way to do this will easily apply in much more general
circumstances.
• We will see that cotangent is more “natural” for schemes than tangent bundle.
This is similar to the fact that the Zariski cotangent space is more natural than the
tangent space (i.e. if A is a ring and m is a maximal ideal, then m/m2 is “more
natural” than (m/m2)∨), as we have repeatedly discussed since §13.1. In both
cases this is because we are understanding “spaces” via their (sheaf of) functions
on them, which is somehow dual to the geometric pictures you have of spaces in
your mind.

So we will define the cotangent sheaf first. An element of the (co)tangent space
will be called a (co)tangent vector.
• Our construction will automatically apply for general X, even if X is not “smooth”
(or even at all nice, e.g. finite type). The cotangent sheaf won’t be locally free, but
it will still be a quasicoherent sheaf.
• Better yet, this construction will naturally work “relatively”. For any π : X →
Y, we will define Ωπ = ΩX/Y , a quasicoherent sheaf on X, the sheaf of relative
differentials. The fiber of this sheaf at a point will be the cotangent vectors of the
fiber of the map. This will specialize to the earlier case by taking Y = Spec k. The
idea is that this glues together the cotangent sheaves of the fibers of the family.
Figure 23.1 is a sketch of the relative tangent space of a map X → Y at a point
p ∈ X — it is the tangent to the fiber. (The tangent space is easier to draw than the
cotangent space!) An element of the relative (co)tangent space is called a vertical
or relative (co)tangent vector.

Thus the central concept of this chapter is the cotangent sheaf Ωπ = ΩX/Y

for a morphism π : X → Y of schemes. A good picture to have in your mind
is the following. If f : X → Y is a map of smooth manifolds whose fibers are

489
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Y

p

X

FIGURE 23.1. The relative tangent space of a morphism X → Y at
a point p

manifolds (a map that is locally on the source a smooth fibration), you might hope
that the tangent spaces to the fibers at each point p ∈ X might fit together to form a
vector bundle. This is the relative tangent bundle (of π), and its dual is ΩX/Y (see
Figure 23.1). Even if you are not geometrically minded, you will find this useful.
(For an arithmetic example, see Exercise 23.2.F.)

23.2 Definitions and first properties

23.2.1. The affine case: three definitions.
We first study the affine case. Suppose A is a B-algebra, so we have a mor-

phism of rings φ : B → A and a morphism of schemes Spec A → Spec B. I will
define an A-module ΩA/B in three ways. This is called the module of relative
differentials or the module of Kähler differentials. The module of differentials
will be defined to be this module, as well as a map d : A → ΩA/B satisfying three
properties.

(i) additivity. da + da ′ = d(a + a ′)
(ii) Leibniz. d(aa ′) = a da ′ + a ′da

(iii) triviality on pullbacks. db = 0 for b ∈ φ(B).

These properties will not be surprising if you have seen differentials in any
other context.
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23.2.A. TRIVIAL EXERCISE. Show that d is B-linear. (In general it will not be
A-linear.)

23.2.B. EXERCISE. Prove the quotient rule: if b = as, then da = (s db − b ds)/s2.

23.2.C. EXERCISE. State and prove the chain rule for d(f(g)) where f is a polyno-
mial with B-coefficients, and g ∈ A. (As motivation, think of the case B = k. So for
example, dan = nan−1da, and more generally, if f is a polynomial in one variable,
df(a) = f ′(a) da, where f ′ is defined formally: if f =

∑
cix

i then f ′ =
∑

ciix
i−1.)

I will give you three definitions of the module of Kähler differentials, which
will soon “sheafifiy” to the sheaf of relative differentials. The first definition is a
concrete hands-on definition. The second is by universal property. And the third
will globalize well, and will allow us to define ΩX/Y conveniently in general.

23.2.2. First definition of differentials: explicit description. We define ΩA/B

to be finite A-linear combinations of symbols “da” for a ∈ A, subject to the three
rules (i)–(iii) above. For example, take A = k[x, y], B = k. Then a sample differen-
tial is 3x2 dy+4 dx ∈ ΩA/B. We have identities such as d(3xy2) = 3y2 dx+6xy dy.

23.2.3. Key fact. Note that if A is generated over B (as an algebra) by xi ∈
A (where i lies in some index set, possibly infinite), subject to some relations rj

(where j lies in some index set, and each is a polynomial in the xi), then the A-
module ΩA/B is generated by the dxi, subject to the relations (i)—(iii) and drj = 0.
In short, we needn’t take every single element of A; we can take a generating set.
And we needn’t take every single relation among these generating elements; we
can take generators of the relations.

23.2.D. EXERCISE. Verify Key fact 23.2.3. (If you wish, use the affine conormal ex-
act sequence, Theorem 23.2.11, to verify it; different people prefer to work through
the theory in different orders. Just take care not to make any circular arguments.)

In particular:

23.2.4. Proposition. — If A is a finitely generated B-algebra, then ΩA/B is a finite type
(i.e. finitely generated) A-module. If A is a finitely presented B-algebra, then ΩA/B is a
finitely presented A-module.

Recall (§8.3.14) that an algebra A is finitely presented over another algebra B if it
can be expressed with finite number of generators and finite number of relations:

A = B[x1, . . . , xn]/(r1(x1, . . . , xn), . . . , rj(x1, . . . , xn)).

If A is Noetherian, then finitely presented is the same as finite type, as the “finite
number of relations” comes for free, so most of you will not care.

Let’s now see some examples. Among these examples are three particularly
important building blocks for ring maps: adding free variables; localizing; and
taking quotients. If we know how to deal with these, we know (at least in theory)
how to deal with any ring map. (They were similarly useful in understanding the
fibered product in practice, in §10.2.)
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23.2.5. Example: taking a quotient. If A = B/I, then ΩA/B = 0: da = 0 for all
a ∈ A, as each such a is the image of an element of B. This should be believable;
in this case, there are no “vertical tangent vectors”.

23.2.6. Example: adding variables. If A = B[x1, . . . , xn], then ΩA/B = Adx1 ⊕
· · ·⊕Adxn. (Note that this argument applies even if we add an arbitrarily infinite
number of indeterminates.) The intuitive geometry behind this makes the answer
very reasonable. The cotangent bundle of affine n-space should indeed be free of
rank n.

23.2.7. Explicit example: an affine plane curve. Consider the plane curve y2 =
x3 − x in A2

k, where the characteristic of k is not 2. Let A = k[x, y]/(y2 − x3 + x)
and B = k. By Key fact 23.2.3, the module of differentials ΩA/B is generated by dx
and dy, subject to the relation

2y dy = (3x2 − 1) dx.

Thus in the locus where y != 0, dx is a generator (as dy can be expressed in terms of

dx). We conclude that where y != 0, Ω̃A/B is isomorphic to the trivial line bundle
(invertible sheaf). Similarly, in the locus where 3x2−1 != 0, dy is a generator. These
two loci cover the entire curve, as solving y = 0 gives x3 − x = 0, i.e. x = 0 or ±1,

and in each of these cases 3x2 − 1 != 0. We have shown that Ω̃A/B is an invertible
sheaf.

We can interpret dx and dy geometrically. Where does the differential dx van-
ish? The previous paragraph shows that it doesn’t vanish on the patch where 2y !=
0. On the patch where 3x2 − 1 != 0, where dy is a generator, dx = (2y/(3x2 − 1))dx
from which we see that dx vanishes precisely where y = 0. You should find this
believable from the picture. We have shown that dx = 0 precisely where the curve
has a vertical tangent vector (see Figure 21.2 for a picture). Once we can pull back
differentials (Exercise 23.2.I(a) or Theorem 23.2.25, we can interpret dx as the pull-
back of a differential on the x-axis to Spec A (pulling back along the projection to
the x-axis). When we do that, using the fact that dx doesn’t vanish on the x-axis,
we can interpret the locus where dx = 0 as the locus where the projection map
branches. (Can you compute where dy = 0, and interpret it geometrically?)

This discussion applies to plane curves more generally. Suppose A = k[x, y]/f(x, y),
where for convenience k = k. Then the same argument as the one given above

shows that Ω̃A/k is free of rank 1 on the open set D(∂f/∂x), and also on D(∂f/∂y).
If Spec A is a nonsingular curve, then these two sets cover all of Spec A. (Exer-
cise 13.2.D — basically the Jacobian criterion — gives nonsingularity at the closed
point. Furthermore, the curve must be reduced, or else as the nonreduced locus
is closed, it would be nonreduced at a closed point, contradicting nonsingularity.
Finally, reducedness at a generic point is equivalent to nonsingularity (basically, a
scheme whose underlying set is a point is reduced if and only if it is nonsingular
— do you see why?). Alternatively, we could invoke a big result, Fact 13.3.8, to get
nonsingularity at the generic point from nonsingularity at the closed points.)

Conversely, if the plane curve is singular, then Ω is not locally free of rank one.
For example, consider the plane curve Spec A where A = C[x, y]/(y2 − x3), so

ΩA/C = (A dx ⊕ A dy)/(2y dy − 3x2 dx).
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Then the fiber of ΩA/C over the origin (computed by setting x = y = 0) is rank 2,
as it is generated by dx and dy, with no relation.

Implicit in the above discussion is the following exercise, showing that Ω can
be computed using the Jacobian matrix.

23.2.E. IMPORTANT BUT EASY EXERCISE (JACOBIAN DESCRIPTION OF ΩA/B). Sup-
pose A = B[x1, . . . , xn]/(f1, . . . , fr). Then ΩA/B = {⊕iAdxi}/{dfj = 0} maybe
interpreted as the cokernel of the Jacobian matrix (13.1.4.1) J : A⊕r → A⊕n.

23.2.8. Example: localization. If S is a multiplicative subset of B, and A = S−1B,
then ΩA/B = 0. Reason: by the quotient rule (Exercise 23.2.B), if a = b/s, then
da = (s db − b ds)/s2 = 0. If A = Bf, this is intuitively believable; then Spec A is
an open subset of Spec B, so there should be no vertical (co)tangent vectors.

23.2.F. IMPORTANT EXERCISE (FIELD EXTENSIONS). This notion of relative differ-
entials is interesting even for finite field extensions. In other words, even when
you map a reduced point to a reduced point, there is interesting differential infor-
mation going on.
(a) Suppose K/k is a separable algebraic extension. Show that ΩK/k = 0. Do not
assume that K/k is a finite extension! (Hint: for any α ∈ K, there is a polynomial
such that f(α) = 0 and f ′(α) != 0.)
(b) Suppose k is a field of characteristic p, K = k(tp), L = k(t). Compute ΩK/L.
(c) Compute Ωk(t)/k.
(d) If K/k is separably generated by t1, . . . , tn ∈ K (i.e. t1, . . . , tn form a transcen-
dence basis, and K/k(t1, . . . , tn) is algebraic and separable), show that ΩK/k is a
free K-module (i.e. vector space) with basis dt1, . . . , dtn.

We now delve a little deeper, and discuss two useful and geometrically moti-
vated exact sequences.

23.2.9. Theorem (relative cotangent sequence, affine version). — Suppose C →
B → A are ring homomorphisms. Then there is a natural exact sequence of A-modules

A ⊗B ΩB/C → ΩA/C → ΩA/B → 0.

The proof will be quite straightforward algebraically, but the statement comes
fundamentally from geometry, and that is how best to remember it. Figure 23.2 is

a sketch of a map X
f $$ Y . Here X should be interpreted as Spec A, Y as Spec B,

and Spec C is a point. (If you would like a picture with a higher-dimensional
Spec C, just “take the product of Figure 23.2 with a curve”.) In the Figure, Y is
“smooth”, and X is “smooth over Y” — roughly, all fibers are smooth. p is a point
of X. Then the tangent space of the fiber of f at p is certainly a subspace of the
tangent space of the total space of X at p. The cokernel is naturally the pullback of
the tangent space of Y at f(p). This short exact sequence for each p should be part
of a short exact sequence of sheaves

0 → TX/Y → TX/Z → f∗TY/Z → 0

on X. Dualizing this yields

0 → f∗ΩY/Z → ΩX/Z → ΩX/Y → 0.
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Y

TY/Z |f(p)

f

TX/Y |p

TX/Z|p

X

FIGURE 23.2. A sketch of the geometry behind the relative cotan-
gent sequence

This is precisely the statement of Theorem 23.2.9, except we also have left-
exactness. This discrepancy is because the statement of the theorem is more gen-
eral; we will see in Theorem 26.3.1 that in the “smooth” case, we indeed have
left-exactness.

23.2.10. Unimportant aside. As always, whenever you see something right-exact,
you should suspect that there should be some sort of (co)homology theory so that
this is the end of a long exact sequence. This is indeed the case, and this exact
sequence involves André-Quillen homology (see [E, p. 386] for more). You should
expect that the next term to the left should be the first homology corresponding
to A/B, and in particular shouldn’t involve C. So if you already suspect that you
have exactness on the left in the case where A/B and B/C are “smooth” (whatever
that means), and the intuition of Figure 23.2 applies, then you should expect fur-
ther that all that is necessary is that A/B be “smooth”, and that this would imply
that the first André-Quillen homology should be zero. Even though you wouldn’t
precisely know what all the words meant, you would be completely correct! You
would also be developing a vague inkling about the cotangent complex.
Proof of the relative cotangent sequence (affine version) 23.2.9.

First, note that surjectivity of ΩA/C → ΩA/B is clear, as this map is given by
da (→ da (where a ∈ A).

Next, the composition over the middle term is clearly 0, as this composition is
given by db (→ db (→ 0.
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Finally, we wish to identify ΩA/B as the cokernel of A ⊗B ΩB/C → ΩA/C.
Now ΩA/B is exactly the same as ΩA/C, except we have extra relations: db = 0
for b ∈ B. These are precisely the images of 1 ⊗ db on the left. !

23.2.11. Theorem (conormal exact sequence, affine version). — Suppose B is a
C-algebra, I is an ideal of B, and A = B/I. Then there is a natural exact sequence of
A-modules

I/I2 δ:i )→1⊗di $$ A ⊗B ΩB/C
a⊗db )→a db $$ ΩA/C

$$ 0.

Before getting to the proof, some discussion may be helpful. First, the map δ
needs to be rigorously defined. It is the map 1 ⊗ d : B/I ⊗B I → B/I ⊗B ΩB/C.

As with the relative cotangent sequence (Theorem 23.2.9), the conormal exact
sequence is fundamentally about geometry. To motivate it, consider the sketch
of Figure 23.3. In the sketch, everything is “smooth”, X is one-dimensional, Y is
two-dimensional, j is the inclusion j : X ↪→ Y, and Z is a point. Then at a point
p ∈ X, the tangent space TX|p clearly injects into the tangent space of j(p) in Y, and
the cokernel is the normal vector space to X in Y at p. This should give an exact
sequence of bundles on X:

0 → TX → j∗TY → NX/Y → 0.

dualizing this should give

0 → N ∨
X/Y → j∗ΩY/Z → ΩX/Z → 0.

This is precisely what appears in the statement of the Theorem, except (i) the exact
sequence in algebraic geometry is not necessary exact on the left, and (ii) we see
I/I2 instead of N ∨

Spec A/ Spec B.

Z

X

Y

FIGURE 23.3. A sketch of the geometry behind the conormal ex-
act sequence
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23.2.12. We resolve the first issue (i) by expecting that the sequence of Theo-
rem 23.2.11 is exact on the left in appropriately “smooth” situations, and this is
indeed the case (see Theorem 27.1.2). (If you enjoyed Remark 23.2.10, you might
correctly guess several things. The next term on the left should be the André-
Quillen homology of A/C, so we should only need that A/C is smooth, and B
should be irrelevant. Also, if A = B/I, then we should expect that I/I2 is the first
André-Quillen homology of A/B.)

23.2.13. Conormal modules and conormal sheaves. We resolve the second issue (ii) by
declaring I/I2 to be the conormal module, and indeed we will soon see the obvious
analogue as the conormal sheaf.

Here is some geometric intuition as to why we might want to call (the sheaf
associated to) I/I2 the conormal sheaf, which will likely confuse you, but may of-
fer some enlightenment. First, if Spec A is a closed point of Spec B, we expect the
conormal space to be precisely the cotangent space. And indeed if A = B/m, the
Zariski cotangent space is m/m2. (We made this subtle connection in §13.1.) In
particular, at some point you will develop a sense of why the conormal (=cotan-
gent) space to the origin in A2

k = Spec k[x, y] is naturally the space of linear forms
αx + βy. But then consider the z-axis in Spec k[x, y, z] = A3

k, cut out by I = (x, y).
Elements of I/I2 may be written as α(z)x+β(z)y, where α(z) and β(z) are polyno-
mial. This reasonably should be the conormal space to the z-axis: as z varies, the
coefficients of x and y vary. More generally, the same idea suggests that the conor-
mal module/sheaf to any coordinate k-plane inside n-space corresponds to I/I2.
Now consider a k-dimensional (smooth or differential real) manifold X inside an
n-dimensional manifold Y, with the classical topology. We can apply the same con-
struction: if I is the ideal sheaf of X in Y, then I /I 2 can be identified with the
conormal sheaf (essentially the conormal vector bundle), because analytically lo-
cally X ↪→ Y can be identified with Rk ↪→ Rn. For this reason, you might hope that
in algebraic geometry, if Spec A ↪→ Spec B is an inclusion of something “smooth”
in something “smooth”, I/I2 should be the conormal module (or, after applying
∼, the conormal sheaf). Motivated by this, we define the conormal module as I/I2

always, and then notice that it has good properties (such as Theorem 23.2.11), but
take care to learn what unexpected behavior it might have when we are not in the
“smooth” situation, by working out examples such as that of §23.2.7.

23.2.14. Definition. Suppose i : X ↪→ Y is a closed immersion of schemes cut out
by ideal sheaf I . Define the conormal sheaf for a closed immersion by I /I 2,
denoted by N ∨

X/Y . Note that N ∨
X/Y is a quasicoherent sheaf on X. (The product of

quasicoherent ideal sheaves was defined in Exercise 15.3.D.)
Define the normal sheaf as its dual NX/Y := Hom (N ∨

X/Y ,OX). This is imperfect

notation, because it suggests that the dual of N is always N ∨. This is not always
true, as for A-modules, the natural morphism from a module to its double-dual is
not always an isomorphism. (Modules for which this is true are called reflexive,
but we won’t use this notion.)

23.2.G. EXERCISE. Define the conormal sheaf NX/Y (and hence the normal sheaf)
for a locally closed immersion i : X ↪→ Y of schemes, a quasicoherent sheaf on X.
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23.2.H. EXERCISE: NORMAL BUNDLES TO EFFECTIVE CARTIER DIVISORS. Suppose
D ⊂ X is an effective Cartier divisor (§9.1.2). Show that the conormal sheaf N ∨

D/X is

O(−D)|D (and in particular is an invertible sheaf), and hence that the normal sheaf
is O(D)|D. It may be surprising that the normal sheaf should be locally free if X ∼=
A2 and D is the union of the two axes (and more generally if X is nonsingular but
D is singular), because you may be used to thinking that a “tubular neighborhood”
being isomorphic to the normal bundle.

23.2.15. Proof of Theorem 23.2.11. The composition

I/I2 δ:i )→1⊗di $$ A ⊗B ΩB/C
a⊗db )→a db $$ ΩA/C

is clearly zero: for i ∈ I, i = 0 in A, so di = 0 in ΩA/C.
We need to identify the cokernel of δ : I/I2 → A⊗BΩB/C with ΩA/C. Consider

A⊗B ΩB/C. As an A-module, it is generated by db (where b ∈ B), subject to three
relations: dc = 0 for c ∈ φ(C) (where φ : C → B describes B as a C-algebra),
additivity, and the Leibniz rule. Given any relation in B, d of that relation is 0.

Now ΩA/C is defined similarly, except there are more relations in A; these
are precisely the elements of I ⊂ B. Thus we obtain ΩA/C by starting out with
A⊗BΩB/C, and adding the additional relations di where i ∈ I. But this is precisely
the image of δ! !

23.2.16. Second definition: universal property. Here is a second definition that
is important philosophically, by universal property. Of course, it is a characteriza-
tion rather than a definition: by universal property nonsense, it shows that if the
module exists (with the d map), then it is unique up to unique isomorphism, and
then one still has to construct it to make sure that it exists.

Suppose A is a B-algebra, and M is a A-module. A B-linear derivation of
A into M is a map d : A → M of B-modules (not necessarily a map of A-modules)
satisfying the Leibniz rule: d(fg) = f dg+g df. As an example, suppose B = k, and
A = k[x], and M = A. Then d/dx is a k-linear derivation. As a second example, if
B = k, A = k[x], and M = k, then (d/dx)|0 (the operator “evaluate the derivative
at 0”) is a k-linear derivation.

A third example is d : A → ΩA/B, and indeed d : A → ΩA/B is the universal B-
linear derivation of A. Precisely, the map d : A → ΩA/B is defined by the following
universal property: any other B-linear derivation d ′ : A → M factors uniquely
through d:

A

d 77H
HH

HH
HH

HH
d ′

$$ M

ΩA/B

f

YYGGGGGGGGG

Here f is a map of A-modules. (Note again that d and d ′ are not necessarily maps
of A-modules — they are only B-linear.) By universal property nonsense, if it
exists, it is unique up to unique isomorphism. The map d : A → ΩA/B clearly
satisfies this universal property, essentially by definition.

The next result gives more evidence that this deserves to be called the (relative)
cotangent bundle.
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23.2.17. Proposition. — Suppose B is a k-algebra, and m ⊂ B is a maximal ideal with
residue field k. Then there is a isomorphism of k-vector spaces δ : m/m2 → ΩB/k ⊗B k
(where the k on the right is a B-module via the isomorphism k ∼= B/m).

Proof. We instead show an isomorphism of dual vector spaces

Homk(ΩB/k ⊗B k, k) → Homk(m/m2, k).

By adjunction, we have a canonical isomorphism

Homk(ΩB/k ⊗B k, k) = HomB(ΩB/k ⊗B k, k)

= HomB(ΩB/k, HomB(k, k))

= HomB(ΩB/k, Homk(k, k))

= HomB(ΩB/k, k),

where in the right argument of HomB(ΩB/k, k), k is a B-module via its manifes-
tation as B/m. By the universal property of ΩB/k (§23.2.16), HomB(ΩB/k, k) cor-
responds to the k-derivations of B into B/m ∼= k. By Exercise 13.1.A, these are
precisely the elements of Homk(m/m2, k). (That exercise assumed that B was a
local ring, but the solution doesn’t use that hypothesis.) !

You can verify that this δ is the one appearing in the conormal exact sequence,
Theorem 23.2.11, with I = m and A = C = k. In fact from the conormal exact
sequence, we can immediately see that δ is a surjection, as Ωk/k = 0.

23.2.18. Remark. Proposition 23.2.17, in combination with the Jacobian exer-
cise 23.2.E above, gives a second proof of Exercise 13.1.E, the Jacobian method for
computing the Zariski tangent space at a k-valued point of a finite type k-scheme.

Depending on how your brain works, you may prefer using the first (construc-
tive) or second (universal property) definition to do the next two exercises.

23.2.I. EXERCISE. (a) (pullback of differentials) If

A ′ A++

B ′

,,

B

,,

++

is a commutative diagram, describe a natural homomorphism of A ′-modules A ′⊗A

ΩA/B → ΩA ′/B ′ . An important special case is B = B ′.
(b) (differentials behave well with respect to base extension, affine case) If furthermore
the above diagram is a tensor diagram (i.e. A ′ ∼= B ′ ⊗B A, so the diagram is “co-
Cartesian”) then show that A ′ ⊗A ΩA/B → ΩA ′/B ′ is an isomorphism.

23.2.J. EXERCISE: LOCALIZATION (STRONGER FORM). If S is a multiplicative set
of A, show that there is a natural isomorphism ΩS−1A/B

∼= S−1ΩA/B. (Again,
this should be believable from the intuitive picture of “vertical cotangent vec-
tors”.) If T is a multiplicative set of B, show that there is a natural isomorphism
ΩS−1A/T−1B

∼= S−1ΩA/B where S is the multiplicative set of A that is the image of
the multiplicative set T ⊂ B.
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23.2.19. Third definition: global. We now want to globalize this definition for an
arbitrary morphism of schemes f : X → Y. We could do this “affine by affine”; we
just need to make sure that the above notion behaves well with respect to “change
of affine sets”. Thus a relative differential on X would be the data of, for every
affine U ⊂ X, a differential of the form

∑
ai dbi, and on the intersection of two

affine open sets U ∩ U ′, with representatives
∑

ai dbi on U and
∑

a ′
i db ′

i on the
second, an equality on the overlap. Instead, we take a different tack. I will give the
(seemingly unintuitive) definition, then tell you how to think about it, and then get
back to the definition.

Suppose f : X → Y be any morphism of schemes. Recall that δ : X → X ×Y X
is a locally closed immersion (Proposition 11.1.3). Define the relative cotangent
sheaf ΩX/Y as the conormal sheaf N ∨

X,X×YX (see §23.2.13 — and if X → Y is sep-
arated you needn’t even worry about Exercise 23.2.G). (Now is also as good a
time as any to define the relative tangent sheaf TX/Y as the dual Hom (ΩX/Y ,OX)
to the relative cotangent sheaf. If we are working in the category of k-schemes,
then ΩX/k and TX/k are often called the cotangent sheaf and tangent sheaf of X
respectively.)

We now define d : OX → ΩX/Y . Let π1,π2 : X×Y X → X be the two projections.
Then define d : OX → ΩX/Y on the open set U as follows: df = π∗

2f−π∗
1f. (Warning:

this is not a morphism of quasicoherent sheaves on X, although it is OY-linear in
the only possible meaning of that phrase.) We will soon see that this is indeed a
derivation of the sheaf OX (in the only possible meaning of the phrase), and at the
same time see that our new notion of differentials agrees with our old definition
on affine open sets, and hence globalizes the definition. Note that for any open
subset U ⊂ Y, d induces a map

(23.2.19.1) Γ(U,OX) → Γ(U,ΩX/Y),

which we also call d, and interpret as “taking the derivative”.

23.2.20. Motivation. Before connecting this to our other definitions, let me try
to convince you that this is a reasonable definition to make. (This discussion is
informal and rigorous.) Say for example that Y is a point, and X is something
smooth. Then the tangent bundle on to X×X is TX ⊕ TX: TX×X = TX ⊕ TX. Restrict
this to the diagonal ∆, and look at the normal bundle exact sequence:

0 → T∆ → TX×X|∆ → N∆/X → 0.

Now the left morphism sends v to (v, v), so the cokernel can be interpreted as
(v,−v). Thus N∆/X is isomorphic to TX. Thus we can turn this on its head: we
know how to find the normal bundle (or more precisely the conormal sheaf), and
we can use this to define the tangent bundle (or more precisely the cotangent
sheaf). (Experts may want to ponder the above paragraph when Y is more general,
but where X → Y is “nice”. You may wish to think in the category of manifolds,
and let X → Y be a map that is locally on the source a smooth fibration.)

23.2.21. Testing this out in the affine case. Let’s now see how this works for the spe-
cial case Spec A → Spec B. Then the diagonal Spec A ↪→ Spec A ⊗B A corresponds
to the ideal I of A ⊗B A that is the cokernel of the ring map

f :
∑

xi ⊗ yi →
∑

xiyi.
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23.2.22. The ideal I of A⊗B A is generated by the elements of the form 1⊗a−a⊗1.
Reason: if f(

∑
xi ⊗ yi) = 0, i.e.

∑
xiyi = 0, then

∑
xi ⊗ yi =

∑
(xi ⊗ yi − xiyi ⊗ 1) =

∑
xi(1 ⊗ yi − yi ⊗ 1).

The derivation is d : A → A ⊗B A, a (→ 1 ⊗ a − a ⊗ 1 (taken modulo I2). (We
shouldn’t really call this “d” until we have verified that it agrees with our earlier
definition, but we irresponsibly will anyway.)

Let’s check that d is indeed a derivation. Two of the three axioms (see §23.2.16)
are immediate: d is linear, and vanishes on elements of b. So we check the Leibniz
rule:

d(aa ′) − a da ′ − a ′ da = 1 ⊗ aa ′ − aa ′ ⊗ 1 − a ⊗ a ′ + aa ′ ⊗ 1 − a ′ ⊗ a + a ′a ⊗ 1

= −a ⊗ a ′ − a ′ ⊗ a + a ′a ⊗ 1 + 1 ⊗ aa ′

= (1 ⊗ a − a ⊗ 1)(1 ⊗ a ′ − a ′ ⊗ 1)

∈ I2.

Thus by the universal property of ΩA/B, we get a natural morphism ΩA/B → I/I2

of A-modules.

23.2.23. Theorem. — The natural morphism f : ΩA/B → I/I2 induced by the universal
property of ΩA/B is an isomorphism.

Proof. We will show this as follows. (i) We will show that f is surjective, and (ii)
we will describe g : I/I2 → ΩA/B such that g ◦ f : ΩA/B → ΩA/B is the identity
(showing that f is injective).

(i) The map f sends da to 1⊗a−a⊗1, and such elements generate I (§23.2.22),
so f is surjective.

(ii) Define g : I/I2 → ΩA/B by x ⊗ y (→ x dy. We need to check that this is
well-defined, i.e. that elements of I2 are sent to 0, i.e. we need that

(∑
xi ⊗ yi

) (∑
x ′

j ⊗ y ′
j

)
=

∑

i,j

xix
′
j ⊗ yiy

′
j (→ 0

where
∑

i xiyi =
∑

x ′
jy

′
j = 0. But by the Leibniz rule,

∑

i,j

xix
′
j d(yiy

′
j) =

∑

i,j

xix
′
jyi dy ′

j +
∑

i,j

xix
′
jy

′
j dyi

=

(
∑

i

xiyi

) 


∑

j

x ′
j dy ′

j



 +

(
∑

i

xi dyi

)


∑

j

x ′
jy

′
j





= 0.

Then f ◦ g is indeed the identity, as

da
% g $$ 1 ⊗ a − a ⊗ 1

% f $$ 1 da − a d1 = da

as desired. !

We can now use our understanding of how Ω works on affine open sets to
generalize previous statements to non-affine settings.
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23.2.K. EXERCISE. If U ⊂ X is an open subset, show that the map (23.2.19.1) is a
derivation.

23.2.L. EXERCISE. Suppose f : X → Y is locally of finite type, and Y (and hence
X) is locally Noetherian. Show that ΩX/Y is a coherent sheaf on X. (Feel free to
weaken the Noetherian hypotheses for weaker conclusions.)

The relative cotangent exact sequence and the conormal exact sequence for
schemes now directly follow.

23.2.24. Theorem. — (Relative cotangent exact sequence) Suppose X
f $$ Y

g $$ Z
be morphisms of schemes. Then there is an exact sequence of quasicoherent sheaves on X

f∗ΩY/Z → ΩX/Z → ΩX/Y → 0.

(Conormal exact sequence) Suppose f : X → Y is a morphism of schemes, and Z ↪→ X is a
closed subscheme of X, with ideal sheaf I . Then there is an exact sequence of sheaves on
Z:

I /I 2 δ $$ ΩX/Y ⊗ OZ
$$ ΩZ/Y

$$ 0.

Proof. Both can be checked affine locally, and the affine cases are Theorems 23.2.9
and 23.2.11 respectively. !

(As described in §23.2.12, we expect the conormal exact sequence to be exact
on the left in appropriately “smooth” situations, and this is indeed the case, see
Theorem 27.1.2.)

Similarly, the sheaf of relative differentials pull back, and behave well under
base change.

23.2.25. Theorem (pullback of differentials). —
(a) If

X ′ g $$

%%

X

%%
Y ′ $$ Y

is a commutative diagram of schemes, there is a natural homomorphism of quasicoherent
sheaves on X ′ g∗ΩX/Y → ΩX ′/Y ′ . An important special case is Y = Y ′.
(b) (Ω behaves well under base change) If furthermore the above diagram is a tensor dia-
gram (i.e. X ′ ∼= X ⊗Y Y ′) then g∗ΩX/Y → ΩX ′/Y ′ is an isomorphism.

This follows immediately from Exercise 23.2.I.
As a particular case of part (b), the fiber of the sheaf of relative differentials is

indeed the sheaf of differentials of the fiber. Thus this notion indeed glues together the
differentials on each fiber.

23.3 Examples
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23.3.1. Geometric genus. A nonsingular projective curve C (over a field k) has
geometric genus h0(C,ΩC/k). (This will be generalized to higher dimension in
§23.4.3.) This is always finite, as ΩC/k is coherent (Exercise 23.2.L), and coherent
sheaves on projective k-schemes have finite-dimensional spaces of sections (Theo-
rem 20.1.3(a)). (The geometric genus is also called the first algebraic de Rham coho-
mology group, in analogy with de Rham cohomology in the differentiable setting.)

Sadly, this isn’t really a new invariant. We will see in Exercise 23.3.C that this
agrees with our earlier definition of genus, i.e. h0(C,ΩC/k) = h1(C,OC).

23.3.2. The projective line. As an important first example, consider P1
k, with

the usual projective coordinates x0 and x1. As usual, the first patch corresponds
to x0 != 0, and is of the form Spec k[x1/0] where x1/0 = x1/x0. The second patch
corresponds to x1 != 0, and is of the form Spec k[x0/1] where x0/1 = x0/x1.

Both patches are isomorphic to A1
k, and ΩA1

k
= OA1

k
. (More precisely, Ωk[x]/k =

k[x] dx.) Thus ΩP1
k

is an invertible sheaf (a line bundle). The invertible sheaves on

P1
k are of the form O(m). So which invertible sheaf is ΩP1/k?

Let’s take a section, dx1/0 on the first patch. It has no zeros or poles there, so
let’s check what happens on the other patch. As x1/0 = 1/x0/1, we have dx1/0 =

−(1/x2
0/1) dx0/1. Thus this section has a double pole where x0/1 = 0. Hence

ΩP1
k/k

∼= O(−2).
Note that the above argument works equally well if k were replaced by Z: our

theory of Weil divisors and line bundles of Chapter 15 applies (P1
Z is factorial), so

the previous argument essentially without change shows that ΩP1
Z
/Z

∼= O(−2).
And because Ω behaves well with respect to base change (Exercise 23.2.25(b)),
and any scheme maps to Spec Z, this implies that ΩP1

B/B
∼= OP1

B
(−2) for any base

scheme B.
(Also, as promised in §20.4.6, this shows that ΩP1/k is the dualizing sheaf for

P1
k; see also §20.4.7. But given that we haven’t yet proved Serre duality, this isn’t

so meaningful.)

23.3.3. Hyperelliptic curves.
Throughout this discussion of hyperelliptic curves, we suppose that k = k

and char k != 2, so we may apply the discussion of §21.4. Consider a double cover
f : C → P1

k by a nonsingular curve C, branched over 2g + 2 distinct points. We
will use the explicit coordinate description of hyperelliptic curves of (21.4.2.1). By
Exercise 21.4.1, C has genus g.

23.3.A. EXERCISE: DIFFERENTIALS ON HYPERELLIPTIC CURVES. What is the de-
gree of the invertible sheaf ΩC/k? (Hint: let x be a coordinate on one of the coordi-
nate patches of P1

k. Consider f∗dx on C, and count poles and zeros. Use the explicit
coordinates of §21.4. You should find that f∗dx has 2g + 2 zeros and 4 poles, for a
total of 2g − 2.) Doing this exercise will set you up well for the Riemann-Hurwitz
formula, §23.5.

23.3.B. EXERCISE (“THE FIRST ALGEBRAIC DE RHAM COHOMOLOGY GROUP OF A

HYPERELLIPTIC CURVE”). Show that h0(C,ΩC/k) = g as follows.
(a) Show that dx

y is a (regular) differential on Spec k[x]/(y − f(x)) (i.e. an element
of Ω(k[x]/(y−f(x)))/k).
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(b) Suppose xi(dx)/y extends to a global differential ωi on C (i.e. with no poles).
(c) Show that the ωi (0 ≤ i < g) are linearly independent differentials. (Hint:

Show that the valuation of ωi at the origin is i. If ω :=
∑g−1

j=i ajωj is a nontrivial
linear combination, with aj ∈ k, and ai != 0, show that the valuation of ω at the
origin is i, and hence ω != 0.)
! (d) Show that the ωi form a basis for the differentials.

23.3.C. ! EXERCISE (TOWARD SERRE DUALITY).
(a) Show that h1(C,ΩC/k) = 1. (In the course of doing this, you might interpret a
generator of H1(C,ΩC/k) as x−1dx. In particular, the pullback map H1(P1,ΩP1/k) →
H1(C,ΩC/k) is an isomorphism.)
(b) Describe a natural perfect pairing

H0(C,ΩC/k) × H1(C,OC) → H1(C,ΩC/k).

In terms of our explicit coordinates, you might interpret it as follows. Recall from
the proof of the hyperelliptic Riemann-Hurwitz formula (Theorem 21.4.1) that
H1(C,OC) can be interpreted as

〈
y

x
,

y

x2
, . . . ,

y

xg
〉.

Then the pairing

〈
dx

y
, . . . , xg−1 dx

y
〉 × 〈

y

x
, . . . ,

y

xg
〉 → 〈x−1dx〉

is basically “multiply and read off the x−1dx term”. Or in fancier informal terms:
“multiply and take the residue”.

23.3.4. Another random facts about curves (used in the proof of Riemann-Hurwitz,
§23.5).

23.3.D. EXERCISE. Suppose A is a discrete valuation ring over the algebraically
closed field k, with residue field k, and uniformizer t. Show that the differentials
are free of rank one, generated by dt: ΩA/k = A dt. Hint: by Exercise 13.2.F,
ΩSpec A/k is locally free of rank 1. By endowing any generator with valuation 0,
endow each differential with a non-negative valuation v. We wish to show that
v(dt) = 0. Suppose v(dt) > 0. Show that there is some u ∈ A with v(du) = 0.
Then u = u ′ + tu ′′, where u ′ ∈ k and u ′′ ∈ A, from which du = t du ′′ + u ′′ dt.
Obtain a contradiction from this.

23.3.5. Projective space and the Euler exact sequence.
We next examine the differentials of projective space Pn

k , or more generally Pn
A

where A is an arbitrary ring. As projective space is covered by affine open sets of
the form An, on which the differentials form a rank n locally free sheaf, ΩPn

A/A is
also a rank n locally free sheaf.

23.3.6. Theorem (the Euler exact sequence). — The sheaf of differentials ΩPn
A/A

satisfies the following exact sequence

0 → ΩPn
A/A → OPn

A
(−1)⊕(n+1) → OPn

A
→ 0.
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This is handy, because you can get a hold of ΩPn
A/A in a concrete way. See

Exercise 23.4.H for an application. By dualizing this exact sequence, we have
(at least if A is Noetherian, by Exercise 14.7.B) an exact sequence 0 → OPn

A
→

OPn
A
(1)⊕(n+1) → TPn

A/A → 0.
! Proof of Theorem 23.3.6. (What’s really going on in this proof is that we consider
those differentials on An+1

A \ {0} that are pullbacks of differentials on Pn
A.)

We first describe a map φ : O(−1)⊕(n+1) → O , and later identify the kernel
with ΩX/Y . The map is given by

φ : (s0, s1, . . . , sn) (→ x0s0 + x1s1 + · · · + xnsn.

You should think of this as a “degree 1” map, as each xi has degree 1.

23.3.E. EASY EXERCISE. Show that φ is surjective, by checking on the open set
D(xi). (There is a one-line solution.)

Now we must identify the kernel of this map with differentials, and we can do
this on each D(xi) (so long as we do it in a way that works simultaneously for each
open set). So we consider the open set U0, where x0 != 0, and we have coordinates
xj/0 = xj/x0 (1 ≤ j ≤ n). Given a differential

f1(x1/0, . . . , xn/0) dx1/0 + · · · + fn(x1/0, . . . , xn/0) dxn/0

we must produce n + 1 sections of O(−1). As motivation, let me just look at the
first term, and pretend that the projective coordinates are actual coordinates.

f1 dx1/0 = f1 d(x1/x0)

= f1
x0 dx1 − x1 dx0

x2
0

= −
x1

x2
0

f1 dx0 +
f1

x0
dx1

Note that x0 times the “coefficient of dx0” plus x1 times the “coefficient of dx1” is
0, and also both coefficients are of homogeneous degree −1. Motivated by this, we
take:

(23.3.6.1) f1 dx1/0 + · · · + fn dxn/0 (→
(

−
x1

x2
0

f1 − · · · −
xn

x2
0

fn,
f1

x0
,
f2

x0
, · · · ,

fn

x0

)

Note that over U0, this indeed gives an injection of ΩPn
A

to O(−1)⊕(n+1) that sur-

jects onto the kernel of O(−1)⊕(n+1) → OX (if (g0, . . . , gn) is in the kernel, take
fi = x0gi for i > 0).

Let’s make sure this construction, applied to two different coordinate patches
(say U0 and U1) gives the same answer. (This verification is best ignored on a first
reading.) Note that

f1 dx1/0 + f2 dx2/0 + · · · = f1 d
1

x0/1
+ f2 d

x2/1

x0/1
+ · · ·

= −
f1

x2
0/1

dx0/1 +
f2

x0/1
dx2/1 −

f2x2/1

x2
0/1

dx0/1 + · · ·

= −
f1 + f2x2/1 + · · ·

x2
0/1

dx0/1 +
f2x1

x0
dx2/1 + · · · .
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Under this map, the dx2/1 term goes to the second factor (where the factors are

indexed 0 through n) in O(−1)⊕(n+1), and yields f2/x0 as desired (and similarly
for dxj/1 for j > 2). Also, the dx0/1 term goes to the “zero” factor, and yields




n∑

j=1

fi(xi/x1)/(x0/x1)2



 /x1 = fixi/x2
0

as desired. Finally, the “first” factor must be correct because the sum over i of xi

times the ith factor is 0. !

Generalizations of the Euler exact sequence are quite useful. We won’t use
them later, so no proofs will be given. Note that the argument applies without
change if Spec A is replaced by an arbitrary base scheme. The Euler exact sequence
further generalizes in a number of ways. As a first step, suppose V is a rank n + 1
locally free sheaf (or vector bundle) on a scheme X. Then ΩPV /X sits in an Euler
exact sequence:

0 → ΩPV /X → O(−1) ⊗ V ∨ → OX → 0

If π : PV → X, the map O(−1) ⊗ V ∨ → OX is induced by V ∨ ⊗ π∗O(1) ∼=
(V ∨ ⊗ V ) ⊗ OX → OX, where V ∨ ⊗ V → OX is the trace map (§14.7.1).

This may not look very useful, but we have already seen it in the case of P1-
bundles over curves, in Exercise 22.2.J, where the normal bundle to a section was
identified in this way.

23.3.7. !! Generalization to the Grassmannian. For another generalization, fix a base
field k, and let G(m,n + 1) be the space of sub-vector spaces of dimension m in an
(n + 1)-dimensional vector space V (the Grassmannian, §17.6). Over G(m,n + 1)
we have a short exact sequence of locally free sheaves

0 → S → V ⊗ OG(m,n+1) → Q → 0

where V⊗OG(m,n+1) is the “trivial bundle whose fibers are V” (do you understand
what that means?), and S is the “universal subbundle” (such that over a point
[V ′ ⊂ V] of the Grassmannian G(m,n + 1), S |[V ′⊂V] is V , if you can make that
precise). Then

(23.3.7.1) ΩG(m,n+1)/k
∼= Hom (Q,S ).

23.3.F. EXERCISE. Recall that in the case of projective space, i.e. m = 1, S = O(−1)
(Exercise 18.1.H). Verify (23.3.7.1) in this case using the Euler exact sequence (The-
orem 23.3.6).

23.3.G. EXERCISE. Prove (23.3.7.1), and explain how it generalizes 22.2.I. (The
hint to Exercise 22.2.I may help.)

This Grassmannian fact generalizes further to Grassmannian bundles.

23.4 Nonsingularity and k-smoothness revisited
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In this section, we examine the relation between differentials and nonsingular-
ity, and define smoothness over a field. We construct birational invariants of non-
singular varieties over algebraically closed fields (such as the geometric genus),
motivate the notion of an unramified morphism, show that varieties are “mostly
nonsingular”, and get a first glimpse of Hodge theory.

23.4.1. Definition. Suppose k is a field. Since §13.2.4, we have used an awkward
definition of k-smoothness, and we finally rectify this. A k-scheme X is k-smooth
of dimension n or smooth of dimension n over k if it is locally of finite type, pure
dimension n, and ΩX/k is locally free of rank n. The dimension n is often omitted,
but one might possibly want to call something smooth if it is the (scheme-theoretic)
disjoint union of things smooth of various dimensions.

23.4.A. EXERCISE. Verify that this definition indeed is equivalent to the one given
in §13.2.4.

As a consequence of our better definition, we see that smoothness can be
checked on any affine cover by using the Jacobian criterion on each affine open
set in the cover.

We recall that we have shown in §13.3.10 that if k is perfect (e.g. if char k = 0),
then a finite type k-scheme is smooth if and only if it is nonsingular at closed
points; this was quite easy in the case when k = k (Exercise 13.2.F). Recall that it
is also true that for any k, a smooth k-scheme is nonsingular at its closed points
(mentioned but not proved in §13.2.5), but finite type k-schemes can be regular
without being smooth (if k is not perfect, see the example in §13.2.5).

23.4.2. The geometric genus, and other birational invariants from i-forms Ωi
X/Y .

Suppose X is a projective scheme over k. Then for each i, hi(X,ΩX/k) is an
invariant of X, which can be useful. The first useful fact is that it, and related in-
variants, are birational invariants if X is smooth, as shown in the following exercise.
We first define the sheaf of (relative) i-forms Ωi

X/Y := ∧iΩX/Y . Sections of Ωi
X/Y

(over some open set) are called (relative) i-forms (over that open set).

23.4.B. EXERCISE (h0(X,Ωi
X/k) ARE BIRATIONAL INVARIANTS). Suppose X and X ′

are birational projective smooth k-varieties. Show (for each i) that H0(X,Ωi
X/k) ∼=

H0(X ′,Ωi
X ′/k). Hint: fix a birational map φ : X ""# X ′. By Exercise 17.5.B, the com-

plement of the domain of definition U of φ is codimension at least 2. By pulling
back i-forms from X ′ to U, we get a map φ∗ : H0(X ′,Ωi

X ′/k) → H0(U,Ωi
X/k). Use

Hartogs’ theorem 12.3.10 and the fact that Ωi is locally free to show the map ex-
tends to a map φ∗ : H0(X ′,Ωi

X ′/k) → H0(X,Ωi
X/k). If ψ : X ′ ""# X is the inverse

rational map, we similarly get a map ψ∗ : H0(X,Ωi
X/k) → H0(X ′,Ωi

X ′/k). Show
that φ∗ and ψ∗ are inverse by showing that each composition is the identity on a
dense open subset of X or X ′.

23.4.3. The geometric genus. If X is a dimension n smooth projective (or even
proper) k-variety, the birational invariant h0(X, detΩX/k) = h0(X,Ωn

X/k) has par-

ticular importance. It is called the geometric genus, and is often denoted pg(X).
We saw this in the case of curves in §23.3.1. If X is an irreducible variety that is not
smooth or projective, the phrase geometric genus refers to h0(X ′,Ωn

X ′/k) for some
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projective smooth X ′ birational to X. (By Exercise 23.4.B, this is independent of X ′.)
For example, if X is an irreducible reduced projective curve over k, the geometric
genus is the geometric genus of the normalization of X. (But in higher dimension,
it is not obvious if there exists such an X ′. It is a nontrivial fact that this is true in
characteristic 0 — Hironaka’s resolution of singularities — and it is not yet known
in positive characteristic in full generality; see Remark 19.4.6.)

It is a miracle that for a complex curve this is the same as the topological genus
and the arithmetic genus. We will connect the geometric genus to the topological
genus in our discussion of the Riemann-Hurwitz formula soon (Exercise 23.5.H).
We will begin the connection of geometric genus to arithmetic genus via the con-
tinuing miracle of Serre duality very soon (Exercise 23.4.D).

23.4.C. UNIMPORTANT EXERCISE. The jth plurigenus of a smooth projective k-
variety is h0(X, (detΩX/k)⊗j). Show that the jth plurigenus is a birational invari-
ant. (We won’t use this notion further.)

23.4.4. Further Serre duality miracle: Ωn is dualizing (for smooth k-varieties). It is a
further miracle of Serre duality that for an n-dimensional smooth k-variety X, the
sheaf of “algebraic volume forms” is (isomorphic) to the dualizing sheaf KX/k:

(23.4.4.1) detΩX/k = Ωn
X/k

∼= KX.

We will prove this in §29.5.

23.4.D. EASY EXERCISE. Assuming Serre duality, and the miracle (23.4.4.1), show
that the geometric genus of a smooth projective curve over k = k equals its arith-
metic genus.

23.4.5. Unramified morphisms.
Suppose π : X → Y is a morphism of schemes. The support of the quasico-

herent sheaf Ωπ = ΩX/Y is called the ramification locus, and the image of its
support, π∗ SuppΩX/Y , is called the branch locus. If Ωπ = 0, we say that π is
formally unramified, and if π is also furthermore of finite presentation, we say π
is unramified. (Noetherian readers will happily ignore the difference.) We will
discuss unramifiedness at length in Chapter 26.

23.4.E. EASY EXERCISE. (a) Show that locally finitely presented locally closed im-
mersions are unramified.
(b) Show that the condition of π : X → Y being unramified is local on X and on Y.
(c) (localization is unramified) Show that if S is a multiplicative subset of the ring B,
then Spec S−1B → Spec B is formally unramified. (Thus for example by (b), if η is
the generic point of an integral scheme Y, Spec OY,η → Y is formally unramified.)
(d) Show that finite separable field extensions (or more correctly, the correspond-
ing map of schemes) are unramified.
(e) Show that the property of being unramified is preserved under composition
and base change.

23.4.F. EXERCISE. Suppose π : X → Y is a morphism of varieties over k. Use the
conormal exact sequence (Theorem 23.2.11) and Proposition 23.2.17 relating Ω to
the Zariski tangent space to show the following.
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(a) Suppose that dim X = dim Y = n, and π is unramified. Show that if Y is k-
smooth, then X is k-smooth.
(b) Suppose dim X = m > dim Y = n, Y is k-smooth, and the fibers of π over closed
points are smooth of dimension m − n. Show that X is k-smooth.

23.4.6. Arithmetic side remark: the different and discriminant. If B is the ring of inte-
gers in a number field (§10.6.1), the different ideal of B is the annihilator of ΩB/Z.
It measures the failure of Spec B → Spec Z to be unramified, and is a scheme-
theoretic version of the ramification locus. The discriminant ideal can be inter-
preted as the ideal of Z corresponding to effective divisor on Spec Z that is the
“push forward” (not defined here, but defined as you might expect) of the divisor
corresponding to the different. It is a scheme-theoretic version of the branch locus.
If B/A is an extension of rings of integers of number fields, the relative different
ideal (of B) and relative discriminant ideal (of A) are defined similarly. (We won’t
use these ideas.)

23.4.7. Generic smoothness.
We can now verify something your intuition may already have told you. In

positive characteristic, this is a hard theorem, in that it uses a result from commu-
tative algebra that we have not proved.

23.4.8. Theorem (generic smoothness of varieties). — If X is an integral variety
over k = k, there is an dense open subset U of X such that U is smooth.

Hence, by Fact 13.3.8, U is nonsingular. Theorem 26.4.1 will generalize this to
smooth morphisms, at the expense of restricting to characteristic 0.

Proof. The n = 0 case is immediate, so we assume n > 0.
We will show that the rank at the generic point is n. Then by upper semicon-

tinuity of the rank of a coherent sheaf (Exercise 14.7.I), it must be n in an open
neighborhood of the generic point, and we are done.

We thus have to check that if K is the fraction field of a dimension n integral
finite-type k-scheme, i.e. (by Theorem 12.2.1) if K/k is a transcendence degree n
extension, then ΩK/k is an n-dimensional vector space. But every extension of
transcendence degree n > 1 is separably generated: we can find n algebraically
independent elements of K over k, say x1, . . . , xn, such that K/k(x1, . . . , xn) is
separable. (In characteristic 0, this is automatic from transcendence theory, see
Exercise 12.2.A, as all finite extensions are separable. But it even holds in positive
characteristic, see [M-CA, p. 194 Cor.].) Then Ωk[x1,...,xn]/k is generated by dx1,
. . . , dxn (by Exercise 23.2.F(d)). !

23.4.9. ! Aside: Infinitesimal deformations and automorphisms.
It is beyond the scope of these notes to make this precise, but if X is a va-

riety, H0(X,TX) parametrizes infinitesimal automorphisms of X, and H1(X,TX)
parametrizes infinitesimal deformations. As an example if X = P1 (over a field),
TP1

∼= O(2) (§23.3.2), so h0(P1,TP1) = 3, which is precisely the dimension of the
automorphism group of P1 (Exercise 17.4.B).
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23.4.G. EXERCISE. Compute h0(Pn
k ,TPn

k
) using the Euler exact sequence (The-

orem 23.3.6). Compare this to the dimension of the automorphism group of Pn
k

(Exercise 17.4.B).

23.4.H. EXERCISE. Show that H1(Pn
A,TPn

A
) = 0. Thus projective space can’t

deform, and is “rigid”.)

23.4.I. EXERCISE. Assuming Serre duality, and the miracle (23.4.4.1), compute
hi(C,T ) for a genus g projective nonsingular geometrically irreducible curve over
k, for i = 0 and 1. You should notice that h1(C,T ) for genus 0, 1, and g > 1 is 0, 1,
and 3g − 3 respectively; after doing this, re-read §21.7.1.

23.4.10. ! A first glimpse of Hodge theory.
The invariant hj(X,Ωi

X/k) is called the Hodge number hi,j(X). By Exercise 23.4.B,

hi,0 are birational invariants. We will soon see (in Exercise 23.4.M) that this isn’t
true for all hi,j.

23.4.J. EXERCISE. Suppose X is a nonsingular projective variety over k = k. As-
suming Serre duality, and the miracle (23.4.4.1), show that Hodge numbers satisfy
the symmetry hp,q = hn−p,n−q.

23.4.K. EXERCISE (THE HODGE NUMBERS OF PROJECTIVE SPACE). Show that
hp,q(Pn

k ) = 1 if 0 ≤ p = q ≤ n and hp,q(Pn
k ) = 0 otherwise. Hint: use the Euler

exact sequence (Theorem 23.3.6) and apply Exercise 14.5.F.

23.4.11. Remark: the Hodge diamond. Over k = C, further miracles occur. If X is an
irreducible nonsingular projective complex variety, then it turns out that there is a
direct sum decomposition

(23.4.11.1) Hm(X, C) = ⊕i+j=mHj(X,Ωi
X/C),

from which hm(X, C) =
∑

i+j=m hi,j, so the Hodge numbers (purely algebraic
objects) yield the Betti numbers (a priori topological information). Moreover, com-
plex conjugation interchanges Hj(X,Ωi

X/C) with Hi(X,Ωi
X/C), from which

(23.4.11.2) hi,j = hj,i.

This additional symmetry holds in characteristic 0 in general, but can fail in posi-
tive characteristic. This is the beginning of the vast and fruitful subject of Hodge
theory.

If we write the Hodge numbers in a diamond, with hi,j the ith entry in the
(i+ j)th row, then the diamond has the two symmetries coming from Serre duality
and complex conjugation. For example, the Hodge diamond of an irreducible
nonsingular projective complex surface will be of the following form:

1
q q

pg h1,1 pg

q q
1
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where pg is the geometric genus of the surface, and q = h0,1 = h1,0 = h2,1 = h1,2

is called the irregularity of the surface. As another example, by Exercise 23.4.K, the
Hodge diamond of Pn is all 0 except for 1’s down the vertical axis of symmetry.

You won’t need the unproved statements (23.4.11.1) or (23.4.11.2) to solve the
following problems.

23.4.L. EXERCISE. Assuming the Serre duality miracle 23.4.4.1, show that the
Hodge diamond of a projective nonsingular geometrically irreducible genus g
curve over a field k is the following.

1
g g

1

23.4.M. EXERCISE. Show that the Hodge diamond of P1
k × P1

k is the following.

1
0 0

0 2 0
0 0

1

By comparing your answer to the Hodge diamond of P2
k (Exercise 23.4.K), show

that h1,1 is not a birational invariant.

Notice that in both cases, h1,1 is the Picard number ρ (defined in §20.4.11). In
general, ρ ≤ h1,1.

23.5 The Riemann-Hurwitz Formula

The Riemann-Hurwitz formula generalizes our calculation of the genus g of
a double cover of P1 branched at 2g + 2 points, Theorem 21.4.1, to higher degree
covers, and to higher genus target curves.

23.5.1. Definition. A finite morphism between integral schemes f : X → Y is
said to be separable if it is dominant, and the induced extension of function fields
K(X)/K(Y) is a separable extension. (Similarly, a generically finite morphism is
generically separable if it is dominant, and the induced extension of function
fields is a separable extension. We won’t use this notion.) Note that finite
morphisms of integral schemes are automatically separable in characteristic 0.

23.5.2. Proposition. — If f : X → Y is a finite separable morphism of nonsingular
integral varieties, then the relative cotangent sequence (Theorem 23.2.24) is exact on the
left as well:

(23.5.2.1) 0 $$ f∗ΩY/k
φ $$ ΩX/k

$$ ΩX/Y
$$ 0.

Proof. We must check that φ is injective. Now ΩY/k is an invertible sheaf on Y, so
f∗ΩY/k is an invertible sheaf on X. We come to a clever point: an invertible sheaf
on an integral scheme (such as f∗ΩY/k) is torsion-free (any section over any open



September 6, 2011 draft 511

set is non-zero at the generic point), so if a subsheaf of it (such as kerφ) is nonzero,
it is nonzero at the generic point. Thus to show the injectivity of φ, we need only
check that φ is an inclusion at the generic point. We thus tensor with Oη where η is
the generic point of X. This is an exact functor (localization is exact, Exercise 2.6.F),
and Oη ⊗ ΩX/Y = 0 (as K(X)/K(Y) is a separable extension by hypothesis, and
Ω for separable field extensions is 0 by Exercise 23.2.F(a)). Also, Oη ⊗ f∗ΩY/k

and Oη ⊗ΩX/k are both one-dimensional Oη-vector spaces (they are the stalks of
invertible sheaves at the generic point). Thus by considering

Oη ⊗ f∗ΩY/k → Oη ⊗ΩX/k → Oη ⊗ΩX/Y → 0

(which is Oη → Oη → 0 → 0) we see that Oη ⊗ f∗ΩY/k → Oη ⊗ΩX/k is injective,
and thus that f∗ΩY/k → ΩX/k is injective. !

People not confined to characteristic 0 should note what goes wrong for non-
separable morphisms. For example, suppose k is a field of characteristic p, and
consider the map f : A1

k = Spec k[t] → A1
k = Spec k[u] given by u = tp. Then

Ωf is the trivial invertible sheaf generated by dt. As another (similar but different)
example, if K = k(x) and K ′ = K(xp), then the inclusion K ′ ↪→ K induces f :
Spec K[t] → Spec K ′[t]. Once again, Ωf is an invertible sheaf, generated by dx
(which in this case is pulled back from ΩK/K ′ on Spec K). In both of these cases, we
have maps from one affine line to another, and there are vertical tangent vectors.

23.5.A. EXERCISE. If X and Y are dimension n, and f : X → Y is separable, show
that the ramification locus is pure codimension 1, and has a natural interpretation
as an effective divisor, as follows. Interpret φ as an n×n Jacobian matrix (13.1.4.1)
in appropriate local coordinates, and hence interpret the locus where φ is not an
isomorphism as (locally) the vanishing scheme of the determinant of an n × n
matrix. Hence the branch locus is also pure codimension 1. (This is a special case
of Zariski’s theorem on purity of (dimension of) the branch locus.) Hence we use the
terms ramification divisor and branch divisor.

Suppose now that X and Y are dimension 1. (We will discuss higher-dimensional
consequences in §23.5.7.) Then the ramification locus is a finite set (ramification
points) of X, and the branch locus is a finite set (branch points) of Y. Now assume
that k = k. We examine ΩX/Y near a point x ∈ X.

As motivation for what we will see, we note that in complex geometry, noncon-
stant maps from (complex) curves to curves may be written in appropriate local
coordinates as x (→ xm = y, from which we see that dy pulls back to mxm−1dx, so
ΩX/Y locally looks like functions times dx modulo multiples of mxm−1dx.

Consider now our map π : X → Y, and fix x ∈ X, and y = π(x). Because the
construction of Ω behaves well under base change (Theorem 23.2.25(b)), we may
replace Y with Spec of the local ring OY,y at y, i.e. we may assume Y = Spec B,
where B is a discrete valuation ring (as Y is a nonsingular curve), with residue
field k corresponding to y. Then as π is finite, X is affine too. Similarly, as the
construction of Ω behaves well with respect to localization (Exercise 23.2.8), we
may replace X by Spec OX,x, and thus assume X = Spec A, where A is a discrete
valuation ring, and π corresponds to B → A, inducing an isomorphism of residue
fields (with k).
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Suppose their uniformizers are s and t respectively, with t (→ usn where u
is a unit of A. Recall that the differentials of a discrete valuation ring over k are
generated by the d of the uniformizer (Exercise 23.3.D). Then

dt = d(usn) = unsn−1 ds + sn du.

This differential on Spec A vanishes to order at least n − 1, and precisely n − 1 if n
doesn’t divide the characteristic. The former case is called tame ramification, and
the latter is called wild ramification. We call this order the ramification order at
this point of X.

23.5.B. EXERCISE. Show that the degree of ΩX/Y at x is precisely the ramification
order of π at x.

23.5.C. EXERCISE: INTERPRETING THE RAMIFICATION DIVISOR IN TERMS OF NUM-
BER OF PREIMAGES. Suppose all the ramification above y ∈ Y is tame (which is
always true in characteristic 0). Show that the degree of the branch divisor at y is
degπ − |π−1(y)|. Thus the multiplicity of the branch divisor counts the extent to
which the number of preimages is less than the degree (see Figure 23.4).

FIGURE 23.4. An example where the branch divisor appears with
multiplicity 2 (see Exercise 23.5.C)

23.5.3. Theorem (the Riemann-Hurwitz formula). — Suppose π : X → Y is a finite
separable morphism of projective nonsingular curves. Let n = deg f, and let R be the
ramification divisor. Then

2g(X) − 2 = n(2g(Y) − 2) + deg R.

23.5.D. EXERCISE. Prove the Riemann-Hurwitz formula. Hint: Apply the fact
that degree is additive in exact sequences (Exercise 20.4.K) to (23.5.2.1). Recall
that degrees of line bundles pull back well under finite morphisms of integral
projective curves, Exercise 20.4.F. Note that a torsion sheaf on a curve (such as
Ωπ) is supported in dimension 0, so χ(Ωπ) = h0(Ωπ). Show that the degree of R
as a divisor is the same as its degree in the sense of h0.
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Here are some applications of the Riemann-Hurwitz formula.

23.5.4. Example. The degree of R is always even: any cover of a curve must be
branched over an even number of points (counted with appropriate multiplicity).

23.5.E. EASY EXERCISE. Show that there is no nonconstant map from a smooth
projective irreducible genus 2 curve to a smooth projective irreducible genus 3
curve. (Hint: deg R ≥ 0.)

23.5.5. Example. If k = k, the only connected unbranched finite separable cover
of P1

k is the isomorphism, for the following reason. Suppose X is connected and
X → P1

k is unramified. Then X is a curve, and nonsingular by Exercise 23.4.F(a).
Applying the Riemann-Hurwitz theorem, using that the ramification divisor is 0,
we have 2 − 2gC = 2d with d ≥ 1 and gc ≥ 0, from which d = 1 and gC = 0.

23.5.F. EXERCISE. Show that if k = k has characteristic 0, the only connected
unbranched cover of A1

k is itself. (Aside: in characteristic p, this needn’t hold;
Spec k[x, y]/(yp − xp − y) → Spec k[x] is such a map. You can show this yourself,
using Eisenstein’s criterion to show irreducibility of the source. Once the theory of
the algebraic fundamental group is developed, this translates to: “A1 is not simply
connected in characteristic p.” This cover is an example of an Artin-Schreier cover.
Fun fact: the group Z/p acts on this cover via the map y (→ y + 1.)

23.5.G. UNIMPORTANT EXERCISE. Extend Example 23.5.5 and Exercise 23.5.F,
by removing the k = k hypothesis, and changing “connected” to “geometrically
connected”.

23.5.6. Example: Lüroth’s theorem. Continuing the notation of Theorem 23.5.3, sup-
pose g(X) = 0. Then from the Riemann-Hurwitz formula (23.5.2.1), g(Y) = 0.
(Otherwise, if g(Y) were at least 1, then the right side of the Riemann-Hurwitz for-
mula would be non-negative, and thus couldn’t be −2, which is the left side. This
has a nonobvious algebraic consequence, by our identification of covers of curves
with field extensions (Theorem 18.4.3): all subfields of k(x) containing k are of the
form k(y) where y = f(x). (It turns out that the hypotheses char k = 0 and k = k
are not necessary.)

23.5.H. ! EXERCISE (GEOMETRIC GENUS EQUALS TOPOLOGICAL GENUS). This
exercise is intended for those with some complex background, who know that the
Riemann-Hurwitz formula holds in the complex analytic category. Suppose C is
an irreducible nonsingular projective complex curve. Show that there is an alge-
braic nonconstant map π : C → P1

C. Describe the corresponding map of Riemann
surfaces. Use the previous exercise to show that the algebraic notion of genus
(as computed using the branched cover π) agrees with the topological notion of
genus (using the same branched cover). (Recall that assuming the Serre duality
miracle 23.4.4.1, we know that the geometric genus equals the arithmetic genus,
Exercise 23.4.D.)
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23.5.I. UNIMPORTANT EXERCISE (CF. §23.5.7, ESPECIALLY EXERCISE 23.5.L. Sup-
pose π : X → Y is a dominant morphism of nonsingular curves, and R is the ram-
ification divisor of π. Show that ΩX(−R) ∼= π∗ΩY . (This exercise is geometrically
pleasant, but we won’t use it.)

23.5.7. Higher-dimensional applications of Exercise 23.5.A.
We now obtain some higher-dimensional consequences of the explicit Exer-

cise 23.5.A. We begin with something (literally) small but fun. Suppose π : X → Y
is a surjective k-morphism from a smooth k-scheme that contracts a subset of codi-
mension greater than 1. More precisely, suppose π is an isomorphism over an
open subset of Y, from an open subset U of X whose complement has codimension
greater than 1. Then by Exercise 23.5.A, Y cannot be smooth. (Small resolutions,
defined in Exercise 19.4.N, are examples of such π. In particular, you can find an
example there.)

23.5.8. Change of the canonical line bundle under blow-ups.
As motivation, consider π : Bl(0,0) A2 → A2 (defined in Exercise 10.2.M —

you needn’t have read Chapter 19 on blowing up to understand this). Let X =
Bl(0,0) A2 and Y = A2 for convenience. We use Exercise 23.5.A to relate π∗KY with
KX.

We pick a generator for KY near (0, 0): dx ∧ dy. (This is in fact a generator for
KY everywhere on A2, but for the sake of generalization, we point out that all that
matters is that is a generator at (0, 0), and hence near (0, 0) by geometric Nakayama,
Exercise 14.7.D.) When we pull it back to X, we can interpret it as a section of KX,
which will generate KX away from the exceptional divisor E, but may contain E
with some multiplicity µ. Recall that X can be interpreted as the data of a point in
A2 as well as the choice of a line through the origin. We consider the open subset
U where the line is not vertical, and thus can be written as y = mx. Here we
have natural coordinates: U = Spec k[x, y,m]/(y − mx), which we can interpret as
Spec k[x,m]. The exceptional divisor E meets U, at x = 0 (in the coordinates on U),
so we can calculate µ on this open set. Pulling back dx ∧ dy to U, we get

dx ∧ dy = dx ∧ d(xm) = m(dx ∧ dx) + x(dx ∧ dm) = x(dx ∧ dm)

as dx ∧ dx = 0. Thus π∗dx ∧ dy vanishes to order 1 along e.

23.5.J. EXERCISE. Explain how this determines an isomorphism KX
∼= (π∗KY)(E).

23.5.K. EXERCISE. Repeat the above calculation in dimension n. Show that the
exceptional divisor appears with multiplicity (n − 1).

23.5.L. ! EXERCISE (FOR THOSE WHO HAVE READ CHAPTER 19 ON BLOWING UP).
(a) Suppose X is a surface over k, and p is a smooth k-valued point, and let π : Y →
X be the blow-up of X at p. Show that KX

∼= (π∗KY)(E). Hint: to find a generator
of KX near p, choose generators x and y of m/m2 (where m is the maximal ideal of
OX,p), and lift them to elements of OX,p. Why does dx ∧ dy generate KX at p?
(b) Repeat part (a) in arbitrary dimension (following Exercise 23.5.K).

23.5.M. ! EXERCISE (FOR THOSE WHO HAVE READ CHAPTER 19). We work over
an algebraically closed field k. Suppose Z is a smooth m-dimensional (closed) sub-
variety of a smooth n-dimensional variety X, and let π : Y → X be the blow-up of
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X along Z. Show that KY
∼= (π∗KX)((n−m−1)E). (You will need Theorem 13.3.5,

which shows that Z ↪→ X is a local complete intersection. This is where k = k is
needed. As noted in Remark 13.3.6, we can remove this assumption, at the cost of
invoking unproved Fact 13.3.1 that regular local rings are integral domains.)





Part VI
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CHAPTER 24

Derived functors

In this chapter, we discuss derived functors, introduced by Grothendieck in
his celebrated “Tôhoku article” [Gr], and their applications to sheaves. For quasi-
coherent sheaves on quasicompact separated schemes, derived functor cohomol-
ogy will agree with Čech cohomology (§24.5). Čech cohomology will suffice for
most of our purposes, and is quite down to earth and computable, but derived
functor cohomology is worth seeing. First, it will apply much more generally in
algebraic geometry (e.g. étale cohomology) and elsewhere, although this is beyond
the scope of these notes. Second, it will easily provide us with some useful notions,
such as the Ext functors and the Leray spectral sequence. But derived functors can
be intimidating the first time you see them, so feel free to just skim the main re-
sults, and to return to them later. I was tempted to make this chapter a “starred”
optional section, but if I did, I would be ostracized from the algebraic geometry
community.

24.1 The Tor functors

We begin with a warm-up: the case of Tor. This is a hands-on example, but if
you understand it well, you will understand derived functors in general. Tor will
be useful to prove facts about flatness, which we will discuss in §25.3. Tor is short
for “torsion” (see Remark 25.3.1).

If you have never seen this notion before, you may want to just remember its
properties. But I will to prove everything anyway — it is surprisingly easy.

The idea behind Tor is as follows. Whenever we see a right-exact functor, we
always hope that it is the end of a long-exact sequence. Informally, given a short
exact sequence

(24.1.0.1) 0 → N ′ → N → N ′′ → 0,
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we hope M ⊗A N ′ → M ⊗A N → M ⊗A N ′′ → 0 will extend to a long exact
sequence
(24.1.0.2)

· · · $$ TorA
i (M,N ′) $$ TorA

i (M,N) $$ TorA
i (M,N ′′) $$ · · ·

$$ TorA
1 (M,N ′) $$ TorA

1 (M,N) $$ TorA
1 (M,N ′′)

$$ M ⊗A N ′ $$ M ⊗A N $$ M ⊗A N ′′ $$ 0.

More precisely, we are hoping for covariant functors TorA
i (·,N) from A-modules to

A-modules (covariance giving 2/3 of the morphisms in (24.1.0.2)), with TorA
0 (M,N) ≡

M⊗AN, and natural “connecting” homomorphism δ : TorA
i+1(M,N ′′) → TorA

i (M,N ′)
for every short exact sequence (24.1.0.1) giving the long exact sequence (24.1.0.2).
(“Natural” means: given a morphism of short exact sequences, the natural square
you would write down involving the δ-morphism must commute.)

It turns out to be not too hard to make this work, and this will also motivate
derived functors. Let’s now define TorA

i (M,N).
Take any resolution R of N by free modules:

· · · $$ A⊕n2 $$ A⊕n1 $$ A⊕n0 $$ N $$ 0.

More precisely, build this resolution from right to left. Start by choosing generators
of N as an A-module, giving us A⊕n0 → N → 0. Then choose generators of the
kernel, and so on. Note that we are not requiring the ni to be finite (although
we could, if N is a finitely-generated module and A is Noetherian). Truncate the
resolution, by stripping off the last term N (replacing → N → 0 with → 0). Then
tensor with M (which does not preserve exactness). Note that M⊗(A⊕ni) = M⊗n,
as tensoring with M commutes with arbitrary direct sums — you can check this
by hand. Let TorA

i (M,N)R be the homology of this complex at the ith stage (i ≥
0). The subscript R reminds us that our construction depends on the resolution,
although we will soon see that it is independent of R.

We make some quick observations.
• TorA

0 (M,N)R
∼= M⊗AN, canonically. Reason: as tensoring is right exact, and

A⊕n1 → A⊕n0 → N → 0 is exact, we have that M⊕n1 → M⊕n0 → M⊗A N → 0 is
exact, and hence that the homology of the truncated complex M⊕n1 → M⊕n0 → 0
is M ⊗A N.

• If M ⊗ · is exact (i.e. M is flat, §2.6.10), then TorA
i (M,N)R = 0 for all i > 0.

(This characterizes flatness, see Exercise 24.1.D.)
Now given two modules N and N ′ and resolutions R and R ′ of N and N ′, we

can “lift” any morphism N → N ′ to a morphism of the two resolutions:

· · · $$ A⊕ni $$

%%

· · · $$ A⊕n1 $$

%%

A⊕n0 $$

%%

N

%%

$$ 0

· · · $$ A⊕n ′
i $$ · · · $$ A⊕n ′

1 $$ A⊕n ′
0 $$ N ′ $$ 0
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Here we use the freeness of A⊕ni : if a1, . . . , ani
are generators of A⊕ni , to lift

the map b : A⊕ni → A⊕n ′
i−1 to c : A⊕ni → A⊕n ′

i , we arbitrarily lift b(ai) from
A⊕n ′

i−1 to A⊕n ′
i , and declare this to be c(ai). (Warning for people who care about

such things: we are using the axiom of choice here.)
Denote the choice of lifts by R → R ′. Now truncate both complexes (remove

column N → N ′) and tensor with M. Maps of complexes induce maps of homol-
ogy (Exercise 2.6.D), so we have described maps (a priori depending on R → R ′)

TorA
i (M,N)R → TorA

i (M,N ′)R ′ .

We say two maps of complexes f, g : C• → C ′
• are homotopic if there is a

sequence of maps w : Ci → C ′
i+1 such that f − g = dw + wd.

24.1.A. EXERCISE. Show that two homotopic maps give the same map on homol-
ogy.

24.1.B. CRUCIAL EXERCISE. Show that any two lifts R → R ′ are homotopic.

We now pull these observations together.

(1) We get a covariant functor TorA
i (M,N)R → TorA

i (M,N ′)R ′ , independent
of the lift R → R ′.

(2) Hence for any two resolutions R and R ′ of an A-module N, we get
a canonical isomorphism TorA

i (M,N)R
∼= TorA

i (M,N)R ′ . Here’s why.
Choose lifts R → R ′ and R ′ → R. The composition R → R ′ → R is ho-
motopic to the identity (as it is a lift of the identity map N → N). Thus if
fR→R ′ : TorA

i (M,N)R → Tor1
i (M,N)R ′ is the map induced by R → R ′,

and similarly fR ′→R is the map induced by R → R ′, then fR ′→R◦fR→R ′

is the identity, and similarly fR→R ′ ◦ fR ′→R is the identity.
(3) Hence the covariant functor TorA

i doesn’t depend on the choice of resolu-
tion.

24.1.1. Remark. Note that if N is a free module, then TorA
i (M,N) = 0 for all M and

all i > 0, as N has the trivial resolution 0 → N → N → 0 (it is “its own resolution”).

Finally, we get long exact sequences:

24.1.2. Proposition. — For any short exact sequence (24.1.0.1) we get a long exact
sequence of Tor’s (24.1.0.2).
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Proof. Given a short exact sequence (24.1.0.1), choose resolutions of N ′ and N ′′.
Then use these to get a resolution for N as follows (see (24.1.2.1)).

(24.1.2.1) 0

%%

0

%%

0

%%
· · · $$ A⊕n ′

1

%%

$$ A⊕n ′
0

%%

$$ N ′

%%

$$ 0

· · · $$ A⊕(n ′
1+n ′′

1 )

%%

$$ A⊕(n ′
0+n ′′

0 )

%%

$$ N

%%

$$ 0

· · · $$ A⊕n ′′
1

%%

$$ A⊕n ′′
0

%%

$$ N ′′

%%

$$ 0

0 0 0

The map A⊕(n ′
i+1+n ′′

i+1) → A⊕(n ′
i+n ′′

i ) is the composition A⊕n ′
i+1 → A⊕n ′

i ↪→
A⊕(n ′

i+n ′′
i ) along with a lift of A⊕n ′′

i+1 → A⊕n ′′
i to A⊕(n ′

i+n ′′
i ) ensuring that the

middle row is a complex.

24.1.C. EXERCISE. Verify that it is possible choose such a lift of A⊕n ′′
i+1 → A⊕n ′′

i

to A⊕(n ′
i+n ′′

i ).

Hence (24.1.2.1) is exact (not just a complex), using the long exact sequence in
cohomology (Theorem 2.6.5), and the fact that the top and bottom rows are exact.
Thus the middle row is a resolution, and (24.1.2.1) is a short exact sequence of
resolutions. It may be helpful to notice that the columns other than the “N-column”
are all “direct sum exact sequences”, and the horizontal maps in the middle row
are “block upper triangular”.

Then truncate (removing the right column 0 → N ′ → N → N ′′ → 0), tensor
with M (obtaining a short exact sequence of complexes) and take cohomology,
yielding the desired long exact sequence. !

24.1.D. EXERCISE. Show that the following are equivalent conditions on an A-
module M.

(i) M is flat.
(ii) TorA

i (M,N) = 0 for all i > 0 and all A-modules N.
(iii) TorA

1 (M,N) = 0 for all A-modules N.

24.1.3. Caution. Given that free modules are immediately seen to be flat, you
might think that Exercise 24.1.D implies Remark 24.1.1. This would follow if we
knew that TorA

i (M,N) ∼= TorA
i (N,M), which is clear for i = 0 (as ⊗ is symmetric),

but we won’t know this about Tori when i > 0 until Exercise 24.3.A.

24.1.E. EXERCISE. Show that the connecting homomorphism δ constructed above
is independent of all of choices (of resolutions, etc.). Try to do this with as little
annoyance as possible. (Possible hint: given two sets of choices used to build
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(24.1.2.1), build a map — a three-dimensional diagram — from one version of
(24.1.2.1) to the other version.)

24.1.F. UNIMPORTANT EXERCISE. Show that TorA
i (M, ·) is an additive functor

(Definition 2.6.1). (We won’t use this later, so feel free to skip it.)

We have thus established the foundations of Tor.

24.2 Derived functors in general

24.2.1. Projective resolutions. We used very little about free modules in the
above construction of Tor — in fact we used only that free modules are projective,

i.e. those modules P such that for any surjection M $$ $$ N , it is possible to lift
any morphism P → N to P → M:

(24.2.1.1) P

!!#
##

##
##

#

exists
%%
%

%

%

M $$ $$ N

(As noted in §24, this needs the axiom of choice.) Equivalently, Hom(P, ·) is an
exact functor (recall that Hom(Q, ·) is always left-exact for any Q). More gener-
ally, the same idea yields the definition of a projective object in any abelian cate-
gory. Hence by following through our entire argument with projective modules
replacing free modules throughout, (i) we can compute TorA

i (M,N) by taking any
projective resolution of N, and (ii) TorA

i (M,N) = 0 for any projective A-module
N.

24.2.A. EXERCISE. Show that an object P is projective if and only if every short
exact sequence 0 → A → B → P → 0 splits. Hence show that an A-module M is
projective if and only if M is a direct summand of a free module.

24.2.B. EXERCISE. Show that projective modules are flat. (Hint: Exercise 24.2.A.
Be careful if you want to use Exercise 24.1.D; see Caution 24.1.3.)

24.2.2. Definition: Derived functors.
The above description was low-tech, but immediately generalizes drastically.

All we are using is that M⊗A · is a right-exact functor, and that for any A-module

N, we can find a surjection P $$ $$ N from a projective module. In general, if F
is any right-exact covariant functor from the category of A-modules to any abelian
category, this construction will define a sequence of functors LiF such that L0F = F
and the LiF’s give a long-exact sequence. We can make this more general still. We
say that an abelian category has enough projectives if for any object N there is a
surjection onto it from a projective object. Then if F is any right-exact covariant
functor from an abelian category with enough projectives to any abelian category,
then we can define the left derived functors to F, denoted LiF (i ≥ 0). You should
reread §24.1 and see that throughout we only use the fact we have a projective
resolution (repeatedly lifting maps as in (24.2.1.1)), as well as the fact that F sends
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products to products (a consequence of additivity of the functor, see Remark 2.6.2)
to show that F applied to (24.1.2.1) preserves the exactness of the columns.

24.2.C. EXERCISE. The notion of an injective object in an abelian category is dual
to the notion of a projective object.
(a) State precisely the definition of an injective object.
(b) Define derived functors for (i) covariant left-exact functors (these are called
right derived functors), (ii) contravariant left-exact functors (also called right de-
rived functors), and (iii) contravariant right-exact functors (these are called left
derived functors), making explicit the necessary assumptions of the category hav-
ing enough injectives or projectives.

24.2.3. Notation. If F is a right-exact functor, its (left-)derived functors are denoted
LiF (i ≥ 0, with L0F = F). If F is a left-exact functor, its (right-) derived functors
are denoted RiF. The i is a superscript, to indicate that the long exact sequence is
“ascending in i”.

24.2.4. The Ext functors.

24.2.D. EASY EXERCISE (AND DEFINITION): Ext FUNCTORS FOR A-MODULES, FIRST

VERSION. As Hom(·,N) is a contravariant left-exact functor in ModA, which has
enough projectives, define ExtiA(M,N) as the ith left derived functor of Hom(·,N),
applied to M. State the corresponding long exact sequence for Ext-modules.

24.2.E. EASY EXERCISE (AND DEFINITION): Ext FUNCTORS FOR A-MODULES, SEC-
OND VERSION. The category ModA has enough injectives (see §24.2.5). As Hom(M, ·)
is a covariant left-exact functor in ModA, define ExtiA(M,N) as the ith right derived
functor of Hom(M, ·), applied to N. State the corresponding long exact sequence
for Ext-modules.

We seem to have a problem with the previous two exercises: we have defined
Exti(M,N) twice, and we have two different long exact sequences! Fortunately,
these two definitions agree (see Exercise 24.3.B).

The notion of Ext-functors (for sheaves) will play a key role in the proof of
Serre duality, see §29.3.

24.2.5. ! The category of A-modules has enough injectives. We will need the
fact that ModA has enough injectives, but the details of the proof won’t come up
again, so feel free to skip this discussion.

24.2.F. EXERCISE. Suppose Q is an A-module, such that for every ideal I ⊂ A,
every homomorphism I → Q extends to A → Q. Show that Q is an injective A-
module. Hint: suppose N ⊂ M is an inclusion of A-modules, and we are given
β : N → Q. We wish to show that β extends to M → Q. Use the axiom of choice to
show that among those A-modules N ′ with N ⊂ N ′ ⊂ M, such that β extends to
N ′, there is a maximal one. If this N ′ is not M, give an extension of β to N ′ + Am,
where m ∈ M \ N ′, obtaining a contradiction.

24.2.G. EASY EXERCISE (USING THE AXIOM OF CHOICE, IN THE GUISE OF ZORN’S

LEMMA). Show that a Z-module (i.e. abelian group) Q is injective if and only if
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it is divisible (i.e. for every q ∈ Q and n ∈ Z,=0, there is q ′ ∈ Q with nq ′ = q).
Hence show that any quotient of an injective Z-module is also injective.

24.2.H. EXERCISE. Show that the category of Z-modules ModZ = Ab has enough
injectives. (Hint: if M is a Z-module, then write it as the quotient of a free Z-
module F by some K. Show that M is contained in the divisible group (F⊗Z Q)/K.)

24.2.I. EXERCISE. Suppose Q is an injective Z-module, and A is a ring. Show that
HomZ(A,Q) is an injective A-module. Hint: First describe the A-module structure
on HomZ(A,Q). You will only use the fact that Z is a ring, and that A is an algebra
over that ring.

24.2.J. EXERCISE. Show that ModA has enough injectives. Hint: suppose M is
an A-module. By Exercise 24.2.H, we can find an inclusion of Z-modules M ↪→ Q
where Q is an injective Z-module. Describe a sequence of inclusions of A-modules

M ↪→ HomZ(A,M) ↪→ HomZ(A,Q).

(The A-module structure on HomZ(A,M) is via the A-action on the left argument
A, not via the A-action on the right argument M.) The right term is injective by
the previous Exercise 24.2.I.

24.3 Fun with spectral sequences and derived functors

A number of useful facts can be easily proved using spectral sequences. By
doing these exercises, you will lose any fear of spectral sequence arguments in
similar situations, as you will realize they are all the same.

Before you read this section, you should read §2.7 on spectral sequences.

24.3.1. Symmetry of Tor.

24.3.A. EXERCISE (SYMMETRY OF Tor). Show that there is an isomorphism TorA
i (M,N) ∼=

TorA
i (N,M). (Hint: take a free resolution of M and a free resolution of N. Take

their “product” to somehow produce a double complex. Use both orientations of
the obvious spectral sequence and see what you get.)

On a related note:

24.3.B. EXERCISE. Show that the two definitions of Exti(M,N) given in Exer-
cises 24.2.D and 24.2.E agree.

24.3.2. Derived functors can be computed using acyclic resolutions. Suppose
F : A → B is a right-exact additive functor of abelian categories, and that A has
enough projectives. (In other words, the hypotheses ensure the existence of left
derived functors of F. Analogous facts will hold with the other types of derived
functors, Exercise 24.2.C(b).) We say that A ∈ A is F-acyclic (or just acyclic if the F
is clear from context) if LiF A = 0 for i > 0.

The following exercise is a good opportunity to learn a useful trick (Hint 24.3.3).
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24.3.C. EXERCISE. Show that you can also compute the derived functors of an
objects B of A using acyclic resolutions, i.e. by taking a resolution

· · · → A2 → A1 → A0 → B → 0

by F-acyclic objects Ai, truncating, applying F, and taking homology. Hence Tori(M,N)
can be computed with a flat resolution of M or N.

24.3.3. Hint for Exercise 24.3.C (and a useful trick: building a “double complex resolution
of a complex”). Show that you can construct a double complex

...

%%

...

%%

...

%%

...

%%
· · · $$ P2,1

%%

$$ P1,1

%%

$$ P0,1

%%

$$ P1

%%

$$ 0

· · · $$ P2,0

%%

$$ P1,0

%%

$$ P0,0

%%

$$ P0

%%

$$ 0

· · · $$ A2
$$ A1

$$ A0
$$ B $$ 0

where the rows and columns are exact and the P?’s are projective. Do this by
constructing the P?’s inductively from the bottom right. Remove the bottom row,
and the right-most nonzero column, and then apply F, to obtain a new double
complex. Use a spectral sequence argument to show that (i) the double complex
has homology equal to LiF B, and (ii) the homology of the double complex agrees
with the construction given in the statement of the exercise.

24.3.4. The Grothendieck composition-of-functors spectral sequence. Suppose
A, B, and C are abelian categories; F : A → B and G : B → C are a left-exact ad-
ditive covariant functors; and A and B have enough injective. Thus right derived
functors of F, G, and G ◦ F exist. A reasonable question (especially in concrete cir-
cumstances) is: how are they related? (Essentially the same discussion will apply
to different variants of derived functors.)

24.3.D. EXERCISE. If F sends injective elements of A to G-acyclic elements of
B, then for each A ∈ A, show that there is a spectral sequence with E2

p,q =
RqG(RpF(A)) converging to Rp+q(G ◦ F)(A). (Hint: This is simpler than it looks.
Just follow your nose, and use the construction of Hint 24.3.3.)

We will soon see the Leray spectral sequence as an application of the Grothendieck
(composition-of-functors) spectral seqeunce (Exercise 24.4.E).

24.4 ! Derived functor cohomology of O-modules

We wish to apply the machinery of derived functors to define cohomology of
quasicoherent sheaves on a scheme X. Sadly, this category QCohX usually doesn’t
have enough injectives! Fortunately, the larger category ModOX

does.
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24.4.1. Theorem. — Suppose (X,OX) is a ringed space. Then the category of OX-
modules ModOX

has enough injectives.

As a side benefit (of use to others more than us), taking OX = Z, we see that
the category of sheaves of abelian groups on a fixed topological space have enough
injectives.

We prove Theorem 24.4.1 in a series of exercises. Suppose F is an OX-module.
We will exhibit an injection F ↪→ Q ′ into an injective OX-module. For each x ∈
X, choose an inclusion Fx ↪→ Qx into an injective OX,x-module (possible as the
category of OX,x-modules has enough injectives, Exercise 24.2.J).

24.4.A. EXERCISE (PUSHFORWARD OF INJECTIVES ARE INJECTIVE). Suppose π :
X → Y is a morphism of ringed spaces, and suppose Q is an injective OX-module.
Show that π∗Q is an injective OY-module. Hint: use the fact that π∗ is a right-
adjoint (of π∗).

24.4.B. EXERCISE. By considering the inclusion x ↪→ X and using the previous
exercise, show that the skyscraper sheaf Qx := ix,∗Qx, with module Qx at point x,
is an injective OX-module.

24.4.C. EASY EXERCISE. Show the direct product (possibly infinite) of injective
objects in an abelian category is also injective.

By the previous two exercises, Q ′ :=
∏

x∈X Qx is an injective OX-module.

24.4.D. EASY EXERCISE. By considering stalks, show that the natural map F →
Q ′ is an injection.

This completes the proof of Theorem 24.4.1. !

We can now make a number of definitions.

24.4.2. Definitions. If (X,OX) is a ringed space, and F is an OX-module, define
Hi(X,F ) as RiΓ(X,F ). If furthermore π : (X,OX) → (Y,OY) is a map of ringed
spaces, we have derived pushforwards Riπ∗ : ModOX

→ ModOY
.

We have defined these notions earlier in special cases, for quasicoherent sheaves
on separated quasicompact schemes (Chapter 20). We will soon (§24.5) show that
they agree. Thus the derived functor definition applies much more generally than
our Čech definition. But it is worthwhile to note that almost everything we use
will come out of the Čech definition. A notable exception is the following.

24.4.E. EXERCISE: THE LERAY SPECTRAL SEQUENCE. Suppose π : (X,OX) →
(Y,OY) is a morphism of ringed spaces. Show that for any OX-module F , there is
a spectral sequence with E2 term given by Hp(Y, Rqπ∗F ) abutting to Hp+q(X,F ).
Hint: Use the Grothendieck (or composition-of-functors) spectral sequence (Ex-
ercise 24.3.D) and the fact that the pushforward of an injective O-module is an
injective O-module (Exercise 24.4.A).

Your argument will extend without change to a composition of derived push-
forwards for

(X,OX)
f $$ (Y,OY)

g $$ (Z,OZ).
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24.4.3. !! The category of OX-modules needn’t have enough projectives. In
contrast to Theorem 24.4.1, the category of OX-modules needn’t have enough pro-
jectives. For example, let X be P1

k with the Zariski-topology (in fact we will need
very little about X — only that it is not an Alexandrov space), but take OX to be the
constant sheaf Z. We will see that ModOX

— i.e. the category of sheaves of abelian
groups on X — does not have enough projectives. If ModOX

had enough projec-
tives, then there would be a surjection ψ : P → Z from a projective sheaf. Fix a
closed point x ∈ X. We will show that the map on stalks ψx : Px → Zx is the zero
map, contradicting the surjectivity of ψ. For each open subset U of X, denote by ZU

the extension to X of the constant sheaf associated to Z on U by 0 (Exercise 3.6.G
— ZU(V) = Z if V ⊂ U, and ZU(V) = 0 otherwise). For each open neighborhood
V of x, let W be a strictly smaller open neighborhood. Consider the surjection
ZX−x ⊕ ZW → Z. By projectivity of P, the surjection ψ lifts to P → ZX−x ⊕ ZW .
The map P(V) → Z(V) factors through ZX−x(V) ⊕ ZW(V) = 0, and hence must be
the zero map. Thus the map ψx : Px → Zx map is zero as well (do you see why?)
as desired.

24.5 ! Čech cohomology and derived functor cohomology agree

We next prove that Čech cohomology and derived functor cohomology agree,
where the former is defined.

24.5.1. Theorem. — Suppose X is a quasicompact separated scheme, and F is a quasico-
herent sheaf. Then the Čech cohomology of F agrees with the derived functor cohomology
of F .

This statement is not as precise as it should be. We would want to know that
this isomorphism is functorial in F , and that it respects long exact sequences (so
the connecting homomorphism defined for Čech cohomology agrees with that for
derived functor cohomology). There is also an important extension to higher push-
forwards. We leave these issues for the end of this section, §24.5.5

The central idea (albeit with a twist) is a spectral sequence argument in the
same style as those of §24.3, and uses two “cohomology-vanishing” ingredients,
one for each orientation of the spectral sequence.

(A) If (X,OX) is a ringed space, Q is an injective OX-module, and X = ∪iUi is
a finite open cover, then Q has no ith Čech cohomology with respect to this cover
for i > 0.

(B) If X is an affine scheme, and F is a quasicoherent sheaf on X, then RiΓF =
0 for i > 0.

(Translation: (A) says that building blocks of derived functor cohomology
have no Čech cohomology, and (B) says that building blocks of Čech cohomology
have no derived functor cohomology.)

We will also need the following fact, which will also be useful in our proof of
Serre duality.

24.5.A. EXERCISE. Suppose X is a topological space, Q is an injective sheaf on
X, and i : U ↪→ X is an open subset. Show that Q|U is injective on U. Hint: use
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the fact that i−1 is a right-adjoint, cf. Exercise 24.4.A. (Exercise 3.6.G showed that
(i!, i

−1) is an adjoint pair.)

24.5.2. Proof of Theorem 24.5.1, assuming (A) and (B). As in the facts proved in §24.3,
we take the only approach that is reasonable: we choose an injective resolution
F → Q• of F , and a Čech cover of X, mix these two types of information in
a double complex, and toss it into our spectral sequence machine (§2.7). More
precisely, choose a finite affine open cover X = ∪iUi and an injective resolution

0 → F → Q0 → Q1 → · · · .

Consider the double complex

(24.5.2.1)
...

...
...

0 $$ ⊕iQ2(Ui)

,,

$$ ⊕i,jQ2(Uij)

,,

$$ ⊕i,j,kQ2(Uijk)

,,

$$ · · ·

0 $$ ⊕iQ1(Ui)

,,

$$ ⊕i,jQ1(Uij)

,,

$$ ⊕i,j,kQ1(Uijk)

,,

$$ · · ·

0 $$ ⊕iQ0(Ui)

,,

$$ ⊕i,jQ0(Uij)

,,

$$ ⊕i,j,kQ0(Uijk)

,,

$$ · · ·

0

,,

0

,,

0

,,

We take this as the E0 term in a spectral sequence. First, let’s use the filtration
corresponding to choosing the rightward arrow. As higher Čech cohomology of
injective O-modules is 0 (assumption (A)), we get 0’s everywhere except in “col-
umn 0”, where we get Qi(X) in row i:

...
...

...

0 Q2(X)

,,

0

,,

0

,,

· · ·

0

,,

Q1(X)

,,

0

,,

0

,,

· · ·

0

,,

Q0(X)

,,

0

,,

0

,,

· · ·

0

,,

0

,,

0

,,
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Then we take cohomology in the vertical direction, and we get derived functor
cohomology of F on X on the E2 page:

...
...

...

0 R2Γ(X,F ) 0 0 · · ·

0 R1Γ(X,F ) 0 0 · · ·

0 Γ(X,F )

22'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

0

22'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

0

HH_
_
_
_
_
_
_
_
_
_
_
_
_
_
_

· · ·

0

22'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

0

22'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

0

HH_
_
_
_
_
_
_
_
_
_
_
_
_
_
_

We then start over on the E0 page, and this time use the filtration corresponding
to choosing the upward arrow first. By Proposition 24.5.A, I|UJ

is injective on
UJ, so we are computing the derived functor cohomology of F on UJ. Then the
higher derived functor cohomology is 0 (assumption (B)), so all entries are 0 except
possibly on row 0. Thus the E1 term is:
(24.5.2.2)

0 $$ 0 $$ 0 $$ 0 $$ · · ·

0 $$ 0 $$ 0 $$ 0 $$ · · ·

0 $$ ⊕iΓ(Ui,F ) $$ ⊕i,jΓ(Uij,F ) $$ ⊕i,j,kΓ(Uijk,F ) $$ · · ·

0 $$ 0 $$ 0 $$ 0 $$ · · ·

Row 0 is precisely the Čech complex of F , so the spectral sequence converges at
the E2 term, yielding the Čech cohomology. Since one orientation yields derived
functor cohomology and one yields Čech cohomology, we are done. !

So it remains to show (A) and (B).

24.5.3. Ingredient (A): injectives have no Čech cohomology.
We make an intermediate definition that is independently important. A sheaf

F on a topological space is flasque (also sometimes called flabby) if all restriction
maps are surjective, i.e. if resU⊂V : F (V) → F (U) is surjective for all U → V .

24.5.B. EXERCISE. Suppose X = ∪jUj is a finite cover of X by open sets, and
F is a flasque sheaf on X. Show that the Čech complex for F with respect to
∪jUj has no cohomology in positive degree, i.e. that it is exact except in degree
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0 (where it has cohomology F (X)), by the sheaf axioms. Hint: use induction on
j. Consider the short exact sequence of complexes (20.2.4.2) (see also (20.2.3.1)).
The corresponding long exact sequence will immediately give the desired result
for i > 1, and flasqueness will be used for i = 1.

24.5.C. EXERCISE. Suppose (X,OX) is a ringed space, and Q is an injective OX-
module. Show that Q is flasque. (Hint: If U ⊂ V ⊂ X, then describe an injection of
OX-modules 0 → OV → OX. Apply the exact contravariant functor Hom(·,I ).)

We’ve now established that flasque sheaves have no Čech cohomology. We
now show that they also have no derived functor cohomology, or more precisely,
that they are acyclic for the functor Γ . We won’t need this fact until Exercise 29.3.I.
But it is useful to remember that injective implies flasque implies Γ -acyclic.

24.5.D. EXERCISE. Suppose (X,OX) is a ringed space.
(a) If

(24.5.3.1) 0 → F ′ → F → F ′′ → 0

is an exact sequence of OX-modules, and F ′ is flasque, then (24.5.3.1) is exact
on sections over any open set U. In other words, for 0 → F ′(U) → F (U) →
F ′′(U) → 0.
(b) Given an exact sequence (24.5.3.1), if F ′ is flasque, show that F is flasque if
and only if F ′′ is flasque.
(c) Suppose F is a flasque sheaf on X. Show that F is Γ -acyclic as follows. As
ModOX

has enough injectives, choose an inclusion of F into some injective I , and
call its cokernel be G : 0 → F → I → G → 0. Show that G is flasque using
(b). Take the long exact sequence in (derived functor) cohomology, and show that
H1(X,F ) = 0. Your argument works for any flasque sheaf F , so H1(X,G ) = 0 as
well. Show that H2(X,F ) = 0. Turn this into an induction.

This is all we need for our algebro-geometric applications, but to show you
how general this machinery is, we give two more applications, one serious, and
one entertaining.

24.5.E. EXERCISE. (a) Suppose X is a topological space, so X can be thought
of as a locally ringed space with structure sheaf OX = Z. Suppose that X has a
finite cover by contractible open sets Ui such that any intersection of the Ui is also
contractible. Show that the derived functor cohomology of OX agrees with the
Čech cohomology of Z with respect to this cover. (Here Z can be replaced by any
abelian group.)
(b) Under reasonable hypotheses on X, this computes simplicial cohomology. Use
this to compute the cohomology of the circle S1.

24.5.F. EXERCISE (PERVERSE PROOF OF INCLUSION-EXCLUSION THROUGH COHO-
MOLOGY OF SHEAVES). The inclusion-exclusion principle is (equivalent to) the
following: suppose that X is a finite set, and Ui (1 ≤ i ≤ n) are finite sets covering
X. As usual, define UI = ∩i∈IUi for I ⊂ {1, . . . , n}. Then

|X| =
∑

|Ui| −
∑

|I|=2

|U|I|| +
∑

|I|=3

|U|I|| −
∑

|I|=4

|U|I|| + · · · .
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Prove this by endowing X with the discrete topology, showing that the constant
sheaf Q is flasque, considering the Čech complex computing Hi(X, Q) using the
cover Ui, and using Exercise 2.6.B.

24.5.4. Ingredient (B): quasicoherent sheaves on affine schemes have no derived
functor cohomology.

The following argument is a version of a great explanation of Martin Olsson.
We show the following statement by induction on k. Suppose X is an affine

scheme, and F is a quasicoherent sheaf on X. Then RiΓ(X,F ) = 0 for 0 < i ≤ k.
The result is vacuously true for k = 0; so suppose we know the result for all
0 < k ′ < k. Suppose α ∈ RkΓ(X,F ). We wish to show that α = 0. Choose an
injective resolution

0 $$ F $$ Q0
d0 $$ Q1

d1 $$ · · · .

Then α has a representative α ′ in Qk(X), such that dα ′ = 0. Because the injec-
tive resolution is exact, α ′ is locally a boundary. In other words, in the neighbor-
hood of any point x ∈ X, there is an open set Vx such that α|Vx

= dα ′ for some
α ′ ∈ Qk−1(Vx). By shrinking Vx if necessary, we can assume Vx is affine. By the
quasicompactness of X, we can choose a finite number of the Vx’s that cover X.
Rename these Ui, so we have an affine cover X. Consider the Čech cover of X with
respect to this affine cover (not the affine cover you might have thought we would
use — that of X by itself — but instead an affine cover tailored to our particular α).
Consider the double complex (24.5.2.1), as the E0 term in a spectral sequence.

First choose the filtration corresponding to considering the rightward arrows
first. As in the argument in §24.5.2, the spectral sequence converges at E2, where
we get 0 everywhere, except that the derived functor cohomology appears in the
0th column.

Next, start over again, choosing the upward filtration. On the E1 page, row 0

is the Čech complex, as in (24.5.2.2). All the rows between 1 and k − 1 are 0 by our
inductive hypothesis, but we don’t yet know much about the higher rows. Because
we are interested in the kth derived functor, we focus on the kth antidiagonal
(Ep,k−p

• ). The only possibly nonzero terms in this antidiagonal are Ek,0
1 and E0,k

1 .
We look first at the term on the bottom row Ek,0

1 =
∏

|I|=k Γ(UI,F ), which is part

of the Čech complex:

· · · →
∏

|I|=k−1

Γ(UI,F ) →
∏

|I|=k

Γ(UI,F ) →
∏

|I|=k+1

Γ(UI,F ) → · · · .

But we have already verified that the Čech cohomology of a quasicoherent sheaf
on an affine scheme vanishes, so this term vanishes by the E2 page (i.e. Ek,0

i = 0
for i ≥ 2).

So the only term of interest in the kth antidiagonal of E1 is E0,k
1 , which is the

homology of

(24.5.4.1)
∏

i

Qk−1(Ui) →
∏

i

Qk(Ui) →
∏

i

Qk+1(Ui),
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which is
∏

i RkΓ(Ui,F ) (using the fact that the Qj|Ui
are injective on Ui, and they

can be used to compute Rk(Γ(Ui,F )). So E0,k
2 is the homology of

0 →
∏

i

RkΓ(Ui,F ) →
∏

i,j

RkΓ(Uij,F )

and thereafter all differentials to and from the E0,k
• terms will be 0, as the sources

and targets of those arrows will be 0. Consider now our lift of α ′ of our original
class α ∈ RkΓ(X,F ). Its image in the homology of (24.5.4.1) is zero — this was
how we chose our cover Ui to begin with! Thus α = 0 as desired, completing our
proof. !

24.5.G. EXERCISE. The proof is not quite complete. We have a class α ∈ RkΓ(X,F ),
and we have interpreted RkΓ(X,F ) as

ker




∏

i

RkΓ(Ui,F ) →
∏

i,j

RkΓ(Uij,F )



 .

We have two maps RkΓ(X,F ) → RkΓ(Ui,F ), one coming from the natural restric-
tion (under which we can see that the image of α is zero), and one coming from the
actual spectral sequence machinery. Verify that they are the same map. (Possible
hint: with the filtration used, the E0,k

∞ term is indeed the quotient of the homology
of the double complex, so the map goes the right way.)

24.5.5. Tying up loose ends.

24.5.H. IMPORTANT EXERCISE. State and prove the generalization of Theorem 24.5.1
to higher pushforwards Riπ∗, where π : X → Y is a quasicompact separated mor-
phism of schemes.

24.5.I. EXERCISE. Show that the isomorphism of Theorem 24.5.1 is functorial in
F , i.e. given a morphism F → G , the diagram

Hi(X,F ) ++ $$

%%

RiΓ(X,F )

%%
Hi(X,G ) ++ $$ RiΓ(X,G )

commutes, where the horizontal arrows are the isomorphisms of Theorem 24.5.1,
and the vertical arrows come from functoriality of Hi and RiΓ . (Hint: “spectral
sequences are functorial in E0”, which is clear from the construction, although we
haven’t said it explicitly.)

24.5.J. EXERCISE. Show that the isomorphisms of Theorem 24.5.1 induce isomor-
phisms of long exact sequences.





CHAPTER 25

Flatness

The concept of flatness is a riddle that comes out of algebra, but which technically is
the answer to many prayers. — David Mumford [M-Red, III.10]

It is a riddle, wrapped in a mystery, inside an enigma; but perhaps there is a key. —
Winston Churchill

25.1 Introduction

We come next to the important concept of flatness (first introduced in §17.3.7).
We could have discussed flatness at length as soon as we had discussed quasi-
coherent sheaves and morphisms. But it is an unexpected idea, and the algebra
and geometry are not obviously connected, so we have left it for relatively late.
The translation of the french word “plat” that best describes this notion is “phat”,
but unfortunately that word had not yet been coined when flatness first made its
appearance.

Serre has stated that he introduced flatness purely for reasons of algebra in
his landmark “GAGA” paper [S-GAGA], and that it was Grothendieck who rec-
ognized its geometric significance.

A flat morphism π : X → Y is the right notion of a “nice”, or “nicely varying”
family over Y. For example, if π is a projective flat family over a connected base
(translation: π : X → Y is a projective flat morphism, with Y connected), we will see
that various numerical invariants of fibers are constant, including the dimension
(§25.5.4), and numbers interpretable in terms of an Euler characteristic (see §25.7):

(a) the Hilbert polynomial (Corollary 25.7.2),
(b) the degree (in projective space) (Exercise 25.7.B(a)),
(c) the arithmetic genus (Exercise 25.7.B(b)),
(d) the degree of a line bundle if the fiber is a curve (Corollary 25.7.3), and
(e) intersections of divisors and line bundles (Exercise 25.7.4).

One might think that the right hypothesis might be smoothness (to be defined
properly in Chapter 26), or more generally some sort of equisingularity, but we
only need something weaker. And this is a good thing: branched covers are not
fibrations in any traditional sense, yet they still behave well — the double cover
A1 → A1 given by y (→ x2 has constant degree 2 (§10.3.3, revisited in §18.4.8).
Another key example is that of a family of smooth curves degenerating to a nodal
curve (Figure 25.1) — the topology of the (underlying analytic) curve changes, but
the arithmetic genus remains constant. One can prove things about nonsingular
curves by first proving them about a nodal degeneration, and then showing that

535
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the result behaves well in flat families. Degeneration techniques such as this are
ubiquitous in algebraic geometry.

A1
k = Spec k[t]

FIGURE 25.1. A flat family of smooth curves degenerating to a
nodal curve: y2 = x3 − tx2.

Given the cohomological nature of the constancy of Euler characteristic result,
you should not be surprised that the hypothesis needed (flatness) is cohomological
in nature — it can be characterized by vanishing of Tor (Exercise 24.1.D), which we
use to great effect in §25.3.

But flatness is important for other reasons too. As a start: as this the right no-
tion of a “nice family”, it allows us to correctly define the notion of moduli space.
For example, the Hilbert scheme of Pn “parametrizes closed subschemes of Pn”.
Maps from a scheme B to the Hilbert scheme correspond to (finitely presented)
closed subschemes of Pn

B flat over B. By universal property nonsense, this defines
the Hilbert scheme up to unique isomorphism (although we of course must show
that it exists, which takes some effort — [M-CAS] gives an excellent exposition).
The moduli space of projective smooth curves is defined by the universal property
that maps to the moduli space correspond to projective flat (finitely presented)
families whose geometric fibers are smooth curves. (Sadly, this moduli space does
not exist...) On a related note, flatness is central in deformation theory: it is key
to understanding how schemes (and other geometric objects, such as vector bun-
dles) can deform (cf. §23.4.9). Finally, the notion of Galois descent generalizes to
(faithfully) “flat descent”, which allows us to “glue” in more exotic Grothendieck
topologies in the same way we do in the Zariski topology (or more classical topolo-
gies); but this is beyond the scope of our current discussion.

25.1.1. Structure of the chapter.
Flatness has many aspects of different flavors, and it is easy to lose sight of

the forest for the trees. Because the algebra of flatness seems so unrelated to the
geometry, it can be nonintuitive. We will necessarily begin with algebraic founda-
tions, but you should focus on the following points: methods of showing things
are flat (both general criteria and explicit examples), and classification of flat mod-
ules over particular kinds of rings. You should try every exercise dealing with
explicit examples such as these.

Here is an outline of the chapter, to help focus your attention.
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• In §25.2, we discuss some of the easier facts, which are algebraic in nature.
• §25.3, §25.4, and §25.6 give ideal-theoretic criteria for flatness. §25.3 and
§25.4 should be read together. The first uses Tor to understand flatness,
and the second uses these insights to develop ideal-theoretic criteria for
flatness. §25.6, on local criteria for flatness, is harder.

• §25.5 is relatively free-standing, and could be read immediately after §25.2.
It deals with topological aspects of flatness, such as the fact that flat mor-
phisms are open in good situations.

• §25.7—25.9 deal with how flatness interacts with cohomology of quasi-
coherent sheaves. §25.7 is surprisingly easy given its utility. §25.8 is in-
tended to introduce you to powerful cohomology and base change re-
sults. Proofs are given in the optional (starred) section §25.9.

• The starred section §s:completions2 discusses flatness and completion,
and requires the Artin-Rees Lemma 13.6.3.

You should focus on what flatness implies and how to “picture” it, but also on
explicit criteria for flatness in different situation, such as for integral domains
(Observation 25.2.2), principal ideal domains (Exercise 25.4.B), discrete valuation
rings (Exercise 25.4.C), the dual numbers (Exercise 25.4.D), and local rings (Theo-
rem 25.4.3).

25.2 Easier facts

Many facts about flatness are easy or immediate, although a number are tricky.
I will try to make clear which is which, to help you remember the easy facts and
the key ideas of proofs of the harder facts. We will pick the low-hanging fruit first.

We recall the definition of a flat A-module (§2.6.10). If M ∈ ModA, M ⊗A · is
right-exact. We say that M is a flat A-module (or flat over A or A-flat) if M ⊗A ·
is an exact functor. We say that a ring homomorphism B → A is flat if A is flat as a
B-module. (In particular, the algebra structure of A is irrelevant.)

25.2.1. Two key examples.
(i) Free modules A-modules (even of infinite rank) are clearly flat. More gen-

erally, projective modules are flat (Exercise 24.2.B).
(ii) Localizations are flat: Suppose S is a multiplicative subset of B. Then B →

S−1B is a flat ring morphism (Exercise 2.6.F(a)).

25.2.A. EASY EXERCISE: FIRST EXAMPLES.
(a) (trick question) Classify flat modules over a field k.
(b) Show that A[x1, . . . , xn] is a flat A-module.
(c) Show that the ring homomorphism Q[x] → Q[y], with x (→ y2, is flat. (This will
help us understand Example 10.3.3 better, see §25.4.8.)

We make some quick but important observations.

25.2.2. Important Observation. If x is a non-zerodivisor of A, and M is a flat A-

module, then M
×x $$ M is injective. (Reason: apply the exact functor M⊗A

to the exact sequence 0 $$ A
×x $$ A .) In particular, flat modules over integral
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domains are torsion-free. (Torsion-freeness was defined in §14.5.4.) This observation
gives an easy way of recognizing when a module is not flat. We will use it many
times.

25.2.B. EXERCISE. Suppose D is an effective Cartier divisor on Y and π : X → Y is
a flat morphism. Show that the pullback of D to X (by π) is also an effective Cartier
divisor.

25.2.C. EXERCISE: ANOTHER EXAMPLE. Show that a finitely generated module
over a discrete valuation ring is flat if and only if it is torsion-free if and only if it is
free. Hint: Remark 13.4.17 classifies finitely generated modules over a discrete val-
uation ring. (Exercise 25.4.B sheds more light on flatness over a discrete valuation
ring. Proposition 14.7.3 is also related.)

25.2.D. EXERCISE (FLATNESS IS PRESERVED BY CHANGE OF BASE RING). Show
that if M flat A-module, A → B is a homomorphism, then M ⊗A B is a flat B-
module. Hint: (M ⊗A B) ⊗B · ∼= M ⊗B (B ⊗A ·).

25.2.E. EXERCISE (TRANSITIVITY OF FLATNESS). Show that if A is a flat B-algebra,
and M is A-flat, then M is also B-flat. (The same hint as in the previous exercise
applies.)

25.2.3. Proposition (flatness is a stalk/prime-local property). — An A-module M
is flat if and only if Mp is a flat Ap-module for all primes p.

Proof. Suppose first that M is a flat A-module. Given any exact sequence of Ap-
modules

(25.2.3.1) 0 → N ′ → N → N ′′ → 0,

0 → M ⊗A N ′ → M ⊗A N → M ⊗A N ′′ → 0

is exact too. But M⊗AN is canonically isomorphic to Mp⊗Ap N (do you see why?),
so Mp is a flat Ap-module.

Suppose next that Mp is a flat Ap-module for all p. Given any short exact
sequence (25.2.3.1), tensoring with M yields

(25.2.3.2) 0 $$ K $$ M ⊗A N ′ $$ M ⊗A N $$ M ⊗A N ′′ $$ 0

where K is the kernel of M ⊗A N ′ → M ⊗A N. We wish to show that K = 0. It suf-
fices to show that Kp = 0 for all prime p ⊂ A (see the comment after Exercise 5.3.F).
Given any p, localizing (25.2.3.1) at p and tensoring with the exact Ap-module Mp

yields

(25.2.3.3) 0 $$ Mp ⊗Ap N ′
p

$$ Mp ⊗Ap Np
$$ Mp ⊗Ap N ′′

p
$$ 0.

But localizing (25.2.3.2) at p and using the isomorphisms Mp ⊗Ap Np
∼= (M ⊗A

N ′)Ap , we obtain the exact sequence

0 $$ Kp
$$ Mp ⊗Ap N ′

p
$$ Mp ⊗Ap Np

$$ Mp ⊗Ap N ′′
p

$$ 0,

which is the same as the exact sequence (25.2.3.3) except for the Kp. Hence Kp = 0
as desired. !
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25.2.4. Flatness for schemes.
Motivated by Proposition 25.2.3, the extension of the notion of flatness to

schemes is straightforward.

25.2.5. Definition: flat quasicoherent sheaves. We say that a quasicoherent sheaf
F on a scheme X is flat at x ∈ X if Fx is a flat OX,x-module. We say that a
quasicoherent sheaf F on a scheme X is flat (over X) if it is flat at all x ∈ X. In
light of Proposition 25.2.3, we can check this notion on affine open cover of X.

25.2.6. Definition: flat morphism. Similarly, we say that a morphism of schemes
π : X → Y is flat at x ∈ X if OX,x is a flat OY,π(x)-module. We say that a morphism
of schemes π : X → Y is flat if it is flat at all x ∈ X. We can check flatness (affine-
)locally on the source and target.

We can combine these two definitions into a single fancy definition.

25.2.7. Definition: flat quasicoherent sheaf over a base. Suppose π : X → Y is a
morphism of schemes, and F is a quasicoherent sheaf on X. We say that F is flat
(over Y) at x ∈ X if Fx is a flat OY,π(x)-module. We say that F is flat (over Y) if it
is flat at all x ∈ X.

Definitions 25.2.5 and 25.2.6 correspond to the cases X = Y and F = OX

respectively. (Definition 25.2.7 applies without change to the category of ringed
spaces, but we won’t use this.)

25.2.F. EASY EXERCISE (REALITY CHECK). Show that open immersions are flat.

Our results about flatness over rings above carry over easily to schemes.

25.2.G. EXERCISE. Show that a map of rings B → A is flat if and only if the
corresponding morphism of schemes Spec A → Spec B is flat. More generally, if
B → A is a map of rings, and M is a B-module, show that M is A-flat if and only if
M̃ is flat over Spec A.

25.2.H. EASY EXERCISE (EXAMPLES AND REALITY CHECKS).
(a) If X is a scheme, and x is a point, show that the natural morphism Spec OX,x →
X is flat. (Hint: localization is flat, §25.2.1.)
(b) Show that An

A → Spec A is flat.
(c) If F is a locally free sheaf on a scheme X, show that PF → X (Definition 18.2.2)
is flat.
(d) Show that Spec k → Spec k[x]/(x2) is not flat.

25.2.I. EXERCISE (TRANSITIVITY OF FLATNESS). Suppose π : X → Y and F is
a quasicoherent sheaf on X, flat over Y. Suppose also that ψ : Y → Z is a flat
morphism. Show that F is flat over Z.

25.2.J. EXERCISE (FLATNESS IS PRESERVED BY BASE CHANGE). Suppose π : X → Y
is a morphism, and F is a quasicoherent sheaf on X, flat over Y. If ρ : Y ′ → Y is
any morphism, and ρ ′ : X ×Y Y ′ → X is the induced morphism, show that (ρ ′)∗F
is flat over Y ′.

The following exercise is very useful for visualizing flatness and non-flatness
(see for example Figure 25.2).
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25.2.K. FLAT MAPS SEND ASSOCIATED POINTS TO ASSOCIATED POINTS. Sup-
pose π : X → Y is a flat morphism of locally Noetherian schemes. Show that
any associated point of X must map to an associated point of Y. Hint: suppose
π! : (B, n) → (A,m) is a local homomorphism of local Noetherian rings. Suppose
n is not an associated prime of B. Show that there is an element f ∈ B that does is
not in any associated prime of B (perhaps using prime avoidance, Exercise 12.3.D),
and hence is a non-zerodivisor. Show that π!f ∈ m is a non-zerodivisor of A using
Observation 25.2.2, and thus show that m is not an associated prime of A.

25.2.L. EXERCISE. Use Exercise 25.2.K to that the following morphisms are not
flat (see Figure 25.2):

(a) Spec k[x, y]/(xy) → Spec k[x],
(b) Spec k[x, y]/(y2, xy) → Spec k[x],
(c) Bl(0,0) A2

k → A2
k.

Hint for (c): first pull back to a line through the origin to obtain a something akin
to (a). (This foreshadows the statement and proof Proposition 25.5.5, which says
that for flat morphisms “there is no jumping of fiber dimension”.)

(c)(a) (b)

FIGURE 25.2. Morphisms that are not flat (Exercise 25.2.L) [Fig-
ure to be updated to reflect ordering in Exercise 25.2.L later]

25.2.8. Theorem (cohomology commutes with flat base change). — Suppose

X ′ g ′

$$

f ′

%%

X

f

%%
Y ′ g $$ Y

is a fiber diagram, and f (and thus f ′) is quasicompact and separated (so higher push-
forwards of quasicoherent sheaves by f and f ′ exist, as described in §20.7). Suppose
also that g is flat, and F is a quasicoherent sheaf on X. Then the natural morphisms
g∗(Rif∗F ) → Rif ′∗(g

′∗F ) are isomorphisms.

25.2.M. EXERCISE. Prove Theorem 25.2.8. Hint: Exercise 20.7.B(b) is the special
case where f is affine. Extend it to the quasicompact and separated case using
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the same idea as the proof of Theorem 17.2.1, which was actually proved in Ex-
ercise 14.3.I, using Exercise 14.3.E. Your proof of the case i = 0 will only need a
quasiseparated hypothesis in place of the separated hypothesis.

A useful special case is where Y ′ is the generic point of a component of Y. In
other words, in light of Exercise 25.2.H(a), the stalk of the higher pushforward
of F at the generic point is the cohomology of F on the fiber over the generic
point. This is a first example of something important: understanding cohomology
of (quasicoherent sheaves on) fibers in terms of higher pushforwards. (We would
certainly hope that higher pushforwards would tell us something about higher
cohomology of fibers, but this is certainly not a priori clear!) In comparison to
this result, which shows that cohomology of any quasicoherent sheaf commutes
with flat base change, §25.7–25.9 deal with when and how cohomology of a flat
quasicoherent sheaf commutes with any base change.

25.2.9. Pulling back closed subschemes (and ideal sheaves) by flat morphisms.
Closed subschemes pull back particularly well under flat morphisms, and this

can be helpful to keep in mind. As pointed out in Remarks 17.3.7 and 17.3.8, in
the case of flat morphisms, pullback of ideal sheaves as quasicoherent sheaves agrees
with pullback in terms of the pullback of the corresponding closed subschemes.
In other words, closed subscheme exact sequences pull back (remain exact) under
flat pullbacks. This is a key idea behind the fact that effective Cartier divisors pull
back to effective Cartier divisors under flat morphisms (Exercise 25.2.B).

25.2.N. UNIMPORTANT EXERCISE.
(a) Suppose π : X → Y is a flat morphism, and Z ↪→ Y is a closed immersion cut out
by an ideal sheaf I ⊂ OY . Show that (π∗I )n = π∗(I n).
(b) Suppose further that Y = An

k , and Z is the origin. Let J = π∗I be the qua-
sicoherent sheaf of algebras on X cutting out the pullback W of Z. Prove that the
graded sheaf of algebras ⊕n≥0J n/J n+1 (do you understand the multiplication)
is isomorphic to OW [x1, . . . , xn] (which you must interpret as a graded sheaf of
algebras). (Hint: first prove that J n/J n+1 ∼= Symn(J /J 2).)

25.2.O. UNIMPORTANT EXERCISE.
(a) Show that blowing up commutes with flat base change. More precisely, if
π : X → Y is any morphism, and Z ↪→ Y is any closed immersion, give a canonical
isomorphism (BlZ Y) ×Y X ∼= BlZ×YX X. (You can proceed by universal property,
using Exercise 25.2.B, or by using the Proj construction of the blow up and Exer-
cise 25.2.N.)
(b) Give an example to show that blowing up does not commute with base change
in general.

25.3 Flatness through Tor

We defined the Tor (bi-)functor in §24.1: TorA
i (M,N) is obtained by taking a

free resolution of N, removing the N, tensoring it with M, and taking homology.
Exercise 24.1.D characterized flatness in terms of Tor: M is A-flat if TorA

1 (M,N) =
0 for all N. In this section, we reap the easier benefits of this characterization,
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recalling key properties of Tor when needed. In §25.4, we work harder to extract
more from Tor.

It is sometimes possible to compute Tor from its definition, as shown in the
following exercise that we will use repeatedly.

25.3.A. EXERCISE. If x is not a zerodivisor, show that

TorA
i (M,A/x) =






M/xM if i = 0;

(M : x) if i = 1;

0 if i > 1.

(Recall that (M : x) = {m ∈ M : xm = 0} — it consists of the elements of M
annihilated by x.) Hint: use the resolution

0 $$ A
×x $$ A $$ A/x $$ 0

of A/x.

25.3.1. Remark. As a corollary of Exercise 25.3.A, we see again that flat modules
are torsion-free (Observation 25.2.2). Also, Exercise 25.3.A gives the reason for the
notation Tor — it is short for torsion.

25.3.B. EXERCISE. If B is A-flat, use the FHHF theorem (Exercise 2.6.H(c)) to give
an isomorphism B ⊗ TorA

i (M,N) ∼= TorB
i (B ⊗ M,B ⊗ N).

Recall that the Tor functor is symmetric in its entries (there is an isomorphism
TorA

i (M,N) ↔ TorA
i (N,M), Exercise 24.3.A). This gives us a quick but very useful

result.

25.3.C. EASY EXERCISE. If 0 → N ′ → N → N ′′ → 0 is an exact sequence of
A-modules, and N ′′ is flat (e.g. free), show that 0 → M ⊗A N ′ → M ⊗A N →
M ⊗A N ′′ → 0 is exact for any A-module M.

We would have cared about this result long before learning about Tor, so it
gives some motivation for learning about Tor. (Can you prove this without Tor,
using a diagram chase?)

25.3.D. EXERCISE. If 0 → M0 → M1 → · · · → Mn → 0 is an exact sequence of
flat A-modules, show that it remains flat upon tensoring with any other A-module.
(Hint: as always, break the exact sequence into short exact sequences.)

25.3.E. EXERCISE (IMPORTANT CONSEQUENCE OF EXERCISE 25.3.C). Suppose
0 → F ′ → F → F ′′ → 0 is a short exact sequence of quasicoherent sheaves on a
scheme Y, and F ′′ is flat (e.g. locally free). Show that if π : X → Y is any morphism
of schemes, the pulled back sequence 0 → π∗F ′ → π∗F → π∗F ′′ → 0 remains
exact.

25.3.F. EXERCISE (CF. EXERCISE 14.5.B FOR THE ANALOGOUS FACTS ABOUT VEC-
TOR BUNDLES). Suppose 0 → M ′ → M → M ′′ → 0 is an exact sequence of
A-modules.
(a) If M and M ′′ are both flat, show that M ′ is too. (Hint: Recall the long ex-
act sequence for Tor, Proposition 24.1.2. Also, use that N is flat if and only if
Tori(N,N ′) = 0 for all i > 0 and all N ′, Exercise 24.1.D.)
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(b) If M ′ and M ′′ are both flat, show that M is too. (Same hint.)
(c) If M ′ and M are both flat, show that M ′′ need not be flat.

25.3.G. EASY EXERCISE. If 0 → M0 → M1 → · · · → Mn → 0 is an exact sequence,
and Mi is flat for i > 0, show that M0 is flat too. (Hint: as always, break the exact
sequence into short exact sequences.)

We will use the Exercises 25.3.D and 25.3.G later this chapter.

25.4 Ideal-theoretic criteria for flatness

The following theorem will allow us to classify flat modules over a number of
rings. It is a refined version of Exercise 24.1.D, that M is a flat A-module if and
only if TorA

1 (M,N) = 0 for all A-modules N.

25.4.1. Theorem (ideal-theoretic criterion for flatness). — M is flat if and only if
TorA

1 (M,A/I) = 0 for every ideal I.

(In fact, it suffices to check only finitely generated ideals. This is essentially
the content of Exercise 25.10.E.)

25.4.2. Remarks. Before getting to the proof, we make some side remarks that may
give some insight into how to think about flatness. Theorem 25.4.1 is profitably
stated without the theory of Tor. It is equivalent to the statement that M is flat if
and only if for all ideals I ⊂ A, I⊗AM → M is an injection, and you can reinterpret
the proof in this guise. Perhaps better, M is flat if and only if I ⊗A M → IM is an
isomorphism for every ideal I.

Flatness is often informally described as “continuously varying fibers”, and
this can be made more precise as follows. An A-module M is flat if and only if
it restricts nicely to closed subschemes of Spec A. More precisely, what we lose
is this restriction, the submodule IM of elements which “vanish on Z”, is easy
to understand: it consists of formal linear combinations of elements i ⊗ m, with
no surprise relations among them — i.e., the tensor product I ⊗A M. This is the
content of the following exercise.

25.4.A. ! EXERCISE (THE EQUATIONAL CRITERION FOR FLATNESS). Show that an
A-module M is flat if and only if for every relation

∑
aimi = 0 with ai ∈ A and

mi ∈ M, there exist m ′
j ∈ M and aij ∈ A such that

∑
j aijm

′
j = mi for all i and∑

j aij = 0 in A for all j. (Translation: whenever elements of M satisfy an A-linear
relation, this is “because” of linear equations holding in A.)

Proof of the ideal-theoretic criterion for flatness, Theorem 25.4.1. By Exercise 24.1.D, we
need only show that TorA

1 (M,A/I) = 0 for all I implies TorA
1 (M,N) = 0 for all

A-modules N, and hence that M is flat.
We first prove that TorA

1 (M,N) = 0 for all finitely generated modules N, by
induction on the number n of generators a1, . . . , an of N. The base case (if n = 1,
so N ∼= A/(a1)) is our assumption. If n > 1, then Aan

∼= A/(an) is a submodule
of N, and the quotient Q is generated by the images of a1, . . . , an−1, so the result
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follows by considering the Tor1 portion of the Tor long exact sequence for

0 → A/(a1) → N → Q → 0.

We deal with the case of general N by abstract nonsense. Notice that N is the
union of its finitely-generated submodules {Nα}. In fancy language, this union
is a filtered colimit — any two finitely generated submodules are contained in a
finitely generated submodule (specifically, the submodule they generate). Filtered
colimits of modules commute with cohomology (Exercise 2.6.L), so Tor1(M,N) is
the colimit over α of Tor1(M,Nα) = 0, and is thus 0. !

We now use Theorem 25.4.1 to get explicit characterizations of flat modules
over three (types of) rings: principal ideal domains, dual numbers, and Noetherian
local rings.

Recall Observation 25.2.2, that flatness over an integral domain implies torsion-
free. The converse is true for principal ideal domains:

25.4.B. EXERCISE (FLAT = TORSION-FREE FOR A PID). Show that a module over a
principal ideal domain is flat if and only if it is torsion-free.

25.4.C. EXERCISE (FLATNESS OVER A DVR). Suppose M is a module over a dis-
crete valuation ring A with uniformizer t. Show that M is flat if and only if t is
not a zerodivisor on M, i.e. (M : t) = 0. (See Exercise 25.2.C for the case of finitely
generated modules.) This yields a simple geometric interpretation of flatness over
a nonsingular curve, which we discuss in §25.4.6.

25.4.D. EXERCISE (FLATNESS OVER THE DUAL NUMBERS). Show that M is flat
over k[t]/(t2) if and only if the “multiplication by t” map M/tM → tM is an
isomorphism. (This fact is important in deformation theory and elsewhere.) Hint:
k[t]/(t2) has only three ideals.

25.4.3. Important Theorem (flat = free = projective for finitely presented mod-
ules over local rings). — Suppose (A,m) is a local ring (not necessarily Noetherian),
and M is a finitely presented A-module. Then M is flat if and only if it is free if and only
if it is projective.

25.4.4. Remarks. Warning: modules over local rings can be flat without being
free: Q is a flat Z-algebra (all localizations are flat §25.2.1), but not free (do you see
why?).

Also, non-Noetherian people may be pleased to know that with a little work,
“finitely presented” can be weakened to “finitely generated”: use [M-CRT, Thm. 7.10]
in the proof below, where finite presentation comes up.

Proof. For any ring, free modules are projective (§24.2.1), and projective modules
are flat (Exercise 24.2.B), so we need only show that flat modules are free for a local
ring.

(At this point, you should see Nakayama coming from a mile away.) Now
M/mM is a finite-dimensional vector space over the field A/m. Choose a basis of
M/mM, and lift it to elements m1, . . . , mn ∈ M. Consider A⊕n → M given by
ei (→ mi. We will show this is an isomorphism. It is surjective by Nakayama’s
lemma (see Exercise 8.2.H): the image is all of M modulo the maximal ideal, hence
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is everything. As M is finitely presented, by Exercise 14.6.A (“finitely presented
implies always finitely presented”), the kernel K is finitely generated. Tensor
0 → K → A⊕n → M → 0 with A/m. As M is flat, the result is still exact (Ex-
ercise 25.3.C):

0 → K/mK → (A/m)⊕n → M/mM → 0.

But (A/m)⊕n → M/mM is an isomorphism by construction, so K/mK = 0. As K is
finitely generated, K = 0 by Nakayama’s Lemma 8.2.9. !

Here is an immediate and useful corollary — really just a geometric interpre-
tation.

25.4.5. Corollary. — Suppose F is a coherent sheaf on a locally Noetherian scheme X.
Then F is flat over X if and only if it is locally free.

Proof. Local-freeness of a finite type sheaf can be checked at the stalks, Exer-
cise 14.7.E. (This exercise required Noetherian hypotheses. In particular, even
without Noetherian hypotheses, it is true that a finitely presented sheaf F is flat if
and only if its stalks are locally free.) !

25.4.E. ! EXERCISE (INTERESTING VARIANT OF THEOREM 25.4.3, BUT UNIMPOR-
TANT FOR US). Suppose A is a ring (not necessarily local), and M is a finitely
presented A module. Show that M is flat if and only if it is projective. Hint: show
that M is projective if and only if Mm is free for every maximal ideal m. The harder
direction of this implication uses the fact that HomAm(Mm,Nm) = HomA(M,N)m,
which follows from Exercise 2.6.G. (Note: there exist finitely generated flat mod-
ules that are not projective. They are necessarily not finitely presented. Example
without proof: let A =

∏∞ F2, interpreted as functions Z+ → Z/2, and let M be
the module of functions modulo those of proper support, i.e. those vanishing at
almost all points of Z+.)

25.4.F. EXERCISE. Make precise and prove the following statement: “finite flat
morphisms have locally constant degree”. (You may want to glance at §18.4.4 to
make this precise. We will revisit that example in §25.4.8.)

25.4.G. EXERCISE. Prove the following useful criterion for flatness: Suppose
X → Y is a finite morphism, and Y is reduced and locally Noetherian. Then f
is flat if and only if f∗OX is locally free, if and only if the rank of f∗OX is constant
(dimκ(y)(f∗OX)y ⊗ K(y) is constant). Partial hint: Exercise 14.7.J.

25.4.H. EXERCISE. Show that the normalization of the node (see Figure 8.4) is not
flat. (Hint: use Exercise 25.4.G.)

This exercise can be strengthened to show that nontrivial normalizations are
never flat. The following exercise shows an interesting example of this fact, which
will arise later (see for example Exercise 20.5.U). The geometry of it as follows.
The target is A2

k, and the source is two copies of A2
k, glued at the origin.

25.4.I. EXERCISE. In A4
k = Spec k[w, x, y, z], let X be the union of the wx-plane

with the yz-plane. The morphism A4
k → A2

k given by k[a, b] → k[w, x, y, z] with
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a (→ w + y, b (→ x + z restricts to a morphism X → A2
k. Show that this morphism

is not flat.

25.4.6. Flat families over nonsingular curves. Exercise 25.4.C gives an elegant
geometric criterion for when morphisms to nonsingular curves are flat.

25.4.J. EXERCISE (CRITERION FOR FLATNESS OVER A NONSINGULAR CURVE). Sup-
pose π : X → Y is a morphism from a locally Noetherian scheme to a nonsingular
(locally Noetherian) curve. (The local Noetherian hypothesis on X is so we can
discuss its associated points.) Show that π is flat if and only if all associated points
of X map to a generic point of Y. (This is a partial converse to Exercise 25.2.K, that
flat maps always send associated points to associated points.)

For example, a nonconstant map from an integral (locally Noetherian) scheme
to a nonsingular curve must be flat. Exercise 25.4.H (and the comment after it)
shows that the nonsingular condition is necessary.

25.4.7. ! Remark: A valuative criterion for flatness. Exercise 25.4.J shows that flat-
ness over a nonsingular curves is geometrically intuitive (and is “visualizable”). It
gives a criterion for flatness in general: suppose π : X → Y is finitely presented
morphism. If π is flat, then for every morphism Y ′ → Y where Y ′ is the Spec of
a discrete valuation ring, π ′ : X ×Y Y ′ → Y ′ is flat, so no associated points of
X×Y Y ′ map to the closed point of Y ′. If Y is reduced and locally Noetherian, then
this is a sufficient condition; this can reasonably be called a valuative criterion for
flatness. (Reducedness is necessary: consider Exercise 25.2.H(d).) This gives an ex-
cellent way to visualize flatness, which you should try to put into words (perhaps
after learning about flat limits below). See [EGA, IV3.3.11.8] for a proof (and an
extension without Noetherian hypothesis).

25.4.8. Revisiting the degree of a projective morphism from a curve to a nonsingular curve.
As hinted in Remark 18.4.10, we can now better understand why nonconstant pro-
jective morphisms from a curve to a nonsingular curve have a well-defined degree,
which can be determined by taking the preimage of any point (§18.4.4). (Exam-
ple 10.3.3 was particularly enlightening.) This is because such maps are flat by
Exercise 25.4.J, and then the degree is constant by Exercise 25.4.F (see also Exer-
cise 25.4.G).

Also, Exercise 25.4.G now yields a new proof of Proposition 18.4.5.

25.4.9. Flat limits. Here is an important consequence of Exercise 25.4.J, which we
can informally state as: we can take flat limits over one-parameter families. More
precisely: suppose A is a discrete valuation ring, and let 0 be the closed point of
Spec A and η the generic point. Suppose X is a locally Noetherian scheme over A,
and Y is a closed subscheme of X|η. Let Y ′ be the scheme-theoretic closure of Y in
X. Then Y ′ is flat over A. Similarly, suppose Z is a one-dimensional Noetherian
scheme, 0 is a nonsingular point of Z, and π : X → Z is a morphism from a locally
Noetherian scheme to Z. If Y is a closed subscheme of π−1(Z − {0}), and Y ′ is
the scheme-theoretic closure of Y in X, then Y ′ is flat over Z. In both cases, the
closure Y ′|0 is often called the flat limit of Y. (Feel free to weaken the Noetherian
hypotheses on X.)



547

25.4.K. EXERCISE. Suppose (with the language of the previous paragraph) that A
is a discrete valuation ring, X is a locally Noetherian A-scheme, and Y is a closed
subscheme of the generic fiber X|η. Show that there is only one closed subscheme
Y ′ of X such that Y ′|η = Y, and Y ′ is flat over A.

25.4.L. EXERCISE (AN EXPLICIT FLAT LIMIT). Let X = A3 × A1 → Y = A1 over a
field k, where the coordinates on A3 are x, y, and z, and the coordinates on A1 are
t. Define X away from t = 0 as the union of the two lines y = z = 0 (the x-axis)
and x = z − t = 0 (the y-axis translated by t). Find the flat limit at t = 0. (Hints: (i)
it is not the union of the two axes, although it includes this union. The flat limit is
nonreduced at the node, and the “fuzz” points out of the plane they are contained
in. (ii) (y, z)(x, z) != (xy, z). (iii) Once you have a candidate flat limit, be sure to
check that it is the flat limit. (iv) If you get stuck, read Example 25.4.10 below.)

Consider a projective version of the previous example, where two lines in P3

degenerate to meet. The limit consists of two lines meeting at a node, with some
nonreduced structure at the node. Before the two lines come together, their space
of global sections is two-dimensional. When they come together, it is not immedi-
ately obvious that their flat limit also has two-dimensional space of global sections
as well. The reduced version (the union of the two lines meeting at a point) has
a one-dimensional space of global sections, but the effect of the nonreduced struc-
ture on the space of global sections may not be immediately clear. However, we
will see that “cohomology groups can only jump up in flat limits”, as a conse-
quence (indeed the main moral) of the Semicontinuity Theorem 25.8.1.

25.4.10. ! Example of variation of cohomology groups in flat families. We can
use a variant of Exercise 25.4.L to see an example of a cohomology group actually
jumping. We work over an algebraically closed field to avoid distractions. Before
we get down to explicit algebra, here is the general idea. Consider a twisted cubic
C in P3. A projection prp from a random point p ∈ P3 will take C to a nodal
plane cubic. Picture this projection “dynamically”, by choosing coordinates so p
is at [1; 0; 0; 0], and considering the map φt : [w; x;y; z] (→ [w; tx; ty; tz]; φ1 is the
identity on P3, φt is an automorphism of P3 for t != 0, and φ0 is the projection.
The limit of φt(C) as t → 0 will be a nodal cubic, with nonreduced structure at
the node “analytically the same” as what we saw when two lines came together
(Exercise 25.4.L).

Let’s now see this in practice. Rather than working directly with the twisted
cubic, we use another example where we saw a similar picture. Consider the nodal
(affine) plane cubic y2 = x3 + x2. Its normalization (see Figure 8.4, Example (3) of
§8.3.6, Exercise 10.6.E, . . . ) was obtained by adding an extra variable m correspond-
ing to y/x (which can be interpreted as blowing up the origin, see §19.4.3). We use
the variable m rather than t (used in §8.3.6) in order to reserve t for the parameter
for the flat family.

We picture the nodal cubic C as lying in the xy-plane in 3-space A3 = Spec k[x, y,m],
and the normalization C̃ projecting to it, with m = y/x. What are the equations
for C̃? Clearly, they include the equations y2 = x3 + x2 and y = mx, but these
are not enough — the m-axis (i.e. x = y = 0) is also in V(y2 − x3 − x2, y − mx).
A little thought (and the algebra we have seen earlier in this example) will make
clear that we have a third equation m2 = (x+1), which along with y = mx implies
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y2 = x2+x3. Now we have enough equations: k[x, y,m]/(m2−(x+1), y−mx) is an
integral domain, as it is clearly isomorphic to k[m]. Indeed, you should recognize
this as the algebra appearing in Exercise 10.6.E.

Next, we want to formalize our intuition of the dynamic projection to the xy-
plane of C̃ ⊂ A3. We picture it as follows. Given a point (x, y,m) at time 1, at time
t we want it to be at (x, y,mt). At time t = 1, we “start with” C̃, and at time t = 0
we have (set-theoretically) C. Thus at time t != 0, the curve C̃ is sent to the curve
cut out by equations

k[x, y,m]/(m2 − t(x + 1), ty − mx).

The family over Spec k[t, t−1] is thus

k[x, y,m, t, t−1]/(m2 − t(x + 1), ty − mx).

Notice that we have inverted t because we are so far dealing only with nonzero t.
For t != 0, this is certainly a “nice” family, and so surely flat. Let’s make sure this
is true.

25.4.M. EXERCISE. Check this, as painlessly as possible! Hint: by a clever change
of coordinates, show that the family is constant “over Spec k[t, t−1]”, and hence
pulled back (in some way you must figure out) via k[t, t−1] → k from

Spec k[X, Y,M]/(M2 − (X + 1), Y − MX) → Spec k,

which is flat by Trick Question 25.2.A(a).

We now figure out the flat limit of this family over t = 0, in Spec k[x, y,m, t] →
A1 = Spec k[t]. We first hope that our flat family is given by the equations we have
already written down:

Spec k[x, y,m, t]/(m2 − t(x + 1), ty − mx).

But this is not flat over A1 = Spec k[t], as the fiber dimension jumps (§25.5.4):
substituting t = 0 into the equations (obtaining the fiber over 0 ∈ A1), we find
Spec k[x, y,m]/(m2,mx). This is set-theoretically the xy-plane (m = 0), which of
course has dimension 2. Notice for later reference that this “false limit” is scheme-
theoretically the xy-plane, with some nonreduced structure along the y-axis. (This may
remind you of Figure 6.1.)

So we are missing at least one equation. One clue as to what equation is miss-
ing: the equation y2 = x3 + x2 clearly holds for t != 0, and does not hold for our
naive attempt at a limit scheme m2 = mx = 0. So we put this equation back in,
and have a second hope for describing the flat family over A1:

Spec k[x, y,m, t]/(m2 − t(x + 1), ty − mx, y2 − x3 − x3) → Spec k[t].

Let A = k[x, y,m, t]/(m2 − t(x + 1), ty − mx, y2 − x3 − x3) for convenience.
The morphism Spec A → A1 is flat at t = 0. How can we show it? We could hope
to show that A is an integral domain, and thus invoke Exercise 25.4.J. Instead we
use Exercise 25.4.B, and show that t is not a zerodivisor on A. We do this by giving
a “normal form” for elements of A.

25.4.N. EXERCISE. Show that each element of A can be written uniquely as a
polynomial in x, y, m, and t such that no monomial in it is divisible by m2, mx, or
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y2. Then show that t is not a zerodivisor on A, and conclude that Spec A → A1 is
indeed flat.

25.4.O. EXERCISE. Thus the flat limit when t = 0 is given by

Spec k[x, y,m]/(m2,mx, y2 − x2 − x3).

Show that the flat limit is nonreduced, and the “nonreducedness has length 1 and
supported at the origin”. More precisely, if X = Spec A/(t), show that IXred is a
skyscraper sheaf, with value k, supported at the origin. Sketch this flat limit X.

25.4.11. Note that we have a nonzero global function on X, given by m, which is
supported at the origin (i.e. 0 away from the origin).

We now use this example to get a projective example with interesting be-
haviour. We take the projective completion of this example, to get a family of
cubic curves in P3 degenerating to a nodal cubic C with a nonreduced point.

25.4.P. EXERCISE. Do this: describe this family (in P3 × A1) precisely.

Take the long exact sequence corresponding to

0 $$ ICred
$$ OC

$$ OCred
$$ 0,

to get

H1(C,ICred) $$ H1(C,OC) $$ H1(C,OCred) $$

H0(C,ICred)
α $$ H0(C,OC) $$ H0(C,OCred) $$ 0

We have H1(C,ICred) = 0 as ICred is supported in dimension 0 (by dimensional
vanishing, Theorem 20.2.6). Also, Hi(Cred,OCred) = Hi(C,OCred) (property (v)
of cohomology, see §20.1). The (reduced) nodal cubic Cred has h0(O) = 1 (Ex-
ercise 20.1.B) and h1(O) = 1 (cubic plane curves have genus 1, (20.5.3.1)). Also,
h0(C,ICred) = 1 as observed above. Finally, α is not 0, as there exists a nonzero
function on C vanishing on Cred (§25.4.11 — convince yourself that this function
extends from the affine patch Spec A to the projective completion).

Using the long exact sequence, we conclude h0(C,OC) = 2 and h1(C,OC) = 1.
Thus in this example we see that (h0(O), h1(O)) = (1, 0) for the general member
of the family (twisted cubics are isomorphic to P1), and the special member (the
flat limit) has (h0(O), h1(O)) = (2, 1). Notice that both cohomology groups have
jumped, yet the Euler characteristic has remained the same. The first behavior, as
stated after Exercise 25.4.L, is an example of the Semicontinuity Theorem 25.8.1.
The second, constancy of Euler characteristics in flat families, is what we turn to
next. (It is no coincidence that the example had a singular limit, see §25.8.2.)

25.5 Topological aspects of flatness

We now discuss some topological aspects and consequences of flatness, that
boil down to the Going-Down theorem for flat morphisms (§25.5.2), which in turn
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comes from faithful flatness. Because dimension in algebraic geometry is a topo-
logical notion, we will show that dimensions of fibers behave well in flat families
(§25.5.4).

25.5.1. Faithful flatness. The notion of faithful flatness is handy for many reasons,
but we will just give some initial uses. A B-module M is faithfully flat if for all
complexes of B-modules

(25.5.1.1) N ′ → N → N ′′,

(25.5.1.1) is exact if and only if (25.5.1.1)⊗BM is exact. A B-algebra A is faithfully
flat if it is faithfully flat as a B-module. More generally, if A is a B-algebra, and M
is an A-module, then M is faithfully flat over B if it is faithfully flat as a B-module.

25.5.A. EXERCISE. Suppose M is a flat A-module. Show that the following are
equivalent.

(a) M is faithfully flat;
(b) for all prime ideals p ⊂ A, M ⊗A κ(p) is nonzero (i.e. Supp M = Spec A);
(c) for all maximal ideals m ⊂ A, M ⊗A κ(m) = M/mM is nonzero.

Suppose π : X → Y is a morphism of schemes, and F is a quasicoherent sheaf
on X. We say that F is faithfully flat over Y if it is flat over Y, and Supp F → Y is
surjective. We say that π is faithfully flat if it is flat and surjective (or equivalently,
if OX is faithfully flat over Y).

25.5.B. EXERCISE (CF. 25.5.A). Suppose B → A is a ring homomorphism and M

is an A-module. Show that M is faithfully flat over B if and only if M̃ is faithfully
flat over Spec B. Show that A is faithfully flat over B if and only if Spec A → Spec B
is faithfully flat.

Faithful flatness is preserved by base change, as both surjectivity and flatness
are (Exercises 10.4.D and 25.2.J respectively).

25.5.C. EXERCISE. Suppose π : Spec A → Spec B is flat.
(a) Show that π is faithfully flat if and only if every closed point x ∈ Spec B is in the
image of π. (Hint: Exercise 25.5.A(c).)
(b) Hence show that a flat homomorphism of local rings (Definition 7.3.1) is faith-
fully flat.

25.5.2. Going-Down for flat morphisms. A consequence of Exercise 25.5.C is
the following useful result, whose statement makes no mention of faithful flatness.
(The statement is not coincidentally reminiscent of the Going-Down Theorem for
finite extensions of integrally closed domains, Theorem 12.2.11.)

25.5.D. EXERCISE (GOING-DOWN THEOREM FOR FLAT MORPHISMS).
(a) Suppose that B → A is a flat morphism of rings, corresponding to a map
π : Spec A → Spec B. Suppose q ⊂ q ′ are prime ideals of B, and p ′ is a prime
ideal of A with π([p ′]) = q ′. Show that there exists a prime p ⊂ p ′ of A with
π([p]) = p ′. Hint: show that Bq ′ → Ap ′ is a flat local ring homomorphism, and
hence faithfully flat by the Exercise 25.5.C(b).
(b) Part (a) gives a geometric consequence of flatnes. Draw a picture illustrating
this.
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(c) Recall the Going-Up Theorem, described in §8.2.4. State the Going-Down The-
orem for flat morphisms in a way parallel to Exercise 8.2.F, and prove it.

25.5.E. IMPORTANT EXERCISE: FLAT MORPHISMS ARE OPEN (IN REASONABLE SIT-
UATIONS). Suppose π : X → Y is locally of finite type and flat, and Y (and hence
X) is locally Noetherian. Show that π is an open map (i.e. sends open sets to open
sets). Hint: reduce to showing that π(X) is open. Reduce to the case where X is
affine. Use Chevalley’s Theorem 8.4.2 to show that π(X) is constructible. Use the
Going-Doing Theorem for flat morphisms, Exercise 25.5.D, to show that π(X) is
closed under specialization. Conclude using Exercise 8.4.B.

25.5.3. Follow-ups to Exercise 25.5.E. (i) Of course, not all open morphisms are flat:
witness Spec k[t]/(t) → Spec k[t]/(t2).

(ii) Also, in quite reasonable circumstances, flat morphisms are not open: wit-
ness Spec k(t) → Spec k[t] (flat by Example 25.2.1(b)).

(iii) On the other hand, you can weaken the hypotheses of “locally of finite
type” and “locally Noetherian” to just “locally finitely presented” [EGA, IV2.2.4.6]
— as with the similar generalization in Exercise 8.4.O of Chevalley’s Theorem 8.4.2,
use the fact that any such morphisms is “locally” pulled back from a Noetherian
situation. We won’t use this, and hence omit the details.

25.5.4. Dimensions of fibers are well-behaved for flat morphisms.

25.5.5. Proposition. — Suppose π : X → Y is a flat morphism of locally Noetherian
schemes, with p ∈ X and q ∈ Y such that π(p) = q. Then

codimX p = codimY q + codimπ−1q p.

Informal translation: the dimension of the fibers is the difference of the dimen-
sions of X and Y (at least locally). Compare this to Exercise 12.4.A, which stated
that without the flatness hypothesis, we would only have inequality.

25.5.F. EXERCISE. Prove Proposition 25.5.5 as follows. Given a chain of irre-
ducible closed subsets in Y containing q, and a chain of irreducible closed subsets
in π−1q ⊂ X containing p, construct a chain of irreducible closed subsets in X con-
taining p, using the Going-Down Theorem for flat morphisms (Exercise 25.5.D).

As a consequence of Proposition 25.5.5, if π : X → Y is a flat map of ir-
reducible varieties, then the fibers of π all have pure dimension dim X − dim Y.
(Warning: Spec k[t]/(t) → Spec k[t]/(t2) does not exhibit dimensional jumping of
fibers, is open, and sends associated points to associated points, cf. Exercise 25.2.K,
but is not flat. If you prefer a reduced example, the normalization Spec k[t] →
Spec k[x, y]/(y2 − x3) shown in Figure 10.3, also has these properties.) This leads
us to the following useful definition.

25.5.6. Definition. If a morphism π : X → Y is flat morphism of locally Noetherian
schemes, and all fibers of π have pure dimension n, we say that π is flat of relative
dimension n.
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25.5.G. EXERCISE. Suppose π : X → Y is a flat morphism of locally Noetherian
schemes, and Y is pure dimensional. Show that the following are equivalent.

(a) The scheme X has pure dimension dim Y + n.
(b) The morphism π is flat of relative dimension n.

25.5.H. EXERCISE. Suppose f : X → Y and g : Y → Z are flat morphisms of locally
Noetherian schemes, of relative dimension m and n respectively. Show that g ◦ f
is flat of relative dimension m + n. Hint: use Exercise 25.5.G.

25.5.7. Generic Flatness.

25.5.I. EASY EXERCISE (GENERIC FLATNESS). Suppose π : X → Y is a finite type
morphism to a Noetherian integral scheme, and F is a coherent sheaf on X. Show
that there is a dense open subset U ⊂ Y over which F is flat. (An important special
case is if F = OX, in which case this shows there is a dense open subset U over
which π is flat.) Hint: Grothendieck’s Generic Freeness Lemma 8.4.4.

This result can be improved:

25.5.8. Theorem (Generic flatness, improved version) [Stacks, tab 052B]. — If
π : X → Y is a morphism of schemes, and F is finite type quasicoherent on X, Y is
reduced, π is finite type, then there is an open dense subset U ⊂ Y over which π is flat and
finite presentation, and such that F is flat and of finite presentation over Y.

We omit the proof because we won’t use this result.
Because flatness implies (in reasonable circumstances) that fiber dimension is

constant (Proposition 25.5.5), we can obtain useful geometric facts, such as the
following. Let π : X → Y be a dominant morphism of irreducible k-varieties.
There is an open subset U of Y such that the fibers of f above U have the expected
dimension dim X − dim Y.

Generic flatness can be used to show that in reasonable circumstances, the
locus where a morphism is flat is an open subset. More precisely:

25.5.9. Theorem. — Suppose π : X → Y is a locally finite type morphism of locally
Noetherian schemes, and F is a finite type quasicoherent sheaf on X.

(a) The locus of points of X at which F is Y-flat is an open subset of X.
(b) If π is proper, then the locus of points of Y over which F is flat is an open subset

of Y.

Part (b) follows immediately from part (a) from the fact that proper maps are
closed. Part (a) reduces to a nontrivial statement in commutative algebra, see for
example [M-CRT, Thm. 24.3] or [EGA, IV3.11.1.1]. As is often the case, Noetherian
hypotheses can be dropped in exchange for local finite presentation hypotheses on
the morphism π, [EGA, IV3.11.3.1].

25.6 Local criteria for flatness

(This is the hardest section on ideal-theoretic criteria for flatness, and could
profitably be postponed to a second reading.)
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In the case of a Noetherian local ring, there is a greatly improved version of
the ideal-theoretic criterion of Theorem 25.4.1: we need check only one ideal —
the maximal ideal. The price we pay for the simplicity of this “local criterion for
flatness” is that it is harder to prove.

25.6.1. Theorem (the local criterion for flatness). — Suppose (A,m) is a Noether-
ian local ring, and M is a finitely generated A-module. Then M is flat if and only if
TorA

1 (M,A/m) = 0.

This is a miracle: flatness over all of Spec A is determined by what happens
over the closed point. (Caution: the finite generation is necessary. Let A = k[x, y](x,y)

and M = k(x), with y acting as 0. Then M is not flat by Observation 25.2.2, but it
turns out that it satisfies the local criterion otherwise.)

Theorem 25.6.1 is an immediate consequence of the following more general
statement.

25.6.2. Theorem (local criterion for flatness, more general version). — Suppose
(B, n) → (A,m) is a local morphism of Noetherian local rings (i.e. a ring homomorphism
with nA ⊂ m), and that M is a finitely generated A-module. Then the A-module M is
B-flat if and only if TorB

1 (B/n,M) = 0.

Geometrically:

M̃

[m]

%%

! " cl. imm. $$ Spec A

%%
[n] !

" cl. imm. $$ Spec B

25.6.A. EASY EXERCISE. Suppose that M is a flat B-module such that TorB
1 (B/n,M) =

0. Show that TorB
1 (N,M) = 0 for all B-modules of finite length. (Don’t assume The-

orem 25.6.2, as we will use Exercise 25.6.A in its proof.)

Proof. By Exercise 24.1.D, if M is B-flat, then TorB
1 (B/n,M) = 0, so it remains to

assume that TorB
1 (B/n,M) = 0 and show that M is B-flat.

By the ideal theoretic criterion for flatness (Theorem 25.4.1, see §25.4.2), we
wish to show that φI : I ⊗B M → M is an injection for all ideals I of B, i.e. that
kerφI = 0. By the Artin-Rees Lemma 13.6.3, it suffices to show that kerφI ⊂
(nt ∩ I) ⊗B M for all t.

Consider the short exact sequence

0 → nt ∩ I → I → I/(nt ∩ I) → 0.

Applying (·) ⊗B M, and using the fact that I/(nt ∩ I) is finite length, we have that

0 → (nt ∩ I) ⊗B M → I ⊗B M →
(
I/(nt ∩ I)

)
⊗B M → 0

is exact using Exercise 25.6.A. Our goal is thus to show that kerφI maps to 0 in

(25.6.2.1)
(
I/(nt ∩ I)

)
⊗B M =

(
(I + nt)/nt

)
⊗B M.
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Applying (·) ⊗B M to the short exact sequence

(25.6.2.2) 0 → (I + nt)/nt → B/nt → B/(I + nt) → 0,

and using Exercise 25.6.A (as B/(I+nt) is finite length) the top row of the diagram
(25.6.2.3)

0 $$ ((I + nt)/nt) ⊗B M
α $$ (B/nt) ⊗B M $$ (B/(I + nt)) ⊗B M $$ 0

I ⊗B M
φI $$

,,

B ⊗B M

,,

is exact, and the square clearly commutes. But then any element of I ⊗B M map-
ping to 0 in B ⊗B M = M must map to 0 (under the right vertical arrow) in
(B/nt) ⊗B M, and hence must have mapped to 0 in ((I + nt)/nt) ⊗B M by the
injectivity of α, as desired. !

This argument basically shows that flatness is an “infinitesimal” property, de-
pending only on the completion of the scheme at the point in question. This is
made precise as follows.

Suppose (B, n) → (A,m) is a (local) homomorphism of local rings, and M is
an A-module. If M is flat over B, then for each t ∈ Z≥0, M/(ntM) is flat over
B/nt (flatness is preserved by base change, 25.2.J). (You should of course restate
this in your mind in the language of schemes and quasicoherent sheaves.) The
infinitesimal criterion for flatness states that this necessary criterion for flatness is
actually sufficient.

25.6.B. ! EXERCISE (THE INFINITESIMAL CRITERION FOR FLATNESS). Suppose
(B, n) → (A,m) is a (local) homomorphism of local rings, and M is an A-module.
Suppose further that for each t ∈ Z≥0, M/(ntM) is flat over B/nt. Show that M is
flat over B. Hint: follow the proof of Theorem 25.6.2. Given the hypothesis, then
for each t, we wish to show that kerφI maps to 0 in (25.6.2.1). We wish to apply
(·) ⊗B M to (25.6.2.2) and find that the top row of (25.6.2.3). To do this, show that
applying (·) ⊗B M to (25.6.2.2) is the same as applying (·) ⊗B/nt (M/ntM). Then
proceed as in the rest of the proof of Theorem 25.6.2.

25.6.3. The local slicing criterion for flatness.
A useful variant of the local criterion is the following. Suppose t is a non-

zerodivisor of B in m (geometrically: an effective Cartier divisor on the target pass-
ing through the closed point). If M is flat over B, then t is not a zerodivisor of M
(Observation 25.2.2). Also, M/tM is a flat B/tB-module (flatness commutes with
base change, Exercise 25.2.J). The next result says that this is a characterization of
flatness, at least when M is finitely generated, or somewhat more generally.

25.6.4. Theorem (local slicing criterion for flatness). — Suppose (B, n) → (A,m) is
a local homomorphism of Noetherian local rings, M is a finitely generated A-module, and
t is a non-zerodivisor on B. Then M is B-flat if and only t is not a zerodivisor on M, and
M/tM is flat over B/(t).

Proof. Assume that t is not a zerodivisor on M, and M/tM is flat over B/(t). We
will show that M is B-flat. (As stated at the start of §25.6.3, the other implication is
a consequence of what we have already shown.)
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By the local criterion, Theorem 25.6.2, we know TorB
1 (M,B/n) = 0, and we

wish to show that Tor(B/(t))
1 (M/tM, (B/(t))/n) = 0. The result then follows from

the following lemma. !

25.6.5. Lemma. — Suppose M is a B-module, and t /∈ B is not a zerodivisor on M.
Then for any B/(t)-module N, we have

(25.6.5.1) TorB
i (M,N) = TorB/(t)

i (M/tM,N).

Proof. We calculate the left side of (25.6.5.1) by taking a free resolution of M:

(25.6.5.2) · · · → F2 → F1 → F0 → M → 0.

By Exercise 25.3.A, TorA
i (M,B/(t)) = 0 for i > 0 (here we use that t is not a zero-

divisor on M). But this Tor is computed by tensoring the free resolution (25.6.5.2)
of M with B/(t). Thus the complex

(25.6.5.3) · · · → F2/tF2 → F1/tF1 → F0/tF0 → M/tM → 0

is exact (exactness except at the last term comes from the vanishing of Tori). This is
a free resolution of M/tM over the ring B/(t). The left side of (25.6.5.1) is obtained
by tensoring (25.6.5.2) by N and truncating and taking homology, and the right
side is obtained by tensoring (25.6.5.3) by N and truncating and taking homology.
As (·) ⊗B N = (·⊗B (B/t)) ⊗B/t N, we have established (25.6.5.1) as desired. !

25.6.C. EXERCISE. Show that Spec k[x, y, z]/(x2 + y2 + z2) → Spec k[x, y] is flat
using the lcoal slicing criteria.

25.6.D. EXERCISE. Give a second (admittedly less direct) proof of the criterion for
flatness over a discrete valuation ring of Exercise 25.4.J, using the slicing criterion
for flatness (Theorem 25.6.4).

25.6.E. EXERCISE. Use the slicing criterion to give a second solution to Exer-
cise 25.4.I.

The following Exercise gives a sort of slicing criterion for flatness in the source.

25.6.F. EXERCISE. Suppose B is an A-algebra, M is a B-module, and f ∈ B has
the property that for all maximal ideals m ⊂ A, multiplication by f is injective in
M/mM. Show that if M is A-flat, then M/fM is also A-flat.

This Exercise has an immediate geometric interpretation: “Suppose π : X → Y
is a morphism of schemes, F is a quasicoherent sheaf on X, and Z ↪→ X is a locally
principal subscheme ...” In the special case where F = OX, this leads to the notion
of a relative effective Cartier divisor: a locally principal subscheme of X that is an
effective Cartier divisor on all the fibers of π. This Exercise implies that if π is flat,
then any relative Cartier divisor is also flat.

25.6.6. !! Fibral flatness. We conclude by mentioning a criterion for flatness that
is useful enough to be worth recognizing, but not so useful as to merit proof here.
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25.6.G. EXERCISE. Suppose we have a commuting diagram

(25.6.6.1) X
f $$

h --)
))

))
))

) Y

g
((::
::
::
::

Z

and a F on X, and points x ∈ X, y = f(x) ∈ Y, z = h(x) ∈ Z. Suppose g is flat at y,
and F is f-flat at x. Show that F is h-flat at x, and F |z (the restriction of F to the
fiber above z) is fz-flat (fz : h−1(z) → g−1(z) is the restriction of f above z) at x.

The fibral flatness theorem states that in good circumstances the converse is
true.

25.6.7. The fibral flatness theorem [EGA, IV.11.3.10]. — Suppose we have a commut-
ing diagram (25.6.6.1) and a finitely presented quasicoherent sheaf F on X, and points
x ∈ X, y = f(x) ∈ Y, z = h(x) ∈ Z, with Fx != 0. Suppose either X and Y are locally
Noetherian, or g and h are locally of finite presentation. Then the following are equivalent.

(a) F is h-flat at x, and F |z (the restriction of F to the fiber above z) is fz-flat
(fz : h−1(z) → g−1(z) is the restriction of f above z) at x.

(b) g is flat at y, and F is f-flat at x.

This is a useful way of showing that a F is f-flat. (The architecture of the proof
is as follows. First reduce to the case where X, Y, and Z are affine. Cleverly reduce
to the Noetherian case, see [EGA, IV.11.2.7], then prove the resulting nontrivial
problem in commutative algebra, see [EGA, IV.11.3.10.1].)

25.7 Flatness implies constant Euler characteristic

We come to an important consequence of flatness promised in §25.1. We will
see that this result implies many answers and examples to questions that we would
have asked before we even knew about flatness.

25.7.1. Important Theorem (χ(F ) is constant in flat families). — Suppose f : X →
Y is a projective morphism of locally Noetherian schemes, and F is a coherent sheaf on X,
flat over Y. Then χ(Xy,Fy) =

∑
i≥0(−1)ihi(Xy,F |y) is a locally constant function of

y ∈ Y.

This is first sign that “cohomology behaves well in flat families.” (We will
soon see a second: the Semicontinuity Theorem 25.8.1. A different proof, giving
an extension to the proper case, will be given in §25.9.5.)

The theorem gives a necessary condition for flatness. Converses (yielding a
sufficient condition) are given in Exercise 25.7.A(b)–(d).

Proof. The question is local on the target Y, so we may reduce to case Y is affine, say
Y = Spec B, so X ↪→ Pn

B for some n. We may reduce to the case X = Pn
B, by consider-

ing F as a sheaf on Pn
B. We may reduce to showing that Hilbert polynomial F (m)

is locally constant for all m . 0 (by Serre vanishing for m . 0, Theorem 20.1.3(b),
the Hilbert polynomial agrees with the Euler characteristic). Twist by O(m) for
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m . 0, so that all the higher pushforwards vanish. Now consider the Čech com-
plex C •(m) for F (m). Note that all the terms in the Čech complex are flat. As
all higher cohomology groups (higher pushforwards) vanish, Γ(C •(m)) is exact
except at the first term, where the cohomology is Γ(π∗F (m)). We add the module
Γ(π∗F (m)) to the front of the complex, so it is once again exact:

0 $$ Γ(π∗F (m)) $$ C 1(m) $$ C 2(m) $$ · · ·

(We have done this trick of tacking on a module before, for example in (20.2.4.1).)
Thus by Exercise 25.3.G, as we have an exact sequence in which all but the first
terms are flat, the first term is flat as well. Thus π∗F (m) is a flat coherent sheaf on
Y, and hence locally free (Corollary 25.4.5), and thus has locally constant rank.

Suppose y ∈ Y. We wish to show that the Hilbert function hF |y(m) is a lo-

cally constant function of y. To compute hF |y(m), we tensor the Čech resolu-

tion with κ(y) and take cohomology. Now the extended Čech resolution (with
Γ(π∗F (m)) tacked on the front) is an exact sequence of flat modules, and hence re-
mains exact upon tensoring with κ(y) (Exercise 25.3.D). Thus Γ(π∗F (m))⊗κ(y) ∼=
Γ(π∗F (m)|y), so the Hilbert function hF |y(m) is the rank at y of a locally free
sheaf, which is a locally constant function of y. !

Before we get to the interesting consequences of Theorem 25.7.1, we mention
some converses.

25.7.A. UNIMPORTANT EXERCISE (CONVERSES TO THEOREM 25.7.1). (We won’t
use this exercise for anything.)
(a) Suppose A is a ring, and S• is a finitely generated A-algebra that is flat over A.
Show that Proj S• is flat over A.
(b) Suppose π : X → Y is a projective morphism of locally Noetherian schemes
(which as always includes the data of an invertible sheaf OX(1) on X), such that
π∗OX(m) is locally free for all m ≥ m0 for some m0. Show that π is flat. Hint:
describe X as

Proj
(
OY

⊕
(⊕m≥m0

π∗OX(m))
)

.

(c) More generally, suppose π : X → Y is a projective morphism of locally Noether-
ian schemes, and F is a coherent sheaf on X, such that π∗F (m) is locally free for
all m ≥ m0 for some m0. Show that F is flat over Y.
(d) Suppose π : X → Y is a projective morphism of locally Noetherian schemes,
and F is a coherent sheaf on X, such that

∑
(−1)ihi(Xy,F |y) is a locally constant

function of y ∈ Y. If Y is reduced, show that F must be flat over Y. (Hint: Ex-
ercise 14.7.J shows that constant rank implies local freeness in particularly nice
circumstances.)

We now give some ridiculously useful consequences of Theorem 25.7.1.

25.7.2. Corollary. — Assume the same hypotheses and notation as in Theorem 25.7.1.
Then the Hilbert polynomial of F is locally constant as a function of y ∈ Y.

25.7.B. CRUCIAL EXERCISE. Suppose X → Y is a projective flat morphism of
locally Noetherian schemes, and Y is connected. Show that the following functions
of y ∈ Y are constant: (a) the degree of the fiber, (b) the dimension of the fiber, (c)
the arithmetic genus of the fiber.
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Another consequence of Corollary 25.7.2 is something remarkably useful.

25.7.3. Corollary. — An invertible sheaf on a flat projective family of connected curves
has locally constant degree on the fibers.

(Recall that the degree of a line bundle on a projective curve requires no hy-
potheses on the curve such as nonsingularity, see (20.4.8.1).)

Proof. An invertible sheaf L on a flat family of curves is always flat (as locally it
is isomorphic to the structure sheaf). Hence χ(Ly) is a constant function of y. By
the definition of degree given in (20.4.8.1), deg(Ly) = χ(Ly) − χ(Xy). The result
follows from the local constancy of χ(OXy

) and χ(Ly) (Theorem 25.7.1). !

The following exercise is a serious generalization of Corollary 25.7.3.

25.7.4. ! Exercise for those who have read starred Chapter 22: intersection numbers are
locally constant in flat families. Suppose π : X → B is a proper morphism to a
connected scheme; L1, . . . , Ln are line bundles on X; and F is a coherent sheaf
on X flat over B such that the support of F when restricted to any fiber of π has
dimension at most n. If b is any point of B, define (the temporary notation) (L1 ·
L2 · · ·Ln · F )b to be the intersection on the fiber Xb of L1, . . . , Ln with F |Xb

(Definition 22.1.1). Show that (L1 · L2 · · ·Ln · F )b is independent of b.

Corollary 25.7.3 motivates the following definition.

25.7.5. Definition. Suppose L1 and L2 are line bundles on a k-variety X. We
say that L1 and L2 are algebraically equivalent if there exists a connected k-
variety B with two k-valued points p1 and p2, and a line bundle L on X × B such
that the restriction of L to the fibers Xp1

and Xp2
are isomorphic to L1 and L2

respectively.

25.7.C. EXERCISE. Show that “algebraic equivalence” really is an equivalence
relation. Show that the line bundles algebraically equivalent to O form a subgroup
of Pic X. This subgroup is denoted Pic0 X. Identify the group of line bundles Pic X

modulo algebraic equivalence with Pic X/ Pic0 X.

This quotient is called the Néron-Severi group. (This definition was promised
in §20.4.11.) Note that by Proposition 22.1.4, Picτ X ⊂ Pic0 X: algebraic equivalence
implies numerical equivalence. (Side remark: a line bundle on a proper k-scheme
X is numerically trivial if and only if there exists an integer m != 0 with L⊗m

algebraically trivial. Thus Picτ /Pic0 is torsion. See [SGA6, XIII, Thm. 4.6] for a
proof, or [Laz, §1.4] for a sketch in the projective case.)

25.7.6. ! Hironaka’s example of a proper nonprojective nonsingular threefold.
In §17.4.8, we produced a proper nonprojective variety, but it was singular. We

can use Corollary 25.7.3 to give a nonsingular example, due to Hironaka.
Inside P3

k, fix two conics C1 and C2, which meet in two (k-valued) points, p1

and p2. We construct a proper map π : X → P3
k as follows. Away from pi, we blow

up Ci and then the proper transform of C3−i (see Figure 25.3). This is well-defined,
as away from p1 and p2, C1 and C2 are disjoint, blowing up one and then the other
is the same as blowing up their union, and thus the order doesn’t matter.



559

[picture to be made later]

FIGURE 25.3. Hironaka’s example of a nonsingular proper non-
projective threefold

Note that π is proper, as it is proper away from p1, and proper away from
p2, and the notion of properness is local on the base (Proposition 11.3.4(b)). As
X is projective hence proper (over k), and compositions of proper morphisms are
proper (Proposition 11.3.4(c)), X is proper.

25.7.D. EXERCISE. Show that X is nonsingular. (Hint: use Theorem 19.4.13 to
show that it is smooth.) Let Ei be the preimage of Ci \ {p1, p2}. Show that π|Ei

→
Ci \ {p1, p2} is a P1-bundle (and flat).

25.7.E. EXERCISE. Let Ei be the closure of Ei in X. Show that Ei → Ci is flat. (Hint:
Exercise 25.4.J.)

25.7.F. EXERCISE. Show that π∗(pi) is the union of two P1’s, say Yi and Zi, meeting
at a point, such that Yi, Y3−i, Z3−i ∈ Ei but Zi /∈ Ei.

25.7.G. EXERCISE. Show that X is not projective as follows. Suppose otherwise
L is a very ample line bundle on X, so L has positive degree on every curve
(including the Yi and Zi). Using flatness of Ei → Ci, and constancy of degree in flat
families (Exercise 25.7.4), show that degYi

L = degY3−i
L + degZ3−i

L . Obtain a
contradiction. (This argument will remind you of the argument of §17.4.8.)

25.7.7. The notion of “projective morphism” is not local on the target. Note that
π : X → P3 is not projective, as otherwise X would be projective (as the com-
position of projective morphisms is projective if the final target is quasicompact,
Exercise 18.3.B). But away from each pi, π is projective (as it is a composition of
blow-ups, which are projective by construction, and the final target is quasicom-
pact, so Exercise 18.3.B applies). Thus the notion of “projective morphism” is not
local on the target.

25.7.8. Unimportant remark. You can construct more fun examples with this idea.
For example, we know that projective surfaces can be covered by three affine open
sets (see the proof of Theorem 20.2.6. This can be used to give an example of (for
any N) a proper surface that requires at least N affine open subsets to cover it.

25.8 Cohomology and base change: Statements and applications

Higher pushforwards are easy to define, but it is hard to get a geometric sense
of what they are, or how they behave. For example, given a reasonable morphism
π : X → Y, and a quasicoherent sheaf on F , you might reasonably hope that the
fibers of Riπ∗F are the cohomologies of F along the fibers. More precisely, given
f : y → Y corresponding to the inclusion of a point (better: f : Spec OY,y → Y),
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yielding the fibered diagram

(25.8.0.1) Xy
f ′

$$

π ′

%%

X

π

%%
y

f $$ Y

,

one might hope that the morphism

φp
y : f∗(Rpπ∗F ) → Hp(Xy, (f ′)∗F )

(given in Exercise 20.7.B(a)) is an isomorphism. We could then picture Riπ∗F as
somehow fitting together the cohomology groups of fibers into a coherent sheaf.

It would also be nice if Hp(Xy, (f ′)∗F ) was constant, and φp
y put them to-

gether into a nice locally free sheaf (vector bundle) f∗(Rpπ∗F ).
There is no reason to imagine that the particular choice of base change f : y (→

Y should be special. As long as we are dreaming, we may as well hope that in
good circumstances, given a fiber diagram (20.7.2.1)

(25.8.0.2) W
f ′

$$

π ′

%%

X

π

%%
Z

f $$ Y,

the natural morphism

φp
Z : f∗(Rpπ∗F ) → Rpπ ′

∗(f
′)∗F

of sheaves on Z (Exercise 20.7.B(a)) is an isomorphism. (In some cases, we can
already address this question. For example, cohomology commutes with flat base
change, Theorem 25.2.8, so the result holds if f is flat. Also related: if F is flat over
Y, then the Euler characteristic of F on fibers is locally constant, Theorem 25.7.1.)

There is no point in dreaming if we are not going to try to make our dreams
come true. So let’s formalize them. Suppose F is a coherent sheaf on X, π : X → Y
is projective, Y (hence X) is Noetherian, and F is flat over Y. We formalize our
dreams into three nice properties that we might wish in this situation. We will see
that they are closely related.

(a) Given a fibered square (25.8.0.1), is φp
y : Rpπ∗F ⊗ κ(y) → Hp(Xy,Fy) an

isomorphism?
(b) Given a fibered square (25.8.0.2), is φp

Z : f∗(Rpπ∗F ) → Rpπ ′
∗(f

′)∗F an
isomorphism?

(c) Is Rpπ∗F locally free?

We turn first to property (a). The dimension of the left side Rpπ∗F ⊗κ(y) is an
upper semicontinuous function of y ∈ Y by upper semicontinuity of rank of finite
type quasicoherent sheaves (Exercise 14.7.I). The Semicontinuity Theorem states
that the dimension of the right is also upper semicontinuous. More formally:

25.8.1. Semicontinuity theorem. — Suppose X → Y is a proper morphism of Noether-
ian schemes, and F is a coherent sheaf on X flat over Y. Then for each p ≥ 0, the function
Y → Z given by y (→ dimκ(y) Hp(Xy,Fy) is upper semicontinuous on Y.
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Translation: cohomology groups are upper semicontinuous in proper flat fam-
ilies. (A proof will be given in the §25.9.4.)

You may already have seen an example of cohomology groups jumping, at
§25.4.10. Here is a simpler example, albeit not of the structure sheaf. Let (E, p0) be
an elliptic curve over a field k, and consider the projection π : E×E → E. Let L be
the invertible sheaf (line bundle) corresponding to the divisor that is the diagonal,
minus the section p0 ∈ E. Then Lp0

is trivial, but Lp is non-trivial for any p != p0

(as we showed in our study of genus 1 curves, in §21.8). Thus h0(E,Lp) is 0 in
general, but jumps to 1 for p = p0.

25.8.2. Side remark. Cohomology of O doesn’t jump in flat families in characteristic
0 if the fibers are nonsingular varieties. (Such maps will be called smooth morphisms
soon.) Over C, this is because Betti numbers are constant in connected families,
and (23.4.11.1) (from Hodge theory) expresses the Betti constants hk

Betti as sums
(over i+ j = k) of upper semicontinuous (and hence constant) functions hj(Ωi), so
the Hodge numbers hj(Ωi) must be constant. The general characteristic 0 case can
be reduced to C — any reduction of this sort is often called (somewhat vaguely) an
application of the Lefschetz principle. But cohomology groups of O (for flat families
of varieties) can jump in positive characteristic. Also, the example of §25.4.10
shows that the “smoothness” hypothesis cannot be removed.

25.8.3. Grauert’s theorem. If Rpπ∗F is locally free (property (c)) and φp
y is an

isomorphism (property (a)), then hp(Xy,Fy) is locally constant. The following is
a partial converse.

25.8.4. Grauert’s Theorem. — If π : X → Y is proper, Y is reduced, F is a coherent
sheaf on X flat over Y, and hp(Xy,Fy) is a locally constant function of y ∈ Y, then
Rpπ∗F is locally free, and φp

y is an isomorphism for all y ∈ Y.

In other words, if cohomology groups of fibers have locally constant dimen-
sion (over a reduced base), then they can be fit together to form a vector bundle,
and the fiber of the pushforward is identified with the cohomology of the fiber.
(No Noetherian hypotheses are needed.)

By Exercise 6.1.E (on quasicompact schemes, nonempty closed subsets contain
closed points) and the Semicontinuity Theorem 25.8.1, if Y is quasicompact, then
to check that hp(Xy,Fy) is constant requires only checking at closed points.

Finally, we note that if Y is integral, π is proper, and F is a coherent sheaf on X
flat over Y, then by the Semicontinuity Theorem 25.8.1 there is a dense open subset
of Y on which Rpπ∗F is locally free (and on which the fiber of the pth pushforward
is the pth cohomology of the fiber).

The following statement is even more magical than Grauert’s Theorem 25.8.4.

25.8.5. Cohomology and Base Change Theorem. — Suppose π is proper, Y is locally
Noetherian, F is coherent and flat over Y, and φp

y is surjective. Then the following hold.

(i) There is an open neighborhood U of p such that for any f : Z → U, φp
Z is an

isomorphism. In particular, φp
y is an isomorphism.

(ii) Furthermore, φp−1
y is surjective (hence isomorphic by (a)) if and only if Rpπ∗F

is locally free in some neighborhood of y (or equivalently, (Rpπ∗F )y is a free
OY,y-module, Exercise 14.7.E). This in turn implies that hp is constant in a
neighborhood of y.
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(Proofs of Theorems 25.8.4 and 25.8.5 will be given in §25.9.)
This is amazing: the hypothesis that φp

y is surjective involves what happens
only over reduced points, and it has implications over the (possibly nonreduced)
scheme as a whole! This might remind you of the local criterion for flatness (The-
orem 25.6.2), and indeed that is the key technical ingredient of the proof.

Here are some consequences, assuming the hypotheses of Theorem 25.8.5.

25.8.A. EXERCISE. Suppose h0(Xy,Fy) is constant (function of Y). Show that
π∗F is locally free. (The special case when Y is reduced is much easier, and was
Exercise 14.7.J.) Informal translation: if a flat sheaf has a constant number of global
sections, the pushforward sheaf is a vector bundle fitting together (and extending
over the nonreduced structure) the spaces of global sections on the fibers.

25.8.B. EXERCISE. Suppose Hp(Xy,Fy) = 0 for all y ∈ Y. Show that φp−1 is an
isomorphism for all y ∈ Y.

25.8.C. EXERCISE. Suppose Rpπ∗F = 0 for p ≥ p0. Show that Hp(Xy,Fy) = 0
for all y ∈ Y, p ≥ p0.

25.8.D. EXERCISE. Suppose Rpπ∗F is a locally free sheaf for all p. Show that
“cohomology always commutes with base change”: for any f : Z → Y, φp

Z is
always an isomorphism (for all p).

25.8.E. EXERCISE. Suppose Y is reduced. Show that there exists a dense open
subset of U such that φp

Z is an isomorphism for all f : Z → U. (Hint: find suitable
neighborhoods of the generic points of Y. See Exercise 25.2.M and the paragraph
following it.)

25.8.F. EXERCISE. Suppose X is an irreducible scheme. In this exercise, we will
show that Pic(X × Pn) = Pic X × Pic(Pn) = Pic X × Z, where the map Pic X ×
Pic(Pn) → Pic(X × Pn) is given by (L ,O(m)) (→ π∗

1L ⊗ π∗
2O(m), where π1 :

X × Pn → X and π2 : X × Pn → Pn are the two projections from X × Pn to its
factors. (The notation % is often used for this construction, see Exercise 10.5.A.)
(a) Suppose L is a line bundle on X×Pn, whose degree on the generic fiber of π1 is
zero. Use the Cohomology and Base Change Theorem 25.8.5 to show that (π1)∗L
is an invertible sheaf on X. Use Nakayama’s Lemma (in some guise) to show that
the natural map π∗

1((π1)∗L ) → L of line bundles on X × P1 is an isomorphism.
(b) Prove that Pic(X × Pn) = Pic X × Pic(Pn). (You will be able to see how to
generalize this result to when X is reducible; the statement is more complicated,
but the idea is not.)

25.8.G. ! EXERCISE (THE HODGE BUNDLE). Suppose π : X → B is a flat proper
family of nonsingular (pure-dimensional) curves of genus g. Serre duality for fam-
ilies involves a unique (up to isomorphism) invertible sheaf ωX/B that restricts
to the dualizing sheaf on each fiber. The case where B is Spec k yields the dual-
izing sheaf discussed in Theorem 20.4.6. This sheaf behaves well with respect to
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pullback: given a fibered square

(25.8.5.1) X ′ ρ $$

π ′

%%

X

π

%%
B ′ σ $$ B,

there is an isomorphism ωX ′/B ′ ∼= ρ∗ωX/B. Thus the fibers of ωX/B are the dual-
izing sheaves of the fibers. Assuming all this, show that π∗ωX/B is a locally free
sheaf of rank g. This is called the Hodge bundle. Show that the construction of
the Hodge bundle commutes with base change, i.e. given (25.8.5.1), describe an
isomorphism σ∗π∗ωX/B

∼= π ′
∗ωX ′/B ′ .

25.9 ! Proofs of cohomology and base change theorems

The key to proving the Semicontinuity Theorem 25.8.1, Grauert’s Theorem 25.8.4,
and the Cohomology and Base Change Theorem 25.8.5 is the following wonderful
idea of Mumford’s [MAV]. It turns questions of pushforwards (and how they
behave under arbitrary base change) into something computable with vector bun-
dles (hence questions of linear algebra). After stating it, we will interpret it.

25.9.1. Key Theorem. — Suppose π : X → Spec B is a proper morphism, and F is a
coherent sheaf on X, flat over Spec B. Then there is a complex

(25.9.1.1) · · · $$ K−1 $$ K0 $$ K1 $$ · · · $$ Kn $$ 0

of finitely generated free B-modules and an isomorphism of functors

(25.9.1.2) Hp(X ×B A,F ⊗B A) ∼= Hp(K• ⊗B A)

for all p, for all ring maps B → A.

Because (25.9.1.1) is an exact sequence of free B-modules, all of the information
is contained in the maps, which are matrices with entries in B. This will turn
questions about cohomology (and base change) into questions about linear algebra.
For example, semicontinuity will turn into the fact that ranks of matrices (with
functions as entries) drop on closed subsets.

Although the complex (25.9.1.1) is infinite, by (25.9.1.2) it has no cohomology
in negative degree, even after any ring extension B → A (as the left side of (25.9.1.2)
is 0 for p < 0).

The idea behind the proof is as follows: take the Čech complex, produce a
complex of finite rank free modules mapping to it “with the same cohomology” (a
quasiisomorphic complex, cf. §20.2.3). We will first construct the complex so that
(25.9.1.2) holds for B = A, and then show the same complex works for general A
later. We begin with a lemma.

25.9.2. Lemma. — Let C• be a complex of B-modules such that Hi(C•) are finitely
generated B-modules, and such that that Cp = 0 for p > n. Then there exists a complex
K• of finitely generated free B-modules such that Kp = 0 for p > n, and a homomorphism
of complexes φ : K• → C• such that φ induces isomorphisms Hi(K•) → Hi(C•) for all i.
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Proof. We build this complex inductively. (This may remind you of Hint 24.3.3.)
Assume we have defined (Kp,αp, δp) for p ≥ m + 1 such that the squares (“α
and δ”) commute, and the top row is a complex, and φp defines an isomorphism
of cohomology Hq(K•) → Hq(C•) for q ≥ m + 2 and a surjection ker δm+1 →
Hm+1(C•), and the Kp are finitely generated B-modules. (Our base case is m = p;
we just take Kn = 0 for n > p.)

(25.9.2.1) Km+1 δm+1
$$

αm+1

%%

Km+2 $$

αm+2

%%

· · ·

· · · $$ Cm−1 $$ Cm

δm
$$ Cm+1

δm+1

$$ Cm+2 $$ · · · .

We construct (Km, δm,αm). Choose generators of Hm(C•), say c1, . . . , cM. Let
Dm+1 = ker(δm+1 : Hm+1(K•) → Hm+1(C•)). Choose generators of Dm+1, say
d1, . . . , dN. Let Km = B⊕(M+N). Define αm by sending the first M generators of
B⊕(M+N) to (lifts of) c1, . . . , cM. Send the last N generators to 0. Define δm by
sending the last N generators to (lifts of) d1, . . . dN. Send the first M generators to
0. Then by construction, we have completed our inductive step:

Km

αm

%%

δm
$$ Km+1 δm+1

$$

αm+1

%%

Km+2 $$

αm+2

%%

· · ·

· · · $$ Cm−1 $$ Cm

δm
$$ Cm+1

δm+1

$$ Cm+2 $$ · · · .

!

25.9.3. Lemma. — Suppose α : K• → C• is a morphism of complexes of flat B-modules
inducing isomorphisms of cohomology (a “quasiisomorphism”, cf. 20.2.3). Then for every
B-algebra A, the maps Hp(C• ⊗B A) → Hp(K• ⊗B A) are isomorphisms.

Proof. The mapping cone M• of α : K• → C• is exact by Exercise 2.7.E. Then
M• ⊗B A is still exact, by Exercise 25.3.D. But M• ⊗B A is the mapping cone of
α⊗B A : K•⊗B A → C•⊗B A, so by Exercise 2.7.E, α⊗B A induces an isomorphism
of cohomology (is a quasiisomorphism) too. !

Proof of Key Theorem 25.9.1. Choose a finite affine covering of X. Take the Čech
complex C• for F with respect to this cover. Recall that Grothendieck’s Coherence
Theorem 20.8.1 showed that the cohomology of F is coherent. (That Theorem
required serious work. If you need Theorem 25.9.1 only in the projective case,
the analogous statement with projective hypotheses Theorem 20.7.1(d), was much
easier.) Apply Lemma 25.9.2 to get the nicer variant K• of the same complex C•.
Apply Lemma 25.9.3 to see that if you tensor with B and take cohomology, you get
the same answer whether you use K• or C•. !

We now use Theorem 25.9.1 to prove some of the fundamental results stated
earlier: the Semicontinuity theorem 25.8.1, Grauert’s theorem 25.8.4, and the Coho-
mology and base change theorem 25.8.5. In the course of proving Semicontinuity,



565

we will give a new proof of Theorem 25.7.1, that Euler characteristics are locally
constant in flat families (that applies more generally in proper situations).

25.9.4. Proof of the Semicontinuity Theorem 25.8.1. The result is local on Y, so
we may assume Y is affine. Let K• be a complex as in Key Theorem 25.9.1.

Then for y ∈ Y,

dimκ(y) Hp(Xy,Fy) = dimκ(y) ker(dp ⊗A κ(y)) − dimκ(y) im(dp−1 ⊗A κ(y))

= dimκ(y)(K
p ⊗ κ(y)) − dimκ(y) im(dp ⊗A κ(y))

− dimκ(y) im(dp−1 ⊗A κ(y))(25.9.4.1)

Now dimκ(y) im(dp ⊗A κ(y)) is a lower semicontinuous function on Y. (Rea-
son: the locus where the dimension is less than some number q is obtained by
setting all q × q minors of the matrix Kp → Kp+1 to 0.) The same is true for
dimκ(y) im(dp−1 ⊗A κ(y)). The result follows. !

25.9.5. A new proof (and extension to the proper case) of Theorem 25.7.1 that
Euler characteristics of flat sheaves are locally constant.

If K• were finite “on the left” as well — if Kp = 0 for p 7 0 — then we
would have a short proof of Theorem 25.7.1. By taking alternating sums (over p)
of (25.9.4.1), we would have that

χ(Xy,Fy) =
∑

(−1)php(Xy,Fy) =
∑

(−1)p rank Kp,

which is locally constant. The only problem is that the sums are infinite. We patch
this problem as follows. Define a J• → K• by Jp = Kp for p ≥ 0, Jp = 0 for p < −1,

J−1 := ker(K0 → K1),

and the obvious map J• → K•. Clearly this induces an isomorphism on cohomol-
ogy (as J• patently has the same cohomology as K• at step p ≥ 0, and both have 0
cohomology for p < 0). Thus J• → C• induces an isomorphism on cohomology.

Now J−1 is coherent (as it is the kernel of a map of coherent modules). Con-
sider the mapping cone M• of J• → C•:

0 → J−1 → C−1 ⊕ J0 → C0 ⊕ J1 → · · · → Cn−1 ⊕ Jn → Cn → 0.

From Exercise 2.7.E, as J• → C• induces an isomorphism on cohomology, the
mapping cone has no cohomology (is exact). All terms in it are flat except possibly
J−1 (the Cp are flat by assumption, and Ji is free for i != −1). Hence J−1 is flat too,
by Exercise 25.3.G. But flat coherent sheaves over a Noetherian ring are locally
free (Theorem 25.4.5). Then Theorem 25.7.1 follows from

χ(Xy,Fy) =
∑

(−1)php(Xy,Fy) =
∑

(−1)p rank Jp.

!

25.9.6. Proof of Grauert’s Theorem 25.8.4 and the Cohomology and Base Change
Theorem 25.8.5.

Thanks to Theorem 25.9.1.2, Theorems 25.8.4 and 25.8.5 are now statements
about complexes of free modules over a Noetherian ring. We begin with some
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general comments on dealing with the cohomology of a complex

· · · $$ Kp δp
$$ Kp+1 $$ · · · .

We define some notation for functions on a complex.

• Let Zp be the kernel of the pth differential of a complex, so for example
ZpK• = ker δp.

• Let Bp+1 be the image of the pth differential, so for example Bp+1K• =
im δp.

• Let Wp+1 be the cokernel of the pth differential, so for example Wp+1K• =
coker δp.

• As usual, let Hp be the homology at the pth step.

We have exact sequences

(25.9.6.1) 0 $$ Zp $$ Kp $$ Kp+1 $$ Wp+1 $$ 0

(25.9.6.2) 0 $$ Zp $$ Kp $$ Bp+1 $$ 0

(25.9.6.3) 0 $$ Bp $$ Zp $$ Hp $$ 0

(25.9.6.4) 0 $$ Bp $$ Kp $$ Wp $$ 0

(25.9.6.5) 0 $$ Hp $$ Wp $$ Bp+1 $$ 0

We proceed by a series of exercises, some of which were involved in the proof
of the FHHF Theorem (Exercise 2.6.H). Suppose C• is any complex in an abelian
category A with enough projectives, and suppose F is any right-exact functor from
A .

25.9.A. EXERCISE (COKERNELS COMMUTE WITH RIGHT-EXACT FUNCTORS). De-

scribe an isomorphism γp : FWpC• ∼ $$ WpFC• . (Hint: consider Cp−1 → Cp →
WpC• → 0.)

25.9.B. EXERCISE. (a) Describe a map βp : FBpC• → BpFC•. Hint: (25.9.6.4) in-
duces

R1FWpC• $$ FBpC• $$

βp

%%

FCp $$

=

%%

FWpC• $$

∼γp

%%

0

0 $$ BpFC• $$ FCP $$ WpFC• $$ 0.

(b) Show that βp is surjective. Possible hint: use Exercise 2.7.B, a weaker version
of the snake lemma, to get an exact sequence

R1FCp $$ R1FWpC• $$ kerβp $$ 0 $$ kerγp

$$ cokerβp $$ 0 $$ cokerγp $$ 0.
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25.9.C. EXERCISE. (a) Describe a map αp : FZpC• → ZpFC•. Hint: use (25.9.6.2)
to induce

R1FBp+1C• $$ FZpC• $$

αp

%%

FCp $$

=

%%

FBp+1C• $$

βp+1

%%

0

0 $$ ZpFC• $$ FCP $$ Bp+1FC• $$ 0

(b) Use Exercise 2.7.B to get an exact sequence

R1FC• $$ R1FBp+1C• $$ kerαp $$ 0 $$ kerβp+1

$$ cokerαp $$ 0 $$ cokerβp+1 $$ 0.

25.9.D. EXERCISE. (a) Describe a map φp : FHKp → HFKp. (This is the FHHF
Theorem, Exercise 2.6.H(a).) Hint: (25.9.6.3) induces

R1FHpC• $$ FBpC• $$

βp

%%

FZpC• $$

αp

%%

FHpC• $$

φp

%%

0

0 $$ BpFC• $$ ZPFC• $$ HpFC• $$ 0

(b) Use Exercise 2.7.B to get an exact sequence:

R1FZpC• $$ R1FHpC• $$ kerβp $$ kerαp $$ kerφp

$$ cokerβp $$ cokerαp $$ cokerφp $$ 0.

25.9.7. Back to the theorems we want to prove. Recall the properties we discussed at
the start of §25.8.

(a) Given a fibered square (25.8.0.1), is φp
y : Rpπ∗F ⊗ κ(y) → Hp(Xy,Fy) an

isomorphism?
(b) Given a fibered square (25.8.0.2), is φp

Z : f∗(Rpπ∗F ) → Rpπ ′
∗(f

′)∗F an
isomorphism?

(c) Is Rpπ∗F locally free?

We reduce to the case Y and Z are both affine, say Y = Spec B. We apply our
general results of §25.9.6 to the complex (25.9.1.1) of Theorem 25.9.1.

25.9.E. EXERCISE. Suppose WpK• and Wp+1K• are flat. Show that the answer to
(b), and hence (a), is yes. Show that the answer to (c) is yes if Y is reduced or locally
Noetherian. Hint: (You will take F to be the functor (·) ⊗B A, where A is some B-
algebra.) Use (25.9.6.4) (shifted) to show that Bp+1K• is flat, and then (25.9.6.5) to
show that HpK• is flat. By Exercise 25.9.A, the construction of the cokernel W•

behaves well under base change. The flatness of Bp+1 and Hp imply that their
constructions behave well under base change as well — apply F to the (25.9.6.4)
and (25.9.6.5) respectively. (If you care, you can check that ZpK• is also locally free,
and behaves well under base change.)
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25.9.F. EXERCISE. Prove Grauert’s Theorem 25.8.4. (Reminder: you won’t need
Noetherian hypotheses.) Hint: By (25.9.4.1), WpK• and Wp+1K• have constant
rank. But finite type quasicoherent sheaves having constant rank on a reduced
scheme are locally free (Exercise 14.7.J), so we can invoke Exercise 25.9.E. Con-
clude that HpK• is flat of constant rank, and hence locally free.

25.9.8. Proof of the Cohomology and Base Change Theorem 25.8.5. Keep in mind that
we now have locally Noetherian hypotheses. We have reduced to the case Y and
Z are both affine, say Y = Spec B. Let F = · ⊗B κ(y). The key input is the local
criterion for flatness (Theorem 25.6.2): R1FWqK• = 0 if and only if FWqK• is flat
at y (and similarly with W replaced by other letters). In particular, R1FKq = 0 for
all q. Also keep in mind that if a coherent sheaf on a locally Noetherian scheme
(such as Spec B) is flat at a point y, then it is flat in a neighborhood of that point,
by Corollary 25.4.5 (flat = locally free for such sheaves).

25.9.G. EXERCISE. Look at the boxed snakes in §25.9.6 (with C• = K•), and show
the following in order, starting from the assumption that cokerφp = 0:

• cokerαp = 0, kerβp+1 = 0, R1FWp+1K• = 0;
• Wp+1K• is flat, Bp+1K• is flat (use (25.9.6.4) with the indexing shifted by

one), ZpK• is flat (use (25.9.6.3));
• R1FBp+1K• = 0;
• kerαp = 0, kerφp = 0.

It might be useful for later to note that

R1FWpK• ∼= kerβp ∼= R1FHpK•

At this point, we have shown that φp
y is an isomorphism — part of of part (i)

of the theorem.

25.9.H. EXERCISE. Prove part (i) of the Cohomology and Base Change Theo-
rem 25.8.5.

Also, φp−1
y surjective implies WpK• is flat (in the same way that you showed

φp
y surjective implies Wp+1K• is flat), so we get Hp is free by Exercise 25.9.E, yield-

ing half of (ii).

25.9.I. EXERCISE. For the other direction of (ii), shift the grading of the last two
boxed snakes down by one, to obtain further isomorphisms

kerβp ∼= cokerαp−1 ∼= cokerφp−1.

For the other direction of (a), note that if the stalks WpK• and Wp+1K• at y
are flat, then they are locally free (as they are coherent, by Theorem 25.4.3), and
hence WpK• and Wp+1K• are locally free in a neighborhood of y by Exercise 14.7.E.
Thus the stalks of WpK• and Wp+1K• are flat in a neighborhood of y, and the
same argument applies for any point in this neighborhood to show that Wp+1K•,
Bp+1K•, and ZpK• are all flat.

25.9.J. EXERCISE. Use this to show the following, possibly in order:

• R1FCp+1 = R1FBp+1 = R1Zp = 0.
• kerβp+1 = 0, cokerαp = 0, cokerφp = 0.
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25.9.K. EXERCISE. Put all the pieces together and finish the proof of part (ii) of the
Cohomology and Base Change Theorem 25.8.5. !

25.10 ! Flatness and completion

Flatness and completion interact well. (Completions were introduced in §13.7.)

25.10.1. Theorem. — Suppose A is a Noetherian ring, and I ⊂ A is an ideal. For any
A-module M, let M̂ = lim←−M/IjM be the completion of M with respect to I.

(a) The ring Â is flat over A.
(b) If M is finitely generated, then the natural map Â ⊗A M → M̂ is an isomor-

phism. In particular, if B is a ring that is finite over A (i.e. as an A-module),
then Â ⊗A B is the completion of B with respect to the powers of the ideal IS.

(c) If 0 → M → N → P → 0 is a short exact sequence of coherent A-modules, then
0 → M̂ → N̂ → P̂ → 0 is exact. Thus completion preserves exact sequences of
finitely generated modules.

25.10.2. Remark. Before proving Theorem 25.10.1, we make some remarks. Parts
(a) and (b) imply part (c), but we will use (c) to prove (a) and (b). Also, note a
delicate distinction (which helps me remember the statement): if 0 → M → N →
P → 0 is an exact sequence of A-modules, not necessarily coherent, then

(25.10.2.1) 0 → Â ⊗A M → Â ⊗A N → Â ⊗A P → 0

is always exact, but

(25.10.2.2) 0 → M̂ → N̂ → P̂ → 0

need not be exact — and when it is exact, it is often because the modules are coher-
ent, and thus (25.10.2.2) is really (25.10.2.1). An example when completion is not
exact: consider the exact sequence of k[t]-modules

0 $$ ⊕∞
n=1k[t]

×(t,t2,t3,... ) $$ ⊕∞
n=1k[t] $$ ⊕∞

n=1k[t]/(tn) $$ 0.

After completion, the sequence is no longer exact in the middle: (t2, t3, t4, . . .)
maps to 0, but is not in the image of the completion of the previous term.

Proof. The key step is to prove (c), which we do through a series of exercises.
(The second part of (c) follows from the first, by Exercise 2.6.E.) Suppose that
0 → M → N → P → 0 is a short exact sequence of coherent A-modules.

25.10.A. EXERCISE. Show that N̂ → P̂ is surjective. (Hint: consider an element of
P̂ as a sequence (pj ∈ P/IjP)j≥0, where the image of pj+1 is pj, cf. Exercise 2.4.A.
Build a preimage (nj ∈ N/IjN)j≥0 by induction on j.

We now wish to identify ker(N̂ → P̂) with M̂.
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25.10.B. EXERCISE. Show that for each j ≥ 0,

0 → M/(M ∩ IjN) → N/IjN → P/IjP → 0

is exact. (Possible hint: show that 0 → M ∩ IjN → M/ → N/IjN → P/IjP → 0 is
exact.)

25.10.C. EXERCISE. Show that completion is a left-exact functor on A-modules.
(Hint: make sense of the statement that “limits are left-exact”.)

Thus
0 → lim←−M/(M ∩ IjN) → N̂ → P̂ → 0

is exact. We must now show that the natural map lim←−M/IjM → lim←−M/(M∩ IjN)

(induced by M/IjM → M/(M ∩ IjN)) is an isomorphism.

25.10.D. EXERCISE. Prove this. Hint: clearly IjM ⊂ M ∩ IjN. By Corollary 13.6.4
to the Artin-Rees Lemma 13.6.3, for some integer s, M ∩ Ij+sN = Ij(M ∩ IsN) for
all j ≥ 0, and clearly Ij(M ∩ IsN) ⊂ IjM.

This completes the proof of part (c) of Theorem 25.10.1.
For part (b), present M as

(25.10.2.3) A⊕m α $$ A⊕n $$ M $$ 0

where α is an m × n matrix with coefficients in A. Completion is exact by part (c),
and commutes with direct sums, so

Â⊕m $$ Â⊕n $$ M̂ $$ 0

is exact. Tensor product is right-exact, and commutes with direct sums, so

Â⊕m $$ Â⊕n $$ Â ⊗A M $$ 0

is exact as well. Notice that the maps from Â⊕m to Â⊕n in both right-exact se-
quences are the same; they are both (essentially) α. Thus their cokernels are iden-
tified, and (b) follows.

Finally, to prove (a), we need to extend the ideal-theoretic criterion for flatness,
Theorem 25.4.1, slightly. Recall (§25.4.2) that it is equivalent to the fact that an A-
module M is flat if land only if for all ideals I, the natural map I ⊗A M → M is an
injection.

25.10.E. EXERCISE (STRONGER FORM OF THE IDEAL-THEORETIC CRITERION FOR

FLATNESS). Show that an A-module M is flat if and only if for all finitely gen-
erated ideals I, the natural map I ⊗A M → M is an injection. (Hint: if there is a
counterexample for an ideal J that is not finitely generated, use it to find another
counterexample for an ideal I that is finitely generated.)

By this criterion, to prove (a) it suffices to prove that the multiplication map
I⊗A Â → Â is an injection for all finitely generated ideals I. But by part (b), this is
the same showing that Î → Â is an injection; and this follows from part (c). !



CHAPTER 28

Twenty-seven lines

28.1 Introduction

Wake an algebraic geometer in the dead of night, whispering: “27”. Chances are, he
will respond: “lines on a cubic surface”.

— Donagi and Smith, [DS] (on page 27, of course)

Since the middle of the nineteenth century, geometers have been entranced by
the fact that there are 27 lines on every smooth cubic surface, and by the remark-
able structure of the lines. Their discovery by Cayley and Salmon in 1849 has been
called the beginning of modern algebraic geometry, [D, p. 55].

The reason so many people are bewitched by this fact is because it requires
some magic, and this magic connects to many other things, including fundamen-
tal ideas we have discussed, other beautiful classical constructions (such as Pas-
cal’s Mystical Hexagon Theorem, the fact that most smooth quartic plane curves
have 28 bitangents, exceptional Lie groups, . . . ), and many themes in modern al-
gebraic geometry (deformation theory, intersection theory, enumerative geometry,
arithmetic questions, ...).

You are now ready to be initiated into the secret fellowship of the twenty-seven
lines.

28.1.1. Theorem. — Every smooth cubic surface in P3
k

has exactly 27 lines.

Theorem 28.1.1 is closely related to the following.

28.1.2. Theorem. — Every smooth cubic surface over k is isomorphic to P2 blown up at
6 points.

There are many reasons why people consider these facts magical. First, there
is the fact that there are always 27 lines. Unlike most questions in enumerative ge-
ometry, there are no weasel words such as “a general cubic surface” or “most cubic
surfaces” or “counted correctly” — as in, “every monic degree d polynomial has
d roots — counted correctly”. And somehow (and we will see how) it is precisely
the smoothness of the surface that makes it work.

Second, there is the magic that you always get the blow-up of the plane at six
points.

Third, there is the magical incidence structure of the 27 lines, which relates to
E6 in Lie theory. The Weyl group of E6 is the symmetry group of the incidence
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structure (see Remark 28.3.5). In a natural way, the 27 lines form a basis of the
27-dimensional fundamental representation of E6.

28.1.3. Structure of this chapter.
Throughout this chapter, X will be a smooth cubic surface over an algebraically

closed field k. In §28.2, we establish some preliminary facts. In §28.3, we prove
Theorem 28.1.1. In §28.4, we prove Theorem 28.1.2. We remark here that only input
that §28.4 needs from §28.3 is Exercise 28.3.J. This can be done directly by hand
(see in particular [R, §7] and [Shaf1, p. 246-7]), and Theorem 28.1.2 readily implies
Theorem 28.1.1, using Exercise 28.4.E. We would thus have another, shorter, proof
of Theorem 28.1.1. The reason for giving the argument of §28.3 (which is close to
that of [MuCPV, §8D]) is that it is natural given what we have done so far, it gives
you some glimpse of some ideas used more broadly in the subject (the key idea is
that a map from one moduli space to another is finite and flat), and it may help
you further appreciate and digest the tools we have developed.

28.2 Preliminary facts

By Theorem 15.1.C, there is a 20-dimensional vector space of cubic forms in
four variables, so the cubic surfaces in P3 are parametrized by P19.

28.2.A. EXERCISE. Show that there is an irreducible hypersurface ∆ ⊂ P19 whose
closed points correspond precisely to the singular cubic surfaces over k. Hint:
construct an incidence correspondence Y ⊂ P19 × P3 corresponding to a cubic
surface X, along with a singular point of X. Show that Z is a P15-bundle over
P3, and thus irreducible of dimension 18. To show that its image in P19 is “full
dimensional” (dimension 18), use Exercise 12.4.A or Proposition 12.4.1, and find a
cubic surface singular at precisely one point.

28.2.B. EXERCISE. Show that the any smooth cubic surface X is “anticanonically
embedded” — it is embedded by the anticanonical linear series −KX. (Hint: the
adjunction formula, Exercise 27.1.A.)

28.2.C. EXERCISE. Suppose X ⊂ P3
k

is a smooth cubic surface. Suppose C is a
curve on X. Show that C is a line if and only if C is a “(−1)-curve” — if C is
isomorphic to P1, and C2 = −1. (Hint: the adjunction formula again, perhaps in
the guise of Exercise 22.2.B(a).)

It will be useful to find a single cubic surface with 27 lines:

28.2.D. EXERCISE. Show that the Fermat cubic surface

(28.2.0.1) x3
0 + x3

1 + x3
2 + x3

3 = 0

in P3
C has precisely 27 lines, each of the form

x0 + ωxi = xj + ω ′xk = 0,

where {1, 2, 3} = {i, j, k}, j < k, and ω and ω ′ are cube roots of −1 (possibly the
same). Hint: up to a permutation of coordinate of coordinates, show that every
line in P3 can be written x0 = ax2 + bx3, x1 = cx2 + dx3. Show that this line is on
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(28.2.0.1) if and only if

(28.2.0.2) a3 + c3 + 1 = b3 + d3 + 1 = a2b + c2d = ab2 + cd2 = 0

Show that if a, b, c, and d are all nonzero, then (28.2.0.2) has no solutions.

28.3 Every smooth cubic surface (over k) has 27 lines

We are now ready to prove Theorem 28.1.1.

28.3.A. EXERCISE. (Hint for both: recall the solution to Exercise 12.2.J.)
(a) Define the incidence correspondence Z ⊂ P19 × G(1, 3) corresponding to the
data of a line ( in P3 contained in a cubic surface X. (This is part of the problem!
We need Z as a scheme, not just as a set.)

Z

77H
HH

HH
HH

HH

π

PP88
88
88
88

P19 G(1, 3)

Let π be the projection Z → P19.
(b) Show that Z is an irreducible smooth variety of dimension 19.

28.3.B. EXERCISE. Use the fact that there exists a cubic surface with a finite number
of lines (Exercise 28.2.D), and the behaviour of dimensions of fibers of morphisms
(Exercise 12.4.A or Proposition 12.4.1) to show the following.

(a) Every cubic surface contains a line, i.e. π is surjective.
(b) “Most cubic surfaces have a finite number of lines”: there is a dense

open subset U ⊂ P19 such that the cubic surfaces parametrized by closed
points of U have a positive finite number of lines.

The following fact is the key result in the proof of Theorem 28.1.1, and in my
mind one of the main miracles of the 27 lines, that ensures that the lines stay dis-
tinct on a smooth surface. It states, informally, that two lines can’t come together
without damaging the surface — a sort of “Pauli exclusion principle” for lines.
This is really a result in deformation theory: we are explicitly showing that a line
in a smooth cubic surface has no first-order deformations.

28.3.1. Theorem. — If ( is a line in a nonsingular cubic surface X, then {( ⊂ X} is a
reduced point of the fiber of π.

Before proving Theorem 28.3.1, we use it to prove Theorem 28.1.1.

28.3.2. Proof of Theorem 28.1.1. Now π is a projective morphism, and over P19 \ ∆,
π has dimension 0, and hence has finite fibers. Hence by Theorem 20.1.8, π is finite
over P19 \ ∆.

Furthermore, as Z is nonsingular (hence Cohen-Macaulay) and P19 is nonsin-
gular, the Miracle Flatness Theorem implies that π is flat over P19 \ ∆.
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Thus, over P19 \ ∆, π is a finite flat morphism, and so the fibers of π (again,
away from ∆) always have the same number of points, “counted correctly” (Ex-
ercise 25.4.F). But by Theorem 28.3.1, above each closed point of P19 \ ∆, each
point of the fiber of π counts with multiplicity one. Finally, by Exercise 28.2.D, the
Fermat cubic gives an example of one nonsingular cubic surface with precisely 27
lines, so (as P19 \ ∆ is connected) we are done. !

We have actually shown that away from ∆, Z → P19 is a finite étale morphism
of degree 27.

28.3.3. ! Proof of Theorem 28.3.1. Choose projective coordinates so that the line
( is given, in a distinguished affine set (with coordinates named x, y, z), by the
z-axis. (We use affine coordinates to help visualize what we are doing, although
this argument is better done in projective coordinates. On a second reading, you
should translate this to a fully projective argument.)

28.3.C. EXERCISE. Consider the lines of the form (x, y, z) = (a, b, 0) + t(a ′, b ′, 1)
(where (a, b, a ′, b ′) ∈ A4 is fixed, and t varies in A1). Show that a, b, a ′, b ′ can be
interpreted as the “usual” coordinates on one of the standard open subsets of the
Grassmannian (see §7.7), with [(] as the origin.

Having set up local coordinates on the moduli space, we can now get down
to business. Suppose f(x, y, z) is the (affine version) of the equation for the cubic
surface X. Because X contains the z-axis (, f(x, y, z) ∈ (x, y). More generally, the
line

(28.3.3.1) (x, y, z) = (a, b, 0) + t(a ′, b ′, 1)

lies in X precisely when f(a + ta ′, b + tb ′, t) is 0 as a cubic polynomial in t. This is
equivalent to four equations in a, a ′, b, and b ′, corresponding to the coefficients
of t3, t2, t, and 1. This is better than just a set-theoretic statement:

28.3.D. EXERCISE. Verify that these four equations are local equations for the fiber
π−1([X]).

Now we come to the crux of the argument, where we use the nonsingularity
of X (along (). We have a specific question in algebra. We have a cubic surface X
given by f = 0, containing (, and we know that X is nonsingular (including “at ∞”,
i.e. in P3). To show that [(] = V(a, a ′, b, b ′) is a reduced point in the fiber, we work
in the ring k[a, a ′, b, b ′]/(a, a ′, b, b ′)2, i.e. we impose the equations

(28.3.3.2) a2 = aa ′ = · · · = (b ′)2 = 0,

and try to show that a = a ′ = b = b ′ = 0. (It is essential that you understand why
we are setting (a, a ′, b, b ′)2 = 0. You can also interpret this argument in terms
of the derivatives of the functions involved — which after all can be interpreted
as forgetting higher-order information and remembering only linear terms in the
relevant variables, cf. Exercise 13.1.E. See [MuCPV, §8D] for a description of this
calculation in terms of derivatives.)

Suppose f(x, y, z) = cx3x3 + cx2yx2y + · · · + c11 = 0, where cx3 , cx2y, · · · ∈ k.
Because ( ∈ X, i.e. f ∈ (x, y), we have c1 = cz = cz2 = cz3 = 0. We now substitute
(28.3.3.1) into f, and then apply (28.3.3.2). Only the coefficients of f of monomials
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involving precisely one x or y survive:

cx(a + a ′t) + cxz(a + a ′t)(t) + cxz2(a + a ′t)(t2)

+cy(b + b ′t) + cyz(b + b ′t)(t) + cyz2(b + b ′t)(t2)

= (a + a ′t)(cx + cxzt + cxz2t2) + (b + b ′t)(cy + cyzt + cyz2t2)

is required to be 0 as a polynomial in t. (Recall that cx, . . . , cyz2 are fixed.) Let
Cx(t) = cx + cxzt + cxz2t2 and Cy(t) = cy + cyzt + cyz2t2 for convenience.

Now X is nonsingular at (0, 0, 0) precisely when cx and cy are not both 0 (as
cz = 0). More generally, X is nonsingular at (0, 0, t0) precisely if cx + cxzt0 +
cxz2t2

0 = Cx(t0) and cy + cyzt0 + cyz2t2
0 = Cy(t0) are not both zero. You should

be able to quickly check that X is nonsingular at the point of ( “at ∞” precisely if
cxz2 and cyz2 are not both zero. We summarize this as follows: X is nonsingular at
every point of ( precisely if the two quadratics Cx(t) and Cy(t) have no common
roots, including “at ∞”.

We now use this to force a = a ′ = b = b ′ = 0 using (a + a ′t)Cx(t) + (b +
b ′t)Cy(t) ≡ 0.

We deal first with the special case where Cx and Cy have two distinct roots,
both finite (i.e. cxz2 and cyz2 are nonzero). If t0 and t1 are the roots of Cx(t), then
substituting t0 and t1 into (a + a ′t)Cx(t) + (b + b ′t)Cy(t), we obtain b + b ′t0 = 0,
and b + b ′t1 = 0, from which b = b ′ = 0. Similarly, a = a ′ = 0.

28.3.E. EXERCISE. Deal with the remaining cases to conclude the proof of Theo-
rem 28.3.1. (It is possible to do this quite cleverly. For example, you may be able
to re-choose coordinates to ensure that Cx and Cy have finite roots.)

!

28.3.4. The configuration of lines.
By the “configuration of lines” on a cubic surface, we mean the data of which

pairs of the 27 lines intersect. We can readily work this out in the special case
of the Fermat cubic surface (Exercise 28.2.D). (It can be more enlightening to use
the description of X as a blow-up of P2, see Exercise 28.4.E.) We now show that
the configuration is the “same” (interpreted appropriately) for all smooth cubic
surfaces.

28.3.F. EXERCISE. Construct a degree 27! finite étale map Y → P19 \ ∆, that
parametrizes a cubic surface along with an ordered list of 27 distinct lines. Hint:
let Y ′ be the 27th fibered power of Z over P19 \ ∆, interpreted as parametrizing a
cubic surface with an ordered list of 27 lines, not necessarily distinct. Let Y be the
subset corresponding to where the lines are distinct, and show that Y is open and
closed in Y ′, and thus a union of connected components of Y ′.

We now make sense of the statement of the fact that configuration of lines on
the Fermat surface (call it X0) is the “same” as the configuration on some other
smooth cubic surface (call it X1). Lift the point [X0] to a point y0 ∈ Y. Let Y ′′ be the
connected component of Y containing y0.

28.3.G. EXERCISE. Show that Y ′′ → P19 \ ∆ is finite étale.
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Choose a point y1 ∈ Y ′′ mapping to [X1]. Because Y parametrizes a “labeling”
or ordering of the 27 lines on a surface, we now have chosen an identification of
the lines on X0 with those of X1. Let the lines be (1, . . . , (27 on X0, and let the
corresponding lines on X1 be m1, . . . , m27.

28.3.H. EXERCISE (USING STARRED EXERCISE 25.7.4). Show that (i · (j = mi · mj

for all i and j.

28.3.I. EXERCISE. Show that for each smooth cubic surface X ⊂ P3
k

, each line on X

meets exactly 10 other lines (1, ( ′1, . . . , (5, ( ′5 on X, where (i and ( ′i meet for each i,
and no other pair of the lines meet.

28.3.J. EXERCISE. Show that every smooth cubic surface contains two disjoint
lines ( and ( ′, such that there are precisely five other lines (1, . . . , (5 meeting both
( and ( ′.

28.3.5. Remark: the Weyl group W(E6). The symmetry group of the configuration
of lines — i.e. the subgroup of the permutations of the 27 lines preserving the
intersection data — magically turns out to be the Weyl group of E6, a group of
order 51840. (You know enough to at least verify that the size of the group is
51840, using the Fermat surface of Exercise 28.2.D, but this takes some work.) It is
no coincidence that the degree of Y ′′ over P19 \∆ is 51840, and the Galois group of
the Galois closure of K(Z)/K(P19 \ ∆) is isomorphic to W(E6).

28.4 Every smooth cubic surface (over k) is isomorphic to P2

blown up at 6 points

We now prove Theorem 28.1.2.
Suppose X is a smooth cubic surface (over k). Suppose ( is a line on X, and

choose coordinates on the ambient P3 so that ( is cut out by x0 and x1. Projection
from ( gives a rational map P3 ""# P1 (given by [x0; x1; x2; x3] (→ [x0; x1]), which
extends to a morphism on X. The reason is that this rational map is resolved by
blowing up the closed subscheme V(x0, x1) (Exercise 19.4.L). But (x0, x1) cuts out
the Cartier divisor ( on X, and blowing up a Cartier divisor does not change X
(Observation 19.2.1).

Now choose two disjoint lines ( and ( ′ as in Exercise 28.3.J, and consider the
morphism ρ : X → P1 × P1, where the map to the first P1 is projection from (,
and the map to the second P1 is the projection from ( ′. The first P1 can then be
identified with ( ′, and the second with (.

28.4.A. EXERCISE. Show that the morphism ρ is birational. Hint: given a general
point of (p, q) ∈ ( ′ × (, we obtain a point of X as follows: the line pq in P3 meets
the cubic X at three points by Bezout’s theorem 9.2.E: p, q, and some third point
x ∈ X; send (p, q) to x. (This idea appeared earlier in the development of the group
law on the cubic curve, see Proposition 21.8.12.) Given a general point x ∈ X, we
obtain a point (p, q) ∈ ( ′ × ( by projecting from ( ′ and (.

In particular, every smooth cubic surface over k is rational.
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28.4.B. EXERCISE. Show that the birational morphism ρ contracts precisely the
five lines (1, . . . , (5 mentioned in Exercise 28.3.J.

Suppose (i contracts to pi ∈ ( ′ × (.

28.4.1. Proposition. — The morphism ρ : X → P1 × P1 is the blow-up at P1 × P1 at
the five pi.

Proof. By Castelnuovo’s Criterion, as the lines (i are (−1)-curves (Exercise 28.2.C),
they can be contracted. More precisely, there is a morphism β : X → X ′ that is
the blow-up of X ′ at five closed points p ′

1, . . . , p ′
5, such that (i is the exceptional

divisor at p ′
i. We basically wish to show that X ′ is P×P1.

The morphism ρ : X → P1 × P1 yields a morphism ρ ′ : X ′ \ {p ′
1, . . . p ′

5} →
P1 ×P1. We now show that ρ ′ extends over p ′

i for each i, sending p ′
i to pi. Choose

a neighborhood of pi ∈ P1 × P1 isomorphic to A2, with coordinates x and y. Then
both x and y pull back to functions on a punctured neighborhoods of p ′

i (i.e. there
is some open neighborhood U of p ′

i such that x and y are functions on U \ {p ′
i}).

By Algebraic Hartogs’ Lemma 12.3.10, they extend over p ′
i, and this extension is

unique as P1 × P1 is separated — use the Reduced-to-Separated Theorem 11.2.1 if
you really need to. Thus ρ ′ extends over p ′

i. (Do you see why ρ ′(p ′
i) = pi?)

28.4.C. EXERCISE. Show that the birational morphism ρ ′ : X ′ → P1 × P1 is in-
vertible. Hint: Please don’t use Zariski’s Main Theorem, as that would be overkill.
Instead, note that the birational map ρ ′−1 is a morphism away from p1, . . . , p5.
Use essentially the same argument as in the last paragraph to extend ρ ′−1 over
each pi.

!

As a consequence we see that X is the blow-up of P1 × P1 at 5 points. Because
the blow-up of P1 × P1 at one point is isomorphic to the blow-up of P2 at two
points (Exercise 19.4.K), Theorem 28.1.2 then follows.

!

28.4.2. Reversing the process.
The process can be reversed: we can blow-up P2 at six points, and embed it

in P3. We first explain why we can’t blow up P2 at just any six points and hope
to embed the result in P3. Because the cubic surface is embedded anticanonically
(Exercise 28.2.B), we see that any curve isomorphic to P1 cannot meet KX with
intersection number 0 or more.

28.4.D. EXERCISE. Suppose P2 is sequentially blown up at p1, . . . , p6, resulting in
smooth surface X.
(a) If pi lies on the exceptional divisor of the blow-up at pj (i > j), then show that
there is a curve C ⊂ X isomorphic to P1, with C · KX ≥ 0.
(b) If the pi are distinct points on P2, and three of them are collinear, show that
there is a curve C ⊂ X isomorphic to P1, with C · KX ≥ 0.
(c) If the six pi are distinct points on a smooth conic, show that there is a curve
C ⊂ X isomorphic to P1, with C · KX ≥ 0.
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Thus the only chance we have of obtaining a smooth cubic surface by blowing
up six points on P2 is by blowing up six distinct points, no three on a line and not
all on a conic.

28.4.3. Proposition. — The anticanonical map of P2 blown up at six distinct points, no
three on a line and not all on a conic gives a closed embedding into P3, as a cubic surface.

Because we won’t use this, we only describe the main steps of the proof: first
count sections of the anticanonical bundle (there is a 4-dimensional vector space of
cubics on P2 vanishing at P2, and these correspond to sections of the anticanonical
bundle of the blowup. Then show that these sections separate points and tangent
vectors of X, thus showing that the anticanonical linear series gives a closed embed-
ding, Theorem 21.1.1. Judicious use of the Cremona transformation (Exercise 7.5.I)
can reduce the amount of tedious case-checking in this step.

28.4.E. EXERCISE. Suppose X is the blow-up of P2
k

at six distinct points p1, . . . ,
p6, no three on a line and not all on a conic. Verify that the only (−1)-curves on X
are the six exceptional divisors, the proper transforms of the 10 lines pipj, and the
proper transforms of the six conics through five of the six points, for a total of 27.

28.4.F. EXERCISE. Solve Exercises 28.3.I and 28.3.J again, this time using the de-
scription of X as a blow-up of P2.

28.4.4. Remark. If you blow-up n ≤ 9 points on P2, with no three on a line and
no six on a conic, then the symmetry group of the configuration of lines is a Weyl
group, as shown in the following table.

n 4 5 6 7 8

W(A4) W(D5) W(E6) W(E7) W(E8)

(If you know about Dynkin diagrams, you may see the pattern, and may be able
to interpret what happens for n = 3 and n = 9.) This generalizes part of Re-
mark 28.3.5, and the rest of it can similarly be generalized.



CHAPTER 29

! Proof of Serre duality

29.1 Introduction

We first met Serre duality in §20.4 (Theorem 20.4.5), and we have repeatedly seen
how useful it is. We will now prove the appropriate generalization of that state-
ment.

29.1.1. Desideratum.
We begin where we would like to end, with our desired final theorem. Sup-

pose X is a projective k-scheme of dimension n. We would like a coherent sheaf ωX

(or ωX/k) such that for any finite rank locally free sheaf F on X, there is a perfect pairing

(29.1.1.1) Hi(X,F ) × Hn−i(X,F∨ ⊗ωX) $$ Hn(X,ωX)
t $$ k

of vector spaces over k.
This will be a consequence of a slightly stronger statement, which we will

call strong Serre duality. Strong Serre duality will require further hypotheses on
X (see Theorem 29.4.8), but it will hold for X that are smooth over k, and in this
case we will see that ωX can be taken to be the determinant of the cotangent sheaf
(or bundle) ΩX/k. We will see that it will hold over X that are locally complete
intersections, and in this case ωX is an invertible sheaf (line bundle). In fact it
holds in more general circumstances (when X is Cohen-Macaulay and proper), but
we will avoid discussing this issues. Also, under waker hypotheses on X, a weaker
conclusion holds (Theorem 29.4.6, although you shouldn’t flip there yet), which
we will use to define ωX.

29.1.2. Definition. Suppose X is a projective k-scheme of dimension n. A coherent
sheaf ωX (or better, ωX/k) along with a map t : Hn(X,ωX) → k is called dualizing
if the natural map

(29.1.2.1) Hom(F ,ωX) × Hn(X,F ) $$ Hn(X,ωX)
t $$ k

is a perfect pairing. (The “natural map” is defined in the way you might expect:
an element [σ : F → ωX] induces — by covariance of Hn(X, ·), see §20.1 — a map
Hn(X,F ) → Hn(X,ωX).) We call ωX the dualizing sheaf and t the trace map.

If X has a dualizing sheaf, we say that X satisfies Serre duality. The following
proposition justifies the use of the word “the” (as opposed to “a”) in the phrase
“the dualizing sheaf”.

603
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29.1.3. Proposition. — If a dualizing sheaf (ωX, t) exists, it is unique up to unique
isomorphism.

Proof. Suppose we have two dualizing sheaves, (ωX, t) and (ω ′
X, t ′). From the two

morphisms

(29.1.3.1) Hom(F ,ωX) × Hn(X,F ) $$ Hn(X,ωX)
t $$ k

Hom(F ,ω ′
X) × Hn(X,F ) $$ Hn(X,ω ′

X)
t ′

$$ k,

we get a natural bijection Hom(F ,ωX) ∼= Hom(F ,ω ′
X), which is functorial in F .

By the typical universal property argument, this induces a (unique) isomorphism
ωX

∼= ω ′
X. From (29.1.3.1), under this isomorphism, the two trace maps t and t ′

must be the same too. !

29.1.4. Strong Serre duality. If furthermore for any coherent sheaf F on X, and
for i ≥ 0, there is an isomorphism

(29.1.4.1) ExtiX(F ,ωX)
∼ $$ Hn−i(X,F )∨ ,

we say that X satisfies strong Serre duality. (Warning: this nonstandard terminol-
ogy is intended only for this chapter.) In §29.3, we will introduce what we need
about Ext, and its sister functor(s) Ext . In particular, we will see (Remark 29.3.2)
that if F is locally free, ExtiX(F ,ωX) ∼= Hi(X,F∨ ⊗ ωX), so the desired pairing
(29.1.1.1) holds.

29.1.5. Remark. The word “furthermore” in the first sentence of §29.1.4 is neces-
sary: the case i = 0 of (29.1.4.1) would not otherwise imply that ωX was dualizing
sheaf, i.e. that the natural map (29.1.2.1) is a perfect pairing. More precisely, just
because there exists a perfect pairing Hom(F ,ωX)×Hn(X,F ) → k doesn’t mean
that the natural map (29.1.2.1) is a perfect pairing.

And more philosophically, it should disturb you that the isomorphisms (29.1.4.1)
are not required to be “natural” in some way. And in fact they are: there is a natu-
ral “Yoneda” map

(29.1.5.1) ExtiX(F ,G ) × Hj(X,F ) → Hi+j(X,G )

and it is the map ExtiX(F ,ωX) → Hn−i(X,F )∨ induced from this (using the trace
map t : Hn(X,ωX) → k) that turns out to be an isomorphism in the cases we
prove. A definition of this map is sketched in §29.3.4, but we won’t need this
better statement for any application.

29.2 Serre duality holds for projective space

Define ω = OPn
k
(−n − 1). Let t be any isomorphism Hn(Pn

k ,O(−n − 1)) → k

(Theorem 20.1.2). As the notation suggests, (ω, t) will be dualizing for projective
space Pn

k .
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29.2.A. EXERCISE. Suppose F = O(m). Show that the natural map (29.1.2.1)
is a perfect perfect pairing. (Hint: do this by hand! See the discussion after Theo-
rem 20.1.2.) Hence show that if F is a direct sum of line bundles on Pn

k , the natural
map (29.1.2.1) is a perfect pairing.

29.2.1. Theorem. — The pair (ω, t) is dualizing for Pn
k .

Proof. Fix a coherent sheaf F on Pn
k . We wish to show that (29.1.2.1) is a perfect

pairing. By Theorem 16.3.1, we can present F as

(29.2.1.1) 0 $$ G $$ L $$ F $$ 0

where L is a finite direct sum of line bundles, and G is coherent. Applying
Hom(·,ω) to (29.2.1.1), we have the exact sequence

(29.2.1.2) 0 $$ Hom(F ,ω) $$ Hom(L ,ω) $$ Hom(G ,ω).

Taking the long exact sequence in cohomology for (29.2.1.1) and dualizing, we
have

(29.2.1.3) 0 $$ Hn(F )∨ $$ Hn(L )∨ $$ Hn(G )∨

The map (29.2.1.1) leads to a map from (29.2.1.2) to (29.2.1.3):

(29.2.1.4) 0 $$ 0 $$ Hn(F )∨ $$ Hn(L )∨ $$ Hn(G )∨

0

α

,,

$$ 0

β

,,

$$ Hom(F ,ω)

γ

,,

$$ Hom(L ,ω)

δ

,,

$$ Hom(G ,ω)

ε

,,

Maps α and β are obviously isomorphisms, and Exercise 29.2.A shows that δ is an
isomorphism. Thus by a subtle version of the five lemma (Exercise 2.7.D, as β and
δ are injective and α is surjective), γ is injective. This shows that Hom(F ′,ω) →
Hn(F ′)∨ is injective for all coherent sheaves F ′, and in particular for F ′ = G .
Thus ε is injective. Then by the dual of the subtle version of the five lemma (as β
and δ are surjective, and ε is injective), γ is surjective. !

29.3 Ext groups and Ext sheaves for O-modules

In order to extend Theorem 29.2.1 (about projective space) to all projective
varieties, we will develop some useful facts on Ext-groups and Ext -sheaves. (Ext
functors for modules were introduced in §24.2.4.)

Recall that for any ringed space X, the category ModOX
has enough injectives

(Theorem 24.4.1). Thus for any OX-module F on X, we define

ExtiX(F , ·) : ModOX
→ ModΓ(OX)

as the ith right derived functor of HomX(F , ·), and we have a corresponding long
exact sequence for ExtiX(F , ·). We similarly define a sheaf version of this as a right
derived functor of Hom X(F , ·):

Ext
i
X(F , ·) : ModOX

→ ModOX
.
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In both cases, the subscript X is often omitted when it is clear from the context.
Warning: it is not clear (and in fact not true) that ModOX

has enough projec-
tives, so we cannot define Exti as a derived functor in its left argument. Nonethe-
less, we will see that it behaves as though it is a derived functor — it is computable
by acyclics in the first argument, and has a long exact sequence (Remark 29.3.1).

Another warning: with this definition, it is not clear that if F and G are qua-
sicoherent sheaves on a scheme, then Ext iOX

(F ,G ) are quasicoherent, and indeed
the aside in Exercise 14.7.A(a) points out this is not always true even for i = 0. But
Exercise 29.3.F will reassure you.

Exercise 24.5.A (an injective O-module, when restricted to an open set U, is
injective on U) has a number of useful consequences.

29.3.A. EXERCISE. Suppose I is an injective OX-module. Show that Hom OX
(·,I )

is an exact contravariant functor. (A related fact: HomOX
(·,I ) is exact, by the

definition of injectivity, Exercise 24.2.C(a).)

29.3.B. EXERCISE. Suppose X is a ringed space, F and G are OX-modules, and U is
an open subset. Describe a canonical isomorphism Ext iX(F ,G )|U ∼= Ext iU(F |U,G |U).

29.3.C. EXERCISE. Suppose X is a ringed space, and G is an OX-module.
(a) Show that

Ext
i(OX,G ) =

{
G if i = 0, and

0 otherwise.

(b) Describe a canonical isomorphism Exti(OX,G ) ∼= Hi(X,G ).

29.3.D. EXERCISE. Use Exercise 29.3.C(a) to show that if E is a locally free sheaf
on X, then Ext i(E ,G ) = 0 for i > 0.

In the category of modules over rings, we like projectives more than injectives,
because free modules are easy to work with. It would be wonderful if locally free
sheaves on schemes were always projective, but sadly this is not true. Nonetheless,
we can still compute with them, as shown in the following exercise.

29.3.E. IMPORTANT EXERCISE. Suppose X is a ringed space, and

(29.3.0.5) · · · → E1 → E0 → F → 0

is a resolution of F by locally free sheaves. (Of course we are most interested in
the case where X is a scheme, and F is quasicoherent, or even coherent.) Let E•

denote the truncation of (29.3.0.5), where F is removed. Describe isomorphisms
Ext

i(F ,G ) ∼= Hi(Hom (E•,G )) and Exti(F ,G ) ∼= Hi(Hom(E•,G )). In other words,
Ext

•(F ,G )) can be computed by taking a locally free resolution of F , truncating,
applying Hom (·,G ), and taking homology (and similarly for Ext•). Hint: choose
an injective resolution

0 → G → I0 → I1 → · · ·
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and consider the spectral sequence whose E0 term is

...
...

Hom (E0,I1)

,,

$$ Hom (E1,I1)

,,

$$ · · ·

Hom (E0,I0)

,,

$$ Hom (E1,I0)

,,

$$ · · ·

(and the same sequence with Hom replaced by Hom).

This result is important: to compute Ext , we can compute it using locally free
resolutions. You can work affine by affine, and on each affine you can use a free
resolution of the left argument. As another consequence:

29.3.F. EXERCISE. Suppose F and G are coherent sheaves on Pn
k . Show that

Ext
i(F ,G ) is a coherent sheaf as well. Hint: Exercise 29.3.E.

29.3.1. Remark. The statement “Exti(F ,G ) behaves like a derived functor in the first
argument” is true in a number of ways. We can compute it using a resolution of F
by acyclics. And we even have a corresponding long exact sequence, as shown in
the next problem.

29.3.G. EXERCISE. Suppose 0 → F ′′ → F → F ′ → 0 is an exact sequence of
OX-modules on a ringed space X. For any OX-module G , describe a long exact
sequence

0 $$ Hom(F ′′,G ) $$ Hom(F ,G ) $$ Hom(F ′,G )

$$ Ext1(F ′′,G ) $$ Ext1(F ,G ) $$ Ext1(F ′,G ) $$ · · · .

Hint: take an injective resolution 0 → G → I 0 → · · · . Use the fact that if I is
injective, then Hom(·,I ) is exact (the definition of injectivity, Exercise 24.2.C(a)).
Hence get a short exact sequence of complexes 0 → Hom(F ′′,I •) → Hom(F ,I •) →
Hom(F ′,I •) → 0 and take the long exact sequence in cohomology.

Here are two useful exercises.

29.3.H. EXERCISE. Suppose X is a ringed space, F and G are OX-modules, and E
is a locally free sheaf on X. Describe isomorphisms

Ext
i(F ⊗ E ∨,G ) ∼= Ext i(F ,G ⊗ E ) ∼= Ext i(F ,G ) ⊗ E

and Exti(F ⊗ E ∨,G ) ∼= Exti(F ,G ⊗ E ).

Hint: show that if I is injective then I ⊗ E is injective.

29.3.2. Remark. Thanks to Exercises 29.3.H and 29.3.C(b), the isomorphism Exti(F ,ω) ∼=
Hi(Pn,F∨ ⊗ ω) (if F is locally free) promised in §29.1.4 holds (see there for the
meaning of the notation).
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29.3.3. The local-to-global spectral sequence for Ext.
The “sheaf” Ext and “global” Ext are related by a spectral sequence. This is a

straightforward application of the Grothendieck composition-of-functors spectral
sequence, once we show that Hom (F ,I ) is acyclic for the functor Γ .

29.3.I. EXERCISE. Suppose I is an injective OX-module. Show that Hom (F ,I ) is
flasque (and thus injective by Exercise 24.5.D). Hint: suppose j : U ↪→ V is an inclu-
sion of open subsets. We wish to show that Hom (F ,I )(V) → Hom (F ,I )(U)
is surjective. Note that I |V is injective on V (Exercise 24.5.A). Apply the ex-
act functor HomV(·,I |V) to the inclusion j!F |U ↪→ F |V of sheaves on V (Exer-
cise 3.6.G(d)).

29.3.J. EXERCISE (LOCAL-TO-GLOBAL SPECTRAL SEQUENCE FOR Ext). Suppose X
is a ringed space, and F and G are OX-modules. Describe a spectral sequence with
E2-term Hj(X,Ext i(F ,G )) abutting to Exti+j(F ,G ). (Hint: use Grothendieck’s
composition-of-functors spectral sequence, Exercise 24.3.D. Note that Hom(F , ·) =
Γ ◦ Hom (F , ·), Exercise 3.3.C.)

29.3.4. !! Composing Ext’s (and Hi’s): the Yoneda cup product.
It is useful and reassuring to know that Ext’s can be composed, in a reasonable

sense. We won’t need this, and so just outline the ideas, so you can recognize them
in the future should you need them. For more detail, see [Gr-d, §2] or [C].

If C is an abelian category, and a• and b• are complexes in C, then define
Hom•(a•, b•) as the integer-graded group of graded homomorphisms: the elements
of Homn(a•, b•) are the maps from the complex a• to b• shifted “to the right by
n”. Define δ : Hom•(a•, b•) by

δ(u) = du + (−1)n+1ud

for each u ∈ Homn(a•, b•) (where d sloppily denotes the differential in both a•

and b•). Then δ2 = 0, turning Hom•(a•, b•) into a complex. Let H•(a•, b•) be the
cohomology of this complex. If c• is another complex in C, then composition of
maps of complexes yields a map Hom•(a•, b•) × Hom•(b•, c•) → Hom•(a•, c•)
which induces a map on cohomology:

(29.3.4.1) H•(a•, b•) × H•(b•, c•) → H•(a•, c•)

which can be readily checked to be associative. In particular, H•(a•, a•) has the
structure of a graded associative non-commutative ring (with unit), and H•(a•, b•)
(resp. H•(b•, a•) has a natural graded left-module (resp. right-module) structure
over this ring. The cohomology group H•(a•, b•) are functorial in both a• and b•.
A short exact sequence of complexes 0 → a ′

• → a• → a ′′
• → 0 induces a long exact

sequence

· · · $$ Hi(a ′
•, b•) $$ Hi(a•, b•) $$ Hi(a ′′

• , b•) $$ Hi+1(a ′
•, b•) $$ · · ·

and similarly for · · · → H•(b•, a
′′
• ) → H•(b•, a•) → H•(b•, a

′
•) → · · · .

Suppose now that C has enough injectives. Suppose a, b ∈ C, and let ia• be
any injective resolution of a (more precisely: take an injective resolution of a, and
remove the “leading” a), and similarly for ib• . then it is a reasonable exercise to
describe canonical isomorphisms

H•(ia• , ib• ) ∼= H•(a, ib• ) ∼= Ext•(a, b)
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where in the middle term, the “a” is interpreted as a complex that is all zero, except
the 0th piece is a.

Then the map(s) (29.3.4.1) induce (graded) maps

(29.3.4.2) Ext•(a, b) × Ext•(b, c) → Ext•(a, c)

extending the natural map Hom(a, b) × Hom(b, c) → Hom(a, c). (Of course, one
must show that the maps (29.3.4.2) are independent of choice of injective resolu-
tions of b and c.)

In particular, in the category of O-modules on a ringed space X, we have (using
Exercise 29.3.C(b)) a natural map

Hi(X,F ) × Extj(F ,G ) → Exti+j(F ,G ).

29.4 Serre duality for projective k-schemes

In this section we prove Strong Serre duality for projective space (§29.4.1),
Serre duality for projective schemes (§29.4.3), and Strong Serre duality for particu-
larly nice projective schemes (§29.4.7.

29.4.1. Strong Serre duality for projective space.
We use some of what we know about Ext to show that strong Serre duality

holds for projective space Pn
k .

29.4.2. Proposition (strong Serre duality for projective space). — For any coherent
sheaf F on Pn, and for i ≥ 0, there is an isomorphism

ExtiPn(F ,ω)
∼ $$ Hn−i(Pn,F )∨ .

As stated in Remark 29.1.5, you should expect that Proposition 29.4.2 (and
strong Serre duality in general, when it holds) comes from some sort of Yoneda
cup product

Exti(F ,G ) × Hj(X,F ) → Hi+j(X,G )

defined quite generally (see §29.3.4 if you wish), coupled with the trace map t :
Hn(Pn,O(−n − 1)) → k. This is true, but the following argument doesn’t show it,
and even the functoriality of this isomorphism (in F ) is not clear.

Proof. As in the proof of Theorem 29.2.1, we present F as (29.2.1.1), except that
we ensure that the line bundles appearing as summands of L each have nega-
tive degree. (This is straightforward from the construction of Theorem 16.3.1: we
found L by choosing m . 0 so that F (m) is generated by global sections. We
simply make sure m > 0.) We construct a map of long exact sequences extend-
ing (29.2.1.4) as follows. Applying Ext(·,ω) to (29.2.1.1), we obtain a long exact
sequence (Exercise 29.3.G)
(29.4.2.1)

0 $$ Hom(F ,ω) $$ Hom(L ,ω) $$ Hom(G ,ω) $$ Ext1(F ,ω) $$ · · · .
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Note that for i > 0, Exti(L ,ω) = Hi(Pn,O(−n − 1) ⊗ L ∨) (by Exercise 29.3.H),
which is 0 as deg L > 0 (Theorem 20.1.2). Theorem 29.2.1 gives functorial isomor-
phisms

Hom(F ,ω)
∼ $$ Hn(Pn,F ),

Hom(L ,ω)
∼ $$ Hn(Pn,L ),

Hom(G ,ω)
∼ $$ Hn(Pn,G ),

meaning that the squares in

0 $$ Hn(F )∨ $$ Hn(L )∨ $$ Hn(G )∨ $$ Hn−1(F )∨ $$ 0

0

,,

$$ Hom(F ,ω)

,,

$$ Hom(L ,ω)

,,

$$ Hom(G ,ω)

,,

$$ Ext1(F ,ω) $$ 0

commute (where the top row is the dual of the long exact sequence for (29.2.1.1),
extending (29.2.1.3)). Thus we have an isomorphism

Ext1(F ,ω)
∼ $$ Hn−1(F )∨.

But this argument works for any F : we have an isomorphism Ext1(F ′,ω) →
Hn−1(F ′)∨ for any coherent sheaf F ′ on Pn, and in particular for F ′ = G .
But the long exact sequence Ext, (29.4.2.1), yields an isomorphism Ext1(G ,ω) →
Ext2(F ,ω), and the dual of the long exact sequence for (29.2.1.1) yields an isomor-
phism Hn−1(Pn,G )∨ → Hn−2(Pn,F )∨, from which we have an isomorphism
Ext2(F ,ω) → Hn−2(Pn,F )∨. But then the same argument yields the correspond-
ing isomorphism with F replaced by G . Continuing this inductive process, the
result follows. !

29.4.3. Serre duality for projective k-schemes.
Armed with what we know about Ext and Ext , it is now surprisingly straight-

forward to show Serre duality for projective schemes.

29.4.4. Proposition. — Suppose that X ↪→ Pn
k is a projective k-scheme of dimension d

and codimension r = n − d. Then for all i < r, Ext iPn(OX,ωPN) = 0.

Proof. As Ext iPn(OX,ωPn) is coherent, it suffices to show that Ext iPn(OX,ωPn) ⊗
O(m) has no nonzero global sections for m . 0 (as for any coherent sheaf F
on Pn, F (m) is generated by global sections for m . 0 by Serre’s Theorem A,
Theorem 16.3.8). By Exercise 29.3.H,

Hj(Pn,Ext iPn(OX,ωPn)(m)) = Hj(Pn,Ext iPn(OX,ωPn(m)))

For m . 0, by Serre vanishing, Hj(Pn,Ext iPn(OX,ωPn)(m)) = 0. Thus by the
local-to-global sequence for Ext (Exercise 29.3.J),

H0(Pn,Ext iPn(OX,ωPn(m))) = ExtiPn(OX,ωPn(m))).
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By Exercise 29.3.H again, then strong Serre duality for projective space (Proposi-
tion 29.4.2),

Exti
Pn(OX,ωPn(m))) = Exti(OX(−m),ωPn) = Hn−i(Pn,OX(−q))

which is 0 if n − i < d, as the cohomology of a quasicoherent sheaf on a projec-
tive scheme vanishes in degree higher than the dimension of the sheaf’s support
(dimensional vanishing, Theorem 20.2.6). !

29.4.5. Corollary. — Suppose that X ↪→ Pn
k is a projective k-scheme of dimension d and

codimension r = n − d. Then we have an canonical isomorphism

HomX(F ,Ext rPn(OX,ωPn)) ∼= ExtrPn(F ,ωPn).

Proof. Consider the local-to-global spectral sequence for Ext•Pn(F ,ωPn) (Exercise 29.3.J),
for which Ei,j

2 = Hj(X,Ext i(F ,G )). Now Ei,j
2 vanishes for i < r by Proposi-

tion 29.4.4, and vanishes for stupid reasons for j < 0. Thus Er,0
2 = Er,0

∞ (at each
page after the second, the differentials in and out of Er,0 must connect Er,0 with a
zero entry), and Ei,j

∞ = 0 for i + j = r, (i, j) != (r, 0). !

29.4.6. Theorem. — Suppose that X ↪→ Pn
k is a projective k-scheme of dimension d and

codimension r = n − d. Then the sheaf ωX := Ext rPn(OX,ωPn) is a dualizing sheaf for
X.

(Note that Ext rPn(OX,ωPn) is a sheaf on X. A priori it is just a sheaf on Pn, but
it is constructed by taking a resolution, truncating, and applying Hom (OX, ·), and
Hom (OX,F ) is a sheaf on X.)

Proof. Suppose F is a coherent sheaf on X. We wish to find a perfect pairing
29.1.2.1, which is somewhat complicated by the fact that we don’t yet have a trace
map.

By Corollary 29.4.5, HomX(F ,ωX) ∼= ExtrPn(F ,ωPn). By Serre duality for Pn,
ExtrPn(F ,ωPn) ∼= Hn−r(Pn,F )∨. As F is a sheaf on X, and n − r = d, this is
precisely Hd(X,F )∨. We then can find the trace pairing, which corresponds to the
identity id ∈ HomX(ωX,ωX). !

29.4.A. EXERCISE. Verify that the trace map described above indeed induces the
perfect pairing described.

29.4.7. Strong Serre duality for particularly nice projective k-schemes.
Under a particularly nice hypothesis, Serre duality holds for X.

29.4.8. Theorem. — Suppose that X ↪→ Pn
k is a projective k-scheme of dimension d and

codimension r = n − d. Suppose further that Ext iPn(OX,ωPn) = 0 for i != r. (This is
true for i < r was Proposition 29.4.4.) Then for any coherent sheaf F on X and all i there
is a perfect pairing

ExtiX(F ,ω)
∼ $$ Hn−i(X,F )∨ .
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Because the argument relies on the special case of projective space (Proposi-
tion 29.4.2), the pairing won’t clearly be natural (functorial in F ). This is fine for
our applications, but still disappointing.

29.4.9. !! Side Remark: the dualizing complex. Even if this hypothesis doesn’t hold,
all is not lost. The correct version of Serre duality will keep track of more than
Ext

r
Pn(OX,ωPn). Rather than keeping track of all Ext iPn(OX,ωPn) (for i ≥ r), we

must keep track of the complex giving rise to it: choose an injective resolution of
0 → ωPn → I 0 → · · · , and then consider the complex

(29.4.9.1) 0 → Hom (OX,I0) → Hom (OX,I1) → · · · .

Of course the injective resolution is only defined up to homotopy, so the key object
is (29.4.9.1) up to homotopy. You may want to try to extend Theorem 29.4.8 to this
case. If you do, you will get some insight into how to work with the derived
category.

29.4.10. A special case. We first prove a special case.

29.4.11. Lemma. — Suppose that X ↪→ Pn
k is a projective k-scheme of dimension d and

codimension r = n − d. Suppose further that Ext iPn(OX,ωPn) = 0 for i != r. Then for
any locally free sheaf G on Pn

k and all i there is a perfect pairing (29.1.1.1)

Hi(X,G |X) × Hn−i(X,G ∨|X ⊗ωX) $$ Hn(X,ωX)
t $$ k

of vector spaces over k.

The case that will interest us is when G is a direct sum of O(m)’s. (Don’t be
confused: G ∨|X = G |∨X . This might be easiest to see using transition matrices.)

Proof. Note that the hypothesis implies that Ext iPn(F ,ωPn) = 0, as locally F is a
direct sum of copies of OX.

The Ext local-to-global spectral sequence (Exercise 29.3.J) implies that Hj(Pn,Ext iPn(F ,ωPn))

abuts to Exti+j
Pn (F ,ωPn). Hence (as Ext iPn(F ,ωPn) = 0 for i != r, and ωX for i = r)

the spectral sequence collapses on page 2, so

Extj+r
Pn (F ,ωPn) = Hj(Pn,Ext rPn(F ,ωPn)).

But

Extj+r
Pn (F ,ωPn) = Hn−j−r(Pn,F ) (Proposition 29.4.2)

= Hd−j(X,F ) (as F is a sheaf on X, see §20.1 (v))

and

Hj(Pn,Ext rPn(F ,ωPn)) = Hj(Pn,Ext rPn(OX,ωPn) ⊗ G ∨)

= Hj(Pn,ωX ⊗ G ∨)

= Hj(Pn,ωX ⊗ F∨) (as ωX is a sheaf on X)

= Hj(X,ωX ⊗ F∨) (again, as ωX is a sheaf on X)

!

You can now prove Theorem 29.4.8 yourself
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29.4.B. EXERCISE (STRONG SERRE DUALITY). Suppose that X ↪→ Pn
k is a projec-

tive k-scheme of dimension d and codimension r = n − d. Suppose further that
Ext

i
Pn(OX,ωPn) = 0 for i != r. Show that for any coherent sheaf F on X, and for

i ≥ 0, there is an isomorphism

ExtiX(F ,ω)
∼ $$ Hn−i(X,F )∨ .

Hint: extend the proof of Proposition 29.4.2.

29.5 The adjunction formula for the dualizing sheaf, and
ωX = detΩX for smooth X

The dualizing sheaf ω behaves very well with respect to slicing by effective
Cartier divisors. To set up the correct formulation of this vague statement, we first
observe that our argument proving Serre duality for arbitrary X, and strong Serre
duality for certain X involved very little about projective space: we used the fact
that it was a closed subscheme of projective space (hence letting us present coher-
ent sheaves as quotients of direct sums of line bundles with little cohomology),
and the fact that projective space satisfies strong Serre duality (Proposition 29.4.2).

29.5.A. EXERCISE. Suppose that Y is a projective scheme of dimension n satisfying
strong Serre duality. If X ↪→ Y is a closed subscheme of codimension r, show that
Ext

r
Y(OX,ωY) is the dualizing sheaf for X. If further Ext iY(OX,ωY) = 0 for i != r,

show that X satisfies strong Serre duality.

We apply this exercise in the special case where X is an effective Cartier divisor
on Y. We can compute the dualizing sheaf Ext 1Y(OX,ωY) using any locally free res-
olution (on Y) of OX (Exercise 29.3.E). But OX has a particularly simple resolution,
the closed subscheme exact sequence (14.5.5.1) for X:

(29.5.0.1) 0 → OY(−X) → OY → OX → 0.

We compute Ext •(OX,ωY) by truncating this, and applying Hom (·,ωY): Ext •(OX,ωY)
is the cohomology of

0 → Hom Y(OY ,ωY) → Hom (OY(−X),ωY) → 0,

i.e. 0 → ωY → ωY ⊗ OY(X) → 0.

We immediately see that Ext i(OX,ωY) = 0 if i != 0, 1. Furthermore, Ext 0(OX,ωY) =
0 by Proposition 29.4.4 with Pn

k replaced by Y — something you will have thought
through while solving Exercise 29.5.A.

We now consider ωX = coker(ωY → ωY ⊗ OY(X)). Tensoring (29.5.0.1) with
the invertible sheaf OY(X), and then tensoring with ωY , yields

ωY → ωY ⊗ OY(X) → ωY ⊗ OY(X)|X → 0

The right term is often somewhat informally written as ωY(X)|X. Thus ωX =
coker(ωY → ωY ⊗ OY(X)) = ωY(X)|X, and this identification is canonical (with
no choices).

We have shown the following.
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29.5.1. Proposition (the adjunction formula). — Suppose that Y is a projective
scheme of dimension n satisfying strong Serre duality, and X is an effective Cartier divisor
on Y. Then X satisfies strong Serre duality, and ωX = ωY(X)|X. If ωY is an invertible
sheaf, then so is ωX.

As an immediate application, we have the following.

29.5.B. EXERCISE. Suppose X is a complete intersection in Pn, of hypersurfaces of
degrees d1, . . . , dr. Then X satisfies strong Serre duality, with ωX

∼= OX(−n − 1 +∑
di). If furthermore X is smooth, show that ωX

∼= detΩX.

But we can say more.

29.5.C. EXERCISE. Suppose Y is a smooth k-variety, and X is a codimension r local
complete intersection in Y with (locally free) normal sheaf NX/Y . Suppose L is an
invertible sheaf on Y.
(a) Show that Ext i(OX,L ) = 0 if i != r.
(b) Describe a canonical isomorphism Ext r(OX,L ) ∼= (det NX/Y) ⊗X L .

From this we deduce the following.

29.5.D. IMPORTANT EXERCISE. Suppose X is a codimension r local complete inter-
section in Pn

k . Then X satisfies strong Serre duality, with ωX = Ext rPn(OX,ωPn) ∼=
(det NX/Y) ⊗ωPn .

29.5.E. IMPORTANT EXERCISE. Suppose X is a smooth pure codimension r sub-
variety of Pn

k (and hence a complete intersection). Show that ωX
∼= detΩX. Hint:

both sides satisfy adjunction (see Exercise 27.1.A for adjunction for Ω): they are
isomorphic to det NX/Y ⊗ωPn .
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A•(I), 299
CohX, 322
Exti and sheaf Exti for O-modules, 606
Gm blackboard bold, 167
I-filtering, 299
I-filtering of a module, 299
I-stable filtering, 299
I(S), 109
K(X), 134
L mathcal with bars, 347
M•(I), 299
N mathfrak, 97
N1(X), 429
O(a, b) oh, 366
P1

k, 121
Pn

A, 122
Pn

X , 379
Pn

k , 123
V(S), 99
Aut(·), 18
Γ•(F) cal, 353
Mor, 17
Ωi

X/Y
, 506

Pic X, 308
Pic0 X, 558
Prin X, 336
Proj underline, 378
Q-line bundle, 429
Spec Z bold, 157
Spec A, 87
Spec Z bold, 89, 118
Spec underline, 375
Supp F mathcal, 78

%, 349, 366
AbX, Ab

pre
X , 67

ModOX
, Mod
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OX

, 67

SetsX, Sets
pre
X , 67

δ, ∆, 236
L (D), 338
OX, 65
OX,x, 65
O(D), 335
Ov, 292
ωX/k, 603
⊕, 38
⊗, 26
π-ample, 383
Pn-bundle, 379
ρ(X), 429√

I, 100
M̃, 113
×A, 211
d-tuple embedding, 365, 366, 432–434, 450,

457, 580
d-uple embedding, 202
f−1, 76
f−1, inverse image sheaf, 76
f∗, 65
hi, 411
k-smooth, 283, 506
mathcalOX,p, 86
n-plane, 201
pa, 426
x-axis, 100
étale, 571, 573
étale topology, 316, 572

abelian category, 17, 38
abelian cone, 377
abelian semigroup, 36
acyclic, 525
additive category, 38
additive functor, 38
adeles, 323
adjoint, 34, 353
adjoint pair, 34
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adjoint functors, 34
adjugate matrix, 175
adjunction formula, 482, 587
affine cone, 205
affine line, 89
Affine Communication Lemma, 135
affine cone, 204
affine line, 88
affine line with doubled origin, 120
affine morphism, 179
affine morphisms as Spec underline, 377
affine morphisms separated, 241
affine open, 117
affine plane, 90
affine scheme, 87, 111
affine space, 91
affine topology/category, 312
affine variety, 137
affine-local, 135
Algebraic Hartogs’ Lemma, 119
Algebraic Hartogs’ Lemma, 123, 139
algebraic space, 369
algebraically equivalent line bundles, 558
alteration, 405
ample cone, 486
analytification, 137, 157
André-Quillen homology, 494
ann M, 145
arithmetic genus, 426
arrow, 17
Artin-Rees Lemma, 290
Artin-Schreier cover, 513
Artinian, 273
Artinian Nakayama, 178
ascending chain condition, 105
associated point, 145
associated prime, 145
assumptions on graded rings, 126
asymptotic Riemann-Roch, 480
Auslander-Buchsbaum theorem, 592
automorphism, 18
axiom of choice, 97
axiom of choice, 11, 97, 107, 521, 523, 524
axis, 100

Bézout’s theorem, 285
base, 155, 220
base locus, 347
base scheme, 155, 347
base change, 220
base change diagram, 220
base locus, 347
base of a topology, 79
base point, 347
base scheme, 220, 347
base-point, 347
base-point-free, 347, 347
base-point-free locus, 347

base-point-free with respect to π, 383
Bertini’s theorem, 580
Bezout’s theorem, 201
birational, 162
birational (rational) map, 162
blow up, 395
blow-up, 219, 395
blowing up, 396
boundary, 40
branch divisor, 511
branch locus, 507
branch point, 454

Calabi-Yau varieties, 587
Cancellation Theorem for morphisms, 242
canonical curve, 460
canonical embedding, 460
Cartesian diagram, 220
Cartesian diagram/square, 27
cat: Sch, 155
category, 17
category of open sets on X, 62
category of ringed spaces, 152
catenary, 262, 272
catenary ring, 262
Cech cohomology fix, 416
Cech complex fix, 416
change of base, 220
Chevalley’s theorem, 188
Chevalley’s Theorem, 188
Chinese Remainder Theorem, 123
class group, 309, 336
class group in number theory, 309
closed map, 249
closed point, 103, 131
closed subscheme, 195
closed immersion, 195
closed immersion affine-local, 195
closed morphism, 182, 184
closed points, existence of, 131
closed subscheme exact sequence, 321
cocycle condition, 81
cocycle condition for transition functions, 306
codimension, 257
cofibered product, 212
Cohen Structure Theorem, 301
Cohen-Macaulay, 295, 434, 592
Cohen-Seidenberg Lying Over theorem, 176
Cohen-Seidenberg Lying Over Theorem (see

Lying Over Theorem), 176
coherent sheaf, 321, 322
cohomology of a double complex, 47
cokernel, 38
colimit, f32
complete intersections in projective space, 592
complete (k-scheme), 249
complete linear series, 347
complete linear series, 347
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completion, 300
complex, 40
cone over quadric surface, 260, 265
cone over smooth quadric surface, 124
cone over the quadric surface, 228
cone over the quadric surface, 140
conic, 200
connected, 108, 131
connected component, 108
connecting homomorphism, 412
conormal module, 496
conormal sheaf, 496
constant (pre)sheaf, 64, 72
constructible set, 188
constructible subset of a Noetherian scheme,

187
convergence of spectral sequence, 50
coproduct, 28, 33
coproduct of schemes, 369
coproduct of schemes, 211
corank, 282
cotangent sheaf, 489, 499
cotangent complex, 494
cotangent space, 278
cotangent vector, 489
cotangent vector = differential, 278
counit of adjunction, 35
covariant, 20
covering space, 571
Cremona transformation, 371
Cremona transformation, 165
criterion for flatness, infinitesimal, 554
cubic, 200
curve, 256
cusp, 230, 284, 300, 404
cycle, 40

Dedekind domain, 232, 294
deformation theory, 281, 508, 536, 544
deformation to the normal cone, 403
degenerate, 366
degree of line bundle on curve, 425
degree of a point, 137
degree of a projective scheme, 432
degree of a rational map, 163
degree of a finite morphism, 327
degree of a projective scheme, 432
degree of coherent sheaf on curve, 428
degree of divisor on projective curve, 424
degree of invertible sheaf on Pn

k , 337
depth, 592
derivation, 497
derived category, 612
derived functor, 524
derived functor cohomology, 411
descending chain condition, 104, 273
descent, 219
desingularization, 394, 403

determinant, 191
determinant bundle, 320
diagonal, 236
diagonal morphism δ, 236
diagonalizing quadrics, 142
different ideal, 508
differential = cotangent vector, 278
dimension, 255
dimensional vanishing of cohomology, 412
direct limit, 32
direct image sheaf, 65
discrete topology, 64, 123, 183, 532
discrete topology, 64, 71
discrete valuation, 291
discrete valuation ring, 292
discriminant ideal, 508
disjoint union (of schemes), 117
distinguished affine base, 312
distinguished open set, 94, 102
divisor of zeros and poles, 334
domain of definition of rational map, 246
domain of definition of a rational function,

144
dominant, 162
dominant rational map, 162
dominating, 162
double complex, 46
dual numbers, 96
dual coherent sheaf, 324
dual numbers, 89
dual of a locally free sheaf, 307
dual of an OX-module, 68
dual projective space, 580
dual projective bundle, 580
dual variety, 582
dualizing complex, 612
dualizing sheaf, 413, 603
DVR, 292

effective Cartier divisor, 613
effective Cartier divisor, 197, 197, 205, 219,

248, 265, 331, 338, 341, 380, 394–398,
400–402, 406, 407, 435, 497, 587, 589, 590,
592, 614

effective Cartier divisor, relative, 555
effective Weil divisor, 333
elliptic curve, 308
elliptic curve, 463
embedded points, 143
embedding, 571
enough projectives, 524, 525, 566, 606
enough injectives, 524
enough projectives, 524
epi morphism, 38
epimorphism, 29
equational criterion for flatness, 543
equidimensional, 256
equivalence of categories, 21
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essentially surjective, 22
Euler characteristic, 333, 424
Euler exact sequence, 503
Euler test, 284
exact, 40
exceptional divisor, 219, 395
exceptional divisor, 396
excision exact sequence, 337
exponential exact sequence, 73
Ext functors, 524
extending the base field, 219
extension by zero, 78, 360
extension of an ideal, 217
exterior algebra, 319
exterior algebra, 319

factorial, 140, 336, 337
factorial ring, 140
faithful functor, 20
faithful functor, 30
faithfully flat, 550
faithfully flat, 550
Faltings’ Theorem (Mordell’s Conjecture), 458
Fermat cubic surface, 596
fiber above a point, 221
fiber diagram, 220
fiber of O-module, 118
fibered diagram/square, 27
fibered product of schemes, 211
final object, 23
finite implies projective, 382
finite presentation, 186
finite extension of rings, 183
finite module, 181
finite morphism is closed, 184
finite morphism is quasifinite, 184
finite morphisms are affine, 181
finite morphisms are projective, 382
finite morphisms separated, 241
finite presentation, 321
finite type, 185
finite type A-scheme, 137
finite type (quasicoherent) sheaf, 322
finitely generated, 321
finitely generated field extension, 163
finitely generated graded ring (over A), 126
finitely generated modules over discrete

valuation rings, 325
finitely generated sheaf, 322
finitely presented, 186
finitely presented module, 43
finitely presented algebra, 186, 491
flabby sheaf, 530
flasque, 531, 608
flasque sheaf, 530
flasque sheaves are Γ -acyclic, 531
flat, 44, 363, 390, 520, 535
flat limit, 546

flat A-module, 537
flat (at x), 539
flat morphism, 539
flat of relative dimension n, 551
flat of relative dimension n, 552
flat quasicoherent sheaf, 539
flat quasicoherent sheaf over a base, 539
flat ring homomorphism, 537
flex, 467
forgetful functor, 20
formally étale, 583
formally smooth, 583
formally unramified, 583
fraction field K(·), 24
fractional ideal, 309
fractional linear transformations, 365
free sheaf, 305, 306
Freyd-Mitchell Embedding Theorem, 39
Frobenius morphism, 447
full functor, 20, 30
fully faithful functor, 20
function field K(·), 134
function field, 134, 144, 259
functions on a scheme, 87, 117
functor, 20
functor category, 30
functor of points, 21
functor of points, 158, 158
fundamental point, 246

Gaussian integers mathbbZ[i], 294
Gaussian integers mathbbZ[i], 286
generalization, 104
generated by global sections, 346
generated in degree 1, 126
generic point, 131
generic fiber, 221
generic flatness, 552
generic point, 104
generically separable morphism, 510
generization, 131
genus, 502
geometric fiber, 227
geometric genus, 506
geometric genus of a curve, 502
geometric fiber, 226
geometric genus, 502
geometric Noether Normalization, 260
geometric point, 227
geometrically connected, 227
geometrically

connected/irreducible/integral/reduced
fibers, 226

geometrically integral, 227
geometrically irreducible, 227
geometrically nonsingular fibers, 573
geometrically reduced, 227
germ, 62
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germ of function near a point, 117
globally generated, 346
globally generated with respect to π, 383
gluability axiom, 62
gluing along closed subschemes, 369
gluing two schemes together along a closed

subscheme, 369
Going-Down Theorem for flat morphisms,

550
Going-Down Theorem for integrally closed

domains, 263
Going-Down Theorem (for flat morphisms),

551
Going-Up Theorem, 177
Gorenstein, 589, 593
graded ring, 125
graded ring over A, 126
graph morphism, gr of a m, 242
graph of a morphism, 242
graph of rational map, 247
Grassmannian, 130, 170, 171, 505
Grothendieck topology, 316, 572
Grothendieck-Riemann-Roch, 480
group schemes, 168
group scheme, 168
groupoid, 18

Hartogs’ Lemma, 119, 123
Hartogs’ Theorem, 308
Hausdorff, 235, 237
height, 257
higher direct image sheaf, 438, 439
higher pushforward sheaf, 439
Hilbert polynomial, 430, 432
Hilbert scheme, 536
Hilbert basis theorem, 105
Hilbert function, 430
Hirzebruch surface, 379
Hirzebruch-Riemann-Roch, 480
Hodge bundle, 563
Hodge theory, 509
Hom, 38
homogeneous ideal, 125
homogeneous space, 578
homogeneous ideal, 126
homology, 40
homomorphism of local rings, 154
homomorphism of local rings, 550
homotopic maps of complexes, 521
Hopf algebra, 170
hypercohomology, 47
hyperplane, 200, 201
hyperplane class, 336
hypersurface, 200, 257

ideal denominators, 269
ideal of denominators, 140
ideal sheaf, 195
idempotent, 108

identity axiom, 62
identity functor id, 20
immersion, 571
index category, 31
induced reduced subscheme structure, 208
infinite-dimensional Noetherian ring, 258
infinitesimal criterion for flatness, 554
initial object, 23
injective object, 527, 529
injective sheaf, 531
injective limit, 32
injective object, 524
injective object in an abelian category, 524
injective sheaves are flasque, 531
integral, 133, 174
integral closure, 230
integral extension of rings, 174
integral morphism, 184
integral morphism of rings, 174
intersection number, 477, 481
inverse image, 77
inverse image ideal sheaf, 220
inverse image scheme, 220
inverse image sheaf, 76
inverse limit, 31
invertible ideal sheaf, 197
invertible sheaf, 307, 310
irreducible, 103, 131
irreducible (Weil) divisor, 333
irreducible component, 106
irreducible components, 131
irregularity, 510
irrelevant ideal, 126
isomorphism, 18
isomorphism of schemes, 117

Jacobian, 493
Jacobian criterion, 281
Jacobian matrix, 574
Jacobson radical, 178

K3 surfaces, 587
kernel, 38
knotted plane, 294
Kodaira vanishing, 413
Kodaira’s criterion for ampleness, 349
Koszul complex, 592, 593
Krull, 265
Krull dimension, 255
Krull dimension, 255
Krull’s Principal Ideal Theorem, 265

Lüroth’s theorem, 513
Lefschetz principle, 561
left-adjoint, 34
left-exact, 43
left-exactness of global section functor, 75
Leibniz rule, 490
length, 481
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length of a module, 553
Leray spectral sequence, 412
limit, 31
limits are left exact, 570
line, 201
line bundle, 306
linear series, 347
linear space, 201
linear series, 347
local complete intersection, 287
local complete intersection, 586
local complete intersections are

Cohen-Macaulay, 592
local criterion for flatness, 553
local ring, 11
localization, 23, 93
locally ringed spaces, 154
locally closed immersion, 198
locally factorial, 140
locally free sheaf, 306
locally free sheaf, 305, 310
locally integral (temp.), 286
locally Noetherian scheme, 136
locally of finite type A-scheme, 137
locally of finite presentation, 186
locally of finite type, 185
locally principal subscheme, 197
locally principal closed subscheme, 265
locally principal Weil divisor, 336
locally ringed space, 117, 154
locus of indeterminacy, 246
long exact sequence, 42
long exact sequence of higher pushforward

sheaves, 439
Lutz-Nagell Theorem, 474
Lying Over Theorem, 260
Lying Over Theorem, 230
Lying Over Theorem, 176, 177, 184, 297, 449

magic diagram, 28
mapping cone, 53, 419
minimal prime, 106, 107
modular curve, 464
module of Kähler differentials, 490
module of relative differentials, 490
moduli space, 457, 464, 465
monic morphism, 38
monoidal transformation, 395
monomorphism, 28
Mordell’s conjecture, 458
Mordell-Weil, 464
morphism, 17
morphism of (pre)sheaves, 66
morphism of (pre)sheaves, 66
morphism of ringed spaces, 152
morphism of ringed spaces, 152
morphism of schemes, 155
multiplicity of a singularity, 406

Néron-Severi group, 429
Néron-Severi Theorem, 429
Nagata, 258, 340
Nagata’s Lemma, 340
Nagell-Lutz Theorem, 474
Nakayama’s Lemma, 193
Nakayama’s Lemma, 177, 178
natural transformation, 21
natural transformation of functors, 30
nef, 429
nef cone, 430
nilpotents, 96, 132
nilradical, 97, 97, 100
nodal cubic, 545
nodal cubic, 547, 549
node, 230, 284, 404
Noetherian induction, 107
Noetherian module, 108
Noetherian ring, 105, 105
Noetherian rings, important facts about, 105,

108
Noetherian scheme, 131, 136
Noetherian topological space, 104, 106
non-archimedean, 291
non-archimedean analytic geometry, 316, 328
non-degenerate, 366
non-torsion point on elliptic curve, 473, 474
non-torsion Q-point on elliptic curve, 474
non-zerodivisor, 24
nonprojective proper variety, 250, 367, 483
nonprojective proper variety, 558
nonsingular, 277, 282
nonsingularity, 277
normal, 119, 139
normal cone, 402
normal = R1+S2, 294
normal exact sequence, 586
normal sheaf, 496
normalization, 229
Nullstellensatz, 92, 137
number field, 232
numerical equivalence, 429
numerically effective, 429
numerically trivial line bundle, 428

object, 17
octic, 200
Oka’s theorem, 323, 328
open immersion of ringed spaces, 152
open subscheme, 117
open immersion, 174, 174
open subscheme, 174
opposite category, 21
order of zero/pole, 293
orientation of spectral sequence, 47

p-adic, 32, 292
page of spectral sequence, 47
partially ordered set, 19
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partition of unity, 418
perfect pairing, 320
PicτX, 429
Picard group, 308
plane, 201
points, A-valued, 158
points, S-valued, 158
pole, 293
poset, 19
presheaf, 61
presheaf cokernel, 68
presheaf kernel, 68
prevariety (analytic), 137
primary ideal, 147
prime avoidance, 264, 266, 267, 540
prime avoidance (temp. notation), 266
principal divisor, 336
principal Weil divisor, 336
product, 23, 211
product of quasicoherent ideal sheaves, 341,

496
products of ideals, 100
products of ideals, 309
Proj, 126
projection formula, 480
projection formula, 362, 440
projective coordinates, 125
projective cone, 205
projective space, 123
projective A-scheme, 126
projective X-scheme, 380
projective and quasifinite implies finite, 415
projective bundle, 379
projective completion, 205
projective cone, 205
projective coordinates, 123
projective distinguished open set, 127
projective line, 121
projective module, 523
projective modules are summands of free

modules, 523
projective modules are flat, 523
projective morphism, 380
projective object in an abelian category, 523
projective space, 128
projective variety, 137
projectivization of a locally free sheaf, 379
proper, 249
proper transform, 394, 398
proper transform, 396
pseudomorphisms, 161
Puisseux series, 292
pullback diagram, 220
pullback for [locally?] ringed spaces, 363
pure dimension, 256
purity of the branch locus, 511
pushforward sheaf, 65
pushforward of coherent sheaves, 442

pushforward of quasicoherent sheaves, 357
pushforward sheaf, 65

quadric, 200
quadric surface, 260, 265
quadric surface, 140, 203, 228
quartic, 200
quasicoherent sheaf, 305
quasicoherent sheaf, 113, 310
quasicoherent sheaves: product, direct sum,

∧, Sym, cokernel, image, ⊗, 319
quasicompact, 131
quasicompact morphism, 178
quasicompact topological space, 103
quasifinite, 185
quasiinverse, 22
quasiisomorphism, 417
quasiprojective morphism, 421
quasiprojective scheme, 129
quasiprojective is separated, 242
quasiprojective morphism, 381
quasiseparated, 240
quasiseparated morphism, 179
quasiseparated scheme, 132
quintic, 200
quotient object, 39
quotient sheaf, 73

radical, 100
radical ideal, 96
radical ideal, 100
radicial morphism, 227
ramification locus, 507
ramification point, 454
ramification divisor, 511
rank of locally free sheaf, 310
rank of coherent sheaf on curve, 428
rank of finite type quasicoherent sheaf, 326
rank of quadratic, 142
rational map, 161
rational function, 144
rational normal curve, 366
rational normal curve, 202
rational normal curve take 1, 104
rational section, 308
rational variety, 162
reduced, 133, 136
reduced ring, 97
reduced scheme, 132
reduced subscheme structure, 208
reducedness is stalk-local, 133
reduction, 208
Rees algebra, 299, 394, 400
reflexive sheaf, 324, 496
regular, 277
regular function, 144
regular scheme, 282
regular implies Cohen-Macaulay, 592
regular local ring, 282
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regular point, 277
regular ring, 282
regular sequence, 593
relative i-forms, 506
relative (co)tangent sheaf, 499
relative (co)tangent vectors, 489
relative effective Cartier divisor, 555
relatively ample with respect to π, 383
relatively very ample, 348
relatively ample, 383
relatively base-point-free, 383
relatively globally generated, 383
representable functor, 167
residue field, 117
residue field κ(·), 117
residue field at a point, 117
Residue theorem, 389, 425
resolution of singularities, 394, 405
resolution of singularities, 403
restriction map, 61
restriction of a quasicoherent sheaf, 358
restriction of sheaf to open set, 67
resultant, 191
Riemann surface, 388
Riemann-Roch for coherent sheaves on a

curve, 428
Riemann-Roch for surfaces, 482
right exact, 25
right-adjoint, 34
right-exact, 43
ring scheme, 169
ring of integers in a number field, 232
ring scheme, 170
ringed space, 65, 85
riple point, 300
ruled surface, 379
rulings on the quadric surface, 203

S2, 294
Sard’s theorem, 577
saturated module, 355
saturation functor, 353
saturation map, 353
scheme over A, 136
scheme, definition of, 116
scheme-theoretic support, 442
scheme-theoretic inverse image, 220
scheme-theoretic pullback, 220
Schubert cell, 170
sections over an open set, 61
Segre embedding, 228, 366
Segre product, 228
Segre variety, 228
semiample, 351
separable morphism, 510
separably generated, 493
separated, 121, 236
separated over A, 236

separated presheaf, 62
separatedness, 117
septic, 200
Serre duality, 413
Serre duality (strong form), 604
Serre vanishing, 413, 441
Serre’s criterion for normality, 294
Serre’s criterion for affineness, 440
sextic, 200
sheaf, 61
sheaf of relative i-forms, 506
sheaf Hom (Hom underline), 67
sheaf Hom (Hom underline) of quasicoherent

sheaves, 323
sheaf Hom (underline), 67
sheaf determined by sheaf on base, 313
sheaf of ideals, 195
sheaf of relative differentials, 489
sheaf on a base, 79
sheaf on a base, 79
sheaf on a base determines sheaf, 79
sheaf on affine base, 312
sheafification, 69, 71
shriek, 78
singular, 277, 282
site, 316
skyscraper sheaf, 64
smooth, 277, 571, 573
smooth over a field, 283, 506
smooth quadric surface, 141, 142
specialization, 104, 131
spectral sequence, 46
spectrum, 87
stack, 81, 316
stalk, 62
stalk-local, 133, 135
strict transform, 396
strong Serre duality, 604
structure morphism, 156
structure sheaf, 85
structure sheaf (of ringed space), 65
structure sheaf on Spec A, 111
subobject, 39
subscheme cut out by a section of a locally

free sheaf, 308
subsheaf, 73
support, 324
support of a sheaf, 78
support of a Weil divisor, 333
surface, 256
surjective morphism, 176, 224
symbolic power of an ideal, 274
symmetric algebra, 319, 319
system of parameters, 270
system of parameters, 267

tacnode, 230, 284, 300, 404
tame ramification, 512
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tangent plane, 285
tangent cone, 402
tangent line, 467
tangent sheaf, 499
tangent space, 278
tangent vector, 278
tautological bundle, 377
tensor algebra, 319
tensor algebra T•

A(M), 319
tensor product, 25, 26
tensor product of O-modules, 76
tensor product of sheaves, 76
Theorem of the Base, 429
topos, 316
torsion-free, 321
total fraction ring, 144
total space of locally free sheaf, 377
total transform, 396, 398
trace map, 603
transcendence basis/degree, 259
transition functions, 306
transitive group action, 578
trigonal curve, 460
twisted cubic, 200
twisted cubic, 260
twisted cubic curve, 104
twisting by a line bundle, 345
two planes meeting at a point, 593
two-plane example, 295

ultrafilter, 108
underline S, 64
underline Spre, 64
uniformizer, 290
unit of adjunction, 35
universal property, 15
universal property of blowing up, 396
universally, 249
universally closed, 249
unramified, 571, 573
uppersemicontinuity of rank of finite type

sheaf, 326

valuation, 292
valuation ring, 292
valuative criterion for flatness, 546
valuative criterion for separatedness, 295
value of a function, 87
value of a quasicoherent sheaf at a point, 326
value of function, 117
value of function at a point, 117
vanishing set, 99
vanishing theorems, 424
vanishing scheme, 197
varieties (classically), 98
variety, 235, 239
vector bundle associated to locally free sheaf,

377
vector bundle, 377

Veronese, 365
Veronese embedding, 366
Veronese subring, 160
Veronese embedding, 202, 365, 432–434, 450,

457, 580
Veronese surface, 203
vertical (co)tangent vectors, 489
very ample, 348

Weierstrass normal form, 467
weighted projective space, 204
Weil divisor, 333
wild ramification, 512

Yoneda cup product, 608
Yoneda embedding, 30
Yoneda’s Lemma, 29
Yoneda’s lemma, 215
Yoneda’s lemma, 30

Zariski (co)tangent space, 278
Zariski tangent space, 277
Zariski topology, 99, 100
zero ring, 11
zero object, 23, 38
zerodivisor, 24
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