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CHAPTER 1

Introduction

I can illustrate the ... approach with the ... image of a nut to be opened. The first
analogy that came to my mind is of immersing the nut in some softening liquid, and why
not simply water? From time to time you rub so the liquid penetrates better, and otherwise
you let time pass. The shell becomes more flexible through weeks and months — when the
time is ripe, hand pressure is enough, the shell opens like a perfectly ripened avocado!

A different image came to me a few weeks ago. The unknown thing to be known
appeared to me as some stretch of earth or hard marl, resisting penetration ... the sea
advances insensibly in silence, nothing seems to happen, nothing moves, the water is so
far off you hardly hear it ... yet finally it surrounds the resistant substance.

— Alexander Grothendieck, Récoltes et Semailles p. 552-3, translation by Colin
McLarty

1.1 Goals

These are an updated version of notes accompanying a hard year-long class
taught at Stanford in 2009-2010. I am currently editing them and adding a few
more sections, and I hope to post a reasonably complete (if somewhat rough) ver-
sion over the 2010-11 academic year at the site http://math216 .wordpress.com/.

In any class, choices must be made as to what the course is about, and who it
is for — there is a finite amount of time, and any addition of material or explana-
tion or philosophy requires a corresponding subtraction. So these notes are highly
inappropriate for most people and most classes. Here are my goals. (I do not claim
that these goals are achieved; but they motivate the choices made.)

These notes currently have a very particular audience in mind: Stanford Ph.D.
students, postdocs and faculty in a variety of fields, who may want to use alge-
braic geometry in a sophisticated way. This includes algebraic and arithmetic ge-
ometers, but also topologists, number theorists, symplectic geometers, and others.

The notes deal purely with the algebraic side of the subject, and completely
neglect analytic aspects.

They assume little prior background (see §1.2), and indeed most students have
little prior background. Readers with less background will necessarily have to
work harder. It would be great if the reader had seen varieties before, but many
students haven't, and the course does not assume it — and similarly for category
theory, homological algebra, more advanced commutative algebra, differential ge-
ometry, .... Surprisingly often, what we need can be developed quickly from
scratch. The cost is that the course is much denser; the benefit is that more people
can follow it; they don’t reach a point where they get thrown. (On the other hand,
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10 Math 216: Foundations of Algebraic Geometry

people who already have some familiarity with algebraic geometry, but want to
understand the foundations more completely should not be bored, and will focus
on more subtle issues.)

The notes seek to cover everything that one should see in a first course in the
subject, including theorems, proofs, and examples.

They seek to be complete, and not leave important results as black boxes
pulled from other references.

There are lots of exercises. I have found that unless I have some problems I
can think through, ideas don’t get fixed in my mind. Some are trivial — that’s
okay, and even desirable. A very few necessary ones may be hard, but the reader
should have the background to deal with them — they are not just an excuse to
push material out of the text.

There are optional starred (x) sections of topics worth knowing on a second
or third (but not first) reading. You should not read double-starred sections (%)
unless you really really want to, but you should be aware of their existence.

The notes are intended to be readable, although certainly not easy reading.

In short, after a year of hard work, students should have a broad familiarity
with the foundations of the subject, and be ready to attend seminars, and learn
more advanced material. They should not just have a vague intuitive understand-
ing of the ideas of the subject; they should know interesting examples, know why
they are interesting, and be able to prove interesting facts about them.

I have greatly enjoyed thinking through these notes, and teaching the corre-
sponding classes, in a way I did not expect. I have had the chance to think through
the structure of algebraic geometry from scratch, not blindly accepting the choices
made by others. (Why do we need this notion? Aha, this forces us to consider this
other notion earlier, and now I see why this third notion is so relevant...)  have re-
peatedly realized that ideas developed around Paris in the 1960’s are simpler than
I initially believed, once they are suitably digested.

1.1.1. Implications. We will work with as much generality as we need for most
readers, and no more. In particular, we try to have hypotheses that are as general
as possible without making proofs harder. The right hypotheses can make a proof
easier, not harder, because one can remember how they get used. As an inflamma-
tory example, the notion of quasiseparated comes up early and often. The cost is
that one extra word has to be remembered, on top of an overwhelming number
of other words. But once that is done, it is not hard to remember that essentially
every scheme anyone cares about is quasiseparated. Furthermore, whenever the
hypotheses “quasicompact and quasiseparated” turn up, the reader will likely im-
mediately see a key idea of the proof.

Similarly, there is no need to work over an algebraically closed field, or even a
field. Geometers needn’t be afraid of arithmetic examples or of algebraic examples;
a central insight of algebraic geometry is that the same formalism applies without
change.

1.1.2. Costs. Choosing these priorities requires that others be shortchanged, and
it is best to be up front about these. Because of our goal is to be comprehensive,
and to understand everything one should know after a first course, it will neces-
sarily take longer to get to interesting sample applications. You may be misled
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into thinking that one has to work this hard to get to these applications — it is not
true!

1.2 Background and conventions

“Should you just be an algebraist or a geometer?” is like saying “Would you rather
be deaf or blind?”
— Michael Atiyah, [A, p. 659]

All rings are assumed to be commutative unless explicitly stated otherwise.
All rings are assumed to contain a unit, denoted 1. Maps of rings must send 1 to
1. We don'’t require that 0 # 1; in other words, the “0-ring” (with one element)
is a ring. (There is a ring map from any ring to the O-ring; the 0-ring only maps
to itself. The O-ring is the final object in the category of rings.) The definition of
“integral domain” includes 1 # 0, so the 0-ring is not an integral domain. We
accept the axiom of choice. In particular, any proper ideal in a ring is contained in
a maximal ideal. (The axiom of choice also arises in the argument that the category
of A-modules has enough injectives, see Exercise 24.2.G.)

The reader should be familiar with some basic notions in commutative ring
theory, in particular the notion of ideals (including prime and maximal ideals)
and localization. For example, the reader should be able to show that if S is a
multiplicative set of a ring A (which we assume to contain 1), then the primes of
S~TA are in natural bijection with those primes of A not meeting S (§4.2.6). Tensor
products and exact sequences of A-modules will be important. We will use the
notation (A, m) or (A, m, k) for local rings (rings with a unique maximal ideal) —
A is the ring, m its maximal ideal, and k = A/m its residue field. We will use
(in Proposition 14.7.3) the structure theorem for finitely generated modules over
a principal ideal domain A: any such module can be written as the direct sum of
principal modules A/(a).

Experience with some field theory will be helpful from time to time.

1.2.1. Caution about foundational issues. We will not concern ourselves with subtle
foundational issues (set-theoretic issues, universes, etc.). It is true that some peo-
ple should be careful about these issues. But is that really how you want to live
your life? (If you are one of these rare people, a good start is [KS2, §1.1].)

1.2.2. Further background. It may be helpful to have books on other subjects
handy that you can dip into for specific facts, rather than reading them in ad-
vance. In commutative algebra, Eisenbud [E] is good for this. Other popular
choices are Atiyah-Macdonald [AM] and Matsumura [M-CRT]. For homological
algebra, Weibel [W] is simultaneously detailed and readable.

Background from other parts of mathematics (topology, geometry, complex
analysis) will of course be helpful for developing intuition.

Finally, it may help to keep the following quote in mind.

[Algebraic geometry] seems to have acquired the reputation of being esoteric, exclusive,
and very abstract, with adherents who are secretly plotting to take over all the rest of
mathematics! In one respect this last point is accurate ...

— David Mumford, 1975 [M-Red2, p. 227]
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CHAPTER 2

Some category theory

The introduction of the digit O or the group concept was general nonsense too, and
mathematics was more or less stagnating for thousands of years because nobody was
around to take such childish steps... — Alexander Grothendieck

That which does not kill me, makes me stronger. — Nietzsche

2.1 Motivation

Before we get to any interesting geometry, we need to develop a language
to discuss things cleanly and effectively. This is best done in the language of
categories. There is not much to know about categories to get started; it is just
a very useful language. Like all mathematical languages, category theory comes
with an embedded logic, which allows us to abstract intuitions in settings we know
well to far more general situations.

Our motivation is as follows. We will be creating some new mathematical
objects (such as schemes, and certain kinds of sheaves), and we expect them to
act like objects we have seen before. We could try to nail down precisely what
we mean by “act like”, and what minimal set of things we have to check in order
to verify that they act the way we expect. Fortunately, we don’t have to — other
people have done this before us, by defining key notions, such as abelian categories,
which behave like modules over a ring.

Our general approach will be as follows. I will try to tell what you need to
know, and no more. (This I promise: if I use the word “topoi”, you can shoot me.) I
will begin by telling you things you already know, and describing what is essential
about the examples, in a way that we can abstract a more general definition. We
will then see this definition in less familiar settings, and get comfortable with using
it to solve problems and prove theorems.

For example, we will define the notion of product of schemes. We could just
give a definition of product, but then you should want to know why this precise
definition deserves the name of “product”. As a motivation, we revisit the notion
of product in a situation we know well: (the category of) sets. One way to define
the product of sets U and V is as the set of ordered pairs {(u,v) : ue U,v e V]
But someone from a different mathematical culture might reasonably define it as
the set of symbols {v : u € U,v € V}. These notions are “obviously the same”.
Better: there is “an obvious bijection between the two”.

This can be made precise by giving a better definition of product, in terms of a
universal property. Given two sets M and N, a product is a set P, along with maps
u:P — Mand~v:P — N, such that for any set P’ with maps p’ : P' — M and

15



16 Math 216: Foundations of Algebraic Geometry

v’ : P’ — N, these maps must factor uniguely through P:

(2.1.0.1)

(The symbol 3 means “there exists”, and the symbol | here means “unique”.) Thus
a product is a diagram

P—>N

.

and not just a set P, although the maps p and v are often left implicit.

This definition agrees with the traditional definition, with one twist: there
isn’t just a single product; but any two products come with a unique isomorphism
between them. In other words, the product is unique up to unique isomorphism.
Here is why: if you have a product

P1L>N

g

M
and I have a product

P, 2N

Hzi
M

then by the universal property of my product (letting (P2, p2,v2) play the role of
(P,u,v), and (Py, i1,v1) play the role of (P’,n’,v’) in (2.1.0.1)), there is a unique
map f : Py — P, making the appropriate diagram commute (i.e. 1 = p, o f and
v1 = of). Similarly by the universal property of your product, there is a unique
map g : P, — P; making the appropriate diagram commute. Now consider the
universal property of my product, this time letting (P>, n2,v2) play the role of both
(P,u,v)and (P/, 1/, v’) in (2.1.0.1). There is a unique map h : P, — P, such that

commutes. However, I can name two such maps: the identity map idp,, and g o f.
Thus g o f = idp,. Similarly, f o g = idp,. Thus the maps f and g arising from
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the universal property are bijections. In short, there is a unique bijection between
P; and P; preserving the “product structure” (the maps to M and N). This gives
us the right to name any such product M x N, since any two such products are
uniquely identified.

This definition has the advantage that it works in many circumstances, and
once we define categories, we will soon see that the above argument applies ver-
batim in any category to show that products, if they exist, are unique up to unique
isomorphism. Even if you haven’t seen the definition of category before, you can
verify that this agrees with your notion of product in some category that you have
seen before (such as the category of vector spaces, where the maps are taken to be
linear maps; or the category of smooth manifolds, where the maps are taken to be
submersions, i.e. differentiable maps whose differential is everywhere surjective).

This is handy even in cases that you understand. For example, one way of
defining the product of two manifolds M and N is to cut them both up into charts,
then take products of charts, then glue them together. But if I cut up the manifolds
in one way, and you cut them up in another, how do we know our resulting mani-
folds are the “same”? We could wave our hands, or make an annoying argument
about refining covers, but instead, we should just show that they are “categorical
products” and hence canonically the “same” (i.e. isomorphic). We will formalize
this argument in §2.3.

Another set of notions we will abstract are categories that “behave like mod-
ules”. We will want to define kernels and cokernels for new notions, and we
should make sure that these notions behave the way we expect them to. This
leads us to the definition of abelian categories, first defined by Grothendieck in his
Tohoku paper [Gr].

In this chapter, we will give an informal introduction to these and related no-
tions, in the hope of giving just enough familiarity to comfortably use them in
practice.

2.2 Categories and functors

We begin with an informal definition of categories and functors.

2.2.1. Categories.

A category consists of a collection of objects, and for each pair of objects, a set
of maps, or morphisms (or arrows), between them. (For experts: technically, this
is the definition of a locally small category. In the correct definition, the morphisms
need only form a class, not necessarily a set, but see Caution 1.2.1.) The collection
of objects of a category ¢ are often denoted obj(%¢’), but we will usually denote
the collection also by €. If A,B € %, then the set of morphisms from A to B is
denoted Mor(A, B). A morphism is often written f : A — B, and A is said to be
the source of f, and B the target of f. (Of course, Mor(A, B) is taken to be disjoint
from Mor(A’,B’) unless A = A’ and B =B’.)

Morphisms compose as expected: there is a composition Mor(B, C) xMor(A, B)
Mor(A, C), and if f € Mor(A,B) and g € Mor(B, C), then their composition is de-
noted g o f. Composition is associative: if f € Mor(A,B), g € Mor(B, C), and
h € Mor(C,D), thenho (gof) = (hog)of. For each object A € ¢, there is always
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an identity morphismida : A — A, such that when you (left- or right-)compose a
morphism with the identity, you get the same morphism. More precisely, for any
morphisms f : A — Band g : B — C, idg of = f and g o idg = g. (If you wish,
you may check that “identity morphisms are unique”: there is only one morphism
deserving the name id .) This ends the definition of a category.

We have a notion of isomorphism between two objects of a category (a mor-
phism f : A — B such that there exists some — necessarily unique — morphism
g: B — A, where f o g and g o f are the identity on B and A respectively), and a
notion of automorphism of an object (an isomorphism of the object with itself).

2.2.2. Example. The prototypical example to keep in mind is the category of sets,
denoted Sets. The objects are sets, and the morphisms are maps of sets. (Because
Russell’s paradox shows that there is no set of all sets, we did not say earlier that
there is a set of all objects. But as stated in §1.2, we are deliberately omitting all
set-theoretic issues.)

2.2.3. Example. Another good example is the category Vecy of vector spaces over
a given field k. The objects are k-vector spaces, and the morphisms are linear
transformations. (What are the isomorphisms?)

2.2.A. UNIMPORTANT EXERCISE. A category in which each morphism is an iso-
morphism is called a groupoid. (This notion is not important in these notes. The
point of this exercise is to give you some practice with categories, by relating them
to an object you know well.)

(a) A perverse definition of a group is: a groupoid with one object. Make sense of
this.

(b) Describe a groupoid that is not a group.

2.2.B. EXERCISE. If A is an object in a category ¢, show that the invertible ele-
ments of Mor(A, A) form a group (called the automorphism group of A, denoted
Aut(A)). What are the automorphism groups of the objects in Examples 2.2.2
and 2.2.3? Show that two isomorphic objects have isomorphic automorphism
groups. (For readers with a topological background: if X is a topological space,
then the fundamental groupoid is the category where the objects are points of X,
and the morphisms x — y are paths from x to y, up to homotopy. Then the auto-
morphism group of x, is the (pointed) fundamental group 71 (X, xo). In the case
where X is connected, and 711 (X) is not abelian, this illustrates the fact that for
a connected groupoid — whose definition you can guess — the automorphism
groups of the objects are all isomorphic, but not canonically isomorphic.)

2.2.4. Example: abelian groups. The abelian groups, along with group homomor-
phisms, form a category Ab.

2.2.5. Important example: modules over aring. If A is aring, then the A-modules form
a category Moda. (This category has additional structure; it will be the prototypi-
cal example of an abelian category, see §2.6.) Taking A = k, we obtain Example 2.2.3;
taking A = Z, we obtain Example 2.2.4.

2.2.6. Example: rings. There is a category Rings, where the objects are rings, and the
morphisms are morphisms of rings (which send 1 to 1 by our conventions, §1.2).
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2.2.7. Example: topological spaces. The topological spaces, along with continuous
maps, form a category Top. The isomorphisms are homeomorphisms.

In all of the above examples, the objects of the categories were in obvious
ways sets with additional structure (a concrete category, although we won't use
this terminology). This needn’t be the case, as the next example shows.

2.2.8. Example: partially ordered sets. A partially ordered set, or poset, is a set S
along with a binary relation > on S satisfying:
(i) x > x (reflexivity),
(if) x > yand y > zimply x > z (transitivity), and
(iii) if x > yandy > x then x = y.
A partially ordered set (S,>) can be interpreted as a category whose objects are
the elements of S, and with a single morphism from x to y if and only if x > y (and
no morphism otherwise).
A trivial example is (S, >) where x >y if and only if x = y. Another example
is

(2.2.8.1)

oe<—-29

o —>

Here there are three objects. The identity morphisms are omitted for convenience,
and the two non-identity morphisms are depicted. A third example is

(2.2.8.2)

R

oe<——0
o<—-9

R

Here the “obvious” morphisms are again omitted: the identity morphisms, and
the morphism from the upper left to the lower right. Similarly,

depicts a partially ordered set, where again, only the “generating morphisms” are
depicted.

2.2.9. Example: the category of subsets of a set, and the category of open sets in a topo-
logical space. If X is a set, then the subsets form a partially ordered set, where the
order is given by inclusion. Informally, if U C V, then we have exactly one mor-
phism U — V in the category (and otherwise none). Similarly, if X is a topological
space, then the open sets form a partially ordered set, where the order is given by
inclusion.

2.2.10. Definition. A subcategory 7 of a category Z has as its objects some of the
objects of %, and some of the morphisms, such that the morphisms of 27 include
the identity morphisms of the objects of .7, and are closed under composition.
(For example, (2.2.8.1) is in an obvious way a subcategory of (2.2.8.2). Also, we
have an obvious “inclusion functor” i: .o/ — A.)

2.2.11. Functors.
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A covariant functor F from a category < to a category %, denoted F : &/ — %,
is the following data. It is a map of objects F : obj(.#Z) — obj(#), and for each
Aj, Az € &/, and morphism m : A; — A, a morphism F(m) : F(A;) — F(A;) in
2. We require that F preserves identity morphisms (for A € &7, F(ida) = id¢(a)),
and that F preserves composition (F(m; o m;) = F(m;) o F(m,)). (You may wish
to verify that covariant functors send isomorphisms to isomorphisms.) A trivial
example is the identity functor id : &/ — </, whose definition you can guess.
Here are some less trivial examples.

2.2.12. Example: a forgetful functor. Consider the functor from the category of
vector spaces (over a field k) Vecy to Sets, that associates to each vector space its
underlying set. The functor sends a linear transformation to its underlying map of
sets. This is an example of a forgetful functor, where some additional structure is
forgotten. Another example of a forgetful functor is Moda — Ab from A-modules
to abelian groups, remembering only the abelian group structure of the A-module.

2.2.13. Topological examples. Examples of covariant functors include the funda-
mental group functor 717, which sends a topological space X with choice of a point
xo € X to a group 7 (X, xo) (what are the objects and morphisms of the source cat-
egory?), and the ith homology functor Top — Ab, which sends a topological space
X to its ith homology group Hi (X, Z). The covariance corresponds to the fact that
a (continuous) morphism of pointed topological spaces f : X — Y with f(xo) = uo
induces a map of fundamental groups 71 (X,%xo) — 71(Y,yo), and similarly for
homology groups.

2.2.14. Example. Suppose A is an object in a category €. Then there is a func-
tor h* : 4 — Sets sending B € ¢ to Mor(A,B), and sending f : By — B; to
Mor(A,B1) — Mor(A, B,) described by

[g:A —Byj]—[fog:A — By — Bl
This seemingly silly functor ends up surprisingly being an important concept.

2.2.15. Definitions. IfF: & — % and G : & — € are covariant functors, then we
define a functor G o F : &/ — € (the composition of & and .#) in the obvious way.
Composition of functors is associative in an evident sense.

A covariant functor F : &/ — 2 is faithful if for all A|/A’ € </, the map
Mor(A,A’) — Morg(F(A),F(A’)) is injective, and full if it is surjective. A func-
tor that is full and faithful is fully faithful. A subcategory i : &/ — % is a full
subcategory if i is full. Thus a subcategory ./’ of &/ is full if and only if for all
A,B € obj(«/’), Mor/(A,B) = Mor (A, B). For example, the forgetful functor
Vec, — Sets is faithful, but not full; and if A is a ring, the category of finitely
generated A-modules is a full subcategory of the category Moda of A-modules.

2.2.16. Definition. A contravariant functor is defined in the same way as a covari-
ant functor, except the arrows switch directions: in the above language, F(A; —
A>) is now an arrow from F(A;) to F(A1). (Thus .% (m; o my) = % (mq) o F(m,),
not.%(my) o #(mq).)

It is wise to state whether a functor is covariant or contravariant, unless the
context makes it very clear. If it is not stated (and the context does not make it
clear), the functor is often assumed to be covariant.
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(Sometimes people describe a contravariant functor ¥ — & as a covariant
functor €°PP — 2, where ¢°FP is the same category as ¢ except that the arrows
go in the opposite direction. Here €°FP is said to be the opposite category to )
One can define fullness, etc. for contravariant functors, and you should do so.

2.2.17. Linear algebra example. If Vecy is the category of k-vector spaces (intro-
duced in Example 2.2.3), then taking duals gives a contravariant functor (-) :
Vecy, — Vecy. Indeed, to each linear transformation f : V — W, we have a dual
transformation f¥ : WY — VV,and (fog)Y = g¥ o fV.

2.2.18. Topological example (cf. Example 2.2.13) for those who have seen cohomology. The
ith cohomology functor H'(-,Z) : Top — Ab is a contravariant functor.

2.2.19. Example. There is a contravariant functor Top — Rings taking a topological
space X to the ring of real-valued continuous functions on X. A morphism of
topological spaces X — Y (a continuous map) induces the pullback map from
functions on Y to maps on X.

2.2.20. Example (the functor of points, cf. Example 2.2.14). Suppose A is an object
of a category ¥. Then there is a contravariant functor ha : ¥ — Sefs sending
B € ¢ to Mor(B, A), and sending the morphism f : By — B, to the morphism
Mor(B,,A) — Mor(B;,A) via

[g:B; 2 Al—[gof:By — B, — Al

This example initially looks weird and different, but Examples 2.2.17 and 2.2.19
may be interpreted as special cases; do you see how? What is A in each case?
This functor might reasonably be called the functor of maps (to A), but is actually
known as the functor of points. We will meet this functor again (in the category
of schemes) in §2.3.10 and Definition 7.3.7.

2.2.21. x Natural transformations (and natural isomorphisms) of covariant func-
tors, and equivalences of categories.

(This notion won’t come up in an essential way until at least Chapter 7, so you
shouldn’t read this section until then.) Suppose F and G are two covariant functors
from &/ to %. A natural transformation of covariant functors F — G is the data
of a morphism mpa : F(A) — G(A) for each A € & such that for each f: A — A’
in 7, the diagram

FA) — 2 Fan

o e
G(A) —= G(A")
G(f)
commutes. A natural isomorphism of functors is a natural transformation such
that each ma is an isomorphism. (We make analogous definitions when F and G
are both contravariant.)

The data of functors F: & — #and F' :  — </ such that F o F/ is naturally
isomorphic to the identity functor Iz on % and F’ o F is naturally isomorphic to
Iz is said to be an equivalence of categories. “Equivalence of categories” is an
equivalence relation on categories. The right notion of when two categories are
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“essentially the same” is not isomorphism (a functor giving bijections of objects and
morphisms) but equivalence. Exercises 2.2.C and 2.2.D might give you some vague
sense of this. Later exercises (for example, that “rings” and “affine schemes” are
essentially the same, once arrows are reversed, Exercise 7.3.D) may help too.

Two examples might make this strange concept more comprehensible. The
double dual of a finite-dimensional vector space V is not V, but we learn early to
say that it is canonically isomorphic to V. We can make that precise as follows. Let
f.d.Vec, be the category of finite-dimensional vector spaces over k. Note that this
category contains oodles of vector spaces of each dimension.

2.2.C. EXERCISE. Let (-)VV : fd.Vec, — f.d.Vec, be the double dual functor from
the category of finite-dimensional vector spaces over k to itself. Show that (-)VV
is naturally isomorphic to the identity functor on f.d.Vec,. (Without the finite-
dimensional hypothesis, we only get a natural transformation of functors from
idto (1)VV)

Let 7 be the category whose objects are the k-vector spaces k™ for eachn > 0
(there is one vector space for each n), and whose morphisms are linear transfor-
mations. The objects of ¥ can be thought of as vector spaces with bases, and the
morphisms as matrices. There is an obvious functor ¥* — f.d.Vec, , as each k™ is a
finite-dimensional vector space.

2.2.D. EXERCISE. ~ Show that ¥* — f.d.Vec, gives an equivalence of categories,
by describing an “inverse” functor. (Recall that we are being cavalier about set-
theoretic assumptions, see Caution 1.2.1, so feel free to simultaneously choose
bases for each vector space in f.d.Vec, . To make this precise, you will need to use
Godel-Bernays set theory or else replace f.d.Vec, with a very similar small category,
but we won’t worry about this.)

2.2.22. xx Aside for experts. Your argument for Exercise 2.2.D will show that (mod-
ulo set-theoretic issues) this definition of equivalence of categories is the same as
another one commonly given: a covariant functor F : & — % is an equivalence
of categories if it is fully faithful and every object of % is isomorphic to an object
of the form F(A) for some A € &7 (F is essentially surjective). Indeed, one can show
that such a functor has a quasiinverse, i.e., a functor G : # — &/ (necessarily also
an equivalence and unique up to unique isomorphism) for which GoF = id,, and
Fo G = idg, and conversely, any functor that has a quasiinverse is an equivalence.

2.3 Universal properties determine an object up to unique
isomorphism

Given some category that we come up with, we often will have ways of pro-
ducing new objects from old. In good circumstances, such a definition can be
made using the notion of a universal property. Informally, we wish that there were
an object with some property. We first show that if it exists, then it is essentially
unique, or more precisely, is unique up to unique isomorphism. Then we go about
constructing an example of such an object to show existence.
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Explicit constructions are sometimes easier to work with than universal prop-
erties, but with a little practice, universal properties are useful in proving things
quickly and slickly. Indeed, when learning the subject, people often find explicit
constructions more appealing, and use them more often in proofs, but as they be-
come more experienced, they find universal property arguments more elegant and
insightful.

2.3.1. Products were defined by universal property. We have seen one important
example of a universal property argument already in §2.1: products. You should
go back and verify that our discussion there gives a notion of product in any cate-
gory, and shows that products, if they exist, are unique up to unique isomorphism.

2.3.2. Initial, final, and zero objects. Here are some simple but useful concepts
that will give you practice with universal property arguments. An object of a
category ¥ is an initial object if it has precisely one map to every object. It is a
final object if it has precisely one map from every object. It is a zero object if it is
both an initial object and a final object.

2.3.A. EXERCISE. Show that any two initial objects are uniquely isomorphic. Show
that any two final objects are uniquely isomorphic.

In other words, if an initial object exists, it is unique up to unique isomorphism,
and similarly for final objects. This (partially) justifies the phrase “the initial object”
rather than “an initial object”, and similarly for “the final object” and “the zero
object”. (Convention: we often say “the”, not “a”, for anything defined up to
unique isomorphism.)

2.3.B. EXERCISE. What are the initial and final objects in Sets, Rings, and Top (if
they exist)? How about in the two examples of §2.2.9?

2.3.3. Localization of rings and modules. Another important example of a defi-
nition by universal property is the notion of localization of a ring. We first review a
constructive definition, and then reinterpret the notion in terms of universal prop-
erty. A multiplicative subset S of a ring A is a subset closed under multiplication
containing 1. We define a ring S~'A. The elements of S~'A are of the form a/s
where a € A and s € S, and where a;/s1 = a,/s; if (and only if) for some s € S,
s(spa; —sjaz) = 0. We define (a;/s1) + (az/s2) = (s2a7 + s1az2)/(s1s2), and
(a1/s1) x (az/s2) = (araz)/(s1s2). (If you wish, you may check that this equal-
ity of fractions really is an equivalence relation and the two binary operations on
fractions are well-defined on equivalence classes and make S~' A into a ring.) We
have a canonical ring map

(2.3.3.1) A—STTA

given by a — a/1. Note thatif 0 € S, S™' A is the O-ring.

There are two particularly important flavors of multiplicative subsets. The
first is {1,f,f?,...}, where f € A. This localization is denoted A¢. The second is
A — p, where p is a prime ideal. This localization S~'A is denoted A,. (Notational
warning: If p is a prime ideal, then A, means you're allowed to divide by elements
not in p. However, if f € A, Af means you're allowed to divide by f. This can be
confusing. For example, if (f) is a prime ideal, then A # A¢).)
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Warning: sometimes localization is first introduced in the special case where A
is an integral domain and 0 ¢ S. In that case, A — S—TA, but this isn’t always true,
as shown by the following exercise. (But we will see that noninjective localizations
needn’t be pathological, and we can sometimes understand them geometrically,
see Exercise 4.2.K.)

2.3.C. EXERCISE. Show that A — S~ 'A is injective if and only if S contains no
zerodivisors. (A zerodivisor of a ring A is an element a such that there is a nonzero
element b with ab = 0. The other elements of A are called non-zerodivisors. For
example, an invertible element is never a zerodivisor. Counter-intuitively, 0 is a
zerodivisor in every ring but the 0-ring.)

If A is an integral domain and S = A—{0}, then S~" A is called the fraction field
of A, which we denote K(A). The previous exercise shows that A is a subring of its
fraction field K(A). We now return to the case where A is a general (commutative)
ring.

2.3.D. EXERCISE. Verify that A — S~!A satisfies the following universal property:
S~'A is initial among A-algebras B where every element of S is sent to an invert-
ible element in B. (Recall: the data of “an A-algebra B” and “a ring map A — B”
are the same.) Translation: any map A — B where every element of S is sent to an
invertible element must factor uniquely through A — S™'A. Another translation:
a ring map out of S'A is the same thing as a ring map from A that sends every
element of S to an invertible element. Furthermore, an S—'A-module is the same
thing as an A-module for which s x - : M — M is an A-module isomorphism for
alls € S.

In fact, it is cleaner to define A — S~'A by the universal property, and to
show that it exists, and to use the universal property to check various properties
S~'A has. Let’s get some practice with this by defining localizations of modules
by universal property. Suppose M is an A-module. We define the A-module map
¢ : M — S~"M as being initial among A-module maps M — N such that elements
of S are invertible in N (s x - : N — N is an isomorphism for all s € S). More
precisely, any such map o : M — N factors uniquely through ¢:

M—Yss5T™m

o 33!
Y

N

(Translation: M — S~'M is universal (initial) among A-module maps from M to
modules that are actually S~' A-modules. Can you make this precise by defining
clearly the objects and morphisms in this category?)

Notice: (i) this determines ¢ : M — S™"M up to unique isomorphism (you
should think through what this means); (ii) we are defining not only S~'M, but
also the map ¢ at the same time; and (iii) essentially by definition the A-module
structure on S~'M extends to an S~' A-module structure.

2.3.E. EXERCISE. Show that ¢ : M — S~'M exists, by constructing something
satisfying the universal property. Hint: define elements of S~'M to be of the form
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m/s where m € M and s € S, and m;/s; = my/s; if and only if for some s € S,
s(s;mq—s1my) = 0. Define the additive structure by (m;/s1)+(mz/s2) = (somi+
s1m;y)/(s1s2), and the S—TA-module structure (and hence the A-module structure)
is given by (a1/s1) - (m2/s2) = (aym2)/(s1s2).

2.3.F. EXERCISE. Show that localization commutes with finite products. In other
words, if My, ..., My, are A-modules, describe an isomorphism (of A-modules,
and of S~TA-modules) ST (M x --- X M) — S™'M; x --- x S~TM,,. Show that
“localization does not necessarily commute with infinite products”: the obvious
map S~ (T, Mi) — []; S~"M; induced by the universal property of localization
is not always an isomorphism. (Hint: (1,1/2,1/3,1/4,...) e Q@ xQ x ---))

2.3.4. Remark. Localization does not necessarily commute with Hom, see Exam-
ple 2.6.8. But Exercise 2.6.G will show that in good situations (if the first argument
of Hom is finitely presented), localization does commute with Hom.

2.3.5. Tensor products. Another important example of a universal property con-
struction is the notion of a tensor product of A-modules

®A : obj(Moda) x obj(Moda) —— obj(Mod )

MN)——M®a N

The subscript A is often suppressed when it is clear from context. The tensor prod-
uct is often defined as follows. Suppose you have two A-modules M and N. Then
elements of the tensor product M®a N are finite A-linear combinations of symbols
m®n(m e M, n € N), subject to relations (m; + M) @ =m; @n+mz ®n,
me(n;+n) =men;+meny, a(m@n) = (am)®n =mq® (an) (wherea € A,
my, my € M, ny,n, € N). More formally, M ®a N is the free A-module generated
by M x N, quotiented by the submodule generated by (m; + m,,n) — (m;,n) —
(my,n), (m,n;+n,)—(m,nq)—(m,ny), a(m,n)—(am,n), and a(m,n)—(m, an)
fora e A, m,m;,m2 € M, n,ny,n; € N. The image of (m,n) in this quotient is
m®n.
If A is a field k, we recover the tensor product of vector spaces.

2.3.G. EXERCISE (IF YOU HAVEN’'T SEEN TENSOR PRODUCTS BEFORE). Show that
Z/(10) ®z Z/(12) = Z/(2). (This exercise is intended to give some hands-on prac-
tice with tensor products.)

2.3.H. IMPORTANT EXERCISE: RIGHT-EXACTNESS OF (-) ®a N. Show that (-)®a N
gives a covariant functor Moda — Moda. Show that (-) ®a N is a right-exact
functor, i.e. if

M —-M-M"—=0

is an exact sequence of A-modules (which means f : M — M is surjective, and
M’ surjects onto the kernel of f; see §2.6), then the induced sequence

M'@AN ->MeaN-M"@aN =0
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is also exact. This exercise is repeated in Exercise 2.6.F, but you may get a lot out of
doing it now. (You will be reminded of the definition of right-exactness in §2.6.5.)

The constructive definition ® is a weird definition, and really the “wrong”
definition. To motivate a better one: notice that there is a natural A-bilinear map
M xN —= M®a N. If M,N,P € Moda, amap f: M x N — P is A-bilinear if
f(mi; + ma,n) = f(my,n) + f(my,n), f(m,n; + n2) = f(m,ny) + f(m,n>), and
flam,n) = f(m, an) = af(m,n).) Any A-bilinear map M x N — P factors through
the tensor product uniquely: M x N - M ®a N — P. (Think this through!)

We can take this as the definition of the tensor product as follows. It is an A-
module T along with an A-bilinear map t : M x N — T, such that given any
A-bilinear map t' : M x N — T/, there is a unique A-linear map f : T — T’ such
thatt' =fot.

M x N t T

\\ p 3

T/

2.3.I. EXERCISE. Show that (T, t: M xN — T) is unique up to unique isomorphism.
Hint: first figure out what “unique up to unique isomorphism” means for such
pairs, using a category of pairs (T, t). Then follow the analogous argument for the
product.

In short: given M and N, there is an A-bilinear mapt: M x N — M ®a N,
unique up to unique isomorphism, defined by the following universal property:
for any A-bilinear map t’ : M x N — T’ there is a unique A-linear map f : M ®a
N — T’ such thatt’ =fot.

As with all universal property arguments, this argument shows uniqueness
assuming existence. To show existence, we need an explicit construction.

2.3.]J. EXERCISE. Show that the construction of §2.3.5 satisfies the universal prop-
erty of tensor product.

The two exercises below are some useful facts about tensor products with
which you should be familiar.

2.3.K. IMPORTANT EXERCISE.

(a) If M is an A-module and A — B is a morphism of rings, give B®a M the struc-
ture of a B-module (this is part of the exercise). Show that this describes a functor
Moda — Modg.

(b) If further A — C is another morphism of rings, show that B ® C has a natural
structure of a ring. Hint: multiplication will be given by (by ® c¢1)(b2 ® ¢z) =
(b1b2) @ (c1c2). (Exercise 2.3.T will interpret this construction as a fibered coprod-
uct.)

2.3.L. IMPORTANT EXERCISE. If S is a multiplicative subset of A and M is an A-
module, describe a natural isomorphism (S~TA)®a M = S~'M (as S~' A-modules
and as A-modules).
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2.3.6. Essential Example: Fibered products. Suppose we have morphisms f :
X = Zand g : Y — Z (in any category). Then the fibered product is an object
X xz Y along with morphisms ntx : X xz Y — Xand 7ty : X xz Y — Y, where the
two compositions f o 7tx, g oy : X xz Y — Z agree, such that given any object W
with maps to X and Y (wWhose compositions to Z agree), these maps factor through
some unique W — X xz Y:

X——>Z

(Warning: the definition of the fibered product depends on f and g, even though
they are omitted from the notation X xz Y.)

By the usual universal property argument, if it exists, it is unique up to unique
isomorphism. (You should think this through until it is clear to you.) Thus the use
of the phrase “the fibered product” (rather than “a fibered product”) is reasonable,
and we should reasonably be allowed to give it the name X xz Y. We know what
maps to it are: they are precisely maps to X and maps to Y that agree as maps to Z.

Depending on your religion, the diagram

XXZY4>Y
Ty

iﬁ X l 9
X— >z
is called a fibered/pullback/Cartesian diagram/square (six possibilities).
The right way to interpret the notion of fibered product is first to think about

what it means in the category of sets.

2.3.M. EXERCISE. Show that in Sets,
XxzY={(xy) e XxY : f(x) =gy}

More precisely, show that the right side, equipped with its evident maps to X and
Y, satisfies the universal property of the fibered product. (This will help you build
intuition for fibered products.)

2.3.N. EXERCISE. If X is a topological space, show that fibered products always
exist in the category of open sets of X, by describing what a fibered product is.
(Hint: it has a one-word description.)

2.3.0. EXERCISE. If Z is the final object in a category ¢, and X,Y € ¥, show that
“XxzY =XxY" “the” fibered product over Z is uniquely isomorphic to “the”
product. Assume all relevant (fibered) products exist. (This is an exercise about
unwinding the definition.)

2.3.P. USEFUL EXERCISE: TOWERS OF FIBER DIAGRAMS ARE FIBER DIAGRAMS. If
the two squares in the following commutative diagram are fiber diagrams, show
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that the “outside rectangle” (involving U, V, Y, and Z) is also a fiber diagram.

Uu—m—mVv

!
%

2.3.Q. EXERCISE. Given morphisms X; — Y, X; — Y, and Y — Z, show that
there is a natural morphism X; xy X — X; xz X, assuming that both fibered
products exist. (This is trivial once you figure out what it is saying. The point of
this exercise is to see why it is trivial.)

R

N<—X=<—

_

2.3.R. USEFUL EXERCISE: THE MAGIC DIAGRAM. Suppose we are given mor-
phisms X;,X; — Yand Y — Z. Show that the following diagram is a fibered
square.

Xy xy X —= X1 xz X2

l l

Y——YXxzY

Assume all relevant (fibered) products exist. This diagram is surprisingly useful
— so useful that we will call it the magic diagram.

2.3.7. Coproducts. Define coproduct in a category by reversing all the arrows in
the definition of product. Define fibered coproduct in a category by reversing all
the arrows in the definition of fibered product.

2.3.S. EXERCISE. Show that coproduct for Sets is disjoint union. This is why we
use the notation [ | for disjoint union.

2.3.T. EXERCISE. Suppose A — B and A — C are two ring morphisms, so in
particular B and C are A-modules. Recall (Exercise 2.3.K) that B ®a C has a ring
structure. Show that there is a natural morphism B — B ®a C givenby b — b® 1.
(This is not necessarily an inclusion; see Exercise 2.3.G.) Similarly, there is a natural
morphism C — B®a C. Show that this gives a fibered coproduct on rings, i.e. that

Ba C=——C

]

B A

satisfies the universal property of fibered coproduct.
2.3.8. Monomorphisms and epimorphisms.

2.3.9. Definition. A morphism f : X — Y is a monomorphism if any two mor-
phisms g7 : Z — Xand g» : Z — X such that f o g1 = f o g, must satisfy g1 = g5.
In other words, there is at most one way of filling in the dotted arrow so that the
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diagram

commutes — for any object Z, the natural map Mor(Z, X) — Mor(Z,Y) is an injec-
tion. Intuitively, it is the categorical version of an injective map, and indeed this
notion generalizes the familiar notion of injective maps of sets. (The reason we
don’t use the word “injective” is that in some contexts, “injective” will have an
intuitive meaning which may not agree with “monomorphism”. One example: in
the category of divisible groups, the map Q — Q/Z is a monomorphism but not
injective. This is also the case with “epimorphism” vs. “surjective”.)

2.3.U. EXERCISE. Show that the composition of two monomorphisms is a monomor-
phism.

2.3.V. EXERCISE. Prove that a morphism X — Y is a monomorphism if and only
if the fibered product X xy X exists, and the induced morphism X — X xy X
is an isomorphism. We may then take this as the definition of monomorphism.
(Monomorphisms aren’t central to future discussions, although they will come up
again. This exercise is just good practice.)

2.3.W. EASY EXERCISE. We use the notation of Exercise 2.3.Q. Show thatif Y — Z
is a monomorphism, then the morphism X; xy X; — X3 xz X, you described in
Exercise 2.3.Q is an isomorphism. We will use this later when talking about fibered
products. (Hint: for any object V, give a natural bijection between maps from V
to the first and maps from V to the second. It is also possible to use the magic
diagram, Exercise 2.3.R.)

The notion of an epimorphism is “dual” to the definition of monomorphism,
where all the arrows are reversed. This concept will not be central for us, although
it turns up in the definition of an abelian category. Intuitively, it is the categor-
ical version of a surjective map. (But be careful when working with categories
of objects that are sets with additional structure, as epimorphisms need not be
surjective. Example: in the category Rings, Z — Q is an epimorphism, but not
surjective.)

2.3.10. Representable functors and Yoneda’s lemma. Much of our discussion
about universal properties can be cleanly expressed in terms of representable func-
tors, under the rubric of “Yoneda’s Lemma”. Yoneda’s lemma is an easy fact stated
in a complicated way. Informally speaking, you can essentially recover an object
in a category by knowing the maps into it. For example, we have seen that the
data of maps to X x Y are naturally (canonically) the data of maps to X and to Y.
Indeed, we have now taken this as the definition of X x Y.

Recall Example 2.2.20. Suppose A is an object of category ¢. For any object
C € €, we have a set of morphisms Mor(C, A). If we have a morphism f: B — C,
we get a map of sets

(2.3.10.1) Mor(C,A) — Mor(B, A),



30 Math 216: Foundations of Algebraic Geometry

by composition: given a map from C to A, we get a map from B to A by precom-
posing with f : B — C. Hence this gives a contravariant functor ha : € — Sets.
Yoneda’s Lemma states that the functor ha determines A up to unique isomor-
phism. More precisely:

2.3.X. IMPORTANT EXERCISE THAT YOU SHOULD DO ONCE IN YOUR LIFE (YONEDA’S
LEMMA). (a) Suppose you have two objects A and A’ in a category %, and mor-
phisms

(2.3.10.2) ic : Mor(C,A) — Mor(C,A’)

that commute with the maps (2.3.10.1). Show that the ic (as C ranges over the
objects of ¥) are induced from a unique morphism g : A — A’. More precisely,
show that there is a unique morphism g : A — A’ such that for all C € €, ic is
u — gou. (b) If furthermore the ic are all bijections, show that the resulting g is
an isomorphism. (Hint for both: This is much easier than it looks. This statement
is so general that there are really only a couple of things that you could possibly
try. For example, if you're hoping to find a morphism A — A’, where will you
find it? Well, you are looking for an element Mor(A, A’). So just plug in C = A to
(2.3.10.2), and see where the identity goes.)

There is an analogous statement with the arrows reversed, where instead of
maps into A, you think of maps from A. The role of the contravariant functor ha
of Example 2.2.20 is played by the covariant functor h* of Example 2.2.14. Because
the proof is the same (with the arrows reversed), you needn’t think it through.

The phrase “Yoneda’s lemma” properly refers to a more general statement.
Although it looks more complicated, it is no harder to prove.

2.3.Y. x EXERCISE.

(a) Suppose A and B are objects in a category €. Give a bijection between the nat-
ural transformations h* — h® of covariant functors ¢ — Sets (see Example 2.2.14
for the definition) and the morphisms B — A.

(b) State and prove the corresponding fact for contravariant functors ha (see Ex-
ample 2.2.20). Remark: A contravariant functor F from % to Sets is said to be
representable if there is a natural isomorphism

&:F——=ha .

Thus the representing object A is determined up to unique isomorphism by the
pair (F,&). There is a similar definition for covariant functors. (We will revisit
this in §7.6, and this problem will appear again as Exercise 7.6.C. The element
£ 1(ida) € F(A) is often called the “universal object”; do you see why?)

(c) Yoneda’s lemma. Suppose F is a covariant functor ¥ — Sets, and A € €.
Give a bijection between the natural transformations h* — F and F(A). (The
corresponding fact for contravariant functors is essentially Exercise 10.1.C.)

In fancy terms, Yoneda’s lemma states the following. Given a category %, we
can produce a new category, called the functor category of ¢, where the objects are
contravariant functors ¥ — Sets, and the morphisms are natural transformations
of such functors. We have a functor (which we can usefully call h) from % to its
functor category, which sends A to ha. Yoneda’s Lemma states that this is a fully
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faithful functor, called the Yoneda embedding. (Fully faithful functors were defined
in §2.2.15.)

2.3.11. Joke (by Mike Stay). The Yoda embedding, contravariant it is.

2.4 Limits and colimits

Limits and colimits are two important definitions determined by universal
properties. They generalize a number of familiar constructions. I will give the def-
inition first, and then show you why it is familiar. For example, fractions will be
motivating examples of colimits (Exercise 2.4.B(a)), and the p-adic integers (Exam-
ple 2.4.3) will be motivating examples of limits.

2.4.1. Limits. We say that a category is a small category if the objects and the
morphisms are sets. (This is a technical condition intended only for experts.) Sup-
pose .# is any small category, and ¢ is any category. Then a functor F: ¥ — ¢
(i.e. with an object A; € ¥ for each element i € .#, and appropriate commuting
morphisms dictated by .#) is said to be a diagram indexed by .#. We call .# an
index category. Our index categories will usually be partially ordered sets (Ex-
ample 2.2.8), in which in particular there is at most one morphism between any
two objects. (But other examples are sometimes useful.) For example, if O is the
category

oe<——0
o<—-"20

and < is a category, then a functor 0 — 7 is precisely the data of a commuting
square in 7.

Then the limit of the diagram is an object lim ; A of %’ along with morphisms
fj:lim ~Ai — Aj for each j € .7, such thatif m : j — k is a morphism in .7, then

(2.4.1.1) lim , As

commutes, and this object and maps to each A; are universal (final) with respect to
this property. More precisely, given any other object W along with maps g; : W —
A; commuting with the F(m) (if m : j — kis a morphismin .#, then gx = F(m)og;j),
then there is a unique map g : W — m ,Aisothat gi = f; o g forall i. (In some
cases, the limit is sometimes called the inverse limit or projective limit. We won't
use this language.) By the usual universal property argument, if the limit exists, it
is unique up to unique isomorphism.
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2.4.2. Examples: products. For example, if .7 is the partially ordered set

we obtain the fibered product.
If 7 is

we obtain the product.

If .7 is a set (i.e. the only morphisms are the identity maps), then the limit is
called the product of the A;, and is denoted [ [; Ai. The special case where .# has
two elements is the example of the previous paragraph.

If .# has an initial object e, then A is the limit, and in particular the limit
always exists.

2.4.3. Unimportant Example: the p-adic integers. For a prime number p, the p-adic
integers (or more informally, p-adics), Z,, are often described informally (and
somewhat unnaturally) as being of the form Z, = ao + a1p + ap? + --- (where
0 < ai < p). They are an example of a limit in the category of rings:

Ly

=

o ——7L/p> ——=Z/p* —=Z/p.

(Warning: Z, is sometimes is used to denote the integers modulo p, but Z/(p) or
Z/pZis better to use for this, to avoid confusion. Worse: by §2.3.3, Z,, also denotes
those rationals whose denominators are a power of p. Hopefully the meaning of
Z,, will be clear from the context.)

Limits do not always exist for any index category .#. However, you can often
easily check that limits exist if the objects of your category can be interpreted as
sets with additional structure, and arbitrary products exist (respecting the set-like
structure).

2.4.A. IMPORTANT EXERCISE. Show that in the category Sets,
{(ai)iey € HAi :F(m)(aj) = ax forall m € Mor »(j, k) € Mor(ﬂ)} ,

along with the obvious projection maps to each A, is the limit Jim _A;.

This clearly also works in the category Moda of A-modules (in particular Vecy
and Ab), as well as Rings.

From this point of view, 2 + 3p + 2p2 +--- € Z, can be understood as the
sequence (2,2 +3p,2 +3p + 2p2,...).

2.44. Colimits. = More immediately relevant for us will be the dual (arrow-
reversed version) of the notion of limit (or inverse limit). We just flip the arrows
f; in (2.4.1.1), and get the notion of a colimit, which is denoted h_n)lyAi. (You
should draw the corresponding diagram.) Again, if it exists, it is unique up to
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unique isomorphism. (In some cases, the colimit is sometimes called the direct
limit, inductive limit, or injective limit. We won't use this language. I prefer us-
ing limit/colimit in analogy with kernel/cokernel and product/coproduct. This
is more than analogy, as kernels and products may be interpreted as limits, and
similarly with cokernels and coproducts. Also, I remember that kernels “map to”,
and cokernels are “mapped to”, which reminds me that a limit maps fo all the ob-
jects in the big commutative diagram indexed by .#; and a colimit has a map from
all the objects.)

2.4.5. Joke. A comathematician is a device for turning cotheorems into ffee.

Even though we have just flipped the arrows, colimits behave quite differently
from limits.

2.4.6. Example. The set 5~*°Z of rational numbers whose denominators are powers
of 5 is a colimit li_n>15_iZ. More precisely, 5~ *°Z is the colimit of the diagram

7 —>517 —=5727 ——>...

The colimit over an index set I is called the coproduct, denoted [ [; A;, and is
the dual (arrow-reversed) notion to the product.

2.4.B. EXERCISE. (a) Interpret the statement “Q = hi)n %Z”. (b) Interpret the
union of some subsets of a given set as a colimit. (Dually, the intersection can be
interpreted as a limit.) The objects of the category in question are the subsets of
the given set.

Colimits don’t always exist, but there are two useful large classes of examples
for which they do.

2.4.7. Definition. A nonempty partially ordered set (S, >) is filtered (or is said to
be a filtered set) if for each x,y € S, there is a z such that x > z and y > z. More
generally, a nonempty category .7 is filtered if:

(i) for each x,y € ., thereisaz € .# and arrows x — zand y — z, and
(ii) for every two arrows u,v : x — y, there is an arrow w : y — z such that
WwWou=wow.

(Other terminologies are also commonly used, such as “directed partially ordered
set” and “filtered index category”, respectively.)

2.4.C. EXERCISE. Suppose .¥ is filtered. (We will almost exclusively use the case
where .# is a filtered set.) Recall the symbol | [ for disjoint union of sets. Show
that any diagram in Sets indexed by .# has the following, with the obvious maps
to it, as a colimit:

(ay,i) € H A (ai,i) ~ (aj,j) if and only if there are f: Ay — Ay and
v b * g: Aj — Ay in the diagram for which f(a;) = g(a;) in Ax

(You will see that the “.# filtered” hypothesis is there is to ensure that ~ is an
equivalence relation.)

For example, in Example 2.4.6, each element of the colimit is an element of
something upstairs, but you can’t say in advance what it is an element of. For
example, 17/125 is an element of the 5737 (or 547, or later ones), but not 5 2Z.
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This idea applies to many categories whose objects can be interpreted as sets
with additional structure (such as abelian groups, A-modules, groups, etc.). For
example, the colimit lim M; in the category of A-modules Moda can be described
as follows. The set underlying lim M; is defined as in Exercise 2.4.C. To add the
elements m; € M; and m; € M;, choose an { € .# with arrows u : 1 — { and
v:j — {, and then define the sum of m; and m; to be F(u)(my) + F(v)(m;) € M,.
The element m; € M is 0 if and only if there is some arrow u : i — k for which
F(u)(mi) =0, i.e. if it becomes 0 “later in the diagram”. Last, multiplication by an
element of A is defined in the obvious way. (You can now reinterpret Example 2.4.6
as a colimit of groups, not just of sets.)

2.4.D. EXERCISE.  Verify that the A-module described above is indeed the col-
imit. (Make sure you verify that addition is well-defined, i.e. is independent of the
choice of representatives m; and m;, the choice of {, and the choice of arrows u
and v. Similarly, make sure that scalar multiplication is well-defined.)

2.4.E. USEFUL EXERCISE (LOCALIZATION AS A COLIMIT). Generalize Exercise 2.4.B(a)
to interpret localization of an integral domain as a colimit over a filtered set: sup-
pose S is a multiplicative set of A, and interpret S™'A = h_n)l %A where the limit is
over s € S, and in the category of A-modules. (Aside: Can you make some version

of this work even if A isn’t an integral domain, e.g. S™'A = lim A? This will work

in the category of A-algebras.)

A variant of this construction works without the filtered condition, if you have
another means of “connecting elements in different objects of your diagram”. For
example:

2.4.F. EXERCISE: COLIMITS OF A-MODULES WITHOUT THE FILTERED CONDITION.
Suppose you are given a diagram of A-modules indexed by .#: F : . — Moda,
where we let M; := F(i). Show that the colimit is ®ic_»M; modulo the relations
my —F(n)(my) foreveryn :i — jin .# (i.e. for every arrow in the diagram). (Some-
what more precisely: “modulo” means “quotiented by the submodule generated

by”-)

2.4.8. Summary. One useful thing to informally keep in mind is the following. In
a category where the objects are “set-like”, an element of a limit can be thought of
as a family of elements of each object in the diagram, that are “compatible” (Exer-
cise 2.4.A). And an element of a colimit can be thought of (“has a representative
that is”) an element of a single object in the diagram (Exercise 2.4.C). Even though
the definitions of limit and colimit are the same, just with arrows reversed, these
interpretations are quite different.

2.4.9. Small remark. In fact, colimits exist in the category of sets for all reasonable
(“small”) index categories, but that won’t matter to us.

2.5 Adjoints

We next come to a very useful notion closely related to universal properties.
Just as a universal property “essentially” (up to unique isomorphism) determines
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an object in a category (assuming such an object exists), “adjoints” essentially de-
termine a functor (again, assuming it exists). Two covariant functors F : &/ — %
and G : # — </ are adjoint if there is a natural bijection for all A € o/ and B € #

(2.5.0.1) Tag : Morg(F(A),B) — Mor (A, G(B)).

We say that (F, G) form an adjoint pair, and that F is left-adjoint to G (and G is
right-adjoint to F). We say Fis a left adjoint (and G is a right adjoint). By “natural”
we mean the following. For all f : A — A’ in <7, we require

(2.5.0.2) Morg(F(A'), B) ——~ Mor(F(A), B)

iﬂrA/B \LTAB

Mor.,(A’,G(B)) ——= Mor.,(A, G(B))

to commute, and for all g : B — B’ in % we want a similar commutative diagram
to commute. (Here f* is the map induced by f : A — A’, and Ff* is the map
induced by Ff : F(A) — F(A').)

2.5.A. EXERCISE. Write down what this diagram should be.

2.5.B. EXERCISE. Show that the map tag (2.5.0.1) has the following properties.
For each A there is a map na : A — GF(A) so that for any g : F(A) — B, the
corresponding Tag(g) : A — G(B) is given by the composition

nA Gg
_—

A GF(A) —2~ G(B).

Similarly, there is a map eg : FG(B) — B for each B so that for any f : A — G(B),
the corresponding map T;\}g (f) : F(A) — B is given by the composition

FA) "~ FG(B) -~ B.

Here is a key example of an adjoint pair.

2.5.C. EXERCISE. Suppose M, N, and P are A-modules (where A is a ring). De-
scribe a bijection Homa (M ®a N, P) & Homa (M, Homa (N, P)). (Hint: try to use
the universal property of ®.)

2.5.D. EXERCISE. Show that (-) ®a N and Homa (N, -) are adjoint functors.

2.5.E. EXERCISE. Suppose B — A is a morphism of rings. If M is an A-module,
you can create a B-module Mg by considering it as a B-module. This gives a
functor -3 : Moda — Modg. Show that this functor is right-adjoint to - @5 A. In
other words, describe a bijection

Homa (N ® A, M) = Homg (N, M3g)

functorial in both arguments. (This adjoint pair is very important, and is the key
player in Chapter 17.)

2.5.1. x Fancier remarks we won’t use. You can check that the left adjoint determines
the right adjoint up to natural isomorphism, and vice versa. The maps na and
ep of Exercise 2.5.B are called the unit and counit of the adjunction. This leads
to a different characterization of adjunction. Suppose functors F : &/ — % and
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G : # — o are given, along with natural transformations n : id,y — GFand € :
FG — idg with the property that Ge onG = idg (for each B € &%, the composition
of nge) : G(B) —» GFG(B) and G(eg) : GFG(B) — G(B) is the identity) and
eFoFn = idf. Then you can check that F is left-adjoint to G. These facts aren’t hard
to check, so if you want to use them, you should verify everything for yourself.

2.5.2. Examples from other fields. ~For those familiar with representation theory:
Frobenius reciprocity may be understood in terms of adjoints. Suppose V is a
finite-dimensional representation of a finite group G, and W is a representation of
asubgroup H < G. Then induction and restriction are an adjoint pair (Indyj, Res{)
between the category of G-modules and the category of H-modules.

Topologists” favorite adjoint pair may be the suspension functor and the loop
space functor.

2.5.3. Example: groupification of abelian semigroups. Here is another motivat-
ing example: getting an abelian group from an abelian semigroup. (An abelian
semigroup is just like an abelian group, except you don’t require an identity or an
inverse. Morphisms of abelian semigroups are maps of sets preserving the binary
operation. One example is the non-negative integers Z=° = {0,1,2,...} under ad-
dition. Another is the positive integers 1,2,... under multiplication. You may
enjoy groupifying both.) From an abelian semigroup, you can create an abelian
group. Here is a formalization of that notion. A groupification of a semigroup S
is a map of abelian semigroups 7 : S — G such that G is an abelian group, and any
map of abelian semigroups from S to an abelian group G’ factors uniquely through
G:

s

Y
G !
(Perhaps “abelian groupification” is better than “groupification”.)

2.5.F. EXERCISE (A GROUP IS GROUPIFIED BY ITSELF). Show that if a semigroup
is already a group then the identity morphism is the groupification. (More correct:
the identity morphism is a groupification.) Note that you don’t need to construct
groupification (or even know that it exists in general) to solve this exercise.

2.5.G. EXERCISE.  Construct groupification H from the category of nonempty
abelian semigroups to the category of abelian groups. (One possible construction:
given an abelian semigroup S, the elements of its groupification H(S) are ordered
pairs (a,b) € S x S, which you may think of as a — b, with the equivalence that
(a,b) ~ (c,d)ifa+d+e =b+c+efor some e € S. Describe addition in
this group, and show that it satisfies the properties of an abelian group. Describe
the semigroup map S — H(S).) Let F be the forgetful functor from the category
of abelian groups Ab to the category of abelian semigroups. Show that H is left-
adjoint to F.

(Here is the general idea for experts: We have a full subcategory of a category.
We want to “project” from the category to the subcategory. We have

Morcategory (S,H) = Morsubcategory (G,H)
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automatically; thus we are describing the left adjoint to the forgetful functor. How
the argument worked: we constructed something which was in the smaller cate-

gory, which automatically satisfies the universal property.)

2.5.H. EXERCISE (CF. EXERCISE 2.5.E). The purpose of this exercise is to give
you more practice with “adjoints of forgetful functors”, the means by which we
get groups from semigroups, and sheaves from presheaves. Suppose A is a ring,
and S is a multiplicative subset. Then S~!A-modules are a fully faithful subcate-
gory (§2.2.15) of the category of A-modules (via the obvious inclusion Mods—1 5 —
Modp). Then Moda — Mods-1, can be interpreted as an adjoint to the forgetful
functor Mods-1 o, — Mod . State and prove the correct statements.

(Here is the larger story. Every S~!A-module is an A-module, and this is an
injective map, so we have a covariant forgetful functor F : Modg—1 5 — Moda. In
fact this is a fully faithful functor: it is injective on objects, and the morphisms
between any two S~! A-modules as A-modules are just the same when they are con-
sidered as S~'A-modules. Then there is a functor G : Moda — Mods—1 o, which
might reasonably be called “localization with respect to S”, which is left-adjoint
to the forgetful functor. Translation: If M is an A-module, and N is an S~'A-
module, then Mor(GM, N) (morphisms as S—!A-modules, which are the same as
morphisms as A-modules) are in natural bijection with Mor(M, FN) (morphisms

as A-modules).)

Here is a table of adjoints that will come up for us.

affinent: X =Y
(Ex. 31.3.B(b))

sheaves on X

sheaveson Y

Tl

situation category category left adjoint right adjoint

of A Fiod - & G: B — o
A-modules (Ex. 2.5.D) (1) ®a N Homa (N, -)
ring maps (()®a B forgetful
A — B (e.g. Ex. 2.5.E) Moda Modg (extension (restriction

of scalars) of scalars)
(pre)sheaves on a presheaves sheaves on X
topological space on X sheafification forgetful
X (Ex.3.4.L)
(semi)groups (§2.5.3) semigroups groups groupification forgetful
sheaves, sheavesonY | sheaves on X ! T,
m: X — Y (Ex. 3.6.B)
sheaves of abelian
groups or 0-modules, | sheaveson U | sheaveson Y U !
open embeddings
m: U <= Y (Ex. 3.6.G)
quasicoherent sheaves, | quasicoherent | quasicoherent s L,
m: X — Y (Prop. 17.3.6) | sheaveson Y | sheaves on X
ring maps forgetful N — Homg (A, N)
A — B (Ex. 31.3.A) Modg Mod a (restriction
of scalars)

quasicoherent sheaves, | quasicoherent | quasicoherent
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Other examples will also come up, such as the adjoint pair (~,T,) between
graded modules over a graded ring, and quasicoherent sheaves on the correspond-
ing projective scheme (§16.4).

2.5.4. Useful comment for experts. One last comment only for people who have seen
adjoints before: If (F, G) is an adjoint pair of functors, then F commutes with col-
imits, and G commutes with limits. Also, limits commute with limits and colimits
commute with colimits. We will prove these facts (and a little more) in §2.6.12.

2.6 An introduction to abelian categories

Ton papier sur I’Algebre homologique a été lu soigneusement, et a converti tout le
monde (méme Dieudonné, qui semble complétement fonctorisé!) a ton point de vue.

Your paper on homological algebra was read carefully and converted everyone (even
Dieudonné, who seems to be completely functorised!) to your point of view.

— Serre, letter to Grothendieck [GrS, p. 17-18]

Since learning linear algebra, you have been familiar with the notions and be-
haviors of kernels, cokernels, etc. Later in your life you saw them in the category of
abelian groups, and later still in the category of A-modules. Each of these notions
generalizes the previous one.

We will soon define some new categories (certain sheaves) that will have familiar-
looking behavior, reminiscent of that of modules over a ring. The notions of ker-
nels, cokernels, images, and more will make sense, and they will behave “the way
we expect” from our experience with modules. This can be made precise through
the notion of an abelian category. Abelian categories are the right general setting
in which one can do “homological algebra”, in which notions of kernel, cokernel,
and so on are used, and one can work with complexes and exact sequences.

We will see enough to motivate the definitions that we will see in general:
monomorphism (and subobject), epimorphism, kernel, cokernel, and image. But
in these notes we will avoid having to show that they behave “the way we expect”
in a general abelian category because the examples we will see are directly inter-
pretable in terms of modules over rings. In particular, it is not worth memorizing
the definition of abelian category.

Two central examples of an abelian category are the category Ab of abelian
groups, and the category Moda of A-modules. The first is a special case of the
second (just take A = Z). As we give the definitions, you should verify that Moda
is an abelian category.

We first define the notion of additive category. We will use it only as a stepping
stone to the notion of an abelian category. Two examples you can keep in mind
while reading the definition: the category of free A-modules (where A is a ring),
and real (or complex) Banach spaces.

2.6.1. Definition. A category ¥ is said to be additive if it satisfies the following
properties.
Ad1. For each A,B € ¢, Mor(A, B) is an abelian group, such that composition
of morphisms distributes over addition. (You should think about what
this means — it translates to two distinct statements).
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Ad2. € has a zero object, denoted 0. (This is an object that is simultaneously
an initial object and a final object, Definition 2.3.2.)

Ad3. It has products of two objects (a product A x B for any pair of objects),
and hence by induction, products of any finite number of objects.

In an additive category, the morphisms are often called homomorphisms, and
Mor is denoted by Hom. In fact, this notation Hom is a good indication that you're
working in an additive category. A functor between additive categories preserving
the additive structure of Hom, is called an additive functor.

2.6.2. Remarks. It is a consequence of the definition of additive category that finite
direct products are also finite direct sums (coproducts) — the details don’t matter
to us. The symbol @ is used for this notion. Also, it is quick to show that additive
functors send zero objects to zero objects (show that Z is a 0-object if and only if
idz = 0z; additive functors preserve both id and 0), and preserve products.

One motivation for the name 0-object is that the 0-morphism in the abelian
group Hom(A, B) is the composition A — 0 — B. (We also remark that the notion
of 0-morphism thus makes sense in any category with a 0-object.)

The category of A-modules Moda is clearly an additive category, but it has
even more structure, which we now formalize as an example of an abelian category.

2.6.3. Definition. Let & be a category with a 0-object (and thus O-morphisms). A
kernel of a morphism f : B — Cisamapi: A — B such that f oi =0, and that is
universal with respect to this property. Diagramatically:

\
3
\ . >

A—sB—>
S~

N

0

C

(Note that the kernel is not just an object; it is a morphism of an object to B.) Hence
it is unique up to unique isomorphism by universal property nonsense. The kernel
is written kers — B. A cokernel (denoted coker¢) is defined dually by reversing
the arrows — do this yourself. The kernel of f : B — C is the limit (§2.4) of the
diagram

(2.63.1) 0

N

B——=C

and similarly the cokernel is a colimit (see (3.5.0.2)).

Ifi: A — Bis a monomorphism, then we say that A is a subobject of B, where
the map 1i is implicit. Dually, there is the notion of quotient object, defined dually
to subobject.

An abelian category is an additive category satisfying three additional prop-
erties.

(1) Every map has a kernel and cokernel.
(2) Every monomorphism is the kernel of its cokernel.
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(3) Every epimorphism is the cokernel of its kernel.

It is a nonobvious (and imprecisely stated) fact that every property you want
to be true about kernels, cokernels, etc. follows from these three. (Warning: in
part of the literature, additional hypotheses are imposed as part of the definition.)

The image of a morphism f : A — B is defined as im(f) = ker(coker f) when-
ever it exists (e.g. in every abelian category). The morphism f : A — B factors
uniquely through imf — B whenever imf exists, and A — imf is an epimor-
phism and a cokernel of kerf — A in every abelian category. The reader may
want to verify this as a (hard!) exercise.

The cokernel of a monomorphism is called the quotient. The quotient of a
monomorphism A — B is often denoted B/A (with the map from B implicit).

We will leave the foundations of abelian categories untouched. The key thing
to remember is that if you understand kernels, cokernels, images and so on in
the category of modules over a ring Moda, you can manipulate objects in any
abelian category. This is made precise by Freyd-Mitchell Embedding Theorem
(Remark 2.6.4).

However, the abelian categories we will come across will obviously be related
to modules, and our intuition will clearly carry over, so we needn’t invoke a the-
orem whose proof we haven’t read. For example, we will show that sheaves of
abelian groups on a topological space X form an abelian category (§3.5), and the
interpretation in terms of “compatible germs” will connect notions of kernels, cok-
ernels etc. of sheaves of abelian groups to the corresponding notions of abelian
groups.

2.6.4. Small remark on chasing diagrams. It is useful to prove facts (and solve
exercises) about abelian categories by chasing elements. This can be justified by
the Freyd-Mitchell Embedding Theorem: If &/ is an abelian category such that
Hom(X,Y)isasetforall X,Y € <7, then there is a ring A and an exact, fully faithful
functor from ./ into Moda, which embeds & as a full subcategory. A proof is
sketched in [W, §1.6], and references to a complete proof are given there. A proof
is also given in [KS1, §9.7]. The upshot is that to prove something about a diagram
in some abelian category, we may assume that it is a diagram of modules over
some ring, and we may then “diagram-chase” elements. Moreover, any fact about
kernels, cokernels, and so on that holds in Moda holds in any abelian category.)

If invoking a theorem whose proof you haven’t read bothers you, a short al-
ternative is Mac Lane’s “elementary rules for chasing diagrams”, [Mac, Thm. 3,
p- 200]; [Mac, Lem. 4, p. 201] gives a proof of the Five Lemma (Exercise 2.7.6) as an
example.

But in any case, do what you have to do to put your mind at ease, so you can
move forward. Do as little as your conscience will allow.

2.6.5. Complexes, exactness, and homology.
We say a sequence

f

(2.65.1) . A B—2sC

is a complex at B if g o f = 0, and is exact at B if ker g = im f. (More specifically,
g has a kernel that is an image of f. Exactness at B implies being a complex at
B — do you see why?) A sequence is a complex (resp. exact) if it is a complex
(resp. exact) at each (internal) term. A short exact sequence is an exact sequence
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with five terms, the first and last of which are zeroes — in other words, an exact
sequence of the form

0—-A—=B—>C—0.

For example, 0 —— A —— 0 is exactif and only if A = 0;
0— >A—"-B

is exact if and only if f is a monomorphism (with a similar statement for A B 0);

f

0 A B 0

is exact if and only if f is an isomorphism; and

0—=A—>B—25C

f g

is exactif and only if f is a kernel of g (with a similar statement for A B
To show some of these facts it may be helpful to prove that (2.6.5.1) is exact at B if
and only if the cokernel of g is a cokernel of the kernel of f.

If you would like practice in playing with these notions before thinking about
homology, you can prove the Snake Lemma (stated in Example 2.7.5, with a stronger
version in Exercise 2.7.B), or the Five Lemma (stated in Example 2.7.6, with a
stronger version in Exercise 2.7.C). (I would do this in the category of A-modules,
but see [KS1, Lem. 12.1.1, Lem. 8.3.13] for proofs in general.)

If (2.6.5.1) is a complex at B, then its homology at B (often denoted by H) is
ker g /imf. (More precisely, there is some monomorphism im f < ker g, and that
H is the cokernel of this monomorphism.) Therefore, (2.6.5.1) is exact at B if and
only if its homology at B is 0. We say that elements of ker g (assuming the ob-
jects of the category are sets with some additional structure) are the cycles, and
elements of im f are the boundaries (so homology is “cycles mod boundaries”). If
the complex is indexed in decreasing order, the indices are often written as sub-
scripts, and H; is the homology at Ai;1 — Ay — Ai_1. If the complex is indexed
in increasing order, the indices are often written as superscripts, and the homology
Hiat At=T — At — A1 is often called cohomology.

An exact sequence

C 0).

(2-6.5.2) A. . e Al*] fi71 A-L fi A1+1 fi+]
can be “factored” into short exact sequences
0 ——=kerft —= Al ——ker fi*! ——=0

which is helpful in proving facts about long exact sequences by reducing them to
facts about short exact sequences.

More generally, if (2.6.5.2) is assumed only to be a complex, then it can be
“factored” into short exact sequences.

(2.6.5.3) 0 ker ft Al im f 0

0 ——=imf! — > kerft — = H}(A®*) ——=0
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2.6.A. EXERCISE. Describe exact sequences

(2.6.5.4) 0 ———=imf? AT coker ft —= 0

0 —— H¥(A®) —— coker fi~! im f 0

(These are somehow dual to (2.6.5.3). In fact in some mirror universe this might
have been given as the standard definition of homology.) Assume the category is
that of modules over a fixed ring for convenience, but be aware that the result is
true for any abelian category.

2.6.B. EXERCISE AND IMPORTANT DEFINITION. Suppose

O dO A_I d1 dr\71 AT\. an

is a complex of finite-dimensional k-vector spaces (often called A® for short). De-
fine h'(A®) := dimH'(A®). Show that } (—1)'dimA' = Y (—1)'hi(A®). In par-
ticular, if A® is exact, then > (—1 )Pdim At = 0. (If you haven’t dealt much with
cohomology, this will give you some practice.)

2.6.C. IMPORTANT EXERCISE. Suppose % is an abelian category. Define the cate-
gory Come as follows. The objects are infinite complexes

A°: . Ai—] f! Ai fl Ai+1 fiil

in @, and the morphisms A®* — B*® are commuting diagrams

fi+1

(2.6.5.5) AT Ar T e

T R

gi-19 __pgi_ 9 pgit1 9

Show that Comy is an abelian category. Feel free to deal with the special case of
modules over a fixed ring. (Remark for experts: Essentially the same argument
shows that the functor category ¢ is an abelian category for any small category
# and any abelian category ¥. This immediately implies that the category of
presheaves on a topological space X with values in an abelian category ¢ is auto-
matically an abelian category, cf. §3.3.4.)

2.6.D. IMPORTANT EXERCISE. Show that (2.6.5.5) induces a map of homology
H(A®) — H'(B*). (Again, feel free to deal with the special case Mod )

We will later define when two maps of complexes are homotopic (§24.1), and
show that homotopic maps induce isomorphisms on cohomology (Exercise 24.1.A),
but we won’t need that any time soon.
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2.6.6. Theorem (Long exact sequence). — A short exact sequence of complexes

0° : 0 0 0
A. A‘]_—] .f_'if] A1 fi A1+] .fi+1
B. B‘Li] 9171 Bl 91 Bl+] gi+l
Ce : ci-1h i eipr R
(0 : 0 0 0

induces a long exact sequence in cohomology

. 5 Hif1(Co)

HY(A®*) — H!(B*) — H!(C*) —

Hi+1(A°)4>~-'

(This requires a definition of the connecting homomorphism H'=1(C*) — HY(A*®),
which is natural in an appropriate sense.) In the category of modules over a
ring, Theorem 2.6.6 will come out of our discussion of spectral sequences, see Ex-
ercise 2.7.F, but this is a somewhat perverse way of proving it. For a proof in
general, see [KS1, Theorem 12.3.3]. You may want to prove it yourself, by first
proving a weaker version of the Snake Lemma (Example 2.7.5), where in the hy-
potheses (2.7.5.1), the 0’s in the bottom left and top right are removed, and in the
conclusion (2.7.5.2), the first and last 0’s are removed.

2.6.7. Exactness of functors. If F: &/ — % is a covariant additive functor from one
abelian category to another, we say that F is right-exact if the exactness of

Al A A" 0,
in &/ implies that
F(A') F(A) F(A") 0

is also exact. Dually, we say that F is left-exact if the exactness of

0 A’ A A" implies

0 F(A) F(A) F(A") is exact.
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A contravariant functor is left-exact if the exactness of

A’ A A" 0 implies

0 F(A") F(A) ——=F(A') is exact.

The reader should be able to deduce what it means for a contravariant functor to
be right-exact.

A covariant or contravariant functor is exact if it is both left-exact and right-
exact.

2.6.E. EXERCISE. Suppose F is an exact functor. Show that applying F to an exact
sequence preserves exactness. For example, if F is covariant, and A’ — A — A"
is exact, then FA’ — FA — FA” is exact. (This will be generalized in Exer-
cise 2.6.H(c).)

2.6.F. EXERCISE. Suppose A is aring, S C A is a multiplicative subset, and M is
an A-module.

(a) Show that localization of A-modules Moda — Mods -1 5 is an exact covariant
functor.

(b) Show that (-) ®a M is a right-exact covariant functor Moda — Mod . (This is a
repeat of Exercise 2.3.H.)

(c) Show that Hom(M, -) is a left-exact covariant functor Moda — Moda. If € is
any abelian category, and C € ¥, show that Hom(C, -) is a left-exact covariant
functor ¥ — Ab.

(d) Show that Hom(-, M) is a left-exact contravariant functor Moda — Moda. If €
is any abelian category, and C € ¢, show that Hom(-, C) is a left-exact contravari-
ant functor ¥ — Ab.

2.6.G. EXERCISE. Suppose M is a finitely presented A-module: M has a finite
number of generators, and with these generators it has a finite number of relations;
or usefully equivalently, fits in an exact sequence

(2.6.7.1) A4 5 AP 3 M — 0
Use (2.6.7.1) and the left-exactness of Hom to describe an isomorphism
S~"Homa (M, N) = Homg-1(S™'M, STTN).

(You might be able to interpret this in light of a variant of Exercise 2.6.H below, for
left-exact contravariant functors rather than right-exact covariant functors.)

2.6.8. Example: Hom doesn’t always commute with localization. In the language of
Exercise 2.6.G,take A=N=Z, M =Q,and S = Z\ {0}.

2.6.9. x Two useful facts in homological algebra.

We now come to two (sets of) facts I wish I had learned as a child, as they
would have saved me lots of grief. They encapsulate what is best and worst of
abstract nonsense. The statements are so general as to be nonintuitive. The proofs
are very short. They generalize some specific behavior it is easy to prove on an
ad hoc basis. Once they are second nature to you, many subtle facts will become
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obvious to you as special cases. And you will see that they will get used (implicitly
or explicitly) repeatedly.

2.6.10. x Interaction of homology and (right/left-)exact functors.
You might wait to prove this until you learn about cohomology in Chapter 19,
when it will first be used in a serious way.

2.6.H. IMPORTANT EXERCISE (THE FHHF THEOREM). This result can take you far,
and perhaps for that reason it has sometimes been called the Fernbahnhof (Fern-
baHnHoF) Theorem, notably in [N, Exer. 2.6.H]. (“From Here Hop Far”?) Suppose
F: o/ — A is a covariant functor of abelian categories, and C*® is a complex in 7.

(a) (F right-exact yields FH® —— H*F ) If F is right-exact, describe a natu-
ral morphism FH®* — H°®F. (More precisely, for each i, the left side is F
applied to the cohomology at piece i of C*, while the right side is the
cohomology at piece i of FC*.)

(b) (Fleft-exact yields FH®* <—— H®F ) If Fis left-exact, describe a natural mor-
phism H*F — FH*.

(c) (F exact yields FH®* <—— H°®F ) If F is exact, show that the morphisms of
(a) and (b) are inverses and thus isomorphisms.

di

Hint for (a): use C! cit! cokerd' ——= 0 to give an isomorphism
Fcoker d' = coker Fd'. Then use the first line of (2.6.5.4) to give a epimorphism
Fim d' ——= imFd' . Then use the second line of (2.6.5.4) to give the desired map
FH!C®* — H'FC® . While you are at it, you may as well describe a map for the

fourth member of the quartet {coker,im, H, ker}: Fkerd' —— kerFd'.

2.6.11. If this makes your head spin, you may prefer to think of it in the following
specific case, where both .7 and # are the category of A-modules, and Fis (-) ® N
for some fixed N-module. Your argument in this case will translate without change
to yield a solution to Exercise 2.6.H(a) and (c) in general. If ®N is exact, then N is
called a flat A-module. (The notion of flatness will turn out to be very important,
and is discussed in detail in Chapter 25.)

For example, localization is exact (Exercise 2.6.F(a)), so S™' A is a flat A-algebra
for all multiplicative sets S. Thus taking cohomology of a complex of A-modules
commutes with localization — something you could verify directly.

2.6.12. * Interaction of adjoints, (co)limits, and (left- and right-) exactness.

A surprising number of arguments boil down to the statement:

Limits commute with limits and right adjoints. In particular, in an abelian category,
because kernels are limits, both right adjoints and limits are left-exact.

as well as its dual:

Colimits commute with colimits and left adjoints. In particular, because cokernels are
colimits, both left adjoints and colimits are right-exact.

These statements were promised in §2.5.4. The latter has a useful extension:

In an abelian category, colimits over filtered index categories are exact.

(“Filtered” was defined in §2.4.7.) If you want to use these statements (for
example, later in these notes), you will have to prove them. Let’s now make them
precise.
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2.6.I. EXERCISE (KERNELS COMMUTE WITH LIMITS). Suppose % is an abelian
category,and a : J — ¥ and b : & — ¥ are two diagrams in ¢ indexed by .7.
For convenience, let A; = a(i) and B; = b(i) be the objects in those two diagrams.
Let h; : Ay — B; be maps commuting with the maps in the diagram. (Translation:
h is a natural transformation of functors a — b, see §2.2.21.) Then the ker h;
form another diagram in ¢ indexed by .#. Describe a canonical isomorphism
%iilker hi = ker( h&n A — h&n Bi), assuming the limits exist.

Implicit in the previous exercise is the idea that limits should somehow be
understood as functors. See [E, App. 6] for more on this useful point of view.

2.6.]. EXERCISE. Make sense of the statement that “limits commute with limits” in
a general category, and prove it. (Hint: recall that kernels are limits. The previous
exercise should be a corollary of this one.)

2.6.13. Proposition (right adjoints commute with limits). — Suppose (F : € —
2,G : 9 — ¢) is a pair of adjoint functors. If A = im Ay is a limit in 7 of a diagram
indexed by 1, then GA = lim GA; (with the corresponding maps GA — GA4) is a limit
ing.

Proof. We must show that GA — GA,; satisfies the universal property of limits.
Suppose we have maps W — GA; commuting with the maps of .#. We wish to
show that there exists a unique W — GA extending the W — GA,;. By adjointness
of F and G, we can restate this as: Suppose we have maps FW — A; commuting
with the maps of .#. We wish to show that there exists a unique FW — A extending
the FW — A;. But this is precisely the universal property of the limit. O

Of course, the dual statements to Exercise 2.6.] and Proposition 2.6.13 hold by
the dual arguments.

If F and G are additive functors between abelian categories, and (F, G) is an
adjoint pair, then (as kernels are limits and cokernels are colimits) G is left-exact
and F is right-exact.

2.6.K. EXERCISE. Show that in Moda, colimits over filtered index categories are
exact. (Your argument will apply without change to any abelian category whose
objects can be interpreted as “sets with additional structure”.) Right-exactness
follows from the above discussion, so the issue is left-exactness. (Possible hint:
After you show that localization is exact, Exercise 2.6.F(a), or sheafification is exact,
Exercise 3.5.D, in a hands-on way, you will be easily able to prove this. Conversely,
if you do this exercise, those two will be easy.)

2.6.L. EXERCISE. Show that filtered colimits commute with homology in Mod .
Hint: use the FHHF Theorem (Exercise 2.6.H), and the previous Exercise.

In light of Exercise 2.6.L, you may want to think about how limits (and colim-
its) commute with homology in general, and which way maps go. The statement
of the FHHF Theorem should suggest the answer. (Are limits analogous to left-
exact functors, or right-exact functors?) We won't directly use this insight.
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2.6.14. x Dreaming of derived functors. When you see a left-exact functor, you
should always dream that you are seeing the end of a long exact sequence. If

0-M -M-M"=0

is an exact sequence in abelian category <7, and F : &/ — % is a left-exact functor,
then
05 FM = FM = FM”

is exact, and you should always dream that it should continue in some natural
way. For example, the next term should depend only on M/, call it R"FM’, and if it
is zero, then FM — FM" is an epimorphism. This remark holds true for left-exact
and contravariant functors too. In good cases, such a continuation exists, and is
incredibly useful. We will discuss this in Chapter 24.

2.7 « Spectral sequences

Spectral sequences are a powerful book-keeping tool for proving things in-
volving complicated commutative diagrams. They were introduced by Leray in
the 1940’s at the same time as he introduced sheaves. They have a reputation for
being abstruse and difficult. It has been suggested that the name ‘spectral” was
given because, like spectres, spectral sequences are terrifying, evil, and danger-
ous. I have heard no one disagree with this interpretation, which is perhaps not
surprising since I just made it up.

Nonetheless, the goal of this section is to tell you enough that you can use
spectral sequences without hesitation or fear, and why you shouldn’t be frightened
when they come up in a seminar. What is perhaps different in this presentation is
that we will use spectral sequences to prove things that you may have already
seen, and that you can prove easily in other ways. This will allow you to get
some hands-on experience for how to use them. We will also see them only in the
special case of double complexes (which is the version by far the most often used
in algebraic geometry), and not in the general form usually presented (filtered
complexes, exact couples, etc.). See [W, Ch. 5] for more detailed information if
you wish.

You should not read this section when you are reading the rest of Chapter 2.
Instead, you should read it just before you need it for the first time. When you
finally do read this section, you must do the exercises.

For concreteness, we work in the category Moda of module over a ring A.
However, everything we say will apply in any abelian category. (And if it helps
you feel secure, work instead in the category Vecy of vector spaces over a field k.)

2.7.1. Double complexes.

A double complex is a collection of A-modules EP-9 (p,q € Z), and “right-
ward” morphisms d*;4 : EP9 — EP*19 and “upward” morphisms df*4 : EP9 —
EP971. In the superscript, the first entry denotes the column number (the “x-
coordinate”), and the second entry denotes the row number (the “y-coordinate”).
(Warning: this is opposite to the convention for matrices.) The subscript is meant
to suggest the direction of the arrows. We will always write these as d_, and d;
and ignore the superscripts. We require that d_, and d; satisfy (a) d?, = 0, (b)
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d? = 0, and one more condition: (c) either d_,d; = dyd_, (all the squares com-
mute) or d_, d; + dyd_, = 0 (they all anticommute). Both come up in nature, and
you can switch from one to the other by replacing d?‘q with (—1)4 d?’q. So I will
assume that all the squares anticommute, but that you know how to turn the com-
muting case into this one. (You will see that there is no difference in the recipe,
basically because the image and kernel of a homomorphism f equal the image and
kernel respectively of —f.)

p,a+l
dr,

Ep.a+1 Ep+1,a+1
ap4 anticommutes aptte
ara
EP.d Ep+1.q

There are variations on this definition, where for example the vertical arrows
go downwards, or some different subset of the EP>9 are required to be zero, but I
will leave these straightforward variations to you.

From the double complex we construct a corresponding (single) complex E®
with E* = &{Eb*1, with d = d, + d;. In other words, when there is a single
superscript k, we mean a sum of the kth antidiagonal of the double complex. The
single complex is sometimes called the total complex. Note that d* = (d_, +d;)? =
d?, +(d.d; +drd,) + df =0, s0 E* is indeed a complex.

The cohomology of the single complex is sometimes called the hypercoho-
mology of the double complex. We will instead use the phrase “cohomology of
the double complex”.

Our initial goal will be to find the cohomology of the double complex. You
will see later that we secretly also have other goals.

A spectral sequence is a recipe for computing some information about the
cohomology of the double complex. I won't yet give the full recipe. Surprisingly,
this fragmentary bit of information is sufficent to prove lots of things.

2.7.2. Approximate Definition. A spectral sequence with rightward orientation
is a sequence of tables or pages ,E5'9, JEV'Y, L ED'Y,...(p,q € Z), where L EJT =
EP-9, along with a differential

\q . , —r+1,q+7
_)dfq._,Efq—)_,Ef q

with ,dP% o ,d?"™ 197" — 0, and with an isomorphism of the cohomology of
_dyat ,EP9 (e ker ,dP9/im ,dP T 9Ty with EV.S.

The orientation indicates that our Oth differential is the rightward one: do =
d_,. The left subscript “—" is usually omitted.
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The order of the morphisms is best understood visually:

(2.7.2.1) .

Y

e —do> e

(the morphisms each apply to different pages). Notice that the map always is
“degree 1” in terms of the grading of the single complex E*. (You should figure
out what this informal statement really means.)

The actual definition describes what E3>* and d?'® really are, in terms of E*°.
We will describe do, d1, and d, below, and you should for now take on faith that
this sequence continues in some natural way.

Note that E}' is always a subquotient of the corresponding term on the ith
page EP9 for all i < r. In particular, if EP9 = 0, then E?*9 = 0 for all r.

Suppose now that E** is a first quadrant double complex, i.e. E»*9 = 0 for
p<O0orq < 0(soEP? =0 forall r unless p,q € Z=°). Then for any fixed p, q,
once T is sufficiently large, E¥}9 is computed from (E$®, d,) using the complex

0

P,d
Ef

dp+r—1,q—r
T

and thus we have canonical isomorphisms
P,d ~ P4 ~ P4 ~ .,
Er - Er+1 - ET+2 -

We denote this module EX;9. The same idea works in other circumstances, for
example if the double complex is only nonzero in a finite number of rows — EP>94 =
0 unless qo < q < q1. This will come up for example in the long exact sequence
and mapping cone discussion (Exercises 2.7.F and 2.7 .E below).

We now describe the first few pages of the spectral sequence explicitly. As
stated above, the differential dp on EJ®* = E** is defined to be d_,. The rows are
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complexes:

o —>0 —> 0
The Oth page Eo: e

o ——=0 ——> 0

and so E; is just the table of cohomologies of the rows. You should check that
there are now vertical maps d?'9 : EV'4 — EP9*" of the row cohomology groups,
induced by d;, and that these make the columns into complexes. (This is essen-
tially the fact that a map of complexes induces a map on homology.) We have
“used up the horizontal morphisms”, but “the vertical differentials live on”.

The 1st page E;:

o———>0 —>0
o —0 ——> 0
o—0 —> 0

We take cohomology of d; on E4, giving us a new table, EE '9_ Tt turns out that
there are natural morphisms from each entry to the entry two above and one to the
left, and that the composition of these two is 0. (It is a very worthwhile exercise
to work out how this natural morphism d, should be defined. Your argument
may be reminiscent of the connecting homomorphism in the Snake Lemma 2.7.5
or in the long exact sequence in cohomology arising from a short exact sequence
of complexes, Exercise 2.6.C. This is no coincidence.)

[ ] [ ] [ ]
The 2nd page E»: o\o\.
[ ] [ ] [ ]

This is the beginning of a pattern.

Then it is a theorem that there is a filtration of H*(E®) by EX;9 where p+ q = k.
(We can't yet state it as an official Theorem because we haven't precisely defined
the pages and differentials in the spectral sequence.) More precisely, there is a
filtration

1,k—1 E2.k—2

Ek,O
(2.7.2.2) pok 0o ST Bl k(e

where the quotients are displayed above each inclusion. (Here is a tip for remem-
ber which way the quotients are supposed to go. The later differentials point
deeper and deeper into the filtration. Thus the entries in the direction of the later
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arrowheads are the subobjects, and the entries in the direction of the later “arrow-
tails” are quotients. This tip has the advantage of being independent of the details
of the spectral sequence, e.g. the “quadrant” or the orientation.)

We say that the spectral sequence _, E3'® converges to H*(E®). We often say
that _,ES'® (or any other page) abuts to H*(E®).

Although the filtration gives only partial information about H*(E®), some-
times one can find H*(E®) precisely. One example is if all Ebk1 are zero, or if all
but one of them are zero (e.g. if E}>® has precisely one nonzero row or column, in
which case one says that the spectral sequence collapses at the rth step, although
we will not use this term). Another example is in the category of vector spaces
over a field, in which case we can find the dimension of H*(E®). Also, in lucky
circumstances, E, (or some other small page) already equals E.

2.7.A. EXERCISE: INFORMATION FROM THE SECOND PAGE. Show that HO(E®) =
E%0 = ES° and

1,0

0— > EQ HI(E®) — = E}O 2o E92 -~ H2(E®)

is exact.

2.7.3. The other orientation.

You may have observed that we could as well have done everything in the
opposite direction, i.e. reversing the roles of horizontal and vertical morphisms.
Then the sequences of arrows giving the spectral sequence would look like this
(compare to (2.7.2.1)).

(2.7.3.1)

-

This spectral sequence is denoted 1E3® (“with the upwards orientation”). Then
we would again get pieces of a filtration of H*(E®) (where we have to be a bit
careful with the order with which {EX;9 corresponds to the subquotients — it in
the opposite order to that of (2.7.2.2) for _,EF;9). Warning: in general there is no
isomorphism between _, EF;9 and {EF;9.

In fact, this observation that we can start with either the horizontal or vertical
maps was our secret goal all along. Both algorithms compute information about
the same thing (H*(E®)), and usually we don’t care about the final answer — we
often care about the answer we get in one way, and we get at it by doing the
spectral sequence in the other way.

2.7.4. Examples.
We are now ready to see how this is useful. The moral of these examples is
the following. In the past, you may have proved various facts involving various
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sorts of diagrams, by chasing elements around. Now, you will just plug them into
a spectral sequence, and let the spectral sequence machinery do your chasing for
you.

2.7.5. Example: Proving the Snake Lemma. Consider the diagram

(2.7.5.1) 0 D E F 0
Lo o
0 A B C 0

where the rows are exact in the middle (at A, B, C, D, E, F) and the squares com-
mute. (Normally the Snake Lemma is described with the vertical arrows pointing
downwards, but I want to fit this into my spectral sequence conventions.) We wish
to show that there is an exact sequence

(2.7.5.2) 0 — ker « — ker 3 — kery — coker o« — coker p — cokery — 0.

We plug this into our spectral sequence machinery. We first compute the co-
homology using the rightwards orientation, i.e. using the order (2.7.2.1). Then be-
cause the rows are exact, E}"? = 0, so the spectral sequence has already converged:
ER9 =0.

We next compute this “0” in another way, by computing the spectral sequence
using the upwards orientation. Then +E$>* (with its differentials) is:

0 —— coker « —— coker p —— cokery ——=0

0 ker o ker 3 kery 0.

Then +E$* is of the form:
0 0

I

0 0

0

0

We see that after +E;, all the terms will stabilize except for the double-question-
marks — all maps to and from the single question marks are to and from 0O-entries.
And after 1 E3, even these two double-question-mark terms will stabilize. But in
the end our complex must be the 0 complex. This means that in  E;, all the entries
must be zero, except for the two double-question-marks, and these two must be
isomorphic. This means that 0 — ker « — ker p — kery and coker o« — coker 3 —
cokery — 0 are both exact (that comes from the vanishing of the single-question-
marks), and

coker(ker p — kery) = ker(coker &« — coker f3)
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is an isomorphism (that comes from the equality of the double-question-marks).
Taken together, we have proved the exactness of (2.7.5.2), and hence the Snake
Lemma! (Notice: in the end we didn’t really care about the double complex. We
just used it as a prop to prove the snake lemma.)

Spectral sequences make it easy to see how to generalize results further. For
example, if A — B is no longer assumed to be injective, how would the conclusion
change?

2.7.B. UNIMPORTANT EXERCISE (GRAFTING EXACT SEQUENCES, A WEAKER VER-
SION OF THE SNAKE LEMMA). Extend the snake lemma as follows. Suppose we
have a commuting diagram

0 X’ Y’ z' A’
o ]
w X Y Z 0

where the top and bottom rows are exact. Show that the top and bottom rows can
be "grafted together” to an exact sequence

w kera kerb ———=kerc

——— cokera —— cokerb —— cokerc —= A’/ —— ...

2.7.6. Example: the Five Lemma. Suppose

(2.7.6.1) F G H I ]
I B
A B C D E

where the rows are exact and the squares commute.
Suppose «, 3, b, € are isomorphisms. We will show that v is an isomorphism.
We first compute the cohomology of the total complex using the rightwards
orientation (2.7.2.1). We choose this because we see that we will get lots of zeros.
Then _, E}® looks like this:
0 0
0 0

Then _, E; looks similar, and the sequence will converge by E,, as we will never get
any arrows between two nonzero entries in a table thereafter. We can’t conclude
that the cohomology of the total complex vanishes, but we can note that it van-
ishes in all but four degrees — and most important, it vanishes in the two degrees
corresponding to the entries C and H (the source and target of ).

]

?

bV
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We next compute this using the upwards orientation (2.7.3.1). Then +E; looks
like this:

0 0 ? 0 0

0 0 ? 0 0

and the spectral sequence converges at this step. We wish to show that those two
question marks are zero. But they are precisely the cohomology groups of the total
complex that we just showed were zero — so we are done!

The best way to become comfortable with this sort of argument is to try it out
yourself several times, and realize that it really is easy. So you should do the fol-
lowing exercises! Many can readily be done directly, but you should deliberately
try to use this spectral sequence machinery in order to get practice and develop
confidence.

2.7.C. EXERCISE: A SUBTLER FIVE LEMMA. By looking at the spectral sequence
proof of the Five Lemma above, prove a subtler version of the Five Lemma, where
one of the isomorphisms can instead just be required to be an injection, and an-
other can instead just be required to be a surjection. (I am deliberately not telling
you which ones, so you can see how the spectral sequence is telling you how to
improve the result.)

2.7.D. EXERCISE: ANOTHER SUBTLE VERSION OF THE FIVE LEMMA. If § and & (in
(2.7.6.1)) are injective, and « is surjective, show that v is injective. Give the dual
statement (whose proof is of course essentially the same).

The next two exercises no longer involve first quadrant double complexes.
You will have to think a little to realize why there is no reason for confusion or
alarm.

2.7.E. EXERCISE (THE MAPPING CONE). Suppose i : A®* — B® is a morphism of
complexes. Suppose C*® is the single complex associated to the double complex
A®* — B®. (C*® is called the mapping cone of n.) Show that there is a long exact
sequence of complexes:

-+ = HYT(C®) = HY(A®) — HY(B®) — HY(C®) = H'"T(A®) — -

(There is a slight notational ambiguity here; depending on how you index your
double complex, your long exact sequence might look slightly different.) In partic-
ular, we will use the fact that p induces an isomorphism on cohomology if and only
if the mapping cone is exact. (We won't use it until the proof of Theorem 19.2.4.)

2.7.F. EXERCISE. Use spectral sequences to show that a short exact sequence of
complexes gives a long exact sequence in cohomology (Exercise 2.6.C). (This is a
generalization of Exercise 2.7.E.)

The Grothendieck (or composition of functor) spectral sequence (Theorem 24.3.5)
will be an important example of a spectral sequence that specializes in a number
of useful ways.

You are now ready to go out into the world and use spectral sequences to your
heart’s content!
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2.7.7. »x» Complete definition of the spectral sequence, and proof.

You should most definitely not read this section any time soon after reading
the introduction to spectral sequences above. Instead, flip quickly through it to
convince yourself that nothing fancy is involved.

2.7.8. Remark: spectral sequences are actually spectral functors. It is useful to notice
that the proof implies that spectral sequences are functorial in the Oth page: the
spectral sequence formalism has good functorial properties in the double complex.
Unfortunately the terminology “spectral functor” that Grothendieck used in [Gr,
§2.4] did not catch on.

2.7.9. Goals. We consider the rightwards orientation. The upwards orientation is
of course a trivial variation of this. We wish to describe the pages and differentials
of the spectral sequence explicitly, and prove that they behave the way we said
they did. More precisely, we wish to:

(a) describe EY' (and verify that E}'? is indeed EP-9),

(b) verify that H*(E®) is filtered by ER;* P as in (2.7.2.2),

(c) describe d, and verify that d% =0,and

(d) verify that E};9 is given by cohomology using d..

Before tackling these goals, you can impress your friends by giving this short
description of the pages and differentials of the spectral sequence. We say that
an element of E** is a (p, q)-strip if it is an element of &1>oEP 197! (see Fig. 2.1).
Its nonzero entries lie on an “upper-leftwards” semi-infinite antidiagonal starting
with position (p, q). We say that the (p, q)-entry (the projection to EP>9) is the

leading term of the (p, q)-strip. Let C E** be the submodule of all the (p, q)-
strips. Clearly SP9 C EP*9, and S¥° = EX.

0 0 0 0
0 wP=2,a+2 0 0 0
0 0 s 1At 0 0
0 0 0 P 0
0 0 0 0 opt1a-T

FIGURE 2.1. A (p, q)-strip (in SP9 C EPT9). Clearly SO* = EX.

Note that the differential d = d; +d_, sends a (p, q)-strip x toa (p+ 1, q)-strip
dx. If dx is furthermore a (p—1+1, g+71)-strip (r € Z=°), we say that x is an r-closed
(p, q)-strip — “the differential knocks x at least r terms deeper into the filtration”.
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We denote the set of r-closed (p, q)-strips (so for example S§'9 = SP9, and
S50 = EX). An element of S¥'“ may be depicted as:

|

¥P=2a+t2 .

|

«P—1,a+1 >0

|

*Pd 0

2.7.10. Preliminary definition of EY’Y. We are now ready to give a first definition of
EY'9, which by construction should be a subquotient of EP-4 = EJ*9. We describe
it as such by describing two submodules Y74 ¢ X?'9 C EP9, and defining EF'9 =
XP /Y2 9. Let X¥ 9 be those elements of EP9 that are the leading terms of r-closed
(p, q)-strips. Note that by definition, d sends (r—1)-closed (p+(r—1)—1, g—(r—1))-
strips to (p, q)-strips. Let YF'9 be the leading ((p, q))-terms of the differential d of
(r—1)-closed (p+(r—1)—1,qg—(r—1))-strips (where the differential is considered
as a (p, q)-strip).

2.7.G. EXERCISE (REALITY CHECK). Verify that E}'? is (canonically isomorphic to)
EP-9.

We next give the definition of the differential d, of such an element x € X?*9.
We take any r-closed (p, q)-strip with leading term x. Its differential disa (p —r +
1,q + r)-strip, and we take its leading term. The choice of the r-closed (p, q)-strip
means that this is not a well-defined element of EP>9. But it is well-defined modulo
the differentials of the (r — 1)-closed (p + 1, g + 1)-strips, and hence gives a map
Ef'q _ E‘g—r+1,q+rl

This definition is fairly short, but not much fun to work with, so we will forget
it, and instead dive into a snakes’ nest of subscripts and superscripts.

We begin with making some quick but important observations about (p, q)-
strips.

2.7.H. EXERCISE (NOT HARD). Verify the following.

(@) SP9 = sp—1,q9+1 @ EP4,

(b) (Any closed (p, q)-strip is v-closed for all v.) Any element x of SP9 = SP4
that is a cycle (i.e. dx = 0) is automatically in S¥’¢ for all r. For example,
this holds when x is a boundary (i.e. of the form dy).

(c) Show that for fixed p, q,

P.4 P4 ,q
St oSyt ... DSPI o

stabilizes for r > 0 (i.e. S7'9 = S = ---). Denote the stabilized mod-

ule SP:9. Show SP,9 is the set of closed (p, q)-strips (those (p, q)-strips



October 10, 2012 draft 57

annihilated by d, i.e. the cycles). In particular, S%* is the set of cycles in
EF.

2.7.11. Defining ER9.
Define XP'9 := §P9 /5P~ 14+ T and ypod .— q(sPH 1= hatr=h  gp—latty jqp—Tat1

Then Y74 c X?°9 by Exercise 2.7.H(b). We define

(27.11.1) B = XE: RPTSIIE=IE S?q
R +(r—1)=1,q— 1,q+1
Yr asP™ a )4 gl

We have completed Goal 2.7.9(a).

You are welcome to verify that these definitions of X?'? and Y} and hence
EY9 agree with the earlier ones of §2.7.10 (and in particular X}*“ and Y} are both
submodules of EP>9), but we won’t need this fact.

2.7.1. EXERCISE: E2;*"P GIVES SUBQUOTIENTS OF H*(E®*). By Exercise 2.7.H(c),
EP'9 stabilizes as 1 — oo. For v > 0, interpret SP*4/dsP (711471 4 the
cycles in S2;9 C EP*9 modulo those boundary elements of dEP*9~! contained in
SP.9. Finally, show that H*(E®) is indeed filtered as described in (2.7.2.2).

We have completed Goal 2.7.9(b).

2.7.12. Definition of d..
We shall see that the map d, : EP'Y — EP ""19%7 js just induced by our
differential d. Notice that d sends r-closed (p, q)-strips SF'9 to (p — v+ 1,4 + 7)-

strips SP~ Tt 14T by the definition “r-closed”. By Exercise 2.7.H(b), the image lies
in S$7r+1 ,q+r.

2.7.J. EXERCISE. Verify that d sends

dsp+1('r71)71,q7(r71)+sf:11,q+1 N dS‘(rli?H—l)—F(erf],(q—}—r) (r— +S (p— r+1) 1(q+r)+1'

(The first term on the left goes to 0 from d? = 0, and the second term on the left
goes to the first term on the right.)

Thus we may define

p,q
d BP9 = o
dSp+ r=1)=1,9—(r— +Sp 1,q+1
Spfr+1,q+r
T p—r+1,q+7r
—1 1 1
def1 ,q+ + Sp r ,q+r+

and clearly d2 = 0 (as we may interpret it as taking an element of S}* and apply-
ing d twice).
We have accomplished Goal 2.7.9(c).
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2.7.13. Verifying that the cohomology of d. at EV' is EY.%.  We are left with the
unpleasant job of verifying that the cohomology of

(2.7.13.1) S d i
r
oL . +2 3, 2r+1 + 2,q—r+1 +r—2,q—1+1 —1,q+1
asPryTm S am At gpirmsany asPry-#amrHlgpora

p—r+1,q+7
& lsT T T
p—T.q+ por,atrt

dsrfl +Sr71

is naturally identified with
+q
ST
dSEJr'rf],q T + 811?71,q+1

and this will conclude our final Goal 2.7.9(d).

We begin by understanding the kernel of the right map of (2.7.13.1). Suppose
a € SP'% is mapped to 0. This means that da = db + ¢, where b € SP~ 4" If
u=a—b, thenu € SP9, while du = ¢ € SP_ /4! Sp_“quT+1 from which u
is (r+1)-closed, i.e. u € S39 Thusa—b+u€ Sh 1 q+] +S?
aeSh 9t L sha satlsfles

da € dSp 1 ,q+1 +dSp C dSp 1 ,q+1 +Sp T,q+r+1

719 Conversely, any

(using dST29 C SB’*T’”T“ and Exercise 2.7.H(b)) so any such a is indeed in the
kernel of sp—rtat
SP.d

- dsf:11 att Sfjr,q+r+1 .
Hence the kernel of the right map of (2.7.13.1) is

P 1,q+1
ker = S +Sr+1
dej{ Zq T+1 —I—Sp 1,9+1°

Next, the image of the left map of (2.7.13.1) is immediately

p+r—1,q—7r p+r 2,q—r+1 p 1,q+1 p+r—1,qg—r p 1 ,q+1
dsSs +dS; +S: dSy +S;
im =

dsp+r 2,q— r+1 _I_Sp 1,9+1 dsp+]r 2,q—r+1 _I_sp 1,9g+1
r—1 T—

—1,q— . —2,q—1+1
(as SPTT 197" contains SP T 9T,
Thus the cohomology of (2.7.13.1) is
“lad
Spat g sr 57,

ker /im = ST ]q v e :Sfjrq]ﬂ(dSEH T,q9— TSP 1q+1)

where the equality on the right uses the fact that dSY*"" """ ¢ "9 and an
isomorphism theorem. We thus must show

sPa N (dS]ngT Ta-r —i—Sp ! q+]) — dSEJFT*],q*T +Sff1,q+1.

r+1
However,
Serq] N (dSp” 1,9-7 _|_Sp 1 q+1) _ dSE”_]’q_r —I—Sfj ﬂSp 1 ,q+1

and ST N sPH1a7T consists of (p—1, q + 1)-strips whose differential vanishes up

to row p + 7, from which S?:9 N SP~ 1 at1 — gp=1a+1 45 desired.
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This completes the explanation of how spectral sequences work for a first-
quadrant double complex. The argument applies without significant change to
more general situations, including filtered complexes.






CHAPTER 3

Sheaves

It is perhaps surprising that geometric spaces are often best understood in
terms of (nice) functions on them. For example, a differentiable manifold that is
a subset of R™ can be studied in terms of its differentiable functions. Because
“geometric spaces” can have few (everywhere-defined) functions, a more precise
version of this insight is that the structure of the space can be well understood
by considering all functions on all open subsets of the space. This information
is encoded in something called a sheaf. Sheaves were introduced by Leray in the
1940’s, and Serre introduced them to algebraic geometry. (The reason for the name
will be somewhat explained in Remark 3.4.4.) We will define sheaves and describe
useful facts about them. We will begin with a motivating example to convince you
that the notion is not so foreign.

One reason sheaves are slippery to work with is that they keep track of a huge
amount of information, and there are some subtle local-to-global issues. There are
also three different ways of getting a hold of them:

e in terms of open sets (the definition §3.2) — intuitive but in some ways
the least helpful;

e in terms of stalks (see §3.4.1); and

e in terms of a base of a topology (§3.7).

Knowing which to use requires experience, so it is essential to do a number of
exercises on different aspects of sheaves in order to truly understand the concept.
(Some people strongly prefer the espace étalé interpretation, §3.2.11, as well.)

3.1 Motivating example: The sheaf of differentiable functions.

Consider differentiable functions on the topological space X = R™ (or more
generally on a smooth manifold X). The sheaf of differentiable functions on X is
the data of all differentiable functions on all open subsets on X. We will see how to
manage these data, and observe some of their properties. On each open set U C X,
we have a ring of differentiable functions. We denote this ring of functions &'(U).

Given a differentiable function on an open set, you can restrict it to a smaller
open set, obtaining a differentiable function there. In other words, if U C V is an
inclusion of open sets, we have a “restriction map” resv,y : 0(V) — O(U).

Take a differentiable function on a big open set, and restrict it to a medium
open set, and then restrict that to a small open set. The result is the same as if you
restrict the differentiable function on the big open set directly to the small open set.

61
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In other words, if U <= V < W, then the following diagram commutes:

o(W) Ew.v o)
o)

Next take two differentiable functions f; and f, on a big open set U, and an
open cover of U by some collection of open subsets {Ll;}. (We say {U;} covers U, or
is an open cover of U, if U = Ul;.) Suppose that f; and f, agree on each of these
U;. Then they must have been the same function to begin with. In other words, if
{Ui}ier is a cover of U, and fy, f, € €(U), and resy u, f1 = resu, u, f2, then f; = f,.
Thus we can identify functions on an open set by looking at them on a covering by
small open sets.

Finally, suppose you are given the same U and cover {U;}, take a differentiable
function on each of the U; — a function f; on U4, a function f, on U,, and so
on — and assume they agree on the pairwise overlaps. Then they can be “glued
together” to make one differentiable function on all of U. In other words, given
fi € O(Uy) for all i, such that resu, u;nu; fi = resu; u;nu; fj for all i and j, then
there is some f € ¢/(U) such that resy u, f = f; for all i.

The entire example above would have worked just as well with continuous
functions, or smooth functions, or just plain functions. Thus all of these classes
of “nice” functions share some common properties. We will soon formalize these
properties in the notion of a sheaf.

3.1.1. The germ of a differentiable function. Before we do, we first give another
definition, that of the germ of a differentiable function at a point p € X. Intuitively,
it is a “shred” of a differentiable function at p. Germs are objects of the form
{(f,openlU) : p € U, f e &(U)} modulo the relation that (f, U) ~ (g, V) if there is
some open set W C U, V containing p where flw = glw (i.e., resy,w f = resy,w g).
In other words, two functions that are the same in a neighborhood of p (but may
differ elsewhere) have the same germ. We call this set of germs the stalk at p,
and denote it &},. Notice that the stalk is a ring: you can add two germs, and get
another germ: if you have a function f defined on U, and a function g defined on
V, then f + g is defined on U N V. Moreover, f + g is well-defined: if ' has the
same germ as f, meaning that there is some open set W containing p on which
they agree, and g’ has the same germ as g, meaning they agree on some open W’
containing p, then f’ + g’ is the same functionas f+ gonUNV AW N W',

Notice also that if p € U, you get a map &(U) — &,. Experts may already see
that we are talking about germs as colimits.

We can see that &, is a local ring as follows. Consider those germs vanishing
at p, which we denote m, C &),. They certainly form an ideal: m,, is closed under
addition, and when you multiply something vanishing at p by any function, the
result also vanishes at p. We check that this ideal is maximal by showing that the
quotient ring is a field:

(3.1.1.1) 0 ——m,, := ideal of germs vanishing at p ﬁprf(p) R 0
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3.1.A. EXERCISE. Show that this is the only maximal ideal of &,,. (Hint: show that
every element of &, \ m,, is invertible.)

Note that we can interpret the value of a function at a point, or the value of
a germ at a point, as an element of the local ring modulo the maximal ideal. (We
will see that this doesn’t work for more general sheaves, but does work for things
behaving like sheaves of functions. This will be formalized in the notion of a locally
ringed space, which we will see, briefly, in §7.3.)

3.1.2. Aside. Notice that m,, /m% is a module over &, /m = R, i.e. it is a real vector
space. It turns out to be naturally (whatever that means) the cotangent space to
the manifold at p. This insight will prove handy later, when we define tangent and
cotangent spaces of schemes.

3.1.B. x EXERCISE FOR THOSE WITH DIFFERENTIAL GEOMETRIC BACKGROUND.
Prove this. (Rhetorical question for experts: what goes wrong if the sheaf of con-
tinuous functions is substituted for the sheaf of differentiable functions?)

3.2 Definition of sheaf and presheaf

We now formalize these notions, by defining presheaves and sheaves. Presheaves
are simpler to define, and notions such as kernel and cokernel are straightforward.
Sheaves are more complicated to define, and some notions such as cokernel re-
quire more thought. But sheaves are more useful because they are in some vague
sense more geometric; you can get information about a sheaf locally.

3.2.1. Definition of sheaf and presheaf on a topological space X.

To be concrete, we will define sheaves of sets. However, in the definition the
category Sets can be replaced by any category, and other important examples are
abelian groups Ab, k-vector spaces Vecy, rings Rings, modules over a ring Moda,
and more. (You may have to think more when dealing with a category of objects
that aren’t “sets with additional structure”, but there aren’t any new complications.
In any case, this won't be relevant for us, although people who want to do this
should start by solving Exercise 3.2.C.) Sheaves (and presheaves) are often written
in calligraphic font. The fact that . is a sheaf on a topological space X is often
written as

)

X

3.2.2. Definition: Presheaf. A presheaf .7 on a topological space X is the
following data.

e To each open set U C X, we have a set .#(U) (e.g. the set of differentiable
functions in our motivating example). (Notational warning: Several notations are
in use, for various good reasons: .Z (U) = I'(U,.#) = H°(U,.Z). We will use them
all.) The elements of . (U) are called sections of .# over U. (§3.2.11 combined
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with Exercise 3.2.G gives a motivation for this terminology, although this isn’t so
important for us.)

e For each inclusion U < V of open sets, we have a restriction map resvy :
F (V) = Z(U) (just as we did for differentiable functions).

The data is required to satisfy the following two conditions.

e The map resy y is the identity: resy y = id(u).

o If U — V — W are inclusions of open sets, then the restriction maps com-
mute, i.e.

F (W) WY Z(V)
F(U)

commutes.

3.2.A. EXERCISE FOR CATEGORY-LOVERS: “A PRESHEAF IS THE SAME AS A CON-
TRAVARIANT FUNCTOR”. Given any topological space X, we have a “category
of open sets” (Example 2.2.9), where the objects are the open sets and the mor-
phisms are inclusions. Verify that the data of a presheaf is precisely the data of a
contravariant functor from the category of open sets of X to the category of sets.
(This interpretation is surprisingly useful.)

3.2.3. Definition: Stalks and germs. We define the stalk of a presheaf at a point
in two equivalent ways. One will be hands-on, and the other will be as a colimit.

3.2.4. Define the stalk of a presheaf .7 at a point p to be the set of germs of .# at p,
denoted .%,, as in the example of §3.1.1. Germs correspond to sections over some
open set containing p, and two of these sections are considered the same if they
agree on some smaller open set. More precisely: the stalk is

{(f,openlU) : p e U, fe.F(U)

modulo the relation that (f,U) ~ (g, V) if there is some open set W C U,V where
p € Wand resy,w f =resv,w g.

3.2.5. A useful equivalent definition of a stalk is as a colimit of all .%(U) over all
open sets U containing p:

Fy =lim 7 (U).

The index category is a directed set (given any two such open sets, there is a third
such set contained in both), so these two definitions are the same by Exercise 2.4.C.
Hence we can define stalks for sheaves of sets, groups, rings, and other things for
which colimits exist for directed sets. It is very helpful to simultaneously keep
both definitions of stalk in mind at the same time.

Ifp € U, and f € #(U), then the image of f in .%,, is called the germ of f at p.
(Warning: unlike the example of §3.1.1, in general, the value of a section at a point
doesn’t make sense.)

3.2.6. Definition: Sheaf. A presheaf is a sheaf if it satisfies two more axioms.
Notice that these axioms use the additional information of when some open sets
cover another.
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Identity axiom. If {U;}ic1 is an open cover of U, and f1,f, € #(U), and
resy,u; f1 =resy u, f2 foralli, then f; = f,.

(A presheaf satisfying the identity axiom is called a separated presheaf, but
we will not use that notation in any essential way:.)

Gluability axiom. If {U; }i<1 is a open cover of U, then given f; € .% (1) for all
i, such that resu, u;nu; fi = resu; u;nu; fj for all i,j, then there is some f € .7 (U)
such that resy y, f = fi for all i.

In mathematics, definitions often come paired: “at most one” and “at least
one”. In this case, identity means there is at most one way to glue, and gluability
means that there is at least one way to glue.

(For experts and scholars of the empty set only: an additional axiom some-
times included is that F(@) is a one-element set, and in general, for a sheaf with
values in a category, F(@) is required to be the final object in the category. This
actually follows from the above definitions, assuming that the empty product is
appropriately defined as the final object.)

Example. If U and V are disjoint, then . (LU V) = .# (U) x .# (V). Here we use
the fact that F(2) is the final object.

The stalk of a sheaf at a point is just its stalk as a presheaf — the same defini-
tion applies — and similarly for the germs of a section of a sheaf.

3.2.B. UNIMPORTANT EXERCISE: PRESHEAVES THAT ARE NOT SHEAVES. Show
that the following are presheaves on C (with the classical topology), but not sheaves:
(a) bounded functions, (b) holomorphic functions admitting a holomorphic square
root.

Both of the presheaves in the previous Exercise satisfy the identity axiom. A
“natural” example failing even the identity axiom is implicit in Remark 3.7.4.
We now make a couple of points intended only for category-lovers.

3.2.7. Interpretation in terms of the equalizer exact sequence. The two axioms for a
presheaf to be a sheaf can be interpreted as “exactness” of the “equalizer exact

sequence”: - —— Z(U) —— [[ F(U;) —= [ [ #(U; N U;). Identity is exact-
ness at % (U), and gluability is exactness at [ [ % (U;). I won’t make this precise,

or even explain what the double right arrow means. (What is an exact sequence of
sets?!) But you may be able to figure it out from the context.

3.2.C. EXERCISE. The identity and gluability axioms may be interpreted as saying
that .% (Uic1U;) is a certain limit. What is that limit?

Here are a number of examples of sheaves.

3.2.D. EXERCISE.

(a) Verify that the examples of §3.1 are indeed sheaves (of differentiable functions,
or continuous functions, or smooth functions, or functions on a manifold or R™).
(b) Show that real-valued continuous functions on (open sets of) a topological
space X form a sheaf.

3.2.8. Important Example: Restriction of a sheaf. Suppose .# is a sheaf on X, and U
is an open subset of X. Define the restriction of .# to U, denoted .#|y, to be the
collection .Z | (V) = .# (V) for all open subsets V C U. Clearly this is a sheaf on
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U. (Unimportant but fun fact: §3.6 will tell us how to restrict sheaves to arbitrary
subsets.)

3.2.9. Important Example: skyscraper sheaf. Suppose X is a topological space, with
p € X,and Sis a set. Let i, : p — X be the inclusion. Then i, .S defined by

S ifpe U, and

bp.-S(U) = {{e} ifp¢ U

forms a sheaf. Here {e} is any one-element set. (Check this if it isn’t clear to you
— what are the restriction maps?) This is called a skyscraper sheaf, because the
informal picture of it looks like a skyscraper at p. (Mild caution: this informal pic-
ture suggests that the only nontrivial stalk of a skyscraper sheaf is at p, which isn’t
the case. Exercise 14.2.A(b) gives an example, although it certainly isn’t the sim-
plest one.) There is an analogous definition for sheaves of abelian groups, except
ip«(S)(U) ={0}if p ¢ U; and for sheaves with values in a category more generally,
ip +S(U) should be a final object.

(This notation is admittedly hideous, and the alternative (i,)..S is equally bad.
§3.2.12 explains this notation.)

3.2.10. Constant presheaves and constant sheaves. Let X be a topological space, and
S a set. Define SP"¢(U) = S for all open sets U. You will readily verify that SP"®
forms a presheaf (with restriction maps the identity). This is called the constant
presheaf associated to S. This isn’t (in general) a sheaf. (It may be distracting to
say why. Lovers of the empty set will insist that the sheaf axioms force the sections
over the empty set to be the final object in the category, i.e. a one-element set. But
even if we patch the definition by setting SP"¢(&) = {e}, if S has more than one
element, and X is the two-point space with the discrete topology, i.e. where every
subset is open, you can check that SP"° fails gluability.)

3.2.E. EXERCISE (CONSTANT SHEAVES). Now let .# (U) be the maps to S that are
locally constant, i.e. for any point x in U, there is a neighborhood of x where the
function is constant. Show that this is a sheaf. (A better description is this: endow
S with the discrete topology, and let .% (Ul) be the continuous maps U — S.) This
is called the constant sheaf (associated to S); do not confuse it with the constant
presheaf. We denote this sheaf S.

3.2.F. EXERCISE (“MORPHISMS GLUE”). Suppose Y is a topological space. Show
that “continuous maps to Y” form a sheaf of sets on X. More precisely, to each
open set U of X, we associate the set of continuous maps of U to Y. Show that this
forms a sheaf. (Exercise 3.2.D(b), with Y = R, and Exercise 3.2.E, with Y = S with
the discrete topology, are both special cases.)

3.2.G. EXERCISE. This is a fancier version of the previous exercise.

(a) (sheaf of sections of a map) Suppose we are given a continuous map 7t: Y — X.
Show that “sections of " form a sheaf. More precisely, to each open set U of X,
associate the set of continuous maps s : U — Y such that mo s = id|y. Show that
this forms a sheaf. (For those who have heard of vector bundles, these are a good
example.) This is motivation for the phrase “section of a sheaf”.

(b) (This exercise is for those who know what a topological group is. If you don’t
know what a topological group is, you might be able to guess.) Suppose that Y
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is a topological group. Show that continuous maps to Y form a sheaf of groups.
(Example 3.2.D(b), with Y = R, is a special case.)

3.2.11.  The space of sections (espace étalé) of a (pre)sheaf. Depending on your back-
ground, you may prefer the following perspective on sheaves. Suppose .# is a
presheaf (e.g. a sheaf) on a topological space X. Construct a topological space F
along with a continuous map 7 : F — X as follows: as a set, F is the disjoint union
of all the stalks of .%. This naturally gives a map of sets 7t : F — X. Topologize F as
follows. Each s in .% (Ul) determines a subset {(x, sy ) : x € U} of F. The topology on
F is the weakest topology such that these subsets are open. (These subsets form a
base of the topology. For each y € F, there is a neighborhood V of y and a neigh-
borhood U of 7t(y) such that 7ty is a homeomorphism from V to U. Do you see
why these facts are true?) The topological space F could be thought of as the space
of sections of .# (and in french is called the espace étalé of .%). We will not discuss
this construction at any length, but it can have some advantages: (a) It is always
better to know as many ways as possible of thinking about a concept. (b) Pullback
has a natural interpretation in this language (mentioned briefly in Exercise 3.6.C).
(c) Sheafification has a natural interpretation in this language (see Remark 3.4.8).

3.2.H. IMPORTANT EXERCISE: THE PUSHFORWARD SHEAF OR DIRECT IMAGE SHEAF.
Suppose 7t : X — Y is a continuous map, and .# is a presheaf on X. Then define
.7 by M. 7 (V) = Z (' (V)), where V is an open subset of Y. Show that 7.7 is
a presheaf on Y, and is a sheaf if .# is. This is called the direct image or pushfor-
ward of .#. More precisely, m,.# is called the pushforward of .# by 7.

3.2.12. As the notation suggests, the skyscraper sheaf (Example 3.2.9) can be inter-
preted as the pushforward of the constant sheaf S on a one-point space p, under
the inclusion morphism i : {p} — X.

Once we realize that sheaves form a category, we will see that the pushforward
is a functor from sheaves on X to sheaves on Y (Exercise 3.3.B).

3.2.I1. EXERCISE (PUSHFORWARD INDUCES MAPS OF STALKS). Suppose 7 : X —
Y is a continuous map, and .# is a sheaf of sets (or rings or A-modules) on X.
If n(p) = q, describe the natural morphism of stalks (m..#)q — %,. (You can
use the explicit definition of stalk using representatives, §3.2.4, or the universal
property, §3.2.5. If you prefer one way, you should try the other.) Once we define
the category of sheaves of sets on a topological space in §3.3.1, you will see that
your construction will make the following diagram commute:

Setsx Ty Setsy

|

Sets ——— Sets

3.2.13. Important Example: Ringed spaces, and &x-modules. Suppose O is a
sheaf of rings on a topological space X (i.e. a sheaf on X with values in the category
of Rings). Then (X, Ox) is called a ringed space. The sheaf of rings is often denoted
by &, pronounced “oh-X". This sheaf is called the structure sheaf of the ringed
space. The symbol &x will always refer to the structure sheaf of a ringed space.
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(Note: the stalk of Ox at a point p is written “&x ,”, because this looks less hideous
than “0x,,”.

Just as we have modules over a ring, we have &x-modules over the a sheaf of
rings Ox. There is only one possible definition that could go with the name Ox-
module — a sheaf of abelian groups .# with the following additional structure.
For each U, . (U) is an &x(U)-module. Furthermore, this structure should behave
well with respect to restriction maps: if U C V, then

Ox (V) x F(V) 2% 2z (v)
(32131) resy, u X resv,ul resv,u
Ox(U) x Z(U) 20 2 ()

commutes. (You should convince yourself that [ haven’t forgotten anything.)

Recall that the notion of A-module generalizes the notion of abelian group,
because an abelian group is the same thing as a Z-module. Similarly, the notion of
Ox-module generalizes the notion of sheaf of abelian groups, because the latter is
the same thing as a Z-module, where Z is the constant sheaf associated to Z. Hence
when we are proving things about &’x-modules, we are also proving things about
sheaves of abelian groups.

3.2.J. EXERCISE. If (X, Ox) is a ringed space, and % is an Ox-module, describe
how for each p € X, %, is an Ox ,-module.

3.2.14. For those who know about vector bundles. The motivating example of Ox-
modules is the sheaf of sections of a vector bundle. If (X, Ox) is a differentiable
manifold (so Ox is the sheaf of differentiable functions), and 7t: V — X is a vector
bundle over X, then the sheaf of differentiable sections ¢ : X — V is an &x-module.
Indeed, given a section s of 7t over an open subset UL C X, and a function f on U,
we can multiply s by f to get a new section fs of 7w over Ul. Moreover, if V is a
smaller subset, then we could multiply f by s and then restrict to V, or we could
restrict both f and s to V and then multiply, and we would get the same answer.
That is precisely the commutativity of (3.2.13.1).

3.3 Morphisms of presheaves and sheaves

3.3.1. Whenever one defines a new mathematical object, category theory teaches to
try to understand maps between them. We now define morphisms of presheaves,
and similarly for sheaves. In other words, we will describe the category of presheaves
(of sets, abelian groups, etc.) and the category of sheaves.

A morphism of presheaves of sets (or indeed of presheaves with values in
any category) on X, ¢ : F — ¢, is the data of maps ¢(U) : F(U) —» ¢(U) forall U



October 10, 2012 draft 69

behaving well with respect to restriction: if U < V then

resv, u ir

Z(v) 2V 4w
é(U) g(u

Z(U) )

commutes. (Notice: the underlying space of both .# and ¢ is X.)

Morphisms of sheaves are defined identically: the morphisms from a sheaf .%#
to a sheaf ¢ are precisely the morphisms from .% to ¢ as presheaves. (Translation:
The category of sheaves on X is a full subcategory of the category of presheaves on
X.) If (X, Ox) is a ringed space, then morphisms of &'x-modules have the obvious
definition. (Can you write it down?)

An example of a morphism of sheaves is the map from the sheaf of differen-
tiable functions on R to the sheaf of continuous functions. This is a “forgetful
map”: we are forgetting that these functions are differentiable, and remembering
only that they are continuous.

We may as well set some notation: let Setsx, Abx, etc. denote the category of
sheaves of sets, abelian groups, etc. on a topological space X. Let Mody, denote
the category of &x-modules on a ringed space (X, Ox). Let Sets}, etc. denote the
category of presheaves of sets, etc. on X.

3.3.2. Aside for category-lovers. If you interpret a presheaf on X as a contravari-
ant functor (from the category of open sets), a morphism of presheaves on X is a
natural transformation of functors (§2.2.21).

3.3.A. EXERCISE: MORPHISMS OF (PRE)SHEAVES INDUCE MORPHISMS OF STALKS.
If  : F — ¢ is a morphism of presheaves on X, and p € X, describe an induced
morphism of stalks ¢y, : F, — %,. (Your proof will extend in obvious ways. For
example, if ¢ is a morphism of &'x-modules, then ¢, is a map of &x ,-modules.)
Translation: taking the stalk at p induces a functor Setsx — Sets.

3.3.B. EXERCISE. Suppose 7 : X — Y is a continuous map of topological spaces
(i.e. a morphism in the category of topological spaces). Show that pushforward
gives a functor 7, : Setsx — Setsy. Here Sets can be replaced by other categories.
(Watch out for some possible confusion: a presheaf is a functor, and presheaves
form a category. It may be best to forget that presheaves are functors for now.)

3.3.C. IMPORTANT EXERCISE AND DEFINITION: “SHEAF Hom”. Suppose .# and
¢ are two sheaves of sets on X. (In fact, it will suffice that .# is a presheaf.) Let
Hom(.F,%9) be the collection of data

Hom(F,94)(U) .= Mor(ZF|u,%|u).

(Recall the notation .#|y, the restriction of the sheaf to the open set U, Exam-
ple 3.2.8.) Show that this is a sheaf of sets on X. This is called “sheaf Hom". (Strictly
speaking, we should reserve Hom for when we are in additive category, so this
should possibly be called “sheaf Mor”. But the terminology “sheaf Hom” is too
established to uproot.) It will be clear from your construction that, like Hom, Hom
is a contravariant functor in its first argument and a covariant functor in its second
argument.
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Warning: Hom does not commute with taking stalks. More precisely: it is
not true that Hom(.%#,%), is isomorphic to Hom(.%,,%,). (Can you think of a
counterexample? There is at least a map from one of these to other — in which
direction?)

3.3.3. We will use many variants of the definition of Hom. For example, if .# and
& are sheaves of abelian groups on X, then Homgy, (% ,%) is defined by taking
Homap, (F,9)(U) to be the maps as sheaves of abelian groups Flu — “|u. (Note
that Homy, (F,%) has the structure of a sheaf of abelian groups in a natural way.)
Similarly, if .% and ¢ are Ox-modules, we define Homy,y ox (Z,%) in the analo-
gous way (and it is an Ox-module). Obnoxiously, the subscripts Abx and Mod g,
are always dropped (here and in the literature), so be careful which category you
are working in! We call Homoq ox (F, Ox) the dual of the Ox-module %, and de-

note it ZV.

3.3.D. UNIMPORTANT EXERCISE (REALITY CHECK).

(a) If .7 is a sheaf of sets on X, then show that Hom({p}, .#) = .7, where {p}
is the constant sheaf associated to the one element set {p}.

(b) If .7 is a sheaf of abelian groups on X, then show that Homay, (Z, ) = F
(an isomorphism of sheaves of abelian groups).

(c) If # is an Ox-module, then show that }[omMOdﬁX (Ox,F) = % (an iso-
morphism of Ox-modules).

A key idea in (b) and (c) is that 1 “generates” (in some sense) Z (in (b)) and & (in
(©)).

3.3.4. Presheaves of abelian groups (and even “presheaf &’x-modules”) form an
abelian category.

We can make module-like constructions using presheaves of abelian groups
on a topological space X. (Throughout this section, all (pre)sheaves are of abelian
groups.) For example, we can clearly add maps of presheaves and get another
map of presheaves: if §, P : .F — ¥, then we define the map f+gby (¢+)(V) =
¢(V) + (V). (There is something small to check here: that the result is indeed a
map of presheaves.) In this way, presheaves of abelian groups form an additive
category (Definition 2.6.1: the morphisms between any two presheaves of abelian
groups form an abelian group; there is a 0-object; and one can take finite products).
For exactly the same reasons, sheaves of abelian groups also form an additive
category.

If  : F — ¢ is a morphism of presheaves, define the presheaf kernel kerp ¢
by (kerpre ¢) (W) = ker p(U).

3.3.E. EXERCISE. Show that kerlore ¢ is a presheaf. (Hint: if U — V, define the
restriction map by chasing the following diagram:

0 —— kerpre (V) — F (V) —=¥4(V)
3! resv u lrESvyu
Y

0 —— kerpre (U) — 7 (U) —¥¢(U)

You should check that the restriction maps compose as desired.)
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Define the presheaf cokernel coker,,. ¢ similarly. Itis a presheaf by essentially
the same (dual) argument.

3.3.F. EXERCISE: THE COKERNEL DESERVES ITS NAME. Show that the presheaf cok-
ernel satisfies the universal property of cokernels (Definition 2.6.3) in the category
of presheaves.

Similarly, kerpe ¢ — .7 satisfies the universal property for kernels in the cate-
gory of presheaves.

It is not too tedious to verify that presheaves of abelian groups form an abelian
category, and the reader is free to do so. The key idea is that all abelian-categorical
notions may be defined and verified “open set by open set”. We needn’t worry
about restriction maps — they “come along for the ride”. Hence we can define
terms such as subpresheaf, image presheaf, quotient presheaf, cokernel presheaf,
and they behave as you would expect. You construct kernels, quotients, cokernels,
and images open set by open set. Homological algebra (exact sequences and so
forth) works, and also “works open set by open set”. In particular:

3.3.G. EAsY EXERCISE. Show (or observe) that for a topological space X with open
set U, 7 — Z(U) gives a functor from presheaves of abelian groups on X, AbY*,
to abelian groups, Ab. Then show that this functor is exact.

3.3.H. EXERCISE. Show that a sequence of presheaves 0 — 7 — F, — -+ —
Fn — Olisexactif and only if 0 — % (U) — Z(U) — --- — Fn(U) — 0is exact
for all U.

The above discussion essentially carries over without change to presheaves
with values in any abelian category. (Think this through if you wish.)

However, we are interested in more geometric objects, sheaves, where things
can be understood in terms of their local behavior, thanks to the identity and glu-
ing axioms. We will soon see that sheaves of abelian groups also form an abelian
category, but a complication will arise that will force the notion of sheafification on
us. Sheafification will be the answer to many of our prayers. We just haven’t yet
realized what we should be praying for.

To begin with, sheaves Abx form an additive category, as described in the first
paragraph of §3.3.4.

Kernels work just as with presheaves:

3.3.I. IMPORTANT EXERCISE. Suppose ¢ : F — ¥ is a morphism of sheaves.
Show that the presheaf kernel kery ¢ is in fact a sheaf. Show that it satisfies
the universal property of kernels (Definition 2.6.3). (Hint: the second question
follows immediately from the fact that kery. ¢ satisfies the universal property in
the category of presheaves.)

Thus if ¢ is a morphism of sheaves, we define
ker ¢ := kerpre ¢.

The problem arises with the cokernel.

3.3.J. IMPORTANT EXERCISE. Let X be C with the classical topology, let Z be the
constant sheaf on X associated to Z, Ox the sheaf of holomorphic functions, and
F the presheaf of functions admitting a holomorphic logarithm. Describe an exact



72 Math 216: Foundations of Algebraic Geometry

sequence of presheaves on X:

0 Z Ox F 0

where Z — O is the natural inclusion and Ox — . is given by f — exp(2mif).
(Be sure to verify exactness.) Show that .% is not a sheaf. (Hint: .# does not satisfy
the gluability axiom. The problem is that there are functions that don’t have a
logarithm but locally have a logarithm.) This will come up again in Example 3.4.10.

We will have to put our hopes for understanding cokernels of sheaves on hold
for a while. We will first learn to understand sheaves using stalks.

3.4 Properties determined at the level of stalks, and sheafification

3.4.1. Properties determined by stalks. We now come to the second way of
understanding sheaves mentioned at the start of the chapter. In this section, we
will see that lots of facts about sheaves can be checked “at the level of stalks”. This
isn’t true for presheaves, and reflects the local nature of sheaves. We will see that
sections and morphisms are determined “by their stalks”, and the property of a
morphism being an isomorphism may be checked at stalks. (The last one is the
trickiest.)

3.4.A. IMPORTANT EASY EXERCISE (sections are determined by germs). Prove
that a section of a sheaf of sets is determined by its germs, i.e. the natural map

(34.1.1) FW =[] %
peu

is injective. Hint 1: you won't use the gluability axiom, so this is true for separated
presheaves. Hint 2: it is false for presheaves in general, see Exercise 3.4.F, so you
will use the identity axiom. (Your proof will also apply to sheaves of groups, rings,
etc. — to categories of “sets with additional structure”. The same is true of many
exercises in this section.)

3.4.2. Definition: support of a section. This motivates a concept we will find useful
later. Suppose % is a sheaf (or indeed separated presheaf) of abelian groups on X,
and s is a section. Then let the support of s, denoted Supp(s), be the points p of X
where s has a nonzero germ:

Supps:={pe X : s, #0in Fp}.

We think of this as the subset of X where “the section s lives” — the complement is
the locus where s is the O-section. We could define this even if .# is a presheaf, but
without the inclusion of Exercise 3.4.A, we could have the strange situation where
we have a nonzero section that “lives nowhere” (because it is 0 “near every point”,
i.e.is 0 in every stalk).

3.4.B. EXERCISE (THE SUPPORT OF A SECTION IS CLOSED). Show that Supp(s) is
a closed subset of X.
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Exercise 3.4.A suggests an important question: which elements of the right
side of (3.4.1.1) are in the image of the left side?

3.4.3. Important definition. We say that an element [ [, sp of the right side
[[,cu Z» of (3.4.1.1) consists of compatible germs if for all p € U, there is some
representative (Up,s), € 7 (U,)) for s, (where p € U,, C U) such that the germ of
sp atally € Uy, is sy. You will have to think about this a little. Clearly any section
s of 7 over U gives a choice of compatible germs for U — take (Up,s],) = (U, s).

3.4.C. IMPORTANT EXERCISE. Prove that any choice of compatible germs for a
sheaf of sets .# over U is the image of a section of .# over U. (Hint: you will use
gluability.)

We have thus completely described the image of (3.4.1.1), in a way that we
will find useful.

3.4.4. Remark. This perspective motivates the agricultural terminology “sheaf”: it
is (the data of) a bunch of stalks, bundled together appropriately.

Now we throw morphisms into the mix. Recall Exercise 3.3.A: morphisms of
(pre)sheaves induce morphisms of stalks.

3.4.D. EXERCISE (morphisms are determined by stalks). If ¢ and ¢, are mor-
phisms from a presheaf of sets .7 to a sheaf of sets ¢ that induce the same maps
on each stalk, show that ¢1 = ¢,. Hint: consider the following diagram.

(3.4.4.1) Z(U) ——=9(U)

]

Hpeu T > Hpeu %

3.4.E. TRICKY EXERCISE (isomorphisms are determined by stalks). Show that a
morphism of sheaves of sets is an isomorphism if and only if it induces an isomor-
phism of all stalks. Hint: Use (3.4.4.1). Once you have injectivity, show surjectivity,
perhaps using Exercise 3.4.C, or gluability in some other way; this is more subtle.
Note: this question does not say that if two sheaves have isomorphic stalks, then
they are isomorphic.

3.4.F. EXERCISE.

(a) Show that Exercise 3.4.A is false for general presheaves.

(b) Show that Exercise 3.4.D is false for general presheaves.

(c) Show that Exercise 3.4.E is false for general presheaves.

(General hint for finding counterexamples of this sort: consider a 2-point space
with the discrete topology.)

3.4.5. Sheafification.

Every sheaf is a presheaf (and indeed by definition sheaves on X form a full
subcategory of the category of presheaves on X). Just as groupification (§2.5.3)
gives an abelian group that best approximates an abelian semigroup, sheafifica-
tion gives the sheaf that best approximates a presheaf, with an analogous univer-
sal property. (One possible example to keep in mind is the sheafification of the
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presheaf of holomorphic functions admitting a square root on C with the classical
topology.)

3.4.6. Definition. If # is a presheaf on X, then a morphism of presheaves sh :
F — F" on X is a sheafification of .Z if .# 5" is a sheaf, and for any sheaf ¢,
and any presheaf morphism g : % — ¥, there exists a unique morphism of sheaves
f: 7" - & making the diagram

F sh fSh

RN

4

commute.
We still have to show that it exists. The following two exercises require exis-
tence (which we will show shortly), but not the details of the construction.

3.4.G. EXERCISE. Show that sheafification is unique up to unique isomorphism,
assuming it exists. Show that if % is a sheaf, then the sheafification is .# iy
(This should be second nature by now.)

3.4.H. EASY EXERCISE (SHEAFIFICATION IS A FUNCTOR). Assume for now that
sheafification exists. Use the universal property to show that for any morphism
of presheaves ¢ : F — ¥, we get a natural induced morphism of sheaves ¢ :
F M — @5 Show that sheafification is a functor from presheaves on X to sheaves
on X.

3.4.7. Construction. We next show that any presheaf of sets (or groups, rings, etc.)
has a sheafification. Suppose .7 is a presheaf. Define .7 ™ by defining .Z°"(U) as
the set of compatible germs of the presheaf .%# over U. Explicitly:

FMU) = {(fx € F)xeu :forallx € U, thereexistsx € V.C Uand s € .Z(V)
with s, = f, forally € V}.

Here s, means the image of s in the stalk .%,,. (Those who want to worry about
the empty set are welcome to.)

3.4.1. EASY EXERCISE. Show that .Z 5" (using the tautological restriction maps)
forms a sheaf.

3.4.J. EASY EXERCISE. Describe a natural map of presheaves sh : & — Z ™.

3.4K. EXERCISE. Show that the map sh satisfies the universal property of sheafi-
fication (Definition 3.4.6). (This is easier than you might fear.)

3.4.L. USEFUL EXERCISE, NOT JUST FOR CATEGORY-LOVERS. Show that the sheafi-
fication functor is left-adjoint to the forgetful functor from sheaves on X to presheaves
on X. This is not difficult — it is largely a restatement of the universal property.
But it lets you use results from §2.6.12, and can “explain” why you don’t need to
sheafify when taking kernel (why the presheaf kernel is already the sheaf kernel),
and why you need to sheafify when taking cokernel and (soon, in Exercise 3.5.])
.
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3.4.M. EXERCISE. Show .Z — Z*" induces an isomorphism of stalks. (Possible
hint: Use the concrete description of the stalks. Another possibility once you read
Remark 3.6.3: judicious use of adjoints.)

As areality check, you may want to verify that “the sheafification of a constant
presheaf is the corresponding constant sheaf” (see §3.2.10): if X is a topological
space and S is a set, then (SP"¢)*" may be naturally identified with S.

3.4.8. x Remark. The “space of sections” (or “espace étalé”) construction (§3.2.11)
yields a different-sounding description of sheafification which may be preferred
by some readers. The main idea is identical: if .# is a presheaf, let F be the space of
sections (or espace étalé) of .. You may wish to show that if .% is a presheaf, the
sheaf of sections of F — X (defined in Exercise 3.2.G(a)) is the sheafification of .%.
Exercise 3.2.E may be interpreted as an example of this construction. The “space
of sections” construction of the sheafification is essentially the same as Construc-
tion 3.4.7. Yet another construction is described in [EH].

3.4.9. Subsheaves and quotient sheaves.
We now discuss subsheaves and quotient sheaves from the perspective of
stalks.

3.4.N. EXERCISE. Suppose ¢ : .# — ¥ is a morphism of sheaves of sets on a
topological space X. Show that the following are equivalent.

(@) ¢ is a monomorphism in the category of sheaves.

(b) ¢ is injective on the level of stalks: ¢y : F — % is injective for all x € X.

(c) ¢ is injective on the level of open sets: ¢(U) : F(U) — ¢(U) is injective
for all open U C X.

(Possible hints: for (b) implies (a), recall that morphisms are determined by stalks,
Exercise 3.4.D. For (a) implies (c), use the “indicator sheaf” with one section over
every open set contained in U, and no section over any other open set.) If these
conditions hold, we say that .# is a subsheaf of ¢ (where the “inclusion” ¢ is
sometimes left implicit).

(You may later wish to extend your solution to Exercise 3.4.N to show that for
any morphism of presheaves, if all maps of sections are injective, then all stalk maps
are injective. And furthermore, if ¢ : F — ¢ is a morphism from a separated
presheaf to an arbitrary presheaf, then injectivity on the level of stalks implies
that ¢ is a monomorphism in the category of presheaves. This is useful in some
approaches to Exercise 3.5.C.)

3.4.0. EXERCISE. Continuing the notation of the previous exercise, show that the
following are equivalent.

(@) ¢ is an epimorphism in the category of sheaves.
(b) ¢ is surjective on the level of stalks: ¢« : .y — % is surjective for all
x e X.

If these conditions hold, we say that 4 is a quotient sheaf of .Z.

Thus monomorphisms and epimorphisms — subsheafiness and quotient sheafiness —
can be checked at the level of stalks.
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Both exercises generalize readily to sheaves with values in any reasonable cat-
egory, where “injective” is replaced by “monomorphism” and “surjective” is re-
placed by “epimorphism”.

Notice that there was no part (c) to Exercise 3.4.0, and Example 3.4.10 shows
why. (But there is a version of (c) that implies (a) and (b): surjectivity on all open
sets in the base of a topology implies that the corresponding map of sheaves is an
epimorphism, Exercise 3.7.E.)

3.4.10. Example (cf. Exercise 3.3.]). Let X = C with the classical topology, and define
Ox to be the sheaf of holomorphic functions, and 0% to be the sheaf of invertible
(nowhere zero) holomorphic functions. This is a sheaf of abelian groups under
multiplication. We have maps of sheaves

x27i exp

(3.4.10.1) 0 z Ox

o 1

where Z is the constant sheaf associated to Z. (You can figure out what the sheaves
0 and 1 mean; they are isomorphic, and are written in this way for reasons that may
be clear.) We will soon interpret this as an exact sequence of sheaves of abelian
groups (the exponential exact sequence, see Exercise 3.5.E), although we don’t yet
have the language to do so.

3.4.P. ENLIGHTENING EXERCISE. ~ Show that Oy — > O% describes O as a
quotient sheaf of &’x. Show that it is not surjective on all open sets.

This is a great example to get a sense of what “surjectivity” means for sheaves:
nowhere vanishing holomorphic functions have logarithms locally, but they need
not globally.

3.5 Sheaves of abelian groups, and Jx-modules, form abelian
categories

We are now ready to see that sheaves of abelian groups, and their cousins, Ox-
modules, form abelian categories. In other words, we may treat them similarly to
vector spaces, and modules over a ring. In the process of doing this, we will see
that this is much stronger than an analogy; kernels, cokernels, exactness, and so
forth can be understood at the level of germs (which are just abelian groups), and
the compatibility of the germs will come for free.

The category of sheaves of abelian groups is clearly an additive category (Def-
inition 2.6.1). In order to show that it is an abelian category, we must begin by
showing that any morphism ¢ : # — ¢ has a kernel and a cokernel. We have
already seen that ¢ has a kernel (Exercise 3.3.1): the presheaf kernel is a sheaf, and
is a kernel in the category of sheaves.

3.5.A. EXERCISE. Show that the stalk of the kernel is the kernel of the stalks: there
is a natural isomorphism

(ker(F — 9)), = ker(.F — 9).
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We next address the issue of the cokernel. Now ¢ : .# — ¢ has a cokernel in
the category of presheaves; call it 7P (where the superscript is meant to remind

us that this is a presheaf). Let J#P™ = # be its sheafification. Recall that the
cokernel is defined using a universal property: it is the colimit of the diagram

(3.5.0.2) 7. g

|

0

in the category of presheaves (cf. (2.6.3.1) and the comment thereafter).

3.5.1. Proposition. — The composition & — S is the cokernel of ¢ in the category of
sheaves.

Proof. We show that it satisfies the universal property. Given any sheaf & and a
commutative diagram

We construct

We show that there is a unique morphism 2 — & making the diagram commute.
As JP™ is the cokernel in the category of presheaves, there is a unique morphism
of presheaves 7P — & making the diagram commute. But then by the universal
property of sheafification (Definition 3.4.6), there is a unique morphism of sheaves
¢ — & making the diagram commute. O

3.5.B. EXERCISE. Show that the stalk of the cokernel is naturally isomorphic to
the cokernel of the stalk.

We have now defined the notions of kernel and cokernel, and verified that they
may be checked at the level of stalks. We have also verified that the properties of
a morphism being a monomorphism or epimorphism are also determined at the
level of stalks (Exercises 3.4.N and 3.4.0). Hence we have proved the following:

3.5.2. Theorem. — Sheaves of abelian groups on a topological space X form an abelian
category.

That’s all there is to it — what needs to be proved has been shifted to the stalks,
where everything works because stalks are abelian groups!
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And we see more: all structures coming from the abelian nature of this cate-
gory may be checked at the level of stalks. For example:

3.5.C. EXERCISE. Suppose ¢ : F — ¥ is a morphism of sheaves of abelian groups.
Show that the image sheaf im ¢ is the sheafification of the image presheaf. (You
must use the definition of image in an abelian category. In fact, this gives the
accepted definition of image sheaf for a morphism of sheaves of sets.) Show that
the stalk of the image is the image of the stalk.

As a consequence, exactness of a sequence of sheaves may be checked at the
level of stalks. In particular:

3.5.D. IMPORTANT EXERCISE (CF. EXERCISE 3.3.A). Show that taking the stalk of
a sheaf of abelian groups is an exact functor. More precisely, if X is a topological
space and p € X is a point, show that taking the stalk at p defines an exact functor

3.5.E. EXERCISE. Check that the exponential exact sequence (3.4.10.1) is exact.

3.5.F. EXERCISE: LEFT-EXACTNESS OF THE FUNCTOR OF “SECTIONS OVER U”.
Suppose U C X is an open set, and 0 — # — ¢ — J is an exact sequence of
sheaves of abelian groups. Show that

0— Z(U) —=9(U) — 2(U)

is exact. (You should do this “by hand”, even if you realize there is a very fast
proof using the left-exactness of the “forgetful” right adjoint to the sheafification
functor.) Show that the section functor need not be exact: show that if 0 — .% —
¢ — ¢ — 0 is an exact sequence of sheaves of abelian groups, then

0—-Z7(U —-¥9%U —#2(U) —0

need not be exact. (Hint: the exponential exact sequence (3.4.10.1). But free to
make up a different example.)

3.5.G. EXERCISE: LEFT-EXACTNESS OF PUSHFORWARD. Suppose 0 — % — ¢ —
J€ is an exact sequence of sheaves of abelian groups on X. If m: X — Yisa
continuous map, show that

0 - Mm% — nY9 — nH

is exact. (The previous exercise, dealing with the left-exactness of the global sec-
tion functor can be interpreted as a special case of this, in the case where Y is a
point.)

3.5.H. EXERCISE: LEFT-EXACTNESS OF Hom (CF. EXERCISE 2.6.F(C) AND (D)). Sup-
pose .7 is a sheaf of abelian groups on a topological space X. Show that Hom(.7, -)
is a left-exact covariant functor Abx — Abx. Show that Hom(-,.7) is a left-exact
contravariant functor Abx — Abx.

3.5.3. Ox-modules.

3.5.1. EXERCISE. Show that if (X, Ox) is a ringed space, then &x-modules form an
abelian category. (There is a fair bit to check, but there aren’t many new ideas.)
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3.5.4. Many facts about sheaves of abelian groups carry over to &’x-modules with-
out change, because a sequence of &’x-modules is exact if and only if the under-
lying sequence of sheaves of abelian groups is exact. You should be able to easily
check that all of the statements of the earlier exercises in §3.5 also hold for Ox-
modules, when modified appropriately. For example (Exercise 3.5.H), Home, is
a left-exact contravariant functor in its first argument and a left-exact covariant
functor in its second argument.
We end with a useful construction using some of the ideas in this section.

3.5.J. IMPORTANT EXERCISE: TENSOR PRODUCTS OF &Ox-MODULES.

(a) Suppose Ox is a sheaf of rings on X. Define (categorically) what we should
mean by tensor product of two Ox-modules. Give an explicit construction, and
show that it satisfies your categorical definition. Hint: take the “presheaf tensor
product” — which needs to be defined — and sheafify. Note: ®¢, is often written
® when the subscript is clear from the context. (An example showing sheafifica-
tion is necessary will arise in Example 15.1.1.)

(b) Show that the tensor product of stalks is the stalk of tensor product. (If you can
show this, you may be able to make sense of the phrase “colimits commute with
tensor products”.)

3.5.5. Conclusion. Just as presheaves are abelian categories because all abelian-
categorical notions make sense open set by open set, sheaves are abelian categories
because all abelian-categorical notions make sense stalk by stalk.

3.6 The inverse image sheaf

We next describe a notion that is fundamental, but rather intricate. We will
not need it for some time, so this may be best left for a second reading. Suppose
we have a continuous map f : X — Y. If .# is a sheaf on X, we have defined
the pushforward or direct image sheaf f,.%, which is a sheaf on Y. There is also a
notion of inverse image sheaf. (We will not call it the pullback sheaf, reserving that
name for a later construction for quasicoherent sheaves, §17.3.) This is a covariant
functor f~! from sheaves on Y to sheaves on X. If the sheaves on Y have some
additional structure (e.g. group or ring), then this structure is respected by .

3.6.1. Definition by adjoint: elegant but abstract. We define f~! as the left adjoint to
f.

This isn’t really a definition; we need a construction to show that the ad-
joint exists. Note that we then get canonical maps f~'f,.# — .Z (associated to
the identity in Mory (f..#,f..#)) and ¥ — f.f 19 (associated to the identity in
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Morx (19, 19)).

3.6.2. Construction: concrete but ugly. Define the temporary notation

—1¢gpre _ :
fgPE(U) = lim Z(V).
Vof(u)
(Recall the explicit description of colimit: sections are sections on open sets con-
taining f(U), with an equivalence relation. Note that f(Ll) won’t be an open set in
general.)

3.6.A. EXERCISE. Show that this defines a presheaf on X. Show that it needn’t
form a sheaf. (Hint: map 2 points to 1 point.)

Now define the inverse image of & by f~'% = (f~19¥P)s". Note that f~!
is a functor from sheaves on Y to sheaves on X. The next exercise shows that !
is indeed left-adjoint to f,. But you may wish to try the later exercises first, and
come back to Exercise 3.6.B later. (For the later exercises, try to give two proofs,
one using the universal property, and the other using the explicit description.)

3.6.B. IMPORTANT TRICKY EXERCISE. If f: X — Y is a continuous map, and .# is
a sheaf on X and ¢ is a sheaf on Y, describe a bijection

Morx(f'¢,.#) & Mory (¥, {,.7).

Observe that your bijection is “natural” in the sense of the definition of adjoints
(i.e. functorial in both .# and ¢). Thus Construction 3.6.2 satisfies the universal
property of Definition 3.6.1. Possible hint: Show that both sides agree with the
following third construction, which we denote Moryx (¥, .% ). A collection of maps
dvu 1 9(V) = #(U) (as U runs through all open sets of X, and V runs through all
open sets of Y containing f(U)) is said to be compatible if for all open U’ C U C X
and allopen V/ Cc V C Ywith f(U) C V, f(U') C V/, the diagram

dvu
—

(3.6.2.1) (V) Z(U)

resy v/ i resy u/
@ (V) Y 2 ()

commutes. Define Moryx(¥,.#) to be the set of all compatible collections ¢ =

{dvul.

3.6.3. Remark (“stalk and skyscraper are an adjoint pair”). As a special case, if X is a
point p € Y, we see that f~'¥ is the stalk ¥, of ¢, and maps from the stalk ¢, to
a set S are the same as maps of sheaves on Y from ¥ to the skyscraper sheaf with
set S supported at p. You may prefer to prove this special case by hand directly
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before solving Exercise 3.6.B, as it is enlightening. (It can also be useful — can you
use it to solve Exercises 3.4.M and 3.4.0?)

3.6.C. EXERCISE. Show that the stalks of f~'% are the same as the stalks of ¥.
More precisely, if f(p) = q, describe a natural isomorphism ¥, = (f 1w )p- (Possi-
ble hint: use the concrete description of the stalk, as a colimit. Recall that stalks are
preserved by sheafification, Exercise 3.4.M. Alternatively, use adjointness.) This,
along with the notion of compatible stalks, may give you a simple way of thinking
about (and perhaps visualizing) inverse image sheaves. (Those preferring the “es-
pace étalé” or “space of sections” perspective, §3.2.11, can check that the pullback
of the “space of sections” is the “space of sections” of the pullback.)

3.6.D. EXERCISE (EASY BUT USEFUL). If Uis an open subset of Y,i: U — Y is the
inclusion, and ¢ is a sheaf on Y, show that i~'¢ is naturally isomorphic to Z|y.

3.6.4. Definition. If ¢ is asheafonY, and U is an open subset of Y, then ¢|y, is called
the restriction of ¢ to U. The restriction of Oy to U is denoted &y;. (We will later
call (U, &y) — (Y, Oy) an open embedding of ringed spaces, see Definition 7.2.1.)

3.6.E. EXERCISE. Show that f~! is an exact functor from sheaves of abelian groups
on Y to sheaves of abelian groups on X (cf. Exercise 3.5.D). (Hint: exactness can be
checked on stalks, and by Exercise 3.6.C, the stalks are the same.) Essentially the
same argument will show that f~! is an exact functor from &y-modules (on Y) to
(f~10y)-modules (on X), but don’t bother writing that down. (Remark for experts:
f~1 is a left adjoint, hence right-exact by abstract nonsense, as discussed in §2.6.12.
Left-exactness holds because colimits over filtered index sets are exact.)

3.6.F. EXERCISE.

(a) Suppose Z C Y is a closed subset, and i : Z < Y is the inclusion. If .# is a sheaf
of sets on Z, then show that the stalk (i..# ), is a one element-setif y ¢ Z, and .%,
ify e Z

(b) Definition: Define the support of a sheaf ¢ of sets, denoted Supp ¥, as the locus
where the stalks are not the one-element set:

Supp¥ :={peX : |[%|#1}

(More generally, if the sheaf has value in some category, the support consists of
points where the stalk is not the final object. For a sheaf ¢ of abelian groups,
the support consists of points with nonzero stalks — Supp¥ ={p € X : ¥, #
0} — or equivalently is the union of supports of sections over all open sets, see
Definition 3.4.2.) Suppose Supp ¥ C Z where Z is closed. Show that the natural
map ¢ — i.i7'¥ is an isomorphism. Thus a sheaf supported on a closed subset
can be considered a sheaf on that closed subset. (“Support of a sheaf” is a useful
notion, and will arise again in §14.7.D.)

3.6.G. EXERCISE (EXTENSION BY ZERO f;: AN OCCASIONAL left adjoint TO f~1).
In addition to always being a left adjoint, f~' can sometimes be a right adjoint.
Suppose i : U — Y is an inclusion of an open set into Y. Define the extension of i
by zero i, : Mods, — Modg, as follows. Suppose .# is an Oy-module. For open
W C Y, define (i} "°.Z)(W) = Z(W) if W C U, and 0 otherwise (with the obvious
restriction maps). This is clearly a presheaf &y-module. Define i, as (i} "®)*". Note
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that 1,.# is an Oy-module, and that this defines a functor. (The symbol “!” is read
as “shriek”. I have no idea why, but I suspect it is because people often shriek
when they see it. Thus “1,” is read as “i-lower-shriek”.)

(a) Show that i}'"“.# need not be a sheaf. (We won't need this, but it may give
some insight into why this is called “extension by zero”. Possible source for an
example: continuous functions on R.)

(b) For q € Y, show that (i1.% ) q = %4 if q € U, and 0 otherwise.

(c) Show that i, is an exact functor.

(d) If ¢ is an Oy-module, describe an inclusion 1,i~'¥9 — ¥. (Interesting remark
we won't need: Let Z be the complement of U, and j : Z — Y the natural inclusion.
Then there is a short exact sequence

05ii'Y 59 >4, '9 0.

This is best checked by describing the maps, then checking exactness at stalks.)

(e) Show that (i;,i~")isan adjoint pair, so there is a natural bijection Homg, (1,.%,9) <
Homg, (#,¥|u) for any 0y-module .# and Oy-module ¢. (In particular, the sec-
tions of ¢ over U can be identified with Homg, (i, 0y, ¥).)

3.7 Recovering sheaves from a “sheaf on a base”

Sheaves are natural things to want to think about, but hard to get our hands on.
We like the identity and gluability axioms, but they make proving things trickier
than for presheaves. We have discussed how we can understand sheaves using
stalks (using “compatible germs”). We now introduce a second way of getting a
hold of sheaves, by introducing the notion of a sheaf on a base. Warning: this way
of understanding an entire sheaf from limited information is confusing. It may
help to keep sight of the central insight that this partial information is enough
to understand germs, and the notion of when they are compatible (with nearby
germs).

First, we define the notion of a base of a topology. Suppose we have a topo-
logical space X, i.e. we know which subsets U; of X are open. Then a base of a
topology is a subcollection of the open sets {B;} C {U;}, such that each U; is a
union of the B;. Here is one example that you have seen early in your mathemati-
cal life. Suppose X = R™. Then the way the classical topology is often first defined
is by defining open balls B+(x) = {y € R™ : |y —x| < r}, and declaring that any
union of open balls is open. So the balls form a base of the classical topology — we
say they generate the classical topology. As an application of how we use them, to
check continuity of some map f : X — R™, you need only think about the pullback
of balls on R™ — part of the traditional 5-e definition of continuity.

Now suppose we have a sheaf .# on a topological space X, and a base {B;} of
open sets on X. Then consider the information

({7 (Bi)}, {resp, B, : Z(Bi) = F(Bj)}),

which is a subset of the information contained in the sheaf — we are only paying
attention to the information involving elements of the base, not all open sets.



October 10, 2012 draft 83

We can recover the entire sheaf from this information. This is because we can
determine the stalks from this information, and we can determine when germs are
compatible.

3.7.A. IMPORTANT EXERCISE. Make this precise. How can you recover a sheaf .%
from this partial information?

This suggests a notion, called a sheaf on a base. A sheaf of sets (or abelian
groups, rings, ...) on a base {B;} is the following. For each B; in the base, we have
a set F(B;). If Bi C Bj, we have maps resp; B, : F(B;) — F(B;), with resg, g, =
idr(g,). (Things called “B” are always assumed to be in the base.) If B; C B; C By,
then resp, B, = resg, p, oresg, p;. So far we have defined a presheaf on a base
{Bi}.

We also require the base identity axiom: If B = UB;, then if f,g € F(B) are
such that resg g, f = resg g, g forall i, then f = g.

We require the base gluability axiom too: If B = UB;, and we have f; €
F(B4) such that f; agrees with f; on any basic open set contained in B; N B; (i.e.
resg, B, fi = resg, p, fj for all By C Bi N Bj) then there exists f € F(B) such that
resg g, f = fi for all i.

3.7.1. Theorem. — Suppose {Bi} is a base on X, and F is a sheaf of sets on this base.
Then there is a sheaf & extending F (with isomorphisms F (B;) = F(By) agreeing with
the restriction maps). This sheaf .F is unique up to unique isomorphism.

Proof. We will define .7 as the sheaf of compatible germs of F.
Define the stalk of a base presheaf Fat p € X by

Fp = lim F(B;)

where the colimit is over all B; (in the base) containing p.

We will say a family of germs in an open set U is compatible near p if there is a
section s of F over some B; containing p such that the germs over B; are precisely
the germs of s. More formally, define

F(U) = {(fp € Fp)peu: forall p € U, there exists Bwithp € B C U, s € F(B),
with sq = f4 forall g € B}

where each B is in our base.

This is a sheaf (for the same reasons that the sheaf of compatible germs was,
cf. Exercise 3.4.1).

Inext claim that if B is in our base, the natural map F(B) — .%#(B) is an isomor-
phism.

3.7.B. EXERCISE. Verify that F(B) — .#(B) is an isomorphism, likely by showing
that it is injective and surjective (or else by describing the inverse map and verify-
ing that it is indeed inverse). Possible hint: elements of .7 (B) are determined by
stalks, as are elements of F(B).

It will be clear from your solution to Exercise 3.7.B that the restriction maps
for F are the same as the restriction maps of .# (for elements of the base).

Finally, you should verify to your satisfaction that .% is indeed unique up to
unique isomorphism. (First be sure that you understand what this means!) O
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Theorem 3.7.1 shows that sheaves on X can be recovered from their “restriction
to a base”. It is clear from the argument (and in particular the solution to the
Exercise 3.7.B) that if .# is a sheaf and F is the corresponding sheaf on the base B,
then for any p € X, %, is naturally isomorphic to F,,.

Theorem 3.7.1 is a statement about objects in a category, so we should hope for
a similar statement about morphisms.

3.7.C. IMPORTANT EXERCISE: MORPHISMS OF SHEAVES CORRESPOND TO MOR-
PHISMS OF SHEAVES ON A BASE. Suppose {Bi} is a base for the topology of X.
A morphism F — G of sheaves on the base is a collection of maps F(Bx) — G(Bx)
such that the diagram

i) — G(Bl)

F(B;
resBi,Bji resBi,Bj
F(B;

)
j) — G(By)

commutes for all B; — B;.

(a) Verify that a morphism of sheaves is determined by the induced morphism of
sheaves on the base.

(b) Show that a morphism of sheaves on the base gives a morphism of the induced
sheaves. (Possible hint: compatible stalks.)

3.7.2. Remark. The above constructions and arguments describe an equivalence of
categories (§2.2.21) between sheaves on X and sheaves on a given base of X. There
is no new content to this statement, but you may wish to think through what it
means. What are the functors in each direction? Why aren’t their compositions
the identity?

3.7.3. Remark. It will be useful to extend these notions to &’x-modules (see for ex-
ample Exercise 14.3.C). You will readily be able to verify that there is a correspon-
dence (really, equivalence of categories) between &’x-modules and “@x-modules
on a base”. Rather than working out the details, you should just informally think
through the main points: what is an “&x-module on a base”? Given an &x-module
on a base, why is the corresponding sheaf naturally an &x-module? Later, if you
are forced at gunpoint to fill in details, you will be able to.

3.7.D. IMPORTANT EXERCISE. Suppose X = UU; is an open cover of X, and we
have sheaves .7; on U; along with isomorphisms ¢ : Zilu;nu; — Zjlu,nu; (with
¢1i the identity) that agree on triple overlaps, i.e. djk o di; = dix on Uy N U N Uy
(this is called the cocycle condition, for reasons we ignore). Show that these
sheaves can be glued together into a sheaf .# on X (unique up to unique isomor-
phism), such that .#; = %]y, and the isomorphisms over U; N U; are the obvious
ones. (Thus we can “glue sheaves together”, using limited patching information.)
Warning: we are not assuming this is a finite cover, so you cannot use induction.
For this reason this exercise can be perplexing. (You can use the ideas of this sec-
tion to solve this problem, but you don’t necessarily need to. Hint: As the base,
take those open sets contained in some U;. Small observation: the hypothesis on
¢1i is extraneous, as it follows from the cocycle condition.)
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3.7.4. Remark for experts. Exercise 3.7.D almost says that the “set” of sheaves forms
a sheaf itself, but not quite. Making this precise leads one to the notion of a stack.

3.7.E. UNIMPORTANT EXERCISE. Suppose a morphism of sheaves F — G on a
base B is surjective for all B; (i.e. F(Bi) — G(B;) is surjective for all i). Show that
the corresponding morphism of sheaves (1ot on the base) is surjective (or more
precisely: an epimorphism). The converse is not true, unlike the case for injectivity.
This gives a useful sufficient criterion for “surjectivity”: a morphism of sheaves is
an epimorphism (“surjective”) if it is surjective for sections on a base. You may
enjoy trying this out with Example 3.4.10 (dealing with holomorphic functions in
the classical topology on X = C), showing that the exponential map exp : Ox —
U% is surjective, using the base of contractible open sets.






Part 11

Schemes






CHAPTER 4

Toward affine schemes: the underlying set, and
topological space

The very idea of scheme is of infantile simplicity — so simple, so humble, that no one
before me thought of stooping so low. So childish, in short, that for years, despite all the
evidence, for many of my erudite colleagues, it was really “not serious”!

— Grothendieck

4.1 Toward schemes

We are now ready to consider the notion of a scheme, which is the type of geometric
space central to algebraic geometry. We should first think through what we mean
by “geometric space”. You have likely seen the notion of a manifold, and we wish
to abstract this notion so that it can be generalized to other settings, notably so that
we can deal with non-smooth and arithmetic objects.

The key insight behind this generalization is the following: we can understand
a geometric space (such as a manifold) well by understanding the functions on
this space. More precisely, we will understand it through the sheaf of functions
on the space. If we are interested in differentiable manifolds, we will consider
differentiable functions; if we are interested in smooth manifolds, we will consider
smooth functions; and so on.

Thus we will define a scheme to be the following data

o The set: the points of the scheme

o The topology: the open sets of the scheme

o The structure sheaf: the sheaf of “algebraic functions” (a sheaf of rings) on
the scheme.

Recall that a topological space with a sheaf of rings is called a ringed space (§3.2.13).

We will try to draw pictures throughout. Pictures can help develop geometric
intuition, which can guide the algebraic development (and, eventually, vice versa).
Some people find pictures very helpful, while others are repulsed or nonplussed
or confused.

We will try to make all three notions as intuitive as possible. For the set, in
the key example of complex (affine) varieties (roughly, things cut out in C™ by
polynomials), we will see that the points are the “traditional points” (n-tuples
of complex numbers), plus some extra points that will be handy to have around.
For the topology, we will require that “algebraic functions vanish on closed sets”,
and require nothing else. For the sheaf of algebraic functions (the structure sheaf),
we will expect that in the complex plane, (3x? + y2)/(2x + 4xy + 1) should be

89
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an algebraic function on the open set consisting of points where the denominator
doesn’t vanish, and this will largely motivate our definition.

4.1.1. Example: Differentiable manifolds. = As motivation, we return to our
example of differentiable manifolds, reinterpreting them in this light. We will be
quite informal in this discussion. Suppose X is a manifold. It is a topological space,
and has a sheaf of differentiable functions O’x (see §3.1). This gives X the structure of a
ringed space. We have observed that evaluation at a point p € X gives a surjective
map from the stalk to R

Oxp —> R,

so the kernel, the (germs of) functions vanishing at p, is a maximal ideal mx ,, (see
§3.1.1).

We could define a differentiable real manifold as a topological space X with a
sheaf of rings. We would require that there is a cover of X by open sets such that
on each open set the ringed space is isomorphic to a ball around the origin in R™
(with the sheaf of differentiable functions on that ball). With this definition, the
ball is the basic patch, and a general manifold is obtained by gluing these patches
together. (Admittedly, a great deal of geometry comes from how one chooses to
patch the balls together!) In the algebraic setting, the basic patch is the notion of an
affine scheme, which we will discuss soon. (In the definition of manifold, there is an
additional requirement that the topological space be Hausdorff, to avoid patholo-
gies. Schemes are often required to be “separated” to avoid essentially the same
pathologies. Separatedness will be discussed in Chapter 11.)

Functions are determined by their values at points. This is an obvious statement,
but won't be true for schemes in general. We will see an example in Exercise 4.2.A(a),
and discuss this behavior further in §4.2.9.

Morphisms of manifolds. How can we describe differentiable maps of manifolds
X — Y? They are certainly continuous maps — but which ones? We can pull back
functions along continuous maps. Differentiable functions pull back to differen-
tiable functions. More formally, we have a map =10y — Ox. (The inverse image
sheaf f~! was defined in §3.6.) Inverse image is left-adjoint to pushforward, so we
also get a map f¥ : Oy — f.0x.

Certainly given a differentiable map of manifolds, differentiable functions pull
back to differentiable functions. It is less obvious that this is a sufficient condition for
a continuous function to be differentiable.

4.1.A. IMPORTANT EXERCISE FOR THOSE WITH A LITTLE EXPERIENCE WITH MAN-
IFOLDS. Suppose that f : X — Y is a continuous map of differentiable manifolds
(as topological spaces — not a priori differentiable). Show that f is differentiable
if differentiable functions pull back to differentiable functions, i.e. if pullback by f
gives a map Oy — f,0x. (Hint: check this on small patches. Once you figure out
what you are trying to show, you will realize that the result is immediate.)

4.1.B. EXERCISE. Show that a morphism of differentiable manifolds f : X — Y with
f(p) = q induces a morphism of stalks f* : Oy 4 — Ox . Show that ff(my4) C
mx p. In other words, if you pull back a function that vanishes at q, you get a
function that vanishes at p — not a huge surprise. (In §7.3, we formalize this by
saying that maps of differentiable manifolds are maps of locally ringed spaces.)
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4.1.2. Aside. Here is a little more for experts: Notice that this induces a map on
tangent spaces (see Aside 3.1.2)

(mx,p/m% )Y = (my,q/my 4)"
This is the tangent map you would geometrically expect. Again, it is interesting
that the cotangent map my,q/my, q — Mxp/ mf(yp is algebraically more natural than
the tangent map (there are no “duals”).

Experts are now free to try to interpret other differential-geometric informa-
tion using only the map of topological spaces and map of sheaves. For example:
how can one check if f is a submersion of manifolds? How can one check if f is an
immersion? (We will see that the algebro-geometric version of these notions are
smooth morphism and unramified morphism; see Chapter 26, although they will be
defined earlier.)

4.1.3. Side Remark. Manifolds are covered by disks that are all isomorphic. This
isn’t true for schemes (even for “smooth complex varieties”). There are examples
of two “smooth complex curves” (the algebraic version of Riemann surfaces) X
and Y so that no nonempty open subset of X is isomorphic to a nonempty open
subset of Y. And there is an example of a Riemann surface X such that no two open
subsets of X are isomorphic. Informally, this is because in the Zariski topology on
schemes, all nonempty open sets are “huge” and have more “structure”.

4.1.4. Other examples. If you are interested in differential geometry, you will be
interested in differentiable manifolds, on which the functions under consideration
are differentiable functions. Similarly, if you are interested in topology, you will be
interested in topological spaces, on which you will consider the continuous func-
tion. If you are interested in complex geometry, you will be interested in complex
manifolds (or possibly “complex analytic varieties”), on which the functions are
holomorphic functions. In each of these cases of interesting “geometric spaces”,
the topological space and sheaf of functions is clear. The notion of scheme fits
naturally into this family.

4.2 The underlying set of affine schemes

For any ring A, we are going to define something called Spec A, the spectrum of A.
In this section, we will define it as a set, but we will soon endow it with a topology,
and later we will define a sheaf of rings on it (the structure sheaf). Such an object
is called an affine scheme. Later Spec A will denote the set along with the topology,
and a sheaf of functions. But for now, as there is no possibility of confusion, Spec A
will just be the set.

4.2.1. The set Spec A is the set of prime ideals of A. The prime ideal p of A when
considered as an element of Spec A will be denoted [p], to avoid confusion. Ele-
ments a € A will be called functions on Spec A, and their value at the point [p]
will be a (mod p). This is weird: a function can take values in different rings at different
points — the function 5 on SpecZ takes the value 1 (mod 2) at [(2)] and 2 (mod 3) at
[(3)]. “An element a of the ring lying in a prime ideal p” translates to “a function
a that is 0 at the point [p]” or “a function a vanishing at the point [p]”, and we will
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use these phrases interchangeably. Notice that if you add or multiply two func-
tions, you add or multiply their values at all points; this is a translation of the fact
that A — A/p is a ring morphism. These translations are important — make sure
you are very comfortable with them! They should become second nature.

Some glimpses of the future: in §5.1: we will interpret functions on Spec A as
global sections of the “structure sheaf”. If A is generated over a base field (or base
ring) by elements x4, ..., x,, the elements x;, ..., x, are often called coordinates,
because we will later be able to reinterpret them as restrictions of “coordinates on
r-space”, via the idea of §4.2.7, made precise in Exercise 7.2.D.

We now give some examples.

Example 1 (the complex affine line): Al := SpecC[x]. Let’s find the prime
ideals of C[x]. As Clx] is an integral domain, 0 is prime. Also, (x — a) is prime, for
any a € C: it is even a maximal ideal, as the quotient by this ideal is a field:

0— > (x—a) Clx] —"% ¢ 0

(This exact sequence may remind you of (3.1.1.1) in our motivating example of
manifolds.)

We now show that there are no other prime ideals. We use the fact that C[x]
has a division algorithm, and is a unique factorization domain. Suppose p is a
prime ideal. If p # (0), then suppose f(x) € p is a nonzero element of smallest
degree. It is not constant, as prime ideals can’t contain 1. If f(x) is not linear,
then factor f(x) = g(x)h(x), where g(x) and h(x) have positive degree. (Here we
use that C is algebraically closed.) Then g(x) € p or h(x) € p, contradicting the
minimality of the degree of f. Hence there is a linear element x — a of p. Then I
claim that p = (x — a). Suppose f(x) € p. Then the division algorithm would give
f(x) = g(x)(x — a) + mwhere m € C. Then m = f(x) — g(x)(x —a) € p. f m # 0,
then 1 € p, giving a contradiction.

Thus we can and should (and must!) have a picture of AL = Spec C[x] (see
Figure 4.1).

L’algebre n’est qu'une géométrie écrite; la géometrie n'est qu’une algeébre figurée. (Al-
gebra is but written geometry; geometry is but drawn algebra.)

— Sophie Germain

There is one “traditional” point for each complex number, plus one extra (“bonus”)
point [(0)]. We can mostly picture A as C: the point [(x — a)] we will reasonably
associate to a € C. Where should we picture the point [(0)]? The best way of think-
ing about it is somewhat zen. It is somewhere on the complex line, but nowhere
in particular. Because (0) is contained in all of these primes, we will somehow
associate it with this line passing through all the other points. [(0)] is called the
“generic point” of the line; it is “generically on the line” but you can’t pin it down
any further than that. (We will formally define “generic point” in §4.6.) We will
place it far to the right for lack of anywhere better to put it. You will notice that
we sketch Al as one-(real-)dimensional (even though we picture it as an enhanced
version of C); this is to later remind ourselves that this will be a one-dimensional
space, where dimensions are defined in an algebraic (or complex-geometric) sense.
(Dimension will be defined in Chapter 12.)

To give you some feeling for this space, we make some statements that are
currently undefined, but suggestive. The functions on A} are the polynomials. So
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(x) (x—=T1) (x—a) (0)

FIGURE 4.1. A picture of Al = Spec C[x]

f(x) = x? — 3x + 1 is a function. What is its value at [(x — 1)], which we think of as
the point 1 € C? Answer: f(1)! Or equivalently, we can evalute f(x) modulo x — 1
— this is the same thing by the division algorithm. (What is its value at (0)? It is
f(x) (mod 0), which is just f(x).)

Here is a more complicated example: g(x) = (x — 3)3/(x — 2) is a “rational
function”. It is defined everywhere but x = 2. (When we know what the structure
sheaf is, we will be able to say that it is an element of the structure sheaf on the
open set Al \ {2}.) We want to say that g(x) has a triple zero at 3, and a single pole
at 2, and we will be able to after §13.5.

Example 2 (the affine line over k = k): A]L := Speck[x] where k is an alge-
braically closed field. This is called the affine line over k. All of our discussion in
the previous example carries over without change. We will use the same picture,
which is after all intended to just be a metaphor.

Example 3: SpecZ. An amazing fact is that from our perspective, this will
look a lot like the affine line A% The integers, like k[x], form a unique factorization
domain, with a division algorithm. The prime ideals are: (0), and (p) where p
is prime. Thus everything from Example 1 carries over without change, even the
picture. Our picture of SpecZ is shown in Figure 4.2.

FIGURE 4.2. A “picture” of Spec Z, which looks suspiciously like Figure 4.1

Let’s blithely carry over our discussion of functions to this space. 100 is a
function on Spec Z. Its value at (3) is “1 (mod 3)”. Its value at (2) is “0 (mod 2)”,
and in fact it has a double zero. 27/4 is a “rational function” on SpecZ, defined
away from (2). We want to say that it has a double pole at (2), and a triple zero at
(3). Its value at (5) is

27x47'=2x(=1)=3 (mod 5).
(We will gradually make this discussion precise over time.)

Example 4: silly but important examples, and the German word for bacon.
The set Spec k where k is any field is boring: one point. Spec0, where 0 is the
zero-ring, is the empty set, as 0 has no prime ideals.

4.2.A. A SMALL EXERCISE ABOUT SMALL SCHEMES.
(a) Describe the set Specklel/(e?). The ring klel/(€?) is called the ring of dual
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numbers, and will turn out to be quite useful. You should think of € as a very small
number, so small that its square is 0 (although it itself is not 0). It is a nonzero func-
tion whose value at all points is zero, thus giving our first example of functions
not being determined by their values at points. We will discuss this phenomenon
further in §4.2.9.

(b) Describe the set Speck[x](y) (see §2.3.3 for a discussion of localization). We
will see this scheme again repeatedly, starting with §4.2.6 and Exercise 4.4.K. You
might later think of it as a shred of a particularly nice “smooth curve”.

In Example 2, we restricted to the case of algebraically closed fields for a rea-
son: things are more subtle if the field is not algebraically closed.

Example 5 (the affine line over R): R[x]. Using the fact that R[x] is a unique
factorization domain, similar arguments to those of Examples 1-3 show that the
primes are (0), (x — a) where a € R, and (x? + ax + b) where x* + ax + b is an
irreducible quadratic. The latter two are maximal ideals, i.e. their quotients are
fields. For example: R[x]/(x —3) = R, R[x]/(x* + 1) = C.

4.2.B. UNIMPORTANT EXERCISE. Show that for the last type of prime, of the form
(x? 4+ ax + b), the quotient is always isomorphic to C.

So we have the points that we would normally expect to see on the real line,
corresponding to real numbers; the generic point 0; and new points which we may
interpret as conjugate pairs of complex numbers (the roots of the quadratic). This
last type of point should be seen as more akin to the real numbers than to the
generic point. You can picture A}, as the complex plane, folded along the real axis.
But the key point is that Galois-conjugate points (such as i and —i) are considered
glued.

Let’s explore functions on this space. Consider the function f(x) = x3 — 1. Its
value at the point [(x —2)] is f(x) = 7, or perhaps better, 7 (mod x—2). How about
at (x* +1)? We get

x>—1=—x—1 (modx*+1),

which may be profitably interpreted as —i — 1.

One moral of this example is that we can work over a non-algebraically closed
field if we wish. It is more complicated, but we can recover much of the informa-
tion we care about.

4.2.C. IMPORTANT EXERCISE. Describe the set Aj,. (This is harder to picture in a
way analogous to A}. But the rough cartoon of points on a line, as in Figure 4.1,
remains a reasonable sketch.)

Example 6 (the affine line over F,): A]}p = SpecF,[x]. As in the previous
examples, F,[x] is a Euclidean domain, so the prime ideals are of the form (0) or
(f(x)) where f(x) € Fy[x] is an irreducible polynomial, which can be of any degree.
Irreducible polynomials correspond to sets of Galois conjugates in .

Note that SpecF,[x] has p points corresponding to the elements of IF,,, but
also many more (infinitely more, see Exercise 4.2.D). This makes this space much
richer than simply p points. For example, a polynomial f(x) is not determined by
its values at the p elements of I}, but it is determined by its values at the points of
SpecF, [x]. (As we have mentioned before, this is not true for all schemes.)
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You should think about this, even if you are a geometric person — this intu-
ition will later turn up in geometric situations. Even if you think you are interested
only in working over an algebraically closed field (such as C), you will have non-
algebraically closed fields (such as C(x)) forced upon you.

4.2.D. EXERCISE. If k is a field, show that Spec k[x] has infinitely many points.
(Hint: Euclid’s proof of the infinitude of primes of Z.)

Example 7 (the complex affine plane): A% = Spec C[x,yl. (As with Examples
1 and 2, our discussion will apply with C replaced by any algebraically closed
field.) Sadly, Clx,y] is not a principal ideal domain: (x,y) is not a principal ideal.
We can quickly name some prime ideals. One is (0), which has the same flavor as
the (0) ideals in the previous examples. (x—2,y—3) is prime, and indeed maximal,
because C[x, yl/(x — 2,y — 3) = C, where this isomorphism is via f(x,y) — f(2,3).
More generally, (x — a,y — b) is prime for any (a,b) € C2. Also, if f(x,y) is an
irreducible polynomial (e.g. y — x? or y? — x3) then (f(x,y)) is prime.

4.2.E. EXERCISE. Show that we have identified all the prime ideals of C[x, y]. Hint:
Suppose p is a prime ideal that is not principal. Show you can find f(x,y), g(x,y) €
p with no common factor. By considering the Euclidean algorithm in the Euclidean
domain C(x)[y], show that you can find a nonzero h(x) € (f(x,y),9(x,y)) C p.
Using primality, show that one of the linear factors of h(x), say (x — a), is in p.
Similarly show there is some (y — b) € p.

T T )]

closed point
[(x—a,y—b)]

FIGURE 4.3. Picturing AZ = Spec C[x, ]

We now attempt to draw a picture of AZ (see Figure 4.3). The maximal primes
of C[x,y] correspond to the traditional points in C?: [(x — a,y — b)] corresponds
to (a,b) € C2. We now have to visualize the “bonus points”. [(0)] somehow lives
behind all of the traditional points; it is somewhere on the plane, but nowhere
in particular. So for example, it does not lie on the parabola y = x*. The point
[(y — x?)] lies on the parabola y = x?, but nowhere in particular on it. (Figure 4.3
is a bit misleading. For example, the point [(0)] isn’t in the fourth quadrant; it
is somehow near every other point, which is why it is depicted as a somewhat
diffuse large dot.) You can see from this picture that we already are implicitly
thinking about “dimension”. The primes (x — a,y —b) are somehow of dimension
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0, the primes (f(x,y)) are of dimension 1, and (0) is of dimension 2. (All of our
dimensions here are complex or algebraic dimensions. The complex plane C? has
real dimension 4, but complex dimension 2. Complex dimensions are in general
half of real dimensions.) We won’t define dimension precisely until Chapter 12,
but you should feel free to keep it in mind before then.

Note too that maximal ideals correspond to the “smallest” points. Smaller
ideals correspond to “bigger” points. “One prime ideal contains another” means
that the points “have the opposite containment.” All of this will be made precise
once we have a topology. This order-reversal is a little confusing, and will remain
so even once we have made the notions precise.

We now come to the obvious generalization of Example 7.

Example 8 (complex affine n-space — important!): Let A} := Spec Clx1,...,Xn].
(More generally, A} is defined to be Spec Alx1,...,xn], where A is an arbitrary
ring. When the base ring is clear from context, the subscript A is often omitted.)
For concreteness, let’s consider n = 3. We now have an interesting question in
what at first appears to be pure algebra: What are the prime ideals of C[x, y, z|?

Analogously to before, (x — a,y — b,z — c¢) is a prime ideal. This is a maximal
ideal, with residue field C; we think of these as “0-dimensional points”. We will of-
ten write (a, b, ¢) for [(x—a,y—b, z—c)] because of our geometric interpretation of
these ideals. There are no more maximal ideals, by Hilbert's Weak Nullstellensatz.

4.2.2. Hilbert’'s Weak Nullstellensatz. — If k is an algebraically closed field, then the
maximal ideals of k[x1, ..., xn] are precisely those ideals of the form (x1 — ay,...,%Xn —
an ), where a; € k.

We may as well state a slightly stronger version now.

4.2.3. Hilbert’s Nullstellensatz. — Ifk is any field, every maximal ideal of K[x1, ... , Xn]
has residue field a finite extension of k. Translation: any field extension of k that is finitely
generated as a ring is necessarily also finitely generated as a module (i.e. is a finite field
extension).

4.2.F. EXERCISE. Show that the Nullstellensatz 4.2.3 implies the Weak Nullstellen-
satz 4.2.2.

We will prove the Nullstellensatz in §8.4.3, and again in Exercise 12.2.B.

There are other prime ideals of C[x,y,z] too. We have (0), which is corre-
sponds to a “3-dimensional point”. We have (f(x,y, z)), where f is irreducible. To
this we associate the hypersurface f = 0, so this is “2-dimensional” in nature. But
we have not found them all! One clue: we have prime ideals of “dimension” 0,
2, and 3 — we are missing “dimension 1”. Here is one such prime ideal: (x,y).
We picture this as the locus where x = y = 0, which is the z-axis. This is a
prime ideal, as the corresponding quotient Clx,y,zl/(x,y) = C[z] is an integral
domain (and should be interpreted as the functions on the z-axis). There are lots
of one-dimensional primes, and it is not possible to classify them in a reasonable
way. It will turn out that they correspond to things that we think of as irreducible
curves. Thus remarkably the answer to the purely algebraic question (“what are
the primes of C[x, y, z]”) is fundamentally geometric!

The fact that the closed points Aj, can be interpreted as points of Q where
Galois-conjugates are glued together (Exercise 4.2.C) extends to Ag. For example,
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in Aé, (vV2,V2) is glued to (—v2,—v/2) but not to (v/2,—v/2). The following exer-
cise will give you some idea of how this works.

4.2.G. EXERCISE. Describe the maximal ideal of Q[x, y] corresponding to ( V2,v/2)
and (—v/2, —v/2). Describe the maximal ideal of Q[x, y] corresponding to (V2,—V2)
and (—v/2,v/2). What are the residue fields in both cases?

The description of closed points of A3 (and its generalizations) as Galois-orbits
can even be extended to non-closed points, as follows.

4.2.H. UNIMPORTANT AND TRICKY BUT FUN EXERCISE. Consider the map of
sets ¢ : C? — Aé defined as follows. (z1,z;) is sent to the prime ideal of Q[x, y]
consisting of polynomials vanishing at (z1,2;).

(a) What is the image of (7, 7t%)?

*(b) Show that ¢ is surjective. (Warning: You will need some ideas we haven't
discussed in order to solve this. Once we define the Zariski topology on A3, you
will be able to check that ¢ is continuous, where we give C? the classical topology.
This example generalizes.)

4.2.4. Quotients and localizations. Two natural ways of getting new rings from
old — quotients and localizations — have interpretations in terms of spectra.

4.2.5. Quotients: Spec A/I as a subset of Spec A. It is an important fact that the
primes of A/I are in bijection with the primes of A containing I.

4.2.1. ESSENTIAL ALGEBRA EXERCISE (MANDATORY IF YOU HAVEN’T SEEN IT BE-
FORE). Suppose A is a ring, and I an ideal of A. Let ¢ : A — A/I. Show that
¢! gives an inclusion-preserving bijection between primes of A/I and primes of
A containing I. Thus we can picture Spec A/I as a subset of Spec A.

As an important motivational special case, you now have a picture of complex
affine varieties. Suppose A is a finitely generated C-algebra, generated by x1, ...,
Xn, with relations fy(x1,...,xn) = --- = fr(x1,...,%xn) = 0. Then this description
in terms of generators and relations naturally gives us an interpretation of Spec A
as a subset of A7, which we think of as “traditional points” (n-tuples of complex
numbers) along with some “bonus” points we haven’t yet fully described. To see
which of the traditional points are in Spec A, we simply solve the equations f; =
-+ = f, = 0. For example, Spec C[x, v, zl/(x*+y?—z?) may be pictured as shown in
Figure 4.4. (Admittedly this is just a “sketch of the R-points”, but we will still find
it helpful later.) This entire picture carries over (along with the Nullstellensatz)
with C replaced by any algebraically closed field. Indeed, the picture of Figure 4.4
can be said to depict k[x,y, zl/(x? + y? — z?) for most algebraically closed fields k
(although it is misleading in characteristic 2, because of the coincidence x* + y? —
2?2 = (x +y +2)?).

4.2.6. Localizations: Spec S~'A as a subset of Spec A. The following exercise shows
how prime ideals behave under localization.

4.2.]. ESSENTIAL ALGEBRA EXERCISE (MANDATORY IF YOU HAVEN'T SEEN IT BE-
FORE). Suppose S is a multiplicative subset of A. Describe an order-preserving
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FIGURE 4.4. A “picture” of Spec C[x,y, zl/(x* + y* — z?)

bijection of the primes of S~' A with the primes of A that don’t meet the multiplica-
tive set S.

Recall from §2.3.3 that there are two important flavors of localization. The
firstis A¢ = {1,f,f2,...} 'A where f € A. A motivating example is A = C[x, y],
f =y—x?. Thesecond is A, = (A—p)~'A, where p is a prime ideal. A motivating
example is A = C[x,y], S = A — (x,vy).

If S = {1,f,f2,...}, the primes of S™' A are just those primes not containing f —
the points where “f doesn’t vanish”. (In §4.5, we will call this a distinguished open
set, once we know what open sets are.) So to picture Spec C[x, yl,_,2, we picture
the affine plane, and throw out those points on the parabola y — x?> — the points
(a,a?) for a € C (by which we mean [(x — a,y — a?)]), as well as the “new kind of
point” [(y — x?)].

It can be initially confusing to think about localization in the case where zerodi-
visors are inverted, because localization A — S~!A is not injective (Exercise 2.3.C).
Geometric intuition can help. Consider the case A = C[x,yl/(xy) and f = x. What
is the localization A¢? The space Spec C[x,yl/(xy) “is” the union of the two axes
in the plane. Localizing means throwing out the locus where x vanishes. So we
are left with the x-axis, minus the origin, so we expect Spec C[x|x. So there should
be some natural isomorphism (C[x, yl/(xy))x = Clxl«.

4.2.K. EXERCISE. Show that these two rings are isomorphic. (You will see that y
on the left goes to 0 on the right.)

If S = A —p, the primes of S~' A are just the primes of A contained in p. In our
example A = C[x,yl, p = (x,y), we keep all those points corresponding to “things
through the origin”, i.e. the 0-dimensional point (x,y), the 2-dimensional point (0),
and those 1-dimensional points (f(x,y)) where f(0,0) = 0, i.e. those “irreducible
curves through the origin”. You can think of this being a shred of the plane near
the origin; anything not actually “visible” at the origin is discarded (see Figure 4.5).

Another example is when A = k[x], and p = (x) (or more generally when p is
any maximal ideal). Then A, has only two prime ideals (Exercise 4.2.A(b)). You
should see this as the germ of a “smooth curve”, where one point is the “classical
point”, and the other is the “generic point of the curve”. This is an example of a
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— |-

Spec Clx, yl(x,y)

FIGURE 4.5. Picturing Spec C[x,yl(y.y) as a “shred of A2”. Only
those points near the origin remain.

discrete valuation ring, and indeed all discrete valuation rings should be visual-
ized in such a way. We will discuss discrete valuation rings in §13.5. By then we
will have justified the use of the words “smooth” and “curve”. (Reality check: try
to picture Spec of Z localized at (2) and at (0). How do the two pictures differ?)

4.2.7. Important fact: Maps of rings induce maps of spectra (as sets). We now
make an observation that will later grow up to be the notion of morphisms of
schemes.

4.2.L. IMPORTANT EASY EXERCISE. If ¢ : B — A isa map of rings, and p is a prime
ideal of A, show that ¢ ' (p) is a prime ideal of B.

Hence a map of rings ¢ : B — A induces a map of sets Spec A — SpecB “in
the opposite direction”. This gives a contravariant functor from the category of
rings to the category of sets: the composition of two maps of rings induces the
composition of the corresponding maps of spectra.

4.2.M. EASY EXERCISE. Let B be a ring.

(a) Suppose I C B is an ideal. Show that the map Spec B/I — SpecB is the inclu-
sion of §4.2.5.

(b) Suppose S C B is a multiplicative set. Show that the map Spec S™'B — Spec B
is the inclusion of §4.2.6.

4.2.8. An explicit example. In the case of affine complex varieties (or indeed affine
varieties over any algebraically closed field), the translation between maps given
by explicit formulas and maps of rings is quite direct. For example, consider a
map from the parabola in C? (with coordinates a and b) given by b = a?, to the
“curve” in C3 (with coordinates x, y, and z) cut out by the equations y = x* and
z = y?. Suppose the map sends the point (a,b) € C? to the point (a,b,b?) € C3.
In our new language, we have map

Spec Cla, bl/(b — a®) — SpecClx,y,zl/(y — x*,z — y*)
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given by
(C[Cl,b]/(b - aZ) <~ C[X,Q,Z]/(y _XZ»Z_yZ)

(a)b)bz) H(X)y)z))

ie.x — a,y — b,and z — b2 If the idea is not yet clear, the following two
exercises are very much worth doing — they can be very confusing the first time
you see them, and very enlightening (and finally, trivial) when you finally figure
them out.

y-line x-line

FIGURE 4.6. The map C — C given by x — y = x?

4.2.N. IMPORTANT EXERCISE (SPECIAL CASE). Consider the map of complex
manifolds sending C — C via x — y = x?. We interpret the “source” C as the
“x-line”, and the “target” C the “y-line”. You can picture it as the projection of
the parabola y = x? in the xy-plane to the y-axis (see Figure 4.6). Interpret the
corresponding map of rings as given by Cly] — C[x] by y + x?. Verify that the
preimage (the fiber) above the point a € C is the point(s) +v/a € C, using the
definition given above. (A more sophisticated version of this example appears
in Example 10.3.3. Warning: the roles of x and y are swapped there, in order to
picture double covers in a certain way:.)

4.2.0. IMPORTANT EXERCISE (GENERALIZING EXAMPLE 4.2.8). Suppose k is an

algebraically closed field, and f1, ..., fn € K[x1,...,xm] are given. Let ¢ : k[y1,...,yn] —
k[x1,...,%m] be the ring morphism defined by y; — f;.

(a) Show that ¢ induces a map of sets Speck[x1,...,xml/I — Speckly1,...,ynl/]

for any ideals I C k[x1,...,xmland J C kly1,...,yn] such that ¢(J) C I. (You may
wish to consider the case I = 0 and ] = 0 first. In fact, part (a) has nothing to do
with k-algebras; you may wish to prove the statement when the rings k[x1, . . ., Xm]
and k[y1,...,yn] are replaced by general rings A and B.)

(b) Show that the map of part (a) sends the point (ai,...,am) € k™ (or more
precisely, [(x1 — ai,...,Xm — am)] € Speckl[x1,...,xm]) to

(fi(ag,...,am),...,fnlas,...,an)) € k™



October 10, 2012 draft 101

4.2.P. EXERCISE: PICTURING Aj;. Consider the map of sets f : A} — SpecZ, given
by the ring map Z — Z[x1,...,xn]. If p is prime, describe a bijection between the
fiber ' ([(p)]) and A]}‘p. (You won’t need to describe either set! Which is good
because you can’t.) This exercise may give you a sense of how to picture maps
(see Figure 4.7), and in particular why you can think of A} as an “A™-bundle”
over Spec Z. (Can you interpret the fiber over [(0)] as A} for some field k?)

AR, Any Ay

FIGURE 4.7. A picture of A} — SpecZ as a “family of A™’s”, or
an “A™-bundle over Spec Z”. What is k?

4.2.9. Functions are not determined by their values at points: the fault of nilpo-
tents. We conclude this section by describing some strange behavior. We are de-
veloping machinery that will let us bring our geometric intuition to algebra. There
is one serious serious point where your intuition will be false, so you should know
now, and adjust your intuition appropriately. As noted by Mumford ([M-CAS,
p- 12]), “itis this asperct of schemes which was most scandalous when Grothendieck
defined them.”

Suppose we have a function (ring element) vanishing at all points. Then it is
not necessarily the zero function! The translation of this question is: is the inter-
section of all prime ideals necessarily just 0? The answer is no, as is shown by the
example of the ring of dual numbers k[e]/ (e2): € # 0, but > = 0. (We saw this
ring in Exercise 4.2.A(a).) Any function whose power is zero certainly lies in the
intersection of all prime ideals.

4.2.Q. EXERCISE. Ring elements that have a power that is 0 are called nilpotents.
(a) Show that if I is an ideal of nilpotents, then the inclusion SpecB/I — SpecB
of Exercise 4.2.1 is a bijection. Thus nilpotents don’t affect the underlying set. (We
will soon see in §4.4.5 that they won't affect the topology either — the difference
will be in the structure sheaf.)

(b) Show that the nilpotents of a ring B form an ideal. This ideal is called the
nilradical, and is denoted 9t = 91(B).

Thus the nilradical is contained in the intersection of all the prime ideals. The
converse is also true:
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4.2.10. Theorem. — The nilradical M(A) is the intersection of all the primes of A.
Geometrically: a function on Spec A vanishes everywhere if and only if it is nilpotent.

4.2.R. EXERCISE. If you don’t know this theorem, then look it up, or better yet,
prove it yourself. (Hint: Use the fact that any proper ideal of A is contained in
a maximal ideal, which requires Zorn’s lemma. Possible further hint: Suppose
x ¢ 9(A). We wish to show that there is a prime ideal not containing x. Show that
A is not the 0-ring, by showing that 1 # 0.)

4.2.11. In particular, although it is upsetting that functions are not determined by
their values at points, we have precisely specified what the failure of this intuition
is: two functions have the same values at points if and only if they differ by a
nilpotent. You should think of this geometrically: a function vanishes at every
point of the spectrum of a ring if and only if it has a power that is zero. And if
there are no nonzero nilpotents — if 91 = (0) — then functions are determined by
their values at points. If a ring has no nonzero nilpotents, we say that it is reduced.

4.2.S. FUN UNIMPORTANT EXERCISE: DERIVATIVES WITHOUT DELTAS AND EPSILONS
(OR AT LEAST WITHOUT DELTAS). Suppose we have a polynomial f(x) € k[x]. In-
stead, we work in k[x, €]/(e?). What then is f(x + €)? (Do a couple of examples,
then prove the pattern you observe.) This is a hint that nilpotents will be important
in defining differential information (Chapter 22).

4.3 Visualizing schemes I: generic points

A heavy warning used to be given that pictures are not rigorous; this has never had
its bluff called and has permanently frightened its victims into playing for safety. Some
pictures, of course, are not rigorous, but I should say most are (and I use them whenever
possible myself). — J. E. Littlewood, [Li, p. 54]

For years, you have been able to picture x? + y? = 1 in the plane, and you
now have an idea of how to picture SpecZ. If we are claiming to understand rings
as geometric objects (through the Spec functor), then we should wish to develop
geometric insight into them. To develop geometric intuition about schemes, it is
helpful to have pictures in your mind, extending your intuition about geometric
spaces you are already familiar with. As we go along, we will empirically develop
some idea of what schemes should look like. This section summarizes what we
have gleaned so far.

Some mathematicians prefer to think completely algebraically, and never think
in terms of pictures. Others will be disturbed by the fact that this is an art, not a sci-
ence. And finally, this hand-waving will necessarily never be used in the rigorous
development of the theory. For these reasons, you may wish to skip these sections.
However, having the right picture in your mind can greatly help understanding
what facts should be true, and how to prove them.

Our starting point is the example of “affine complex varieties” (things cut out
by equations involving a finite number variables over C), and more generally simi-
lar examples over arbitrary algebraically closed fields. We begin with notions that
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are intuitive (“traditional” points behaving the way you expect them to), and then
add in the two features which are new and disturbing, generic points and nonre-
duced behavior. You can then extend this notion to seemingly different spaces,
such as SpecZ.

Hilbert’s Weak Nullstellensatz 4.2.2 shows that the “traditional points” are
present as points of the scheme, and this carries over to any algebraically closed
field. If the field is not algebraically closed, the traditional points are glued to-
gether into clumps by Galois conjugation, as in Examples 5 (the real affine line)
and 6 (the affine line over F,,) in §4.2 above. This is a geometric interpretation of
Hilbert’s Nullstellensatz 4.2.3.

But we have some additional points to add to the picture. You should re-
member that they “correspond” to “irreducible” “closed” (algebraic) subsets. As
motivation, consider the case of the complex affine plane (Example 7): we had
one for each irreducible polynomial, plus one corresponding to the entire plane.
We will make “closed” precise when we define the Zariski topology (in the next
section). You may already have an idea of what “irreducible” should mean; we
make that precise at the start of §4.6. By “correspond” we mean that each closed
irreducible subset has a corresponding point sitting on it, called its generic point
(defined in §4.6). It is a new point, distinct from all the other points in the subset.
The correspondence is described in Exercise 4.7.E for Spec A, and in Exercise 6.1.B
for schemes in general. We don’t know precisely where to draw the generic point,
so we may stick it arbitrarily anywhere, but you should think of it as being “almost
everywhere”, and in particular, near every other point in the subset.

In §4.2.5, we saw how the points of Spec A/I should be interpreted as a subset
of Spec A. So for example, when you see Spec C[x, yl/(x + y), you should picture
this not just as a line, but as a line in the xy-plane; the choice of generators x and y
of the algebra C[x, y] implies an inclusion into affine space.

In §4.2.6, we saw how the points of Spec S~' A should be interpreted as subsets
of Spec A. The two most important cases were discussed. The points of Spec A¢
correspond to the points of Spec A where f doesn’t vanish; we will later (§4.5)
interpret this as a distinguished open set.

If p is a prime ideal, then Spec A, should be seen as a “shred of the space
Spec A near the subset corresponding to p”. The simplest nontrivial case of this
isp = (x) C Speck[x] = A (see Exercise 4.2.A, which we discuss again in Exer-
cise 4.4.K).

4.4 The underlying topological space of an affine scheme

We next introduce the Zariski topology on the spectrum of a ring. When you
first hear the definition, it seems odd, but with a little experience it becomes rea-
sonable. As motivation, consider A% = Spec C[x, yJ, the complex plane (with a few
extra points). In algebraic geometry, we will only be allowed to consider algebraic
functions, i.e. polynomials in x and y. The locus where a polynomial vanishes
should reasonably be a closed set, and the Zariski topology is defined by saying
that the only sets we should consider closed should be these sets, and other sets
forced to be closed by these. In other words, it is the coarsest topology where these
sets are closed.
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In particular, although topologies are often described using open subsets, it
will be more convenient for us to define this topology in terms of closed subsets.
If S is a subset of a ring A, define the Vanishing set of S by

V(S) :={[p] € SpecA : S Cpl.

It is the set of points on which all elements of S are zero. (It should now be second
nature to equate “vanishing at a point” with “contained in a prime”.) We declare
that these — and no other — are the closed subsets.

For example, consider V(xy,yz) C A2 = Spec C[x,y, z]. Which points are con-
tained in this locus? We think of this as solving xy = yz = 0. Of the “traditional”
points (interpreted as ordered triples of complex numbers, thanks to the Hilbert’s
Nullstellensatz 4.2.2), we have the points where y = 0 or x = z = 0: the xz-plane
and the y-axis respectively. Of the “new” points, we have the generic point of the
xz-plane (also known as the point [(y)]), and the generic point of the y-axis (also
known as the point [(x,z)]). You might imagine that we also have a number of
“one-dimensional” points contained in the xz-plane.

4.4.A. EASY EXERCISE. Check that the x-axis is contained in V(xy, yz). (The x-axis
is defined by y = z = 0, and the y-axis and z-axis are defined analogously.)

Let’s return to the general situation. The following exercise lets us restrict
attention to vanishing sets of ideals.

4.4.B. EASY EXERCISE. Show that if (S) is the ideal generated by S, then V(S) =
V((S)).

We define the Zariski topology by declaring that V(S) is closed for all S. Let’s
check that this is a topology:

4.4.C. EXERCISE.

(a) Show that @ and Spec A are both open.

(b) If 1; is a collection of ideals (as i runs over some index set), show that N; V(I;) =
V(3_; Ii). Hence the union of any collection of open sets is open.

(c) Show that V(I1) U V(I2) = V(I;12). (The product of two ideals I and I, of A
are finite A-linear combinations of products of elements of I; and I, i.e. elements
of the form ) " ; 1; jiz;, where iy ; € Ix. Equivalently, it is the ideal generated by
products of elements of Iy and I,. You should quickly check that this is an ideal,
and that products are associative, i.e. (I112)I3) = I (I;I3).) Hence the intersection
of any finite number of open sets is open.

4.4.1. Properties of the “vanishing set” function V(-). The function V(-) is ob-
viously inclusion-reversing: If S; C S,, then V(S,) C V(S;1). Warning: We could
have equality in the second inclusion without equality in the first, as the next exer-
cise shows.

4.4.D. EXERCISE/DEFINITION. IfI C A is anideal, then define its radical by

VI:={re A : " €1forsomen € Z7°.

For example, the nilradical 9t (§4.2.Q) is /(0). Show that V1is an ideal (cf. Exer-
cise 4.2.Q(b)). Show that V(vI) = V(I). We say an ideal is radical if it equals its
own radical. Show that v//I = /1, and that prime ideals are radical.
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Here are two useful consequences. As (1N N2clcing (products of ideals
were defined in Exercise 4.4.C), we have that V(IJ) = V(IN]) (= V(I) U V(])
by Exercise 4.4.C(c)). Also, combining this with Exercise 4.4.B, we see V(S) =
V((S)) = V(/(S)).

4.4.E. EXERCISE (RADICALS COMMUTE WITH FINITE INTERSECTIONS). If I, ...,
I,, are ideals of a ring A, show that \/N"_;T; = NI, /I;. We will use this property
repeatedly without referring back to this exercise.

4.4.F. EXERCISE FOR LATER USE. Show that /T is the intersection of all the prime
ideals containing I. (Hint: Use Theorem 4.2.10 on an appropriate ring.)

4.4.2. Examples. Let’s see how this meshes with our examples from the previous
section.

Recall that A}, as a set, was just the “traditional” points (corresponding to
maximal ideals, in bijection with a € C), and one “new” point (0). The Zariski
topology on A/ is not that exciting: the open sets are the empty set, and A} minus
a finite number of maximal ideals. (It “almost” has the cofinite topology. No-
tice that the open sets are determined by their intersections with the “traditional
points”. The “new” point (0) comes along for the ride, which is a good sign that it
is harmless. Ignoring the “new” point, observe that the topology on Al. is a coarser
topology than the classical topology on C.)

4.4.G. EXERCISE. Describe the topological space A} (cf. Exercise 4.2.D).

The case SpecZ is similar. The topology is “almost” the cofinite topology in
the same way. The open sets are the empty set, and Spec Z minus a finite number
of “ordinary” ((p) where p is prime) primes.

4.4.3. Closed subsets of A2.  The case AZ is more interesting. You should think
through where the “one-dimensional primes” fit into the picture. In Exercise 4.2.E,
we identified all the prime ideals of C[x,y] (i.e. the points of AZ) as the maxi-
mal ideals [(x — a,y — b)] (where a,b € C — “zero-dimensional points”), the
“one-dimensional points” [(f(x,y))] (where f(x,y) is irreducible), and the “two-
dimensional point” [(0)].

Then the closed subsets are of the following form:

(a) the entire space (the closure of the “two-dimensional point” [(0)]), and

(b) a finite number (possibly none) of “curves” (each the closure of a “one-
dimensional point” — the “one-dimensional point” along with the “zero-dimensional
points” “lying on it”) and a finite number (possibly none) of “zero-dimensional”
closed points (points that are closed as subsets).

We will soon know enough to verify this using general theory, but you can
prove it yourself now, using ideas in Exercise 4.2.E. (The key idea: if f(x,y) and
g(x,y) are irreducible polynomials that are not multiples of each other, why do
their zero sets intersect in a finite number of points?)

4.4.4. Important fact: Maps of rings induce continuous maps of topological
spaces. We saw in §4.2.7 that a map of rings ¢ : B — A induces a map of
sets 7t : Spec A — Spec B.
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4.4.H. IMPORTANT EASY EXERCISE. By showing that closed sets pull back to
closed sets, show that 7 is a continuous map. Interpret Spec as a contravariant
functor Rings — Top.

Not all continuous maps arise in this way. Consider for example the contin-
uous map on Al that is the identity except 0 and 1 (i.e. [(x)] and [(x — 1)]) are
swapped; no polynomial can manage this marvellous feat.

In §4.2.7, we saw that Spec B/I and Spec S~ 'B are naturally subsets of Spec B.
It is natural to ask if the Zariski topology behaves well with respect to these inclu-
sions, and indeed it does.

4.4.1. IMPORTANT EXERCISE (CF. EXERCISE 4.2.M). Suppose that I, S C B are an
ideal and multiplicative subset respectively.

(a) Show that Spec B/I is naturally a closed subset of SpecB. If S = {1,f,f%,...}
(f € B), show that Spec S~'B is naturally an open subset of Spec B. Show that for
arbitrary S, Spec S~'B need not be open or closed. (Hint: SpecQ C SpecZ, or
possibly Figure 4.5.)

(b) Show that the Zariski topology on Spec B/I (resp. Spec S~'B) is the subspace
topology induced by inclusion in Spec B. (Hint: compare closed subsets.)

4.4.5. In particular, if I C 91 is an ideal of nilpotents, the bijection SpecB/I —
Spec B (Exercise 4.2.Q) is a homeomorphism. Thus nilpotents don’t affect the topo-
logical space. (The difference will be in the structure sheaf.)

4.4.]. USEFUL EXERCISE FOR LATER. Suppose I C B is an ideal. Show that f van-
ishes on V(1) if and only if f € VI (i.e. f* € I for some n > 1). (Hint: Exercise 4.4.F.
If you are stuck, you will get another hint when you see Exercise 4.5.E.)

4.4.K. EASY EXERCISE (CF. EXERCISE 4.2.A). Describe the topological space Spec k([x] ).

4.5 A base of the Zariski topology on Spec A: Distinguished open
sets

If f € A, define the distinguished open set D(f) = {[p] € SpecA : f ¢ p}. Itis
the locus where f doesn’t vanish. (I often privately write this as D(f # 0) to remind
myself of this. I also privately call this a “Doesn’t-vanish set” in analogy with V/(f)
being the Vanishing set.) We have already seen this set when discussing Spec A¢
as a subset of Spec A. For example, we have observed that the Zariski-topology on
the distinguished open set D(f) C Spec A coincides with the Zariski topology on
Spec A (Exercise 4.4.1).

The reason these sets are important is that they form a particularly nice base
for the (Zariski) topology:

4.5.A. EASY EXERCISE. Show that the distinguished open sets form a base for the
(Zariski) topology. (Hint: Given a subset S C A, show that the complement of
V(S) is UsesD(f).)
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Here are some important but not difficult exercises to give you a feel for this
concept.

4.5.B. EXERCISE. Suppose f; € A as i runs over some index set J. Show that
UiejD(fi) = SpecA if and only if (f;) = A, or equivalently and very usefully,
there are a; (i € J), all but finitely many 0, such that Zie] aifi = 1. (One of the
directions will use the fact that any proper ideal of A is contained in some maximal
ideal.)

4.5.C. EXERCISE. Show that if Spec A is an infinite union of distinguished open
sets Uje;D(f;), then in fact it is a union of a finite number of these, i.e. there is a
finite subset ]’ so that Spec A = Uj¢;/D(f;). (Hint: exercise 4.5.B.)

4.5.D. EASY EXERCISE. Show that D(f) N D(g) = D(fg).

4.5.E. IMPORTANT EXERCISE (CF. EXERCISE 4.4.]). Show that D(f) C D(g) if and
only if f* € (g) for some n > 1, if and only if g is an invertible element of A¢.

We will use Exercise 4.5.E often. You can solve it thinking purely algebraically,
but the following geometric interpretation may be helpful. (You should try to
draw your own picture to go with this discussion.) Inside Spec A, we have the
closed subset V(g) = SpecA/(g), where g vanishes, and its complement D(g),
where g doesn’t vanish. Then f is a function on this closed subset V(g) (or more
precisely, on Spec A/(g)), and by assumption it vanishes at all points of the closed
subset. Now any function vanishing at every point of the spectrum of a ring must
be nilpotent (Theorem 4.2.10). In other words, there is some n such that f* = 0 in
A/(g),ie. f* =0 (mod g)in A, ie. f™ € (g).

4.5.F. EASY EXERCISE. Show that D(f) = @ if and only if f € .

4.6 Topological (and Noetherian) properties

Many topological notions are useful when applied to the topological space
Spec A, and later, to schemes.

4.6.1. Possible topological attributes of Spec A: connectedness, irreducibility,
quasicompactness.

4.6.2. Connectedness.

A topological space X is connected if it cannot be written as the disjoint union
of two nonempty open sets. Exercise 4.6.A below gives an example of a non-
connected Spec A, and the subsequent remark explains that all examples are of
this form.

4.6.A. EXERCISE. If A = A; X Ay x -+ x Ay, describe a homeomorphism
SpecA1 [ [SpecA,]]---][SpecAn — SpecA for which each Spec A; is mapped
onto a distinguished open subset D(f;) of Spec A. Thus Spec [ [, Ai = [ [ SpecA;
as topological spaces. (Hint: reduce to n = 2 for convenience. Let f; = (1,0) and
f2=(0,1))
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4.6.3. Remark. An extension of Exercise 4.6.A (that you can prove if you wish)
is that Spec A is not connected if and only if A is isomorphic to the product of
nonzero rings A and A;. The key idea is to show that both conditions are equiva-
lent to there existing nonzero a;, a; € A for which a% =aj, a% =az ar+a =1,
and hence aja; = 0. An element a € A satisfying a* = a is called an idempotent.
This will appear as Exercise 10.5.1.

4.6.4. Irreducibility.

A topological space is said to be irreducible if it is nonempty, and it is not the
union of two proper closed subsets. In other words, a nonempty X is irreducible if
whenever X = YU Z with Y and Z closed, we have Y = X or Z = X. This is a less
useful notion in classical geometry — C? is reducible (i.e. not irreducible), but we
will see that Aé is irreducible (Exercise 4.6.C).

4.6.B. EASY EXERCISE.

(a) Show that in an irreducible topological space, any nonempty open set is dense.
(The moral: unlike in the classical topology, in the Zariski topology, nonempty
open sets are all “huge”.)

(b) If X is a topological space, and Z (with the subspace topology) is an irreducible
subset, then the closure Z in X is irreducible as well.

4.6.C. EASY EXERCISE. If A is an integral domain, show that Spec A is irreducible.

(Hint: pay attention to the generic point [(0)].) We will generalize this in Exer-
cise 4.7.F.

4.6.D. EXERCISE. Show that an irreducible topological space is connected.

4.6.E. EXERCISE.  Give (with proof!) an example of a ring A where Spec A is
connected but reducible. (Possible hint: a picture may help. The symbol “x” has
two “pieces” yet is connected.)

4.6.F. TRICKY EXERCISE.

(a) Suppose I = (wz—xy, wy—x?,xz—y?) C klw, x,y, zl. Show that Spec k[w, x, y, z]/1
is irreducible, by showing that k[w, x,y, z|/I is an integral domain. (This is hard,
so here is one of several possible hints: Show that k[w, x,y, z|/I is isomorphic to
the subring of k[a, b] generated by monomials of degree divisible by 3. There are
other approaches as well, some of which we will see later. This is an example of
a hard question: how do you tell if an ideal is prime?) We will later see this as
the cone over the twisted cubic curve (the twisted cubic curve is defined in Exer-
cise 9.2.A, and is a special case of a Veronese embedding, §9.2.6).

(b) Note that the generators of the ideal of part (a) may be rewritten as the equa-
tions ensuring that

1‘ank<W x y)g],
X Yy z

i.e., as the determinants of the 2 x 2 submatrices. Generalize part (a) to the ideal of
rank one 2 x n matrices. This notion will correspond to the cone (§9.2.11) over the
degree n rational normal curve (Exercise 9.2.]).

4.6.5. Quasicompactness.
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A topological space X is quasicompact if given any cover X = U;ic1U; by open
sets, there is a finite subset S of the index set I such that X = UjcsU;. Informally:
every open cover has a finite subcover. We will like this condition, because we
are afraid of infinity. Depending on your definition of “compactness”, this is the
definition of compactness, minus possibly a Hausdorff condition. However, this
isn’t really the algebro-geometric analogue of “compact” (we certainly wouldn’t
want A/, to be compact) — the right analogue is “properness” (§11.3).

4.6.G. EXERCISE.

(a) Show that Spec A is quasicompact. (Hint: Exercise 4.5.C.)

*(b) (less important) Show that in general Spec A can have nonquasicompact open
sets. Possible hint: let A = k[x1,%2,%3,...]andm = (x1,%x2,...) C A, and consider
the complement of V(m). This example will be useful to construct other “coun-
terexamples” later, e.g. Exercises 8.1.C and 6.1.]. In Exercise 4.6.T, we will see that
such weird behavior doesn’t happen for “suitably nice” (Noetherian) rings.

4.6.H. EXERCISE.

(a) If X is a topological space that is a finite union of quasicompact spaces, show
that X is quasicompact.

(b) Show that every closed subset of a quasicompact topological space is quasicom-
pact.

~

4.6.6. *x Fun but irrelevant remark.  Exercise 4.6.A shows that [ [I_; Spec A;
Spec H?:] Aj, but this never holds if “n is infinite” and all A; are nonzero, as
Spec of any ring is quasicompact (Exercise 4.6.G(a)). This leads to an interesting
phenomenon. We show that Spec [ ;> ; A; is “strictly bigger” than ] [ ; Spec A;
where each A; is isomorphic to the field k. First, we have an inclusion of sets
[12, SpecA; — Spec]]i~, A, as there is a maximal ideal of [ | A; correspond-
ing to each 1 (precisely those elements 0 in the ith component.) But there are other
maximal ideals of [ [ A;. Hint: describe a proper ideal not contained in any of these
maximal ideals. (One idea: consider elements | [ a; that are “eventually zero”, i.e.
a; = 0 for i > 0.) This leads to the notion of ultrafilters, which are very useful, but
irrelevant to our current discussion.

4.6.7. Possible topological properties of points of Spec A.

A point of a topological space x € X is said to be closed if {x} is a closed subset.
In the classical topology on C™, all points are closed. In SpecZ and Specklt], all
the points are closed except for [(0)].

4.6.1. EXERCISE. Show that the closed points of Spec A correspond to the maximal
ideals.

4.6.8. Connection to the classical theory of varieties. Hilbert’s Nullstellensatz lets us
interpret the closed points of AZ as the n-tuples of complex numbers. More gen-
erally, the closed points of Speck[x1,...,xnl/(f1,..., ;) are naturally interpreted
as those points in k' satisfying the equations f; = --- = f, = 0 (Exercise 4.2.1).
Hence from now on we will say “closed point” instead of “traditional point” and
“non-closed point” instead of “bonus” point when discussing subsets of A
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4.6.J. EXERCISE.

(a) Suppose that k is a field, and A is a finitely generated k-algebra. Show that
closed points of Spec A are dense, by showing thatif f € A, and D(f) is a nonempty
(distinguished) open subset of Spec A, then D(f) contains a closed point of Spec A.
Hint: note that A¢ is also a finitely generated k-algebra. Use the Nullstellensatz 4.2.3
to recognize closed points of Spec of a finitely generated k-algebra B as those for
which the residue field is a finite extension of k. Apply this to both B = A and
B=As.

(b) Show that if A is a k-algebra that is not finitely generated the closed points
need not be dense. (Hint: Exercise 4.4.K.)

4.6.K. EXERCISE. Suppose kis an algebraically closed field, and A = k[x1,...,xn]/I
is a finitely generated k-algebra with 91(A) = {0} (so the discussion of §4.2.11 ap-
plies). Consider the set X = Spec A as a subset of A}. The space A} contains

the “classical” points k™. Show that functions on X are determined by their val-
ues on the closed points (by the weak Nullstellensatz 4.2.2, the “classical” points

k™ N Spec A of Spec A). Hint: if f and g are different functions on X, then f — g is

nowhere zero on an open subset of X. Use Exercise 4.6.J(a).

You will later be able to interpret Exercise 4.6.K as the fact that a function on
a variety over an algebraically closed field is determined by its values on the “classical
points”. (Before the advent of scheme theory, functions on varieties — over alge-
braically closed fields — were thought of as functions on “classical” points, and
Exercise 4.6.K basically shows that there is no harm in thinking of “traditional”
varieties as a particular flavor of schemes.)

4.6.9. Specialization and generization. Given two points x,y of a topological space
X, we say that x is a specialization of y, and y is a generization of x, if x € ).
This (and Exercise 4.6.L) now makes precise our hand-waving about “one point
containing another”. It is of course nonsense for a point to contain another. But it
is not nonsense to say that the closure of a point contains another. For example, in
AZ = SpecClx,y], [(y — x?)] is a generization of [(x — 2,y — 4)] = (2,4) € C?,and
(2,4) is a specialization of [(y — x?)].

4.6.L. EXERCISE. If X = SpecA, shiow that [q] is a specialization of [p] if and only
if p C q. Hence show that V(p) = {[p]}.

4.6.10. Definition. ~We say that a point x € X is a generic point for a closed
subset K if {x} = K. (The phrase general point is not the same. The phrase
“the general point of K satisfies such-and-such a property” means “every point of
some dense open subset of X satisfies such-and-such a property”. Be careful not
to confuse “general” and “generic”. But be aware that accepted terminology does

not always follow this convention; witness “generic freeness”, “generic flatness”,
and “generic smoothness”.)

4.6.M. EXERCISE. Verify that [(y — x?)] € A? is a generic point for V(y — x?).

As some motivation for this terminology: we think of [(y —x?)] as being some
non-specific point on the parabola (with the closed points (a,a?) € C?, ie. (x —
a,y — a)? for a € C, being “specific points”); it is “generic” in the conventional



October 10, 2012 draft 111

sense of the word. We might “specialize it” to a specific point of the parabola;
hence for example (2,4) is a specialization of [(y — x?)].

We will soon see (Exercise 4.7.E) that there is a natural bijection between points
of Spec A and irreducible closed subsets of Spec A, sending each point to its clo-
sure, and each irreducible closed subset to its (unique) generic point. You can
prove this now, but we will wait until we have developed some convenient termi-
nology.

4.6.11. Irreducible and connected components, and Noetherian conditions.

An irreducible component of a topological space is a maximal irreducible
subset (an irreducible subset not contained in any larger irreducible subset). Irre-
ducible components are closed (as the closure of irreducible subsets are irreducible,
Exercise 4.6.B(b)), and it can be helpful to think of irreducible components of a
topological space X as maximal among the irreducible closed subsets of X. We
think of these as the “pieces of X" (see Figure 4.8).

FIGURE 4.8. This closed subset of A has six irreducible components

Similarly, a subset Y of a topological space X is a connected component if it
is a maximal connected subset (a connected subset not contained in any larger
connected subset).

4.6.N. EXERCISE (EVERY TOPOLOGICAL SPACE IS THE UNION OF IRREDUCIBLE
COMPONENTS). Show that every point x of a topological space X is contained
in an irreducible component of X. Hint: Zorn’s Lemma. More precisely, consider
the partially ordered set .# of irreducible closed subsets of X containing x. Show
that there exists a maximal totally ordered subset {Z,} of .. Show that UZ is
irreducible.

4.6.12. Remark. Every point is contained in a connected component, and con-
nected components are always closed. You can prove this now, but we deliberately
postpone asking this as an exercise until we need it, in an optional starred section
(Exercise 10.5.G). On the other hand, connected components need not be open, see
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[Stacks, tag 004T]. An example of an affine scheme with connected components
that are not open is Spec([ [ F2).

4.6.13. In the examples we have considered, the spaces have naturally broken up
into a finite number of irreducible components. For example, the locus xy = 0 in
AZ we think of as having two “pieces” — the two axes. The reason for this is that
their underlying topological spaces (as we shall soon establish) are Noetherian. A
topological space X is called Noetherian if it satisfies the descending chain condi-
tion for closed subsets: any sequence Z; D Z, O --- D Z, O --- of closed subsets
eventually stabilizes: there is an r such that Z, = Z,,; = ---. Here is a first
example (which you should work out explicitly, not using Noetherian rings).

4.6.0. EXERCISE. Show that AZ is a Noetherian topological space: any decreasing
sequence of closed subsets of AZ = Spec C[x,y] must eventually stabilize. Note
that it can take arbitrarily long to stabilize. (The closed subsets of AZ were de-
scribed in §4.4.3.) Show that C? with the classical topology is not a Noetherian
topological space.

4.6.14. Proposition. — Suppose X is a Noetherian topological space. Then every
nonempty closed subset Z can be expressed uniquely as a finite union Z =2, U --- U Zy
of irreducible closed subsets, none contained in any other.

Translation: any closed subset Z has a finite number of “pieces”.

Proof. The following technique is called Noetherian induction, for reasons that
will be clear. We will use it again, many times.

Consider the collection of closed subsets of X that cannot be expressed as a
finite union of irreducible closed subsets. We will show that it is empty. Otherwise,
let Y; be one such. If Yy properly contains another such, then choose one, and call
it Y. If Y, properly contains another such, then choose one, and call it Y3, and so
on. By the descending chain condition, this must eventually stop, and we must
have some Y, that cannot be written as a finite union of irreducible closed subsets,
but every closed subset properly contained in it can be so written. But then Y; is
not itself irreducible, so we can write Y, = Y'UY” where Y’ and Y” are both proper
closed subsets. Both of these by hypothesis can be written as the union of a finite
number of irreducible subsets, and hence so can Y;, yielding a contradiction. Thus
each closed subset can be written as a finite union of irreducible closed subsets.
We can assume that none of these irreducible closed subsets contain any others, by
discarding some of them.

We now show uniqueness. Suppose

Z=7Z,UZ;U---UZ,=Z{UZ5U---UZ]

are two such representations. Then Z; ¢ Z; UZ,U---UZ,,s0 Z} = (Z1 N Z]) U
-+ U (Zy N Z7). Now Zj is irreducible, so one of these is Z; itself, say (without
loss of generality) Z; N Z;. Thus Z; C Z;. Similarly, Z; C Z/ for some a; but
because Z; C Z; C Z/, and Z; is contained in no other Z{, we must have a =1,
and Z{ = Z;. Thus each element of the list of Z’s is in the list of Z’’s, and vice
versa, so they must be the same list. O
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4.6.P. EXERCISE. Show that every connected component of a topological space X
is the union of irreducible components. Show that any subset of X that is simulta-
neously open and closed must be the union of some of the connected components
of X. If X is a Noetherian topological space show that each connected component
is a union of some of the irreducible components, and show that the union of any
subset of the connected components of X is always open and closed in X. (In par-
ticular, connected components of Noetherian topological spaces are always open,
which is not true for more general topological spaces, see Remark 4.6.12.)

4.6.15. Noetherian rings. It turns out that all of the spectra we have considered
(except in starred Exercise 4.6.G(b)) are Noetherian topological spaces, but that
isn’t true of the spectra of all rings. The key characteristic all of our examples have
had in common is that the rings were Noetherian. A ring is Noetherian if every
ascending sequence I; C I, C --- of ideals eventually stabilizes: there is an r such
that I, =I,47 = ---. (This is called the ascending chain condition on ideals.)

Here are some quick facts about Noetherian rings. You should be able to prove
them all.

o Fields are Noetherian. Z is Noetherian.

o If A is Noetherian, and ¢ : A — B is any ring homomorphism, then ¢(A)
is Noetherian. Equivalently, quotients of Noetherian rings are Noether-
ian.

e If A is Noetherian, and S is any multiplicative set, then S~' A is Noether-
ian.

An important related notion is that of a Noetherian module. Although we won't
use this notion for some time (§10.7.3), we will develop their most important prop-
erties in §4.6.17, while Noetherian ideas are still fresh in your mind.

4.6.Q. IMPORTANT EXERCISE. Show that a ring A is Noetherian if and only if
every ideal of A is finitely generated.

The next fact is non-trivial.

4.6.16. The Hilbert basis theorem. — If A is Noetherian, then so is A[x].

Hilbert proved this in the epochal paper [Hil] where he also proved the Hilbert
syzygy theorem (§16.3.2), and defined Hilbert functions and showed that they are
eventually polynomial (§19.5).

By the results described above, any polynomial ring over any field, or over
the integers, is Noetherian — and also any quotient or localization thereof. Hence
for example any finitely generated algebra over k or Z, or any localization thereof,
is Noetherian. Most “nice” rings are Noetherian, but not all rings are Noether-
ian: k[x1,x2,...] is not, because (x1) C (x1,%x2) C (x1,%2,x3) C --- is a strictly
ascending chain of ideals (cf. Exercise 4.6.G(b)).

Proof of the Hilbert Basis Theorem 4.6.16. We show that any ideal I C A[x] is finitely
generated. We inductively produce a set of generators f1, ...as follows. Forn > 0,
if I # (f1,...,fn_1), let fy be any nonzero element of I — (fy,...,fn_1) of lowest
degree. Thus f; is any element of I of lowest degree, assuming I # (0). If this
procedure terminates, we are done. Otherwise, let a,, € A be the initial coefficient
of f, for n > 0. Then as A is Noetherian, (a7,a2,...) = (aj,...,an) for some N.
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Say any1 = Z?:] bia;. Then

N
fNJr] o Z bifixdeng+1 —deg 3
i=1
is an element of I that is nonzero (as fn4+1 ¢ (f1,...,fn)), and of lower degree
than fn41, yielding a contradiction. [l

4.6.R. »x UNIMPORTANT EXERCISE. Show that if A is Noetherian, then so is
Allx]] = %iLnA[x] /x™, the ring of power series in x. (Possible hint: Suppose I C
Al[x]] is an ideal. Let I, C A be the coefficients of x™ that appear in the elements
of I. Show that I,, is an ideal. Show that I, C I, and that I is determined by
(T, 11, 12,...).)

We now connect Noetherian rings and Noetherian topological spaces.

4.6.S. EXERCISE. If A is Noetherian, show that Spec A is a Noetherian topological
space. Describe a ring A such that Spec A is not a Noetherian topological space.
(Aside: if Spec A is a Noetherian topological space, A need not be Noetherian.
One example is A = k[x1,x2,%3,...1/(x1 ,x%,xg, ...). Then Spec A has one point,
so is Noetherian. But A is not Noetherian as (x1) € (x1,%x2) € (x1,%x2,x3) € --- in
A)

4.6.T. EXERCISE (PROMISED IN EXERCISE 4.6.G(B)). Show that every open subset
of a Noetherian topological space is quasicompact. Hence if A is Noetherian, every
open subset of Spec A is quasicompact.

4.6.17. For future use: Noetherian conditions for modules. If A is any ring, not
necessarily Noetherian, we say an A-module is Noetherian if it satisfies the as-
cending chain condition for submodules. Thus for example a ring A is Noetherian
if and only if it is a Noetherian A-module.

4.6.U. EXERCISE. Show that if M is a Noetherian A-module, then any submodule
of M is a finitely generated A-module.

4.6.V. EXERCISE. If0 - M’ - M — M” — 0 is exact, show that M’ and
M are Noetherian if and only if M is Noetherian. (Hint: Given an ascending
chain in M, we get two simultaneous ascending chains in M’ and M”. Possible

further hint: prove thatif M/ —— M _¢, M” isexact,and N C N’ ¢ M, and
NNM' =N'nM’"and ¢(N) = d(N’), then N = N')

4.6.W. EXERCISE. Show that if A is a Noetherian ring, then A®™ is a Noetherian
A-module.

4.6.X. EXERCISE. Show that if A is a Noetherian ring and M is a finitely generated
A-module, then M is a Noetherian module. Hence by Exercise 4.6.U, any submod-
ule of a finitely generated module over a Noetherian ring is finitely generated.

4.6.18. Why you should not worry about Noetherian hypotheses. Should you
work hard to eliminate Noetherian hypotheses? Should you worry about Noether-
ian hypotheses? Should you stay up at night thinking about non-Noetherian rings?
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For the most part, the answer to all of these questions is “no”. Most people will
never need to worry about non-Noetherian rings, but there are reasons to be open
to them. First, they can actually come up. For example, fibered products of Noe-
therian schemes over Noetherian schemes (and even fibered products of Noether-
ian points over Noetherian points!) can be non-Noetherian (Warning 10.1.4), and
the normalization of Noetherian rings can be non-Noetherian (Warning 10.7.4).
You can either work hard to show that the rings or schemes you care about don’t
have this pathology, or you can just relax and not worry about it. Second, there
is often no harm in working with schemes in general. Knowing when Noether-
ian conditions are needed will help you remember why results are true, because
you will have some sense of where Noetherian conditions enter into arguments.
Finally, for some people, non-Noetherian rings naturally come up. For example,
adeles are not Noetherian. And many valuation rings that naturally arise in arith-
metic and tropical geometry are not Noetherian.

4.7 The function I(-), taking subsets of Spec A to ideals of A

We now introduce a notion that is in some sense “inverse” to the vanishing set
function V(-). Given a subset S C Spec A, I(S) is the set of functions vanishing on
S. In other words, I(S) = ﬂ[p] cs b C A (at least when S is nonempty).

We make three quick observations. (Do you see why they are true?)

o I(S) is clearly an ideal of A.
o I(-) is inclusion-reversing: if S; C S;, then I(S,) C I(S1).
o 1(S)=1(S).

4.7.A. EXERCISE. Let A = k[x,yl. If S = {[(x)], [(x — 1,y)]} (see Figure 4.9), then
I(S) consists of those polynomials vanishing on the y-axis, and at the point (1,0).
Give generators for this ideal.

[(x =1,y

FIGURE 4.9. The set S of Exercise/example 4.7.A, pictured as a
subset of A?
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4.7.B. EXERCISE. Suppose S C A2 is the union of the three axes. Give generators
for the ideal I(S). Be sure to prove it! We will see in Exercise 13.1.E that this ideal
is not generated by less than three elements.

4.7.C. EXERCISE. Show that V(I(S)) = S. Hence V(I(S)) = S for a closed set S.
(Compare this to Exercise 4.7.D.)

Note that I(S) is always a radical ideal — if f € /I(S), then f™ vanishes on S
for some n > 0, so then f vanisheson S, so f € I(S).

4.7.D. EASY EXERCISE. Prove that if ] C A is an ideal, then I(V(])) = v/J. (Huge
hint: Exercise 4.4.].)

Exercises 4.7.C and 4.7.D show that V and I are “almost” inverse. More pre-
cisely:

4.7.1. Theorem. — V(-) and 1(-) give an inclusion-reversing bijection between closed
subsets of Spec A and radical ideals of A (where a closed subset gives a radical ideal by
I(-), and a radical ideal gives a closed subset by V(-)).

Theorem 4.7.1 is sometimes called Hilbert’s Nullstellensatz, but we reserve
that name for Theorem 4.2.3.

4.7.E. IMPORTANT EXERCISE (CF. EXERCISE 4.7.F). Show that V(-) and I(-) give a
bijection between irreducible closed subsets of Spec A and prime ideals of A. From
this conclude that in Spec A there is a bijection between points of Spec A and irre-
ducible closed subsets of Spec A (where a point determines an irreducible closed
subset by taking the closure). Hence each irreducible closed subset of Spec A has pre-
cisely one generic point — any irreducible closed subset Z can be written uniquely
as {z}.

4.7.F. EXERCISE/DEFINITION. A prime of a ring A is a minimal prime if it is
minimal with respect to inclusion. (For example, the only minimal prime of k[x, y]
is (0).) If A is any ring, show that the irreducible components of Spec A are in
bijection with the minimal primes of A. In particular, Spec A is irreducible if and
only if A has only one minimal prime ideal; this generalizes Exercise 4.6.C.

Proposition 4.6.14, Exercise 4.6.5, and Exercise 4.7.F imply that every Noether-
ian ring has a finite number of minimal primes: an algebraic fact is now revealed
to be really a “geometric” fact!

4.7.G. EXERCISE. What are the minimal primes of k[x, yl/(xy) (where k is a field)?



CHAPTER 5

The structure sheaf, and the definition of schemes in
general

5.1 The structure sheaf of an affine scheme

The final ingredient in the definition of an affine scheme is the structure sheaf
Ospec A, Which we think of as the “sheaf of algebraic functions”. You should keep
in your mind the example of “algebraic functions” on C™, which you understand
well. For example, in A2, we expect that on the open set D(xy) (away from the
two axes), (3x* +y +4)/x”y3 should be an algebraic function.

These functions will have values at points, but won’t be determined by their
values at points. But like all sections of sheaves, they will be determined by their
germs (see §5.3.5).

It suffices to describe the structure sheaf as a sheaf (of rings) on the base of
distinguished open sets (Theorem 3.7.1 and Exercise 4.5.A).

5.1.1. Definition. Define Ospec A (D(f)) to be the localization of A at the multiplica-
tive set of all functions that do not vanish outside of V(f) (i.e. those g € A such
that V(g) C V(f), or equivalently D(f) C D(g), cf. Exercise 4.5.E). This depends
only on D(f), and not on f itself.

5.1.A. GREAT EXERCISE. Show that the natural map A¢ — Ogpec A(D(f)) is an
isomorphism. (Possible hint: Exercise 4.5.E.)

If D(f') C D(f), define the restriction map resp () p(¢/) : Ospeca(D(f)) —
Ospec A(D(f’)) in the obvious way: the latter ring is a further localization of the
former ring. The restriction maps obviously commute: this is a “presheaf on the
distinguished base”.

5.1.2. Theorem. — The data just described give a sheaf on the distinguished base, and
hence determine a sheaf on the topological space Spec A.

This sheaf is called the structure sheaf, and will be denoted Ospec A, Or some-
times & if the subscript is clear from the context. Such a topological space, with
sheaf, will be called an affine scheme (Definition 5.3.1). The notation Spec A will
hereafter denote the data of a topological space with a structure sheaf. An im-
portant lesson of Theorem 5.1.2 is not just that Ospec A is a sheaf, but also that the
distinguished base provides a good way of working with Ospec -

117
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Proof. We must show the base identity and base gluability axioms hold (§3.7). We
show that they both hold for the open set that is the entire space Spec A, and leave
to you the trick which extends them to arbitrary distinguished open sets (Exer-
cises 5.1.B and 5.1.C). Suppose Spec A = U;ic1D(fi), or equivalently (Exercise 4.5.B)
the ideal generated by the f; is the entire ring A.

(Aside: experts familiar with the equalizer exact sequence of §3.2.7 will realize
that we are showing exactness of

(5.1.2.1) 0 A=]JAn = ] Ans,

iel i#jel
where {f;}ic1 is a set of functions with (f;)icr = A. Signs are involved in the right-
hand map: the map Af, — Ay, ¢, is the “obvious one” if i < j, and negative of the
“obvious one” if i > j. Base identity corresponds to injectivity at A, and gluability
corresponds to exactness at [ [; A¢,.)

We check identity on the base. Suppose that Spec A = Uic1D(f;) where i
runs over some index set I. Then there is some finite subset of I, which we name
{1,...,n}, such that SpecA = U* ;D(f;), i.e. (f1,...,fn) = A (quasicompactness
of Spec A, Exercise 4.5.C). Suppose we are given s € A such that resspec A, (f,) § =
0in Ay, for all i. We wish to show that s = 0. The fact that resspec A,p(f,) § = 0 in
A, implies that there is some m such that for each i € {1,...,n}, f*s = 0. Now
(f1*, ..., ) = A (for example, from Spec A = UD(f;) = UD(f")), so there are
Ty € Awith Y} I | rif™ = 1in A, from which

s = (Z rﬁ{“) s = Zri(f{“s) =0.

Thus we have checked the “base identity” axiom for Spec A. (Serre has described
this as a “partition of unity” argument, and if you look at it in the right way, his
insight is very enlightening.)

5.1.B. EXERCISE. Make tiny changes to the above argument to show base identity
for any distinguished open D(f). (Hint: judiciously replace A by Ay in the above
argument.)

We next show base gluability. Suppose again Uic1D(fi) = Spec A, where I is a
index set (possibly horribly infinite). Suppose we are given elements in each Ay,
that agree on the overlaps A¢, ¢,. Note that intersections of distinguished open sets
are also distinguished open sets.

Assume first that [ is finite, say I = {1,...,n}. We have elements a;/ f%‘ € Ay,
agreeing on overlaps At ¢, (see Figure 5.1(a)). Letting g; = fit, using D(f;) =
D(gi), we can simplify notation by considering our elements as of the form a;/g; €
Ay, (Figure 5.1(b)).

The fact that a;/g; and a;/g; “agree on the overlap” (i.e. in Ay, 4;) means that
for some myj,

(9ig5) ™ (gjai — giaj) =0
in A. By taking m = maxm;; (here we use the finiteness of I), we can simplify
notation:

(9i9j)™(g5ai — gia;) =0
foralli,j (Figure 5.1(c)). Letb; = a;g{" foralli,and h; = g{”“ (soD(hy) = D(gi))-
Then we can simplify notation even more (Figure 5.1(d)): on each D(h;), we have
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(@) (d)

FIGURE 5.1. Base gluability of the structure sheaf

a function b; /hi, and the overlap condition is

(5.1.2.2) h;bi = hib;.
Now U;D(hy) = Spec A, implying that 1 = Z?:] rih; for some r; € A. Define
(5.1.2.3) T=) Tibi.

This will be the element of A that restricts to each b;/h;. Indeed, from the overlap
condition (5.1.2.2),
Thj = Z Tibihj = Z Tihibj = bj.
i i

We next deal with the case where I is infinite. Choose a finite subset{1,...,n} C
I with (f,...,fn) = A (or equivalently, use quasicompactness of Spec A to choose
a finite subcover by D(f;)). Construct r as above, using (5.1.2.3). We will show that
forany o € I —{1,...,n}, r restricts to the desired element a, of A¢_ . Repeat the
entire process above with {1,...,n, «} in place of {1,...,n}, to obtain r’ € A which
restricts to oy for i € {1,...,n, «}. Then by base identity, v’ = r. (Note that we use
base identity to prove base gluability. This is an example of how the identity axiom
is “prior” to the gluability axiom.) Hence r restricts to a/fl* as desired.

5.1.C. EXERCISE. Alter this argument appropriately to show base gluability for
any distinguished open D(f).

We have now completed the proof of Theorem 5.1.2. O

The following generalization of Theorem 5.1.2 will be essential in the defini-
tion of a quasicoherent sheaf in Chapter 14.

5.1.D. IMPORTANT EXERCISE/DEFINITION. Suppose M is an A-module. Show
that the following construction describes a sheaf M on the distinguished base. De-
fine T\Z(D(f)) to be the localization of M at the multiplicative set of all functions
that do not vanish outside of V(f). Define restriction maps resp ) p(4) in the anal-
ogous way to OspecA. Show that this defines a sheaf on the distinguished base,
and hence a sheaf on Spec A. Then show that this is an Ospec A-module.
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5.1.3. Remark. In the course of answering the previous exercise, you will show
that if (fi)iel = A,

O—)M—)l_[l\/lfi — H Mg,

i€l iAjel
(cf. (5.1.2.1)) is exact. In particular, M can be identified with a specific submodule
of Mg, x --- x M¢,. Even though M — My, may not be an inclusion for any fj,
M — Mg, x -+ x Mg, is an inclusion. This will be useful later: we will want to
show that if M has some nice property, then M does too, which will be easy. We
will also want to show that if (f1,...,f,) = A, and the My, have this property,
then M does too. (This idea will be made precise in the Affine Communication
Lemma 6.3.2.)

5.1.4. x Remark. Definition 5.1.1 and Theorem 5.1.2 suggests a potentially slick
way of describing sections of Uspec o OVer any open subset: perhaps Ospec A (U) is
the localization of A at the multiplicative set of all functions that do not vanish
outside of U. This is not true. A counterexample (that you will later be able to
make precise): let Spec A be two copies of AZ glued together at their origins and
let U be the complement of the origin(s). Then the function which is 1 on the first
copy of Aﬁ \{(0,0)} and 0 on the second copy of A% \ {(0,0)} is not of this form.

5.2 Visualizing schemes II: nilpotents

The price of metaphor is eternal vigilance. — Norbert Wiener

In §4.3, we discussed how to visualize the underlying set of schemes, adding
in generic points to our previous intuition of “classical” (or closed) points. Our
later discussion of the Zariski topology fit well with that picture. In our definition
of the “affine scheme” (Spec A, Ospec o), we have the additional information of
nilpotents, which are invisible on the level of points (§4.2.9), so now we figure
out to picture them. We will then readily be able to glue them together to picture
schemes in general, once we have made the appropriate definitions. As we are
building intuition, we cannot be rigorous or precise.

As motivation, note that we have incidence-reversing bijections

radical ideals of A <————— closed subsets of Spec A (Theorem 4.7.1)

prime ideals of A <—— irreducible closed subsets of Spec A (Exercise 4.7.E)

If we take the things on the right as “pictures”, our goal is to figure out how to
picture ideals that are not radical:

ideals of A <—— ???

(We will later fill this in rigorously in a different way with the notion of a closed
subscheme, the scheme-theoretic version of closed subsets, §9.1. But our goal now
is to create a picture.)

As motivation, when we see the expression, Spec C[x]/(x(x — 1)(x — 2)), we
immediately interpret it as a closed subset of AL, namely {0,1,2}. In particular,
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that the map C[x] — CIx]/(x(x — 1)(x — 2)) can be interpreted (via the Chinese
remainder theorem) as: take a function on A', and restrict it to the three points 0,
1,and 2.

This will guide us in how to visualize a non-radical ideal. The simplest exam-
ple to consider is Spec C[x]/(x?) (Exercise 4.2.A(a). As a subset of A', it is just the
origin 0 = [(x)], which we are used to thinking of as Spec C[x]/(x) (i.e. correspond-
ing to the ideal (x), not (x?)). We want to enrich this picture in some way. We
should picture C[x]/(x?) in terms of the information the quotient remembers. The
image of a polynomial f(x) is the information of its value at 0, and its derivative
(cf. Exercise 4.2.5). We thus picture this as being the point, plus a little bit more
— a little bit of infinitesimal “fuzz” on the point (see Figure 5.2). The sequence of
restrictions C[x] — C[x]/(x?) — C[x]/(x) should be interpreted as nested pictures.

Clx] —= C[x]/(x*) — Cll/(x)

f(X) f f(O))

Similarly, C[x]/(x3) remembers even more information — the second derivative as
well. Thus we picture this as the point 0 with even more fuzz.

R Spec C[x]/(x)
6&9 Spec Clx]/(x?)
c ¢ 3 Spec C[x]/(x3)
¢ SpecClx] = A}

FIGURE 5.2. Picturing quotients of C[x]

More subtleties arise in two dimensions (see Figure 5.3). Consider Spec C[x, ul/(x,y )2,
which is sandwiched between two rings we know well:

(C[X»U} — (C[X)y]/(xay)z - (C[va]/(x)y)

f(x,y) (0).
Again, taking the quotient by (x,y)? remembers the first derivative, “in all di-
rections”. We picture this as fuzz around the point, in the shape of a circle (no
direction is privileged). Similarly, (x,y)® remembers the second derivative “in all
directions” — bigger circular fuzz.

Consider instead the ideal (x?,y). What it remembers is the derivative only
in the x direction — given a polynomial, we remember its value at 0, and the
coefficient of x. We remember this by picturing the fuzz only in the x direction.
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. Lo
Spec Clx,y]/(x, 1) Spec Clx, yl/(x?,v) Spec Clx, yl/(x,y)?
.
Lo
e
Spec Clx, yl/(x?,y?) Spec Clx,yl/(y?)

FIGURE 5.3. Picturing quotients of Clx, y]

This gives us some handle on picturing more things of this sort, but now it
becomes more an art than a science. For example, Spec Clx,yl/(x%,y?) we might
picture as a fuzzy square around the origin. (Could you believe that this square is
circumscribed by the circular fuzz Spec Clx,yl/(x,y)?, and inscribed by the circu-
lar fuzz Spec Clx, yl/(x,y )2?) One feature of this example is that given two ideals I
and ] of a ring A (such as C[x, y]), your fuzzy picture of Spec A/(I,]) should be the
“intersection” of your picture of Spec A/I and Spec A /] in Spec A. (You will make
this precise in Exercise 9.1.H(a).) For example, Spec C[x, yl/(x?,y?) should be the
intersection of two thickened lines. (How would you picture Spec C[x, yl/ (x>, y3)?
SpecClx,y,z)/(x*,y*, 2%, (x + y 4+ 2)?)? SpecClx, yl/((x,y)>,y*)?)

One final example that will motivate us in §6.5 is Spec C[x, yl/(y?, xy). Know-
ing what a polynomial in C[x,y] is modulo (y?,xy) is the same as knowing its
value on the x-axis, as well as first-order differential information around the ori-
gin. This is worth thinking through carefully: do you see how this information is
captured (however imperfectly) in Figure 5.4?

VAR
N

FIGURE 5.4. A picture of the scheme Speck[x,yl/(y?,xy). The
fuzz at the origin indicates where “the nonreducedness lives”.

Our pictures capture useful information that you already have some intuition
for. For example, consider the intersection of the parabola y = x* and the x-axis
(in the xy-plane), see Figure 5.5. You already have a sense that the intersection has
multiplicity two. In terms of this visualization, we interpret this as intersecting (in
Spec C[x, yl):

SpecClx,yl/(y —x*) N SpecClx,yl/(y) = SpecClx,yl/(y—x*y)
- SpeC (C[X)y]/(yvxz)

which we interpret as the fact that the parabola and line not just meet with multi-
plicity two, but that the “multiplicity 2” part is in the direction of the x-axis. You
will make this example precise in Exercise 9.1.H(b).
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FIGURE 5.5. The “scheme-theoretic” intersection of the parabola
y = x? and the x-axis is a nonreduced scheme (with fuzz in the
x-direction)

5.2.1. We will later make the location of the fuzz somewhat more precise when we
discuss associated points (§6.5). We will see that in reasonable circumstances, the
fuzz is concentrated on closed subsets (Remark 14.7.2).

5.3 Definition of schemes

5.3.1. Definitions. We can now define scheme in general. First, define an isomor-
phism of ringed spaces (X, Ox) and (Y, Oy) as (i) a homeomorphism f : X — Y,
and (ii) an isomorphism of sheaves Ox and Oy, considered to be on the same
space via f. (Part (ii), more precisely, is an isomorphism &y — f,Ox of sheaves on
Y, or equivalently by adjointness, !0y — Ox of sheaves on X.) In other words,
we have a “correspondence” of sets, topologies, and structure sheaves. An affine
scheme is a ringed space that is isomorphic to (Spec A, Ospec A) for some A. A
scheme (X, Ox) is a ringed space such that any point x € X has a neighborhood
U such that (U, x|y ) is an affine scheme. The topology on a scheme is called the
Zariski topology. The scheme can be denoted (X, &), although it is often denoted
X, with the structure sheaf implicit.

An isomorphism of two schemes (X, Ox) and (Y, Oy) is an isomorphism as
ringed spaces. Recall the definition of I'(-,-) in §3.2.2. If U C X is an open subset,
then the elements of I'(LL, &’x ) are said to be the functions on Ul; this generalizes in
an obvious way the definition of functions on an affine scheme, §4.2.1.

5.3.2. Remark. From the definition of the structure sheaf on an affine scheme,
several things are clear. First of all, if we are told that (X, Ox) is an affine scheme,
we may recover its ring (i.e. find the ring A such that Spec A = X) by taking the
ring of global sections, as X = D(1), so:

I'X,0x) = T(D(1),0speca) asD(1) =SpecA
= A.

(You can verify that we get more, and can “recognize X as the scheme Spec A”: we
get an isomorphism f : (SpecT'(X, Ox), Ospecr(x,05)) — (X, Ox). For example, if m
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is a maximal ideal of T'(X, Ox), {f([m])} = V(m).) The following exercise will give
you a chance to make these ideas rigorous — they are subtler than they appear.

5.3.A. ENLIGHTENING EXERCISE (WHICH CAN BE STRANGELY CONFUSING). De-
scribe a bijection between the isomorphisms Spec A — Spec A’ and the ring iso-
morphisms A’ — A. Hint: the hardest part is to show that if an isomorphism
f:Spec A — Spec A’ induces an isomorphism f* : A’ — A, which in turn induces
an isomorphism g : Spec A — Spec A’, then f = g. First show this on the level of
points; this is tricky. Then show f = g as maps of topological spaces. Finally, to
show f = g on the level of structure sheaves, use the distinguished base. Feel free
to use insights from later in this section, but be careful to avoid circular arguments.
Even struggling with this exercise and failing (until reading later sections) will be
helpful.

More generally, given f € A, I'(D(f), OspecA) = A¢. Thus under the natural
inclusion of sets Spec A¢ — SpecA, the Zariski topology on Spec A restricts to
give the Zariski topology on Spec A¢ (Exercise 4.4.I), and the structure sheaf of
Spec A restricts to the structure sheaf of Spec A, as the next exercise shows.

5.3.B. IMPORTANT BUT EASY EXERCISE. Suppose f € A. Show that under the
identification of D(f) in Spec A with Spec A« (§4.5), there is a natural isomorphism
of ringed spaces (D(f), Ospec AlD(f)) = (Spec Af, Ospec A, ). Hint: notice that distin-
guished open sets of Spec A¢ are already distinguished open sets in Spec A.

5.3.C. EASY EXERCISE. If X is a scheme, and U is any open subset, prove that
(U, Ox|u) is also a scheme.

5.3.3. Definitions. We say (U, Ox|y) is an open subscheme of X. If U is also an
affine scheme, we often say U is an affine open subset, or an affine open sub-
scheme, or sometimes informally just an affine open. For example, D(f) is an
affine open subscheme of Spec A.

5.3.D. EASY EXERCISE. Show that if X is a scheme, then the affine open sets form
a base for the Zariski topology.

5.3.E. EASY EXERCISE. The disjoint union of schemes is defined as you would
expect: it is the disjoint union of sets, with the expected topology (thus it is the dis-
joint union of topological spaces), with the expected sheaf. Once we know what
morphisms are, it will be immediate (Exercise 10.1.A) that (just as for sets and
topological spaces) disjoint union is the coproduct in the category of schemes.

(a) Show that the disjoint union of a finite number of affine schemes is also an affine
scheme. (Hint: Exercise 4.6.A.)

(b) (a first example of a non-affine scheme) Show that an infinite disjoint union of
(nonempty) affine schemes is not an affine scheme. (Hint: affine schemes are qua-
sicompact, Exercise 4.6.G(a). This is basically answered in Remark 4.6.6.)

5.3.4. Remark: a first glimpse of closed subschemes. Open subsets of a scheme come
with a natural scheme structure (Definition 5.3.3). For comparison, closed subsets
can have many “natural” scheme structures. We will discuss this later (in §9.1), but
for now, it suffices for you to know that a closed subscheme of X is, informally, a
particular kind of scheme structure on a closed subset of X. As anexample: if[ C A
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is an ideal, then Spec A/I endows the closed subset V(I) C Spec A with a scheme
structure; but note that there can be different ideals with the same vanishing set
(for example (x) and (x?) in k[x]).

5.3.5. Stalks of the structure sheaf: germs, values at a point, and the residue field
of a point. Like every sheaf, the structure sheaf has stalks, and we shouldn’t be
surprised if they are interesting from an algebraic point of view. In fact, we have
seen them before.

5.3.FE. IMPORTANT EASY EXERCISE. Show that the stalk of Ospec A at the point [p] is
the local ring A,,.

Essentially the same argument will show that the stalk of the sheaf M (defined
in Exercise 5.1.D) at [p] is M. Here is an interesting consequence, or if you prefer, a
geometric interpretation of an algebraic fact. A section is determined by its germs
(Exercise 3.4.A), meaning that M — [], M, is an inclusion. So for example an
A-module is zero if and only if all its localizations at primes are zero.

5.3.6. Definition. ~ We say a ringed space is a locally ringed space if its stalks
are local rings. Thus Exercise 5.3.F shows that schemes are locally ringed spaces.
Manifolds are another example of locally ringed spaces, see §3.1.1. In both cases,
taking quotient by the maximal ideal may be interpreted as evaluating at the point.
The maximal ideal of the local ring Ox , is denoted mx ,, or m,,, and the residue
field Ox p/my is denoted k(p). Functions on an open subset U of a locally ringed
space have values at each point of U. The value at p of such a function lies in k(p).
As usual, we say that a function vanishes at a point p if its value at p is 0.

5.3.G. EXERCISE.

(a) If f is a function on a locally ringed space X, show that the subset of X where f
doesn’t vanish is open. (Hint: show that if f is a function on a ringed space X, show
that subset of X where the germ of f is invertible is open.)

(b) Show that if f is a function on a locally ringed space that vanishes nowhere,
then f is invertible.

Consider a point [p] of an affine scheme Spec A. (Of course, any point of a
scheme can be interpreted in this way, as each point has an affine neighborhood.)
The residue field at [p] is A, /pA,, which is isomorphic to K(A/p), the fraction field
of the quotient. It is useful to note that localization at p and taking quotient by p
“commute”, i.e. the following diagram commutes.

AP
locaﬁ% W\

Ap/pAp = K(A/p)

A
quo’:en\ /{ze,i; K(-)
A/p

For example, consider the scheme AZ = Speck[x,yl, where k is a field of char-
acteristic not 2. Then (x? + y?)/x(y? — x°) is a function away from the y-axis

(5.3.6.1)



126 Math 216: Foundations of Algebraic Geometry

and the curve y2 — x°. Its value at (2,4) (by which we mean [(x — 2,y —4)]) is
(22 +42)/(2(4% — 2°)), as
x2+y? | 22 +42

X(y2 —x°)  2(42 —=2°)

in the residue field — check this if it seems mysterious. And its value at [(y)],

the generic point of the x-axis, is f—; = —1/x*, which we see by setting y to 0.
This is indeed an element of the fraction field of k[x,yl/(y), i.e. k(x). (If you think
you care only about algebraically closed fields, let this example be a first warning:
Ap/pA, won't be algebraically closed in general, even if A is a finitely generated
C-algebra!)

If anything makes you nervous, you should make up an example to make you
feel better. Here is one: 27/4 is a function on SpecZ — {[(2)], [(7)]} or indeed on an
even bigger open set. What is its value at [(5)]? Answer: 2/(—1) = —2 (mod 5).
What is its value at the generic point [(0)]? Answer: 27/4. Where does it vanish?
At [(3)].

5.3.7. Stray definition: the fiber of an Ox-module at a point. If F is an Ox-module on
a scheme X (or more generally, a locally ringed space), define the fiber of .%# at a
point p € X by

Flp = Fp ey, k(D).

For example, Oxly, is k(p). (This notion will start to come into play in §14.7.)

5.4 Three examples

We now give three extended examples. Our short-term goal is to see that we
can really work with the structure sheaf, and can compute the ring of sections of
interesting open sets that aren’t just distinguished open sets of affine schemes. Our
long-term goal is to meet interesting examples that will come up repeatedly in the
future.

5.4.1. Example: The plane minus the origin. This example will show you that
the distinguished base is something that you can work with. Let A = k[x,y], so
SpecA = AZ. Let’s work out the space of functions on the open set U = A% —
{(0,0)) = A% —{[(x,y)]l.

It is not immediately obvious whether this is a distinguished open set. (In fact
it is not — you may be able to figure out why within a few paragraphs, if you
can’t right now. It is not enough to show that (x,y) is not a principal ideal.) But
in any case, we can describe it as the union of two things which are distinguished
open sets: U = D(x) U D(y). We will find the functions on U by gluing together
functions on D(x) and D(y).

The functions on D(x) are, by Definition 5.1.1, A, = k[x,y, 1/x]. The functions
on D(y) are Ay = k[x,y,1/yl. Note that A injects into its localizations (if 0 is
not inverted), as it is an integral domain (Exercise 2.3.C), so A injects into both
Ax and A,, and both inject into A, (and indeed k(x,y) = K(A)). So we are
looking for functions on D(x) and D(y) that agree on D(x) N D(y) = D(xy), i.e.
we are interpreting A, N Ay in Ay (or in k(x,y)). Clearly those rational functions
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with only powers of x in the denominator, and also with only powers of y in the
denominator, are the polynomials. Translation: A, N A, = A. Thus we conclude:

(5.4.1.1) MU, O,2) = klx, yl.

In other words, we get no extra functions by removing the origin. Notice how easy
that was to calculate!

5.4.2. Aside. Notice that any function on A? — {(0,0)} extends over all of AZ.
This is an analogue of Hartogs” Lemma in complex geometry: you can extend a
holomorphic function defined on the complement of a set of codimension at least
two on a complex manifold over the missing set. This will work more generally
in the algebraic setting: you can extend over points in codimension at least 2 not
only if they are “smooth”, but also if they are mildly singular — what we will call
normal. We will make this precise in §12.3.10. This fact will be very useful for us.

5.4.3. We now show an interesting fact: (U, 4:2lu) is a scheme, but it is not an
affine scheme. (This is confusing, so you will have to pay attention.) Here’s
why: otherwise, if (U, 0)2|u) = (Spec A, Ospec A ), then we can recover A by taking
global sections:
A =T(U, Oy2lu),

which we have already identified in (5.4.1.1) as k[x, y]. So if U is affine, then U =
AZ. But this bijection between primes in a ring and points of the spectrum is more
constructive than that: given the prime ideal 1, you can recover the point as the generic
point of the closed subset cut out by 1, i.e. V(I), and given the point p, you can recover the
ideal as those functions vanishing at p, i.e. I(p). In particular, the prime ideal (x,y) of
A should cut out a point of Spec A. But on U, V(x) N V(y) = @. Conclusion: U is
not an affine scheme. (If you are ever looking for a counterexample to something,
and you are expecting one involving a non-affine scheme, keep this example in
mind!)

5.4.4. Gluing two copies of A' together in two different ways. We have now
seen two examples of non-affine schemes: an infinite disjoint union of nonempty
schemes: Exercise 5.3.E and A? —{(0,0)}. I want to give you two more examples.
They are important because they are the first examples of fundamental behavior,
the first pathological, and the second central.

First, I need to tell you how to glue two schemes together. Before that, you
should review how to glue topological spaces together along isomorphic open
sets. Given two topological spaces X and Y, and open subsets U C Xand V C Y
along with a homeomorphism U = V, we can create a new topological space W,
that we think of as gluing X and Y together along U = V. It is the quotient of
the disjoint union X[ [Y by the equivalence relation U = V, where the quotient
is given the quotient topology. Then X and Y are naturally (identified with) open
subsets of W, and indeed cover W. Can you restate this cleanly with an arbitrary
(not necessarily finite) number of topological spaces?

Now that we have discussed gluing topological spaces, let’s glue schemes to-
gether. (This applies without change more generally to ringed spaces.) Suppose
you have two schemes (X, Ox) and (Y, Jy), and open subsets U C Xand V C Y,

along with a homeomorphism f:U——= YV, and an isomorphism of structure

sheaves 0y —— .0y (i.e. an isomorphism of schemes (U, Oxlu) = (V, Oylv)).
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Then we can glue these together to get a single scheme. Reason: let W be X and
Y glued together using the isomorphism U = V. Then Exercise 3.7.D shows that
the structure sheaves can be glued together to get a sheaf of rings. Note that this is
indeed a scheme: any point has a neighborhood that is an affine scheme. (Do you
see why?)

5.4.A. ESSENTIAL EXERCISE (CF. EXERCISE 3.7.D). Show that you can glue an
arbitrary collection of schemes together. Suppose we are given:
o schemes X; (as i runs over some index set I, not necessarily finite),
e open subschemes Xi; C X; with Xi; = Xj,
e isomorphisms fi; : Xi; — Xj; with fy; the identity
such that
e (the cocycle condition) the isomorphisms “agree on triple intersections”,
ie. fiklx,;nxoe = fiklx;inx;e © fijlxi;nx.. (so implicitly, to make sense of
the right side, fij (Xix N Xij) - Xjk).
(The cocycle condition ensures that fi; and fj; are inverses. In fact, the hypothesis
that f;; is the identity also follows from the cocycle condition.) Show that there is a
unique scheme X (up to unique isomorphism) along with open subsets isomorphic
to the X; respecting this gluing data in the obvious sense. (Hint: what is X as a set?
What is the topology on this set? In terms of your description of the open sets of
X, what are the sections of this sheaf over each open set?)

I will now give you two non-affine schemes. Both are handy to know. In both
cases, I will glue together two copies of the affine line A]. Let X = SpeckI[t], and
Y = Speck[u]. Let U = D(t) = Specklt, 1/t] C Xand V = D(u) = Speck(u, 1/u] C
Y. We will get both examples by gluing X and Y together along U and V. The
difference will be in how we glue.

5.4.5. Extended example: the affine line with the doubled origin. Consider the
isomorphism U = V via the isomorphism k[t, 1/t] = k[u, 1/u] given by t < u (cf.
Exercise 5.3.A). The resulting scheme is called the affine line with doubled origin.
Figure 5.6 is a picture of it.

FIGURE 5.6. The affine line with doubled origin

As the picture suggests, intuitively this is an analogue of a failure of Haus-
dorffness. Now A! itself is not Hausdorff, so we can’t say that it is a failure of
Hausdorffness. We see this as weird and bad, so we will want to make a definition
that will prevent this from happening. This will be the notion of separatedness (to
be discussed in Chapter 11). This will answer other of our prayers as well. For
example, on a separated scheme, the “affine base of the Zariski topology” is nice
— the intersection of two affine open sets will be affine (Proposition 11.1.8).

5.4.B. EXERCISE. Show that the affine line with doubled origin is not affine. Hint:
calculate the ring of global sections, and look back at the argument for A2—{(0,0)}.
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5.4.C. EASY EXERCISE. Do the same construction with A! replaced by AZ. You will
have defined the affine plane with doubled origin. Describe two affine open sub-
sets of this scheme whose intersection is not an affine open subset. (An “infinite-
dimensional” version comes up in Exercise 6.1.].)

5.4.6. Example 2: the projective line. = Consider the isomorphism U = V via
the isomorphism k[t, 1/t] = k[u, 1/u] given by t «» 1/u. Figure 5.7 is a suggestive
picture of this gluing. The resulting scheme is called the projective line over the
field k, and is denoted PP} .

FIGURE 5.7. Gluing two affine lines together to get P!

Notice how the points glue. Let me assume that k is algebraically closed for
convenience. (You can think about how this changes otherwise.) On the first affine
line, we have the closed (“traditional”) points [(t — a)], which we think of as “a
on the t-line”, and we have the generic point [(0)]. On the second affine line, we
have closed points that are “b on the u-line”, and the generic point. Then a on
the t-line is glued to 1/a on the u-line (if a # 0 of course), and the generic point
is glued to the generic point (the ideal (0) of k[t] becomes the ideal (0) of k[t, 1/t]
upon localization, and the ideal (0) of k[u] becomes the ideal (0) of k[u, 1/u]. And
(0) in k[t, 1/t] is (0) in k[u, T/u] under the isomorphism t + 1/u).

5.4.7. If k is algebraically closed, we can interpret the closed points of P} in the
following way, which may make this sound closer to the way you have seen pro-
jective space defined earlier. The points are of the form [a, b], where a and b are
not both zero, and [a, b] is identified with [ac, bc] where ¢ € k*. Then if b # 0, this
is identified with a/b on the t-line, and if a # 0, this is identified with b/a on the
u-line.

5.4.8. Proposition. — P} is not affine.

Proof. We do this by calculating the ring of global sections. The global sections
correspond to sections over X and sections over Y that agree on the overlap. A
section on X is a polynomial f(t). A section on Y is a polynomial g(u). If we restrict
f(t) to the overlap, we get something we can still call f(t); and similarly for g(u).
Now we want them to be equal: f(t) = g(1/t). But the only polynomials in t that
are at the same time polynomials in 1/t are the constants k. Thus NP, Op1) = k.
If P! were affine, then it would be Spec (P!, 0p1) = Speck, i.e. one point. But it
isn’t — it has lots of points. O
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We have proved an analogue of an important theorem: the only holomorphic
functions on CP' are the constants!

5.4.9. Important example: Projective space. We now make a preliminary defi-
nition of projective n-space over a field k, denoted P}, by gluing together n + 1
open sets each isomorphic to A}. Judicious choice of notation for these open sets
will make our life easier. Our motivation is as follows. In the construction of P!
above, we thought of points of projective space as [xo, x1], where (xo, x1) are only
determined up to scalars, i.e. (xp,x7) is considered the same as (Axp,Ax7). Then
the first patch can be interpreted by taking the locus where xo # 0, and then we
consider the points [1, t], and we think of t as x1 /x¢; even though x¢ and x; are not
well-defined, x;1/x¢ is. The second corresponds to where x; # 0, and we consider
the points [u, 1], and we think of u as xo/x1. It will be useful to instead use the
notation x /o for t and x¢ /1 for u.

For P™, we glue together n 4 1 open sets, one for each of i = 0,...,n. The ith
open set U; will have coordinates X /i, ..., X(i—1)/i» X(i+1)/is - -, Xn/i- 1t will be
convenient to write this as

(5.4.9.1) Speck[xo /i, X1 /iy Xnyil/(Xii — 1)

(so we have introduced a “dummy variable” x; ; which we immediately set to
1). We glue the distinguished open set D(x; ;) of U; to the distinguished open set
D(x;/;) of Uj, by identifying these two schemes by describing the identification of
rings

SpeckXo i, X1 iy Xnyiy 1/X54l/ (X0 — 1) =

Speck[Xo /5, X1 /5y - -+ Xnyjy 1/Xiy51/ (%55 — 1)
via xy /i = Xi/5/%i/5 and x5 = xi /1/%; 1 (Which implies x;/5%;,; = 1). We need to
check that this gluing information agrees over triple overlaps.

5.4.D. EXERCISE. Check this, as painlessly as possible. (Possible hint: the triple
intersection is affine; describe the corresponding ring.)

5.4.10. Definition. Note that our definition does not use the fact that k is a field.
Hence we may as well define P} for any ring A. This will be useful later.

5.4.E. EXERCISE. Show that the only functions on P} are constants (I'(PY, &) = k),
and hence that P} is not affine if n > 0. Hint: you might fear that you will need
some delicate interplay among all of your affine open sets, but you will only need
two of your open sets to see this. There is even some geometric intuition behind
this: the complement of the union of two open sets has codimension 2. But “Alge-
braic Hartogs’ Lemma” (discussed informally in §5.4.2, and to be stated rigorously
in Theorem 12.3.10) says that any function defined on this union extends to be a
function on all of projective space. Because we are expecting to see only constants
as functions on all of projective space, we should already see this for this union of
our two affine open sets.

5.4.F. EXERCISE (GENERALIZING §5.4.7). Show that if k is algebraically closed,
the closed points of P} may be interpreted in the traditional way: the points are
of the form [ay, ..., an], where the a; are not all zero, and [ayo, ..., a,] is identified
with [Aag,...,Aa,] where A € k*.
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We will later give other definitions of projective space (Definition 5.5.8, §17.4.2).
Our first definition here will often be handy for computing things. But there is
something unnatural about it — projective space is highly symmetric, and that
isn’t clear from our current definition.

5.4.11. Fun aside: The Chinese Remainder Theorem is a geometric fact. The
Chinese Remainder theorem is embedded in what we have done, which shouldn’t
be obvious. I will show this by example, but you should then figure out the general
statement. The Chinese Remainder Theorem says that knowing an integer modulo
60 is the same as knowing an integer modulo 3, 4, and 5. Here’s how to see this in
the language of schemes. What is SpecZ/(60)? What are the primes of this ring?
Answer: those prime ideals containing (60), i.e. those primes dividing 60, i.e. (2),
(3), and (5). Figure 5.8 is a sketch of SpecZ/(60). They are all closed points, as
these are all maximal ideals, so the topology is the discrete topology. What are the
stalks? You can check that they are Z/4, Z/3, and Z/5. The nilpotents “at (2)” are
indicated by the “fuzz” on that point. (We discussed visualizing nilpotents with
“infinitesimal fuzz” in §5.2.) So what are global sections on this scheme? They are
sections on this open set (2), this other open set (3), and this third open set (5). In
other words, we have a natural isomorphism of rings

7.)60 — 7.)4 x 7.)3 x /5.

FIGURE 5.8. A picture of the scheme Spec Z/(60)

5.4.12. x Example. Here is an example of a function on an open subset of a scheme
that is a bit surprising. On X = Spec k[w, x,y, z|/(wx —yz), consider the open sub-
set D(y) U D(w). Show that the function x/y on D(y) agrees with z/w on D(w)
on their overlap D(y) N D(w). Hence they glue together to give a section. You
may have seen this before when thinking about analytic continuation in complex
geometry — we have a “holomorphic” function which has the description x/y on
an open set, and this description breaks down elsewhere, but you can still “analyt-
ically continue” it by giving the function a different definition on different parts of
the space.

Follow-up for curious experts: This function has no “single description” as a
well-defined expression in terms of w, x, y, z! There is a lot of interesting geometry
here. This scheme will be a constant source of (counter)examples for us (look in the
index under “cone over smooth quadric surface”). We will later recognize it as the
cone over the quadric surface. Here is a glimpse, in terms of words we have not
yet defined. Now Speck[w,x, v, z] is A%, and is, not surprisingly, 4-dimensional.
We are looking at the set X, which is a hypersurface, and is 3-dimensional. It
is a cone over a “smooth” quadric surface in P? (flip to Figure 9.2). D(y) is X
minus some hypersurface, so we are throwing away a codimension 1 locus. D(w)
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involves throwing away another codimension 1 locus. You might think that their
intersection is then codimension 2, and that maybe failure of extending this weird
function to a global polynomial comes because of a failure of our Hartogs’ Lemma-
type theorem, which will be a failure of normality. But that’s not true — V(y) N
V(w) is in fact codimension 1 — so no Hartogs-type theorem holds. Here is what
is actually going on. V(y) involves throwing away the (cone over the) union of
two lines £ and m;, one in each “ruling” of the surface, and V(w) also involves
throwing away the (cone over the) union of two lines { and m,. The intersection
is the (cone over the) line ¢, which is a codimension 1 set. Neat fact: despite being
“pure codimension 17, it is not cut out even set-theoretically by a single equation.
(It is hard to get an example of this behavior. This is perhaps the simplest example.)
This means that any expression f(w,x,y,z)/g(w,x,y,z) for our function cannot
correctly describe our function on D(y) U D(w) — at some point of D(y) UD(w) it
must be 0/0. Here’s why. Our function can’t be defined on V(y) N V(w), so g must
vanish here. But g can’t vanish just on the cone over { — it must vanish elsewhere
too. (For those familiar with closed subschemes — mentioned in Remark 5.3.4,
and to be properly defined in §9.1 — here is why the cone over 1 is not cut out
set-theoretically by a single equation. If { = V(f), then the complement D(f) is
affine. Let £’ be another line in the same ruling as ¢, and let C({) (resp. {) be the
cone over { (resp. {’). Then C(£’) can be given the structure of a closed subscheme
of Spec k[w, x, y, zl, and in particular can be given the structure of A2. Then C({’)N
D(f) is a closed subscheme of D(f). Any closed subscheme of an affine scheme is
affine. But £ N {’ = @, so the cone over { intersects the cone over £’ in a point, so
C(¢') N D(f) is A? minus a point, which we have seen is not affine, so we have a
contradiction.)

5.5 Projective schemes, and the Proj construction

Projective schemes are important for a number of reasons. Here are a few.
Schemes that were of “classical interest” in geometry — and those that you would
have cared about before knowing about schemes — are all projective or quasipro-
jective. Moreover, schemes of “current interest” tend to be projective or quasipro-
jective. In fact, it is very hard to even give an example of a scheme satisfying basic
properties — for example, finite type and “Hausdorff” (“separated”) over a field
— that is provably not quasiprojective. For complex geometers: it is hard to find a
compact complex variety that is provably not projective (see Remark 11.3.6), and
it is quite hard to come up with a complex variety that is provably not an open
subset of a projective variety. So projective schemes are really ubiquitous. Also a
projective k-scheme is a good approximation of the algebro-geometric version of
compactness (“properness”, see §11.3).

Finally, although projective schemes may be obtained by gluing together affine
schemes, and we know that keeping track of gluing can be annoying, there is a
simple means of dealing with them without worrying about gluing. Just as there is
a rough dictionary between rings and affine schemes, we will have an analogous
dictionary between graded rings and projective schemes. Just as one can work
with affine schemes by instead working with rings, one can work with projective
schemes by instead working with graded rings.
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5.5.1. Motivation from classical geometry.

For geometric intuition, we recall how one thinks of projective space “classi-
cally” (in the classical topology, over the real numbers). P™ can be interpreted as
the lines through the origin in R™*'. Thus subsets of P™ correspond to unions of
lines through the origin of R™"', and closed subsets correspond to such unions
which are closed. (The same is not true with “closed” replaced by “open™!)

One often pictures P™ as being the “points at infinite distance” in R™*!, where
the points infinitely far in one direction are associated with the points infinitely far
in the opposite direction. We can make this more precise using the decomposition

]P)T‘L+1 — Rn+1 H]P;n

by which we mean that there is an open subset in P"*! identified with R™*! (the
points with last projective coordinate nonzero), and the complementary closed
subset identified with P™ (the points with last projective coordinate zero).

Then for example any equation cutting out some set V of points in P™* will also
cut out some set of points in R™*! that will be a closed union of lines. We call this
the affine cone of V. These equations will cut out some union of P'’s in P"*', and
we call this the projective cone of V. The projective cone is the disjoint union of the
affine cone and V. For example, the affine cone over x* + y? = z? in P? is just
the “classical” picture of a cone in R3, see Figure 5.9. We will make this analogy
precise in our algebraic setting in §9.2.11.

x? +y? =2% inP?
projective cone in P3

affine cone: x? + y2 = zZ in R3

FIGURE 5.9. The affine and projective cone of x* +y? = z? in

classical geometry

5.5.2. Projective schemes, a first description.

We now describe a construction of projective schemes, which will help moti-
vate the Proj construction. We begin by giving an algebraic interpretation of the
cone just described. We switch coordinates from x, y, z to xo, X1, X2 in order to use
the notation of §5.4.9.

5.5.A. EXERCISE (WORTH DOING BEFORE READING THE REST OF THIS SECTION).
Consider ]P’i, with projective coordinates x¢, x1, and x;. Think through how to
define a scheme that should be interpreted as x§ +x§ —x3 = 0 “in P{”. Hint: in the
affine open subset corresponding to x, # 0, it should (in the language of 5.4.9) be
cut outby x(z)/z —I—x%/2—1 =0, i.e.itshould “be” the scheme Speck[xo 2, X1 /2]/(x§/z—|—
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x? s2—1). You can similarly guess what it should be on the other two standard open
sets, and show that the three schemes glue together.

5.5.3. Remark: degree d hypersurfaces in P™. We informally observe that degree
d homogeneous polynomials in n + 1 variables over a field form a vector space
of dimension (“zd). (This is essentially the content of Exercise 9.2.K and Exer-
cise 15.1.C.) Two polynomials cut out the same subset of P} if one is a nonzero
multiple of the other. You will later be able to check that two polynomials cut
out the same closed subscheme (whatever that means) if and only if one is a nonzero
multiple of the other. The zero polynomial doesn’t really cut out a hypersurface

in any reasonable sense of the word. Thus we informally imagine that “degree d
hypersurfaces in P" are parametrized by P("¢*)=1”_ This intuition will come up

repeatedly (in special cases), and we will give it some precise meaning in §30.3.5.

5.5.B. EXERCISE. More generally, consider Py, with projective coordinates xo,
..., Xn. Given a collection of homogeneous polynomials f; € Alx,...,xn], make
sense of the scheme “cut out in P} by the f;.” (This will later be made precise as
an example of a “vanishing scheme”, see Exercise 5.5.0.) Hint: you will be able to
piggyback on Exercise 5.4.D to make this quite straightforward.

This can be taken as the definition of a projective A-scheme, but we will wait
until §5.5.9 to state it a little better.

5.5.4. Preliminaries on graded rings.
The Proj construction produces a scheme out of a graded ring. We now give
some background on graded rings.

5.5.5. Z-graded rings. A Z-graded ring is a ring Sy = @©neczSn (the subscript is
called the grading), where multiplication respects the grading, i.e. sends S, x Sy,
to Smyn. Clearly Sy is a subring, each S, is an Sp-module, and S, is a Sp-algebra.
Suppose for the remainder of §5.5.5 that S, is a Z-graded ring. Those elements of
some S, are called homogeneous elements of S,; nonzero homogeneous elements
have an obvious degree. An ideal I of S, is a homogeneous ideal if it is generated
by homogeneous elements.

5.5.C. EXERCISE.

(a) Show that an ideal I is homogeneous if and only if it contains the degree n piece
of each of its elements for each n. (Hence I can be decomposed into homogeneous
pieces, I = @1, and S/I has a natural Z-graded structure.)

(b) Show that homogeneous ideals are closed under sum, product, intersection,
and radical.

(c) Show that a homogeneous ideal I C S, is prime if I # S,, and if for any homoge-
neous a,b € S,ifabe I, thenaeclorb e l.

If T is a multiplicative subset of S, containing only homogeneous elements,
then T~'S, has a natural structure as a Z-graded ring.

(Everything in §5.5.5 can be generalized: Z can be replaced by an arbitrary
abelian group.)

5.5.6. Z=°-graded rings, graded ring over A, and finitely generated graded rings. A
7Z>°-graded ring is a Z-graded ring with no elements of negative degree.
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For the remainder of these notes, graded ring will refer to a Z=°-graded ring.
Warning: this convention is nonstandard (for good reason).

From now on, unless otherwise stated, S, is assumed to be a graded ring. Fix
a ring A, which we call the base ring. If So = A, we say that S, is a graded ring

over A. A key example is Alxo, ..., Xn], or more generally A[xo,...,xn]/I where I
is a homogeneous ideal (cf. Exercise 5.5.B). Here we take the conventional grading
on Alxg,...,xn), where each x; has weight 1.

The subset S| := §i-0S; C S, is an ideal, called the irrelevant ideal. The rea-
son for the name “irrelevant” will be clearer in a few paragraphs. If the irrelevant
ideal S is a finitely generated ideal, we say that S, is a finitely generated graded
ring over A. If S, is generated by S; as an A-algebra, we say that S, is generated in
degree 1. (We will later find it useful to interpret “S, is generated in degree 1” as
“the natural map Sym® Sy — S, is a surjection”. The symmetric algebra construction
will be briefly discussed in §14.5.3.)

5.5.D. EXERCISE.

(a) Show that a graded ring S, over A is a finitely generated graded ring (over
A) if and only if S, is a finitely generated graded A-algebra, i.e. generated over
A = So by a finite number of homogeneous elements of positive degree. (Hint
for the forward implication: show that the generators of S as an ideal are also
generators of S, as an algebra.)

(b) Show that a graded ring S, over A is Noetherian if and only if A = S, is
Noetherian and S, is a finitely generated graded ring.

5.5.7. The Proj construction.

We now define a scheme Proj S., where S, is a (Z=°-)graded ring. Here are two
examples, to provide a light at the end of the tunnel. If S, = A[xo, ..., xn], we will
recover P%; and if S = Alxo, ..., %xnl/(f(X0,...,xn)) where f is homogeneous, we
will construct something “cut out in P} by the equation f = 0” (cf. Exercise 5.5.B).

As we did with Spec of a ring, we will build Proj S, first as a set, then as a
topological space, and finally as a ringed space. In our preliminary definition of
P%, we glued together n + 1 well-chosen affine pieces, but we don’t want to make
any choices, so we do this by simultaneously considering “all possible” affine open
sets. Our affine building blocks will be as follows. For each homogeneous f € S,
note that the localization (S, )¢ is naturally a Z-graded ring, where deg(1/f) =
—deg f. Consider

(5.5.7.1) Spec((Se)t)o-

where ((S¢)f)o means the 0-graded piece of the graded ring (S.)¢. The notation
((Se)f)o is admittedly horrible — the first and third subscripts refer to the grad-
ing, and the second refers to localization. As motivation: applying this to S, =
k[xo,...,xn], with f = x;, we obtain the ring appearing in (5.4.9.1):

KXo i, X1 /iy -y Xnyil/ (X0 — 1).

(Before we begin the construction: another possible way of defining Proj S, is
by gluing together affines of this form, by jumping straight to Exercises 5.5.J, 5.5.K,
and 5.5.L. If you prefer that, by all means do so.)

The points of Proj S, are the set of homogeneous prime ideals of S, not contain-
ing the irrelevant ideal S (the “relevant prime ideals”).
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5.5.E. IMPORTANT AND TRICKY EXERCISE. Suppose f € S, is homogeneous.

(a) Give a bijection between the primes of ((S.)f)o and the homogeneous prime
ideals of (S, )¢. Hint: Avoid notational confusion by proving instead that if A is a
Z-graded ring with a homogeneous invertible element f in positive degree, then
there is a bijection between prime ideals of Ay and homogeneous prime ideals of
A. From the ring map Ay — A, from each homogeneous prime of A we find a
prime of Ay. The reverse direction is the harder one. Given a prime ideal Py C Ay,
define P C A (a priori only a subset) as ©Q;, where Q; C Aj, and a € Q; if and
only if ad¢8f/fl € Py. Note that Qo = Po. Show that a € Q; if and only if a? € Qy;;
show thatif aj, a; € Qi then af +2ajaz + a3 € Qi and hence a1 + az € Qj; then
show that P is a homogeneous ideal of A; then show that P is prime.

(b) Interpret the set of prime ideals of ((S.)¢)o as a subset of Proj S,.

The correspondence of the points of Proj S, with homogeneous prime ideals
helps us picture Proj S,. For example, if S, = k[x, y, z] with the usual grading, then
we picture the homogeneous prime ideal (z> —x* —y?) first as a subset of Spec S.;
it is a cone (see Figure 5.9). As in §5.5.1, we picture P as the “plane at infinity”.
Thus we picture this equation as cutting out a conic “at infinity” (in ProjS,). We
will make this intuition somewhat more precise in §9.2.11.

Motivated by the affine case, if T is a set of homogeneous elements of S, of
positive degree, define the (projective) vanishing set of T, V(T) C ProjS,, to be
those homogeneous prime ideals containing T. Define V/(f) if f is a homogeneous
element of positive degree, and V(I) if I is a homogeneous ideal contained in S,
in the obvious way. Let D(f) = Proj S, \ V(f) (the projective distinguished open
set) be the complement of V(f). Once we define a scheme structure on Proj S,, we
will (without comment) use D(f) to refer to the open subscheme, not just the open
subset. (These definitions can certainly be extended to remove the positive degree
hypotheses. For example, the definition of V(T) makes sense for any subset T of
S., and the definition of D(f) makes sense even if f has degree 0. In what follows,
we deliberately make these narrower definitions. For example, we will want the
D(f) to form an affine cover, and if f has degree 0, then D(f) needn’t be affine.)

5.5.F. EXERCISE. Show that D(f) is the subset Spec((S.)f)o you described in Exer-
cise 5.5.E(b). For example, in §5.4.9, the D(x;) are the standard open sets covering
projective space.

As in the affine case, the V(I)’s satisfy the axioms of the closed set of a topol-
ogy, and we call this the Zariski topology on ProjS,. (Other definitions given in
the literature may look superficially different, but can be easily shown to be the
same.) Many statements about the Zariski topology on Spec of a ring carry over
to this situation with little extra work. Clearly D(f) N D(g) = D(fg), by the same
immediate argument as in the affine case (Exercise 4.5.D).

5.5.G. EASY EXERCISE. Verify that the projective distinguished open sets D(f)
(as f runs through the homogeneous elements of S) form a base of the Zariski

topology.

5.5.H. EXERCISE. Fix a graded ring S,.
(a) Suppose I is any homogeneous ideal of S, contained in S, and f is a homoge-
neous element of positive degree. Show that f vanishes on V(I) (i.e. V(I) C V(f))
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if and only if f™ € I for some n. (Hint: Mimic the affine case; see Exercise 4.4.].) In
particular, as in the affine case (Exercise 4.5.E), if D(f) C D(g), then f™ € (g) for
some n, and vice versa. (Here g is also homogeneous of positive degree.)

(b) If Z C ProjS., define I(Z) C S.. Show that it is a homogeneous ideal of S,. For
any two subsets, show that I(Z; U Z;) = I(Z1) N [(Z,).

(c) For any subset Z C Proj S., show that V(I(Z)) = Z.

5.5.1. EXERCISE (CF. EXERCISE 4.5.B). Fix a graded ring S,, and a homogeneous
ideal I. Show that the following are equivalent.

@ V() =wo.
(b) For any f; (as i runs through some index set) generating I, UD(f;) =
Proj S,.
(© VIDS,.
This is more motivation for the ideal S being “irrelevant”: any ideal whose radi-

cal contains it is “geometrically irrelevant”.

We now construct Proj S, as a scheme.

5.5.J. EXERCISE. Suppose some homogeneous f € S, is given. Via the inclusion
D(f) = Spec((Se))o — ProjS.

of Exercise 5.5.F, show that the Zariski topology on Proj S, restricts to the Zariski
topology on Spec((Sa))o.

Now that we have defined Proj S, as a topological space, we are ready to de-
fine the structure sheaf. On D(f), we wish it to be the structure sheaf of Spec((S.)¢)o.
We will glue these sheaves together using Exercise 3.7.D on gluing sheaves.

5.5.K. EXERCISE. If f,g € S are homogeneous and nonzero, describe an isomor-
phism between Spec((Ss)¢g)o and the distinguished open subset D(gdesf /fdeg9)
of Spec((Sa)o.

Similarly, Spec((S.)+g)o is identified with a distinguished open subset of Spec((S4)g)o.
We then glue the various Spec((S.)¢)o (as f varies) altogether, using these pairwise
gluings.

5.5.L. EXERCISE. By checking that these gluings behave well on triple overlaps
(see Exercise 3.7.D), finish the definition of the scheme Proj S,.

5.5.M. EXERCISE (SOME WILL FIND THIS ESSENTIAL, OTHERS WILL PREFER TO IG-
NORE IT). (Re)interpret the structure sheaf of Proj S, in terms of compatible stalks.

5.5.8. Definition. We (re)define projective space (over aring A) by P} := Proj Alxo, ..., Xn].
This definition involves no messy gluing, or special choice of patches.

5.5.N. EXERCISE. Check that this agrees with our earlier construction of Py (Defi-
nition 5.4.9). (How do you know that the D(x;) cover Proj Alxo,...,xnl?)

Notice that with our old definition of projective space, it would have been a
nontrivial exercise to show that D (x? + y? — z?) C P{ (the complement of a plane
conic) is affine; with our new perspective, it is immediate — it is Spec(k[x,y, zl (x24y2_,2))o-
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5.5.0. EXERCISE. Both parts of this problem ask you to figure out the “right defini-
tion” of the vanishing scheme, in analogy with V(-) defined earlier. In both cases,
you will be defining a closed subscheme (mentioned in Remark 5.3.4, and to be prop-
erly defined in §9.1).

(a) (the most important part) If S, is generated in degree 1, and f € S, is homoge-
neous, explain how to define V(f) “in” Proj S,, the vanishing scheme of f. (Warn-
ing: f in general isnt a function on Proj S,. We will later interpret it as something
close: a section of a line bundle, see for example §15.1.2.) Hence define V(I) for
any homogeneous ideal I of S.

(b) % (harder, depending on how you approach (a)) If S, is a graded ring over A, but
not necessarily generated in degree 1, explain how to define the vanishing scheme
V(f) “in” Proj S.. Hint: On D(g), let V(f) be cut out by all degree 0 equations of the
form fh/g™, where n € Z=°, and h is homogeneous. Show that this gives a well
defined scheme structure on the set V(f). Your calculations will mirror those of Ex-
ercise 5.5.K. Once we know what a closed subscheme is, in §9.1, this will be clearly
a closed subscheme. Alternative hint (possibly better): We identify the points of
Proj S./(f) with a closed subset of ProjS,. Let I = (f) (and indeed this works with
[ any homogeneous ideal). Restricted to some open affine chart D(g) = Spec(Sg)o,
identify this with V(I4) where (Ig)o is the degree zero part of the localized ideal.
Best approach: unify both hints.

5.5.9. Projective and quasiprojective schemes.

We call a scheme of the form (i.e. isomorphic to) ProjS., where S, is a finitely
generated graded ring over A, a projective scheme over A, or a projective A-
scheme. A quasiprojective A-scheme is a quasicompact open subscheme of a
projective A-scheme. The “A” is omitted if it is clear from the context; often A is a
field.

5.5.10. Unimportant remarks. (i) Note that Proj S, makes sense even when S, is not
finitely generated. This can be useful. For example, you will later be able to do
Exercise 7.4.D without worrying about Exercise 7.4.H.)

(ii) The quasicompact requirement in the definition of quasiprojectivity is of
course redundant in the Noetherian case (cf. Exercise 4.6.T), which is all that mat-
ters to most.

5.5.11. Silly example. ~Note that P4 = ProjA[T] = SpecA. Thus “SpecA is a
projective A-scheme”.

5.5.12. Example: PV. We can make this definition of projective space even more
choice-free as follows. Let V be an (n + 1)-dimensional vector space over k. (Here
k can be replaced by any ring A as usual.) Define

Sym* VY =ka VYV @ Sym?* VV @ - -

(The reason for the dual is explained by the next exercise. For a reminder of the
definition of Sym, flip to §14.5.3.) If for example V is the dual of the vector space
with basis associated to xo, . . . , xn, we would have Sym* VY =k[xo,...,%n]. Then
we can define PV := Proj(Sym® VV). In this language, we have an interpretation
for xo, ..., xn: they are linear functionals on the underlying vector space V.
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5.5.P. UNIMPORTANT EXERCISE. Suppose k is algebraically closed. Describe a
natural bijection between one-dimensional subspaces of V and the closed points
of PV. Thus this construction canonically (in a basis-free manner) describes the
one-dimensional subspaces of the vector space V.

Unimportant remark: you may be surprised at the appearance of the dual in
the definition of PV. This is partially explained by the previous exercise. Most
normal (traditional) people define the projectivization of a vector space V to be
the space of one-dimensional subspaces of V. Grothendieck considered the projec-
tivization to be the space of one-dimensional quotients. One motivation for this is
that it gets rid of the annoying dual in the definition above. There are better rea-
sons, that we won’t go into here. In a nutshell, quotients tend to be better-behaved
than subobjects for coherent sheaves, which generalize the notion of vector bundle.
(We will discuss them in Chapter 14.)

On another note related to Exercise 5.5.P: you can also describe a natural bijec-
tion between points of V and the closed points of Spec(Sym® VV'). This construc-
tion respects the affine/projective cone picture of §9.2.11.

5.5.13. The Grassmannian. At this point, we could describe the fundamental geo-
metric object known as the Grassmannian, and give the “wrong” definition of it.
We will instead wait until §7.7 to give the wrong definition, when we will know
enough to sense that something is amiss. The right definition will be given in §17.7.






CHAPTER 6

Some properties of schemes

6.1 Topological properties

We will now define some useful properties of schemes. As you see each exam-
ple, you should try these out in specific examples of your choice, such as particular
schemes of the form Spec C[x; ...,xnl/(f1,...,fs).

The definitions of connected, connected component, (ir)reducible, quasicompact, closed
point, specialization, generization, generic point, and irreducible component were given
in §4.6. You should have pictures in your mind of each of these notions.

Exercise 4.6.C shows that A™ is irreducible (it was easy). This argument “be-
haves well under gluing”, yielding:

6.1.A. EASY EXERCISE. Show that [P} is irreducible.

6.1.B. EXERCISE.  Exercise 4.7.E showed that there is a bijection between irre-
ducible closed subsets and points for affine schemes. Show that this is true of
schemes as well.

6.1.C. EASY EXERCISE. Prove that if X is a scheme that has a finite cover X =
U ; Spec A; where A; is Noetherian, then X is a Noetherian topological space
(§4.6.13). (We will soon call a scheme with such a cover a Noetherian scheme, §6.3.4.)
Hint: show that a topological space that is a finite union of Noetherian subspaces
is itself Noetherian.

Thus P} and P} are Noetherian topological spaces: we built them by gluing
together a finite number of spectra of Noetherian rings.

6.1.D. EASY EXERCISE. Show that a scheme X is quasicompact if and only if it can
be written as a finite union of affine open subschemes. (Hence P} is quasicompact
for any ring A.)

6.1.E. IMPORTANT EXERCISE: QUASICOMPACT SCHEMES HAVE CLOSED POINTS.
Show that if X is a quasicompact scheme, then every point has a closed point in its
closure. Show that every nonempty closed subset of X contains a closed point of X.
In particular, every nonempty quasicompact scheme has a closed point. (Warning:
there exist nonempty schemes with no closed points, so your argument had better
use the quasicompactness hypothesis!)

141
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This exercise will often be used in the following way. If there is some property
P of points of a scheme that is “open” (if a point p has P, then there is some neigh-
borhood U of p such that all the points in U have P), then to check if all points of
a quasicompact scheme have P, it suffices to check only the closed points. (A first
example of this philosophy is Exercise 6.2.D.) This provides a connection between
schemes and the classical theory of varieties — the points of traditional varieties
are the closed points of the corresponding schemes (essentially by the Nullstellen-
satz, see §4.6.8 and Exercise 6.3.D). In many good situations, the closed points are
dense (such as for varieties, see §4.6.8 and Exercise 6.3.D again), but this is not true
in some fundamental cases (see Exercise 4.6.J(b)).

6.1.1. Quasiseparated schemes. Quasiseparatedness is a weird notion that comes
in handy for certain people. (Warning: we will later realize that this is really a prop-
erty of morphisms, not of schemes §8.3.1.) Most people, however, can ignore this
notion, as the schemes they will encounter in real life will all have this property.
A topological space is quasiseparated if the intersection of any two quasicompact
open sets is quasicompact.

6.1.F. SHORT EXERCISE. Show that a scheme is quasiseparated if and only if the
intersection of any two affine open subsets is a finite union of affine open subsets.

We will see later that this will be a useful hypothesis in theorems (in conjunc-
tion with quasicompactness), and that various interesting kinds of schemes (affine,
locally Noetherian, separated, see Exercises 6.1.G, 6.3.A, and 11.1.H respectively)
are quasiseparated, and this will allow us to state theorems more succinctly (e.g.
“if X is quasicompact and quasiseparated” rather than “if X is quasicompact, and
either this or that or the other thing hold”).

6.1.G. EXERCISE. Show that affine schemes are quasiseparated.

“Quasicompact and quasiseparated” means something concrete:

6.1.H. EXERCISE. Show that a scheme X is quasicompact and quasiseparated if
and only if X can be covered by a finite number of affine open subsets, any two of
which have intersection also covered by a finite number of affine open subsets.

So when you see “quasicompact and quasiseparated” as hypotheses in a the-
orem, you should take this as a clue that you will use this interpretation, and that
finiteness will be used in an essential way.

6.1.I1. EASY EXERCISE. Show that all projective A-schemes are quasicompact and
quasiseparated. (Hint: use the fact that the graded ring in the definition is finitely
generated — those finite number of generators will lead you to a covering set.)

6.1.J. EXERCISE (A NONQUASISEPARATED SCHEME). Let X = Specklx1,x2,...],
and let U be X — [m] where m is the maximal ideal (x1,x2,...). Take two copies of
X, glued along U (“affine co-space with a doubled origin”, see Example 5.4.5 and
Exercise 5.4.C for “finite-dimensional” versions). Show that the result is not qua-
siseparated. Hint: This open embedding U C X came up earlier in Exercise 4.6.G(b)
as an example of a nonquasicompact open subset of an affine scheme.
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6.1.2. Dimension. One very important topological notion is dimension. (It is
amazing that this is a topological idea.) But despite being intuitively fundamental,
it is more difficult, so we postpone it until Chapter 12.

6.2 Reducedness and integrality

Recall that one of the alarming things about schemes is that functions are not deter-
mined by their values at points, and that was because of the presence of nilpotents
(54.2.9).

6.2.1. Definition. A ring is said to be reduced if it has no nonzero nilpotents
(§4.2.11). A scheme X is reduced if O'x(U) is reduced for every open set U of X.

6.2.A. EXERCISE (REDUCEDNESS IS A stalk-local PROPERTY, I.E. CAN BE CHECKED
AT STALKS).  Show that a scheme is reduced if and only if none of the stalks
have nonzero nilpotents. Hence show that if f and g are two functions (global
sections of 0x) on a reduced scheme that agree at all points, then f = g. (Two
hints: Ox(U) < [,y Ox,p from Exercise 3.4.A, and the nilradical is intersection
of all prime ideals from Theorem 4.2.10.)

6.2.B. EXERCISE. If A is a reduced ring, show that Spec A is reduced. Show that
Al and P} are reduced.

The scheme Spec k[x,yl/(y?,xy) is nonreduced. When we sketched it in Fig-
ure 5.4, we indicated that the fuzz represented nonreducedness at the origin. The
following exercise is a first stab at making this precise.

6.2.C. EXERCISE. Show that (k[x,yl/(y?, xy)), has no nonzero nilpotent elements.
(Possible hint: show that it is isomorphic to another ring, by considering the geo-
metric picture. Exercise 4.2.K may give another hint.) Show that the only point of
Speck[x,yl/(y?,xy) with a nonreduced stalk is the origin.

6.2.D. EXERCISE. If X is a quasicompact scheme, show that it suffices to check
reducedness at closed points. (Hint: Exercise 6.1.E.)

Warning for experts: if a scheme X is reduced, then from the definition of re-
ducedness, its ring of global sections is reduced. However, the converse is not
true; the example of the scheme X cut out by x? = 0 in PZ will come up in §19.1.5,
and you already know enough to verify that I'(X, Ox) = k, and that X is nonre-
duced.

6.2.E. EXERCISE. Suppose X is quasicompact, and f is a function that vanishes at
all points of X. Show that there is some n such that f* = 0. Show that this may
fail if X is not quasicompact. (This exercise is less important, but shows why we
like quasicompactness, and gives a standard pathology when quasicompactness
doesn’t hold.) Hint: take an infinite disjoint union of Spec A,, with A,, := k[e]/e™.

Definition. A scheme X is integral if it is nonempty, and &x(U) is an integral
domain for every nonempty open set U of X.
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6.2.F. IMPORTANT EXERCISE. Show that a scheme X is integral if and only if it
is irreducible and reduced. (Thus we picture integral schemes as: “one piece, no
fuzz”.)

6.2.G. EXERCISE. Show that an affine scheme Spec A is integral if and only if A is
an integral domain.

6.2.H. EXERCISE. Suppose X is an integral scheme. Then X (being irreducible)
has a generic point . Suppose Spec A is any nonempty affine open subset of
X. Show that the stalk at 11, Ox v, is naturally identified with K(A), the fraction
field of A. This is called the function field K(X) of X. It can be computed on any
nonempty open set of X, as any such open set contains the generic point. The
reason for the name: we will soon think of this as the field of rational functions on
X (Definition 6.5.4 and Exercise 6.5.Q).

6.2.I1. EXERCISE. Suppose X is an integral scheme. Show that the restriction maps
resy,v : Ox(U) — Ox(V) are inclusions so long as V # @. Suppose SpecA is
any nonempty affine open subset of X (so A is an integral domain). Show that the
natural map Ox(U) — Oxn = K(A) (where U is any nonempty open set) is an
inclusion.

Thus irreducible varieties (an important example of integral schemes defined
later) have the convenient property that sections over different open sets can be
considered subsets of the same ring. In particular, restriction maps (except to the
empty set) are always inclusions, and gluing is easy: functions f; on a cover U;
of U (as i runs over an index set) glue if and only if they are the same element of
K(X). This is one reason why (irreducible) varieties are usually introduced before
schemes.

Integrality is not stalk-local (the disjoint union of two integral schemes is not
integral, as Spec A | [ Spec B = Spec(A x B) by Exercise 4.6.A), but it almost is, see
Exercise 6.3.C.

6.3 Properties of schemes that can be checked “affine-locally”

This section is intended to address something tricky in the definition of schemes.
We have defined a scheme as a topological space with a sheaf of rings, that can be
covered by affine schemes. Hence we have all of the affine open sets in the cover,
but we don’t know how to communicate between any two of them. Somewhat
more explicitly, if I have an affine cover, and you have an affine cover, and we
want to compare them, and I calculate something on my cover, there should be
some way of us getting together, and figuring out how to translate my calcula-
tion over to your cover. The Affine Communication Lemma 6.3.2 will provide a
convenient machine for doing this.

Thanks to this lemma, we can define a host of important properties of schemes.
All of these are “affine-local” in that they can be checked on any affine cover, i.e. a
covering by open affine sets. We like such properties because we can check them
using any affine cover we like. If the scheme in question is quasicompact, then we
need only check a finite number of affine open sets.
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6.3.1. Proposition. — Suppose Spec A and Spec B are affine open subschemes of a
scheme X. Then Spec A N Spec B is the union of open sets that are simultaneously distin-
guished open subschemes of Spec A and Spec B.

FIGURE 6.1. A trick to show that the intersection of two affine
open sets may be covered by open sets that are simultaneously
distinguished in both affine open sets

Proof. (See Figure 6.1.) Given any point p € Spec A N Spec B, we produce an open
neighborhood of p in Spec A NSpec B that is simultaneously distinguished in both
Spec A and Spec B. Let Spec A be a distinguished open subset of Spec A contained
in Spec A N Spec B and containing p. Let Spec By be a distinguished open subset
of Spec B contained in Spec A¢ and containing p. Then g € I'(Spec B, 0x) restricts
to an element g’ € I'(Spec A, Ox) = As. The points of Spec A¢ where g vanishes
are precisely the points of Spec A¢ where g’ vanishes, so

SpecBy = SpecA¢\{lp] : g’ €p}
= Spec(Af)g-.
If g’ = g”/f" (g” € A) then Spec(A¢)y+ = Spec A¢q, and we are done. U

The following easy result will be crucial for us.

6.3.2. Affine Communication Lemma. — Let P be some property enjoyed by some
affine open sets of a scheme X, such that
(i) if an affine open set Spec A — X has property P then for any f € A, Spec A¢ —
X does too.
(ii) if (f1,...,fn) = A, and Spec A¢, — X has P for all i, then so does Spec A —
X.

Suppose that X = Uie1 Spec Ay where Spec Ay has property P. Then every open affine
subset of X has P too.

We say such a property is affine-local. Note that if U is an open subscheme of
X, then U inherits any affine-local property of X. Note also that any property that
is stalk-local (a scheme has property P if and only if all its stalks have property Q)
is necessarily affine-local (a scheme has property P if and only if all of its affine
open sets have property R, where an affine scheme has property R if and only if
and only if all its stalks have property Q). But it is sometimes not so obvious what
the right definition of Q is; see for example the discussion of normality in the next
section.
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Proof. Let Spec A be an affine subscheme of X. Cover Spec A with a finite num-
ber of distinguished open sets Spec Ag;, each of which is distinguished in some
Spec A;. This is possible by Proposition 6.3.1 and the quasicompactness of Spec A
(Exercise 4.6.G(a)). By (i), each Spec Ay, has P. By (ii), Spec A has P. O

By choosing property P appropriately, we define some important properties
of schemes.

6.3.3. Proposition. — Suppose A is a ring, and (f1,...,fn) = A.

(@) If A is reduced, then As, is also reduced. If each As, is reduced, then so is A.

(b) If A is a Noetherian ring, then so is A¢,. If each As, is Noetherian, then so is A.

(c) Suppose B is a ring, and A is a B-algebra. (Hence Ay is a B-algebra for all
g € A.) If A is a finitely generated B-algebra, then so is A¢,. If each A¢, isa
finitely generated B-algebra, then so is A.

We will prove these shortly (§6.3.9). But let’s first motivate you to read the
proof by giving some interesting definitions and results assuming Proposition 6.3.3
is true.

First, the Affine Communication Lemma 6.3.2 and Proposition 6.3.3(a) implies
that X is reduced if and only if X can be covered by affine open sets Spec A where
A is reduced. (This also easily follows from the stalk-local characterization of re-
ducedness, see Exercises 6.2.A and 6.2.B.)

6.3.4. Important Definition. Suppose X is a scheme. If X can be covered by affine
open sets Spec A where A is Noetherian, we say that X is a locally Noetherian
scheme. If in addition X is quasicompact, or equivalently can be covered by finitely
many such affine open sets, we say that X is a Noetherian scheme. (We will see a
number of definitions of the form “if X has this property, we say that it is locally Q;
if further X is quasicompact, we say that itis Q.”) By Exercise 6.1.C, the underlying
topological space of a Noetherian scheme is Noetherian. Hence by Exercise 4.6.T,
all open subsets of a Noetherian scheme are quasicompact.

6.3.A. EXERCISE. Show that locally Noetherian schemes are quasiseparated.

6.3.B. EXERCISE.  Show that a Noetherian scheme has a finite number of irre-
ducible components. (Hint: Proposition 4.6.14.) Show that a Noetherian scheme
has a finite number of connected components, each a finite union of irreducible
components.

6.3.C. EXERCISE. Show that a Noetherian scheme X is integral if and only if X is
nonempty and connected and all stalks &x , are integral domains. Thus in “good
situations”, integrality is the union of local (stalks are integral domains) and global
(connected) conditions. Hint: if a scheme’s stalks are integral domains, then it is re-
duced (reducedness is a stalk-local condition, Exercise 6.2.A). If a scheme X has un-
derlying topological space that is Noetherian, then X has finitely many irreducible
components (by the previous exercise); if two of them meet at a point p, then Ox ,
is not an integral domain. (You can readily extend this from Noetherian schemes
to locally Noetherian schemes, by showing that a connected scheme is irreducible
if and only if it is nonempty and has a cover by open irreducible subsets. But some
Noetherian hypotheses are necessary, see [MO7477].)
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6.3.5. Unimportant caution. The ring of sections of a Noetherian scheme need not
be Noetherian, see Exercise 20.11.E.

6.3.6. Schemes over a given field k, or more generally over a given ring A (A-schemes).
You may be particularly interested in working over a particular field, such as C or
Q, or over a ring such as Z. Motivated by this, we define the notion of A-scheme,
or scheme over A, where A is a ring, as a scheme where all the rings of sections
of the structure sheaf (over all open sets) are A-algebras, and all restriction maps
are maps of A-algebras. (Like some earlier notions such as quasiseparatedness,
this will later in Exercise 7.3.G be properly understood as a “relative notion”; it
is the data of a morphism X — SpecA.) Suppose now X is an A-scheme. If X
can be covered by affine open sets Spec B; where each B; is a finitely generated
A-algebra, we say that X is locally of finite type over A, or that it is a locally
finite type A-scheme. (This is admittedly cumbersome terminology; it will make
more sense later, once we know about morphisms in §8.3.10.) If furthermore X
is quasicompact, X is (of) finite type over A, or a finite type A-scheme. Note
that a scheme locally of finite type over k or Z (or indeed any Noetherian ring) is
locally Noetherian, and similarly a scheme of finite type over any Noetherian ring
is Noetherian. As our key “geometric” examples: (i) SpecC[x1, ..., xn]/Iis a finite
type C-scheme; and (ii) P is a finite type C-scheme. (The field C may be replaced
by an arbitrary ring A.)

6.3.7. Varieties. ~ We now make a connection to the classical language of vari-
eties. An affine scheme that is a reduced and of finite type k-scheme is said to
be an affine variety (over k), or an affine k-variety. A reduced (quasi-)projective
k-scheme is a (quasi-)projective variety (over k), or a (quasi-)projective k-variety.
(Warning: in the literature, it is sometimes also assumed in the definition of variety
that the scheme is irreducible, or that k is algebraically closed.) We will not define
varieties in general until §11.1.7; we will need the notion of separatedness first, to
exclude abominations like the line with the doubled origin (Example 5.4.5). But
many of the statements we will make in this section about affine k-varieties will
automatically apply more generally to k-varieties.

6.3.D. EXERCISE. Show that a point of a locally finite type k-scheme is a closed
point if and only if the residue field of the stalk of the structure sheaf at that point
is a finite extension of k. Show that the closed points are dense on such a scheme
(even though it needn’t be quasicompact, cf. Exercise 6.1.E). Hint: §4.6.8. (Warn-
ing: closed points need not be dense even on quite reasonable schemes, see Exer-
cise 4.6.J(b).)

6.3.E. + EXERCISE (ANALYTIFICATION OF COMPLEX VARIETIES). (Warning: Any
discussion of analytification will be only for readers who are familiar with the no-
tion of complex analytic varieties, or willing to develop it on their own in parallel
with our development of schemes.) Suppose X is a reduced, finite type C-scheme.
Define the corresponding complex analytic prevariety Xqn. (The definition of an
analytic prevariety is the same as the definition of a variety without the Haus-
dorff condition.) Caution: your definition should not depend on a choice of an
affine cover of X. (Hint: First explain how to analytify reduced finite type affine
C-schemes. Then glue.) Give a bijection between the closed points of X and the
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points of Xqn, using the weak Nullstellensatz 4.2.2. (In fact one may construct a
continuous map of sets Xq, — X generalizing Exercise 4.2.H.) In Exercise 7.3.K,
we will see that analytification can be made into a functor. As mentioned there,
two nonisomorphic complex varieties can have isomorphic analytifications, but
not if they are compact.

6.3.8. Definition. The degree of a closed point p of a locally finite type k-scheme is
the degree of the field extension k(p)/k. For example, in A] = Speckl[t], the point
[(p(t))] (p(t) € klt] irreducible) is degp(t). If k is algebraically closed, the degree
of every closed point is 1.

6.3.9. Proof of Proposition 6.3.3. We divide each part into (i) and (ii) following the
statement of the Affine Communication Lemma 6.3.2. We leave (a) for practice for
you (Exercise 6.3.G) after you have read the proof of (b).
(b) ) If Iy € I, C I3 C --- is a strictly increasing chain of ideals of Ay, then
we can verify that J; C J, C J3 € --- is a strictly increasing chain of ideals of A,
where
j=reA relj}

where 1 € I; means “the image of v in A¢ lies in I;”. (We think of this as I; N A,
except in general A needn’t inject into A¢,.) Clearly J; is an ideal of A. If x/f™ €
Li41\ I wherex € A, thenx € J;41,and x ¢ J; (or else x(1/f)™ € I; as well).
(ii) Suppose I; C I, C I3 C --- is a strictly increasing chain of ideals of A.
Then foreach 1 <1i<mn,
11)1 C Ii‘z C 11‘3 C -

is an increasing chain of ideals in A¢,, where I; ; = [; ®a Ag,. It remains to show
that for each j, I; ; C I j41 for some i; the result will then follow.

=

6.3.F. EXERCISE. Finish (i) and (ii) of part (a). (Hint for one direction: A — [ [ A¢,
by (5.1.2.1).)

6.3.G. EXERCISE. Prove (a).

(c) (3) is clear: if A is generated over B by 1, ..., T, then A¢ is generated over
Bbyry, ..., mn, 1/1.

(ii) Here is the idea. As the f; generate A, we can write 1 = ) c¢;f; for ¢; € A.
We have generators of Ay, : 1ij/ fi, where 1i; € A. I claim that {fi}; U{ci} U {rij}hj
generate A as a B-algebra. Here is why. Suppose you have any r € A. Then in
A¢,, we can write T as some polynomial in the ri;’s and f;, divided by some huge
power of fi. So “in each A¢,, we have described r in the desired way”, except for
this annoying denominator. Now use a partition of unity type argument as in the
proof of Theorem 5.1.2 to combine all of these into a single expression, killing the
denominator. Show that the resulting expression you build still agrees with r in
each of the A¢,. Thus it is indeed r (by the identity axiom for the structure sheaf).

6.3.H. EXERCISE. Make this argument precise.

This concludes the proof of Proposition 6.3.3. O

6.3.1. EASY EXERCISE. Suppose S, is a finitely generated graded ring over A, with
So = A. Show that Proj S, is of finite type over A. If Sy is a Noetherian ring, show
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that ProjS. is a Noetherian scheme, and hence that ProjS, has a finite number
of irreducible components. Suppose U is an open subscheme of a projective A-
scheme. Show that U is locally of finite type over A. If A is Noetherian, show that
U is quasicompact, and hence of finite type over A. Show this need not be true if
A is not Noetherian. Better: give an example of an open subscheme of a projective
A-scheme that is not quasicompact, necessarily for some non-Noetherian A. (Hint:
Silly example 5.5.11.)

6.4 Normality and factoriality

6.4.1. Normality.

We can now define a property of schemes that says that they are “not too
far from smooth”, called normality, which will come in very handy. We will see
later that “locally Noetherian normal schemes satisfy Hartogs’ Lemma” (Algebraic
Hartogs” Lemma 12.3.10 for Noetherian normal schemes): functions defined away
from a set of codimension 2 extend over that set. (We saw a first glimpse of this
in §5.4.2.) As a consequence, rational functions that have no poles (certain sets of
codimension one where the function isn’t defined) are defined everywhere. We
need definitions of dimension and poles to make this precise.

Recall that an integral domain A is integrally closed if the only zeros in K(A)
to any monic polynomial in A[x] must lie in A itself. The basic example is Z (see
Exercise 6.4.F for a reason). We say a scheme X is normal if all of its stalks O ,, are
normal, i.e. are integral domains, and integrally closed in their fraction fields. As
reducedness is a stalk-local property (Exercise 6.2.A), normal schemes are reduced.

6.4.A. EXERCISE. Show that integrally closed domains behave well under local-
ization: if A is an integrally closed domain, and S is a multiplicative subset not
containing 0, show that S~ A is an integrally closed domain. (Hint: assume that
X"+ an_ X" 4+ .- + a9 = 0 where a; € S~'A has a root in the fraction field.
Turn this into another equation in A[x] that also has a root in the fraction field.)

It is no fun checking normality at every single point of a scheme. Thanks
to this exercise, we know that if A is an integrally closed domain, then Spec A
is normal. Also, for quasicompact schemes, normality can be checked at closed
points, thanks to this exercise, and the fact that for such schemes, any point is a
generization of a closed point (see Exercise 6.1.E).

It is not true that normal schemes are integral. For example, the disjoint
union of two normal schemes is normal. Thus Speck ][ Speck = Spec(k x k) =
Speck(x]/(x(x — 1)) is normal, but its ring of global sections is not an integral do-
main.

6.4.B. UNIMPORTANT EXERCISE. Show that a Noetherian scheme is normal if and
only if it is the finite disjoint union of integral Noetherian normal schemes. (Hint:
Exercise 6.3.C.)

We are close to proving a useful result in commutative algebra, so we may as
well go all the way.
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6.4.2. Proposition. — If A is an integral domain, then the following are equivalent.

(i) A isintegrally closed.
(i) A, is integrally closed for all prime ideals p C A.
(iii) Aw is integrally closed for all maximal ideals m C A.

Proof. Exercise 6.4.A shows that integral closure is preserved by localization, so (i)
implies (ii). Clearly (ii) implies (iii).

It remains to show that (iii) implies (i). This argument involves a pretty con-
struction that we will use again. Suppose A is not integrally closed. We show that
there is some m such that A, is also not integrally closed. Suppose

(6.4.2.1) X" an x4 ap =0
(with a; € A) has a solution s in K(A) \ A. Let I be the ideal of denominators of s:
I'={reA : rseA}

(Note that I is clearly an ideal of A.) Now I # A, as 1 ¢ 1. Thus there is some
maximal ideal m containing I. Then s ¢ Ay, so equation (6.4.2.1) in A, [x] shows
that A, is not integrally closed as well, as desired. O

6.4.C. UNIMPORTANT EXERCISE. If A is an integral domain, show that A =
NAm, where the intersection runs over all maximal ideals of A. (We won’t use this
exercise, but it gives good practice with the ideal of denominators.)

6.4.D. UNIMPORTANT EXERCISE RELATING TO THE IDEAL OF DENOMINATORS.
One might naively hope from experience with unique factorization domains that
the ideal of denominators is principal. This is not true. As a counterexample,
consider our new friend A = k[w, x,y, zl/(wz — xy) (which we last saw in Exam-
ple 5.4.12, and which we will later recognize as the cone over the quadric surface),
and w/y = x/z € K(A). Show that the ideal of denominators of this element of
K(A)is (y, z).

We will see that the I in the above exercise is not principal (Exercise 13.1.C
— you may be able to show it directly, using the fact that I is a graded ideal of a
graded ring). But we will later see that in good situations (Noetherian, normal),
the ideal of denominators is “pure codimension 1”7 — this is the content of Alge-
braic Hartogs” Lemma 12.3.10. In its proof, §12.3.11, we give a geometric interpre-
tation of the ideal of denominators.

6.4.3. Factoriality.
We define a notion which implies normality.

6.4.4. Definition. If all the stalks of a scheme X are unique factorization domains,
we say that X is factorial. (Unimportant remark: This is sometimes called locally
factorial, which may falsely suggest that this notion is affine-local, which it isn’t,
see Exercise 6.4.N.

6.4.E. EXERCISE. Show that any nonzero localization of a unique factorization
domain is a unique factorization domain.

6.4.5. Thus if A is a unique factorization domain, then SpecA is factorial. The
converse need not hold, see Exercise 6.4.N. In fact, we will see that elliptic curves
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are factorial, yet no affine open set is the Spec of a unique factorization domain,
§20.11.1. Hence one can show factoriality by finding an appropriate affine cover,
but there need not be such a cover of a factorial scheme.

6.4.6. Remark: How to check if a ring is a unique factorization domain. There are very
few means of checking that a Noetherian integral domain is a unique factoriza-
tion domain. Some useful ones are: (0) elementary means (rings with a euclidean
algorithm such as Z, k[t], and Z[i]; polynomial rings over a unique factorization
domain, by Gauss’s Lemma). (1) Exercise 6.4.E, that the localization of a unique
factorization domain is also a unique factorization domain. (2) height 1 primes are
principal (Proposition 12.3.5). (3) normal and Cl = 0 (Exercise 15.2.R). (4) Nagata’s
Lemma (Exercise 15.2.5).

6.4.7. Factoriality implies normality. One of the reasons we like factoriality is that it
implies normality.

6.4.F. IMPORTANT EXERCISE. Show that unique factorization domains are inte-
grally closed. Hence factorial schemes are normal, and if A is a unique factor-
ization domain, then Spec A is normal. (However, rings can be integrally closed
without being unique factorization domains, as we will see in Exercise 6.4.L. An-
other example is given without proof in Exercise 6.4.N; in that example, Spec of
the ring is factorial. A variation on Exercise 6.4.L will show that schemes can be
normal without being factorial, see Exercise 13.1.D.)

6.4.8. Examples.

6.4.G. EASY EXERCISE. Show that the following schemes are normal: A}, P7,
SpecZ. (As usual, k is a field. Although it is true that if A is integrally closed then
Alx] is as well — see [B, Ch. 5, §1, no. 3, Cor. 2] or [E, Ex. 4.18] — this is not an easy
fact, so do not use it here.)

6.4.H. HANDY EXERCISE (YIELDING MANY ENLIGHTENING EXAMPLES LATER). Sup-
pose A is a unique factorization domain with 2 invertible, and z? — f is irreducible
in Alz].

(a) Show that if f € A has no repeated prime factors, then Spec Alz]/(z? — f) is
normal. Hint: B := A[z]/(z? — f) is an integral domain, as (z*> — f) is prime
in Alz]. Suppose we have monic F(T) € B[T] so that F(T) = 0 has a root « in
K(B). Then by replacing F(T) by F(T)F(T), we can assume F(T) € A[T]. Also,
o« = g + hz where g,h € K(A). Now « is the root of Q(T) = 0 for monic
Q(T) = T? — 29T + (g% — h?f) € K(A)[T], so we can factor F(T) = P(T)Q(T) in
K(A)[T]. By Gauss’s lemma, 2g, g — h?*f € A. Say g = 1/2, h = s/t (s and t have
no common factors, r,s,t € A). Then g? — h?f = (r%t? — 4s2f)/4t2. Then t is
invertible.

(b) Show that if f € A has repeated prime factors, then Spec Alz]/(z* — f) is not
normal.

6.4.1. EXERCISE. Show that the following schemes are normal:

(a) SpecZ[x]/(x*>—n) where 1 is a square-free integer congruent to 3 modulo
4. Caution: the hypotheses of Exercise 6.4.H do not apply, so you will
have to do this directly. (Your argument may also show the result when 3
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isreplaced by 2. A similar argument shows that Z[(1++/n)/2] is integrally
closed if n =1 (mod 4) is square-free.)

(b) Specklxi,...,xnl/(x3 +%x3 + - +x% ) where chark # 2, m > 3.

(c) Speckiw,x,y,zl/(wz — xy) where chark # 2. This is our cone over
a quadric surface example from Exercises 5.4.12 and 6.4.D. Hint: Exer-
cise 6.4.] may help. (The result also holds for char k = 2, but don’t worry
about this.)

6.4.J. EXERCISE (DIAGONALIZING QUADRICS).  Suppose k is an algebraically
closed field of characteristic not 2.

(a) Show that any quadratic form in n variables can be “diagonalized” by chang-
ing coordinates to be a sum of at most n squares (e.g. uw — v? = ((u+w)/2)? +
(i(uw—w)/2)? + (iv)?), where the linear forms appearing in the squares are linearly in-
dependent. (Hint: use induction on the number of variables, by “completing the
square” at each step.)

(b) Show that the number of squares appearing depends only on the quadric. For
example, x? + y? + z? cannot be written as a sum of two squares. (Possible ap-

proach: given a basis x1, ..., X of the linear forms, write the quadratic form as
X1
( X1 Xn ) M :
Xn

where M is a symmetric matrix. Determine how M transforms under a change of
basis, and show that the rank of M is independent of the choice of basis.)

The rank of the quadratic form is the number of (“linearly independent”)
squares needed.

6.4.K. EASY EXERCISE (RINGS CAN BE INTEGRALLY CLOSED BUT NOT UNIQUE
FACTORIZATION DOMAINS, ARITHMETIC VERSION). Show that Z[v/—5] is nor-
mal but not a unique factorization domain. (Hints: Exercise 6.4.I(a) and 2 x 3 =

(1+ V=51 ~+v-5))

6.4.L. EASY EXERCISE (RINGS CAN BE INTEGRALLY CLOSED BUT NOT UNIQUE
FACTORIZATION DOMAINS, GEOMETRIC VERSION).  Suppose chark # 2. Let
A =klw,x,v,z]/(wz — xy), so Spec A is the cone over the quadric surface (cf. Ex-
ercises 5.4.12 and 6.4.D).

(a) Show that A is integrally closed. (Hint: Exercises 6.4.1(c) and 6.4.].)

(b) Show that A is not a unique factorization domain. (Clearly wz = xy. But why
are w, x, y, and z irreducible? Hint: A is a graded integral domain. Show that if a
homogeneous element factors, the factors must be homogeneous.)

The previous two exercises look similar, but there is a difference. Thus the
cone over the quadric surface is normal (by Exercise 6.4.L) but not factorial; see
Exercise 13.1.D. On the other hand, Spec Z[v/=5] is factorial — all of its stalks are
unique factorization domains. (You will later be able to show this by showing
that Z[v/—5] is a Dedekind domain, §13.5.15, whose stalks are necessarily unique
factorization domains by Theorem 13.5.9(f).)
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6.4.M. EXERCISE. Suppose A is a k-algebra, and 1/k is a finite field extension.
Show that if A®ylis a normal integral domain, then A is a normal integral domain
as well. (Although we won't need this, a version of the converse is true if 1/k is
separable, [EGA IV.2, 6.14.2, p. 173].) Hint: fix a k-basis for 1, by =1, ..., bg.
Explain why 1 ® by, ..., 1 ® bgq forms a free A-basis for A @y 1. Explain why we
have injections

A— SK(A)

|

AR l——K(A) @ L

Show that K(A) @y 1 = K(A @ 1). (Idea: A @ 1 C K(A) @ 1 C K(A ® 1). Why
is K(A) ®+ 1l a field?) Show that (A ®x 1) N K(A) = A. Now assume P(T) € A[T] is
monic and has a root & € K(A), and proceed from there.

6.4.N. EXERCISE (UFD-NESS IS NOT AFFINE-LOCAL). Let A = (QIx,ylx24y2)0
denote the homogeneous degree 0 part of the ring Q[x,yly24,2. In other words, it
consists of quotients f(x,y)/(x? +y2)™, where f has pure degree 2n. Show that the

distinguished open sets D(ﬁ) and D(%) cover Spec A. (Hint: the sum of
those two fractions is 1.) Show that A_,2 and A 2 are unique factorization
xZ+y? x24y2

domains. (Hint for the first: show that both rings are isomorphic to Q[tl;2  1; this
is a localization of the unique factorization domain Q[t].) Finally, show that A is
not a unique factorization domain. Possible hint:

x 2 2 2
v\ [ _x y
<X2+yz) - (x2+y2> (x2+y2>'

Number theorists may prefer the example of Exercise 6.4.K: Z[/—5] is not
a unique factorization domain, but it turns out that you can cover it with two
affine open subsets, each corresponding to unique factorization domains. The ring
Z[v/=5] is an example of a Dedekind domain, as we will discuss in §13.5.15.

6.5 Where functions are supported: Associated points of schemes

The associated points of a scheme are the few crucial points of the scheme
that capture essential information about its (sheaf of) functions. There are several
quite different ways of describing them, most of which are quite algebraic. We will
take a nonstandard approach, beginning with geometric motivation. Because they
involve both nilpotents and generic points — two concepts not part of your prior
geometric intuition — it can take some time to make them “geometric” in your
head. We will first meet them in a motivating example in two ways. We will then
discuss their key properties. Finally, we give proper (algebraic) definitions and
proofs. As is almost always the case in mathematics, it is much more important to
remember the properties than it is to remember their proofs.
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There are other approaches to associated points. Most notably, the algebraically
most central view is via a vitally important algebraic construction, primary decom-
position, mentioned only briefly in Aside 6.5.11.

6.5.1. Associated points as “fuzz attractors”. Recall Figure 5.4, our “fuzzy” picture of
the nonreduced scheme Speck[x,yl/(y?,xy). When this picture was introduced,
we mentioned that the “fuzz” at the origin indicated that the nonreduced behav-
ior was concentrated there. This was justified in Exercise 6.2.C: the origin is the
only point where the stalk of the structure sheaf is nonreduced. Thus the different
levels of reducedness are concentrated along two irreducible closed subsets — the
origin, and the entire x-axis. Since irreducible closed subsets are in bijection with
points, we may as well say that the two key points with respect to “levels of nonre-
ducedness” were the generic point [(y)], and the origin [(x,y)]. These will be the
associated points of this scheme.

6.5.2. Better: associated points as generic points of irreducible components of the support
of sections.

We now give a seemingly unrelated exercise about the same scheme. Recall
that the support of a function on a scheme (Definition 3.4.2) is a closed subset.

6.5.A. EXERCISE. Suppose fis a function on Spec k[x, yl/(y?,xy) (i.e. f € k[x,yl/(y
Show that Supp f is either the empty set, or the origin, or the entire space.

The fact that the same closed subsets arise in two different ways is no coinci-
dence — their generic points are the associated points of Speck([x, yl/ (y?,xy).

We discuss associated points first in the affine case Spec A. We assume that A
is Noetherian, and we take this as a standing assumption when discussing associ-
ated points. More generally, we will discuss associated points of M where M is a
finitely generated A module (and A is Noetherian). When speaking of rings rather
than schemes, we speak of associated primes rather than associated points. Associ-
ated primes and associated points can be defined more generally, and we discuss
one easy case (the integral case) in Exercise 6.5.Q.

We now state three essential properties, to be justified later. The first is the
most important.

(A) The associated primes/points of M are precisely the generic points of irreducible
components of the support of some element of M (on Spec A).

For example, by Exercise 6.5.A, Spec k[x, u]/ (y?2,xy) has two associated points.
As another example:

6.5.B. EXERCISE (ASSUMING (A)). Suppose A is an integral domain. Show that the
generic point is the only associated point of Spec A.

(Important note: Exercises 6.5.B-6.5.H require you to work directly from some
axioms, not from our later definitions. If this troubles you, feel free to work
through the definitions, and use the later exercises rather than the geometric ax-
ioms (A)—(C) to solve these problems. But you may be surprised at how short the
arguments actually are, assuming the geometric axioms.)
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We could take (A) as the definition, although in our rigorous development
below, we will take a different (but logically equivalent) starting point. (Unimpor-
tant aside: if A is a ring that is not necessarily Noetherian, then (A) is the definition
of a weakly associated prime, see [Stacks, tag 0547].)

The next property makes (A) more striking.

(B) M has a finite number of associated primes/points.

In other words, there are only a finite number of irreducible closed subsets
of Spec A, such that the only possible supports of functions of Spec A are unions
of these. You may find this unexpected, although the examples above may have
prepared you for it. You should interpret this as another example of Noetherian-
ness forcing some sort of finiteness. (For example, we will see that this generalizes
“finiteness of irreducible components”, cf. Proposition 4.6.14.) This gives some
meaning to the statement that their generic points are the few crucial points of the
scheme.

We will see (in Exercise 6.5.0) that we can completely describe which subsets
of Spec A are the support of an element of M: precisely those subsets which are
the closure of a subset of the associated points.

6.5.3. We immediately see from (A) that if M = A, the generic points of the irreducible
components of Spec A are associated points of M = A, by considering the function
1. The other associated points of Spec A are called embedded points. Thus in the
case of Speck[x,yl/(y?,xy) (Figure 5.4), the origin is the only embedded point (by
Exercise 6.5.A).

6.5.C. EXERCISE (ASSUMING (A)). Show that if A is reduced, Spec A has no embed-
ded points. Hints: (i) first deal with the case where A is integral, i.e. where Spec A
is irreducible. (ii) Then deal with the general case. If f is a nonzero function on a
reduced scheme, show that Supp f = D(f): the support is the closure of the locus

where f doesn’t vanish. Show that D(f) is the union of the irreducible components
meeting D(f), using (i).

Furthermore, the natural map

(6.5.3.1) M= [ M,

associated p

is an injection. (This is an important property. Once again, the associated points are
“where all the action happens”.) We show this by showing that the kernel is zero.
Suppose a function f has a germ of zero at each associated point, so its support
contains no associated points. It is supported on a closed subset, which by (A)
must be the union of closures of associated points. Thus it must be supported
nowhere, and thus be the zero function.

6.5.D. EXERCISE (ASSUMING (A)). Suppose m € M. Show that Suppm is the
closure of those associated points of M where m has nonzero germ. (Hint: Suppm
is a closed set containing the points described, and thus their closure. Why does it
contain no other points?)

6.5.E. EXERCISE (ASSUMING (A) AND (B)). Show that the locus on Spec A of points
[p] where Ospec A, [p) = Ay is nonreduced is the closure of those associated points of
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Spec A whose stalks are nonreduced. (Hint: why do points in the closure of these
associated points all have nonreduced stalks? Why can’t any other point have a
nonreduced stalk?) This partially explains the link between associated points and
fuzzy pictures. (Primary decomposition, see Aside 6.5.11, gives a more explicit
connection, but we won't discuss it properly.) Note for future reference that once
we establish these properties, we will have shown that if Y is a locally Noetherian
scheme, the “reduced locus” of Y is an open subset of Y.

(C) An element f of A is a zerodivisor of M (i.e. there exists m # 0 with fm = 0) if
and only if it vanishes at some associated point of M (i.e. is contained in some associated
prime of M).

One direction is clear from the previous properties. (Do you see which?)
The next property allows us to globalize the construction of associated points
to arbitrary (locally Noetherian) schemes.

6.5.F. IMPORTANT EXERCISE (ASSUMING (A)). Show that the definition in (A) of as-
sociated primes/points behaves well with respect to localizing: if S is a multiplicative
subset of A, then the associated primes/points of S™' M are precisely those associ-
ated primes/points of M that lie in Spec S~'A, i.e. associated primes of M that do
not meet S.

Thus the associated primes/points can be “determined locally”. For example,
associated points of A can be checked by looking at stalks of the structure sheaf
(the notion is “stalk-local”). As another example, the associated primes of M may
be determined by working on a distinguished open cover of Spec A. Thank to Exer-
cise 6.5.F, we we can (and do) define the associated points of a locally Noetherian
scheme X to be those points p € X such that, on any affine open set Spec A con-
taining p, p corresponds to an associated prime of A. This notion is independent
of choice of affine neighborhood Spec A: if p has two affine open neighborhoods
Spec A and Spec B (say corresponding to primes p C A and q C B respectively),
then p corresponds to an associated prime of A if and only if it corresponds to an
associated prime of A, = 0x , = B, if and only if it corresponds to an associated
prime of B, by Exercise 6.5.F.

(Here we are “globalizing” only the special case M = A. Once we define
quasicoherent sheaves, we will be able to globalize the case of a general M, see
§14.6.4.)

By combining the above properties, we immediately have a number of facts,
including the following. (i) A Noetherian scheme has finitely many associated
points. (ii) Each of the irreducible components of the support of any function on
a locally Noetherian scheme is the union of the closures of some subset of the
associated points. (iii) The generic points of the irreducible components of a lo-
cally Noetherian scheme are associated points. (The remaining associated points
are still called embedded points.) (iv) A reduced locally Noetherian scheme has
no embedded points. (v) The nonreduced locus of a locally Noetherian scheme
(the locus of points p € X where 0x ;, is nonreduced) is the closure of the those
associated points that have nonreduced stalk.

Furthermore, recall that one nice property of integral schemes X (such as irre-
ducible affine varieties) not shared by all schemes is that for any nonempty open
U C X, the natural map I'(U, &x) — K(X) is an inclusion (Exercise 6.2.1). Thus all
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sections over any nonempty open set, and elements of all stalks, can be thought of
as lying in a single field K(X), which is the stalk at the generic point. Associated
points allow us to generalize this idea.

6.5.G. EXERCISE. Assuming the above properties of associated points, show that
if X is a locally Noetherian scheme, then for any open subset U C X, the natural
map

(6.5.3.2) ru, ox) — 11 Ox
associated p in U
is an injection.
We can use these properties to refine our ability to visualize schemes in a way
that captures precise mathematical information. As a first check, you should be

able to understand Figure 6.2. As a second, you should be able to do the following
exercise.

FIGURE 6.2. This scheme has 6 associated points, of which 3 are
embedded points. A function is a zerodivisor if it vanishes at any
of these six points.

6.5.H. EXERCISE (PRACTICE WITH FUZZY PICTURES). Assume the properties (A)-
(O) of associated points. Suppose X = Spec C[x, yl/I, and that the associated points
of Xare [(y —x?)], [(x =1,y —1)],and [(x — 2,y — 2)].

(a) Sketch X as a subset of AZ = Spec C[x, y], including fuzz.

(b) Do you have enough information to know if X is reduced?

(c) Do you have enough information to know if x +y — 2 is a zerodivisor? How
about x + y — 3? How about y — x?? (Exercise 6.5.R will verify that such an X
actually exists.)

The following exercise shows that hypersurfaces have no embedded points.
(Of course, thanks to Exercise 6.5.C, this is interesting only when the hypersurface
is nonreduced.)

6.5.1. EXERCISE.  Assume the properties (A)-(C) of associated points. If f €
k[x1,...,xn] is nonzero, show that A := k[x1,...,xn]/(f) has no embedded points.
Hint: suppose g € A is a zerodivisor, and choose a lift g € k[x1,...,%xn] of g. Show
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that g has a common factor with f. (We will use this exercise in §19.5.3. We will
generalize this in §28.2.7.)

6.5.4. Definitions: Rational functions. A rational function on a locally Noetherian
scheme is an element of the image of I'(U, &) in (6.5.3.2) for some U containing
all the associated points. Equivalently, the set of rational functions is the colimit
of Ox(U) over all open sets containing the associated points. Or if you prefer, a
rational function is a function defined on an open set containing all associated
points, i.e. an ordered pair (U, f), where U is an open set containing all associated
points, and f € I'(U, &x). Two such data (U, f) and (U’, f’) define the same open
rational function if and only if the restrictions of f and f’ to UN U’ are the same. If
Xis reduced, this is the same as requiring that they are defined on an open set of
each of the irreducible components.

For example, on Spec k[x, yl/(y?, xy) (Figure 5.4), #_(3«*3) is a rational func-

tion, but X(’;;}” is not.

A rational function has a maximal domain of definition, because any two
actual functions on an open set (i.e. sections of the structure sheaf over that open
set) that agree as “rational functions” (i.e. on small enough open sets containing
associated points) must be the same function, by the injectivity of (6.5.3.2). We say
that a rational function f is regular at a point p if p is contained in this maximal
domain of definition (or equivalently, if there is some open set containing p where
f is defined). For example, on Spec k[x, yl/(y?, xy), the rational function %
has domain of definition consisting of everything but 1 and 3 (i.e. [(x — 1)] and

[(x — 3)]), and is regular away from those two points.

6.5.5. The rational functions form a ring, called the total fraction ring or total
quotient ring of X. If X = Spec A is affine, then this ring is called the total fraction
(or quotient) ring of A. If X is integral, the total fraction ring is the function field
K(X) — the stalk at the generic point — so this extends our earlier Definition 6.2.H
of K(-).

6.5.6. Definition and proofs.

We finally define associated points, and show that they have the desired prop-
erties (A)-(C) (and their consequences) for locally Noetherian schemes. Because
the definition is a useful property to remember (on the same level as (A)-(C)), we
dignify it with a letter. We make the definition in more generality than we will use.
Suppose M is an A-module, and A is an arbitrary ring.

(D) A prime p C A is said to be associated to M if p is the annihilator of an element
mofM(p={aecA:am=0}).

6.5.7. Equivalently, p is associated to M if and only if M has a submodule iso-
morphic to A/p. The set of primes associated to M is denoted Ass M (or Assa M).
Awkwardly, if I is an ideal of A, the associated primes of the module A/I are said
to be the associated primes of 1. This is not my fault.

6.5.8. Theorem (properties of associated primes). — Suppose A is a Noetherian
ring, and M # 0 is finitely generated.

(a) The set Ass M is finite (property (B)) and nonempty.
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(b) The natural map M — [ [, cass m My is an injection (cf. (6.5.3.1)).

(c) The set of zerodivisors of M is Upcass mp (property (C)).

(d) (association commutes with localization, cf. Exercise 6.5.F) If S is a multiplica-
tive set, then

Asss 14 S "M = Assa MNSpecS 'A
(={p€AssaM:pNS=0a}).

We prove Theorem 6.5.8 in a series of exercises.

6.5.J. IMPORTANT EXERCISE. Suppose M # 0 is an A-module. Show thatif I C A
is maximal among all proper ideals that are annihilators of elements of M, then I
is prime, and hence I € Ass M. Thus if A is Noetherian, then Ass M is nonempty
(part of Theorem 6.5.8(a)). (This is a good excuse to state a general philosophy:
“Quite generally, proper ideals maximal with respect to some property have an
uncanny tendency to be prime,” [E, p. 70].)

6.5.K. EXERCISE. Suppose that M is a module over a Noetherian ring A. Show
that m = 0 if and only if m is 0 in M,, for each of the maximal associated primes p
of M. (Hint: use the previous exercise.)

This immediately implies Theorem 6.5.8(b). It also implies Theorem 6.5.8(c):
Any nonzero element of Uycass mP is clearly a zerodivisor. Conversely, if a annihi-
lates a nonzero element of M, then a is contained in a maximal annihilator ideal.

6.5.L. EXERCISE. If0 — M’ — M — M” — 0 is a short exact sequence of
A-modules, show that

AssM’ C AssM C AssM’ U AssM”.

(Possible hint for the second containment: if m € M has annihilator p, then Am =

A/p.)

6.5.M. EXERCISE. If M is a finitely generated module over Noetherian A, show
that M has a filtration

0O=MocM;C---CcM,=M

where Mi11/M; = A/p; for some prime ideal p;. Show that the associated primes
are among the p;, and thus prove Theorem 6.5.8(a). Prove that every p; is an asso-
ciated prime.

6.5.N. EXERCISE. Prove Theorem 6.5.8(d) as follows.
(a) Show that
Assa M N Spec STTACAssg 1S M.

(Hint: suppose p € Assa M N SpecS™'A, with p = annm for m € M.)
(b) Suppose q € Asss 14 S™'M, which corresponds to p € A (i.e. ¢ = p(STTA)).
Then q = anng 1, m (m € S™'M), which yields a nonzero element of

Homg 14(S7'A/q,S™'M).

Argue that this group is isomorphic to S~' Homa (A/p, M) (see Exercise 2.6.G),
and hence Homa (A/p, M) # 0.
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This concludes the proof of Theorem 6.5.8. The remaining important loose end
is to understand associated points in terms of support.

6.5.0. EXERCISE. Show that those subsets of Spec A which are the support of an
element of M are precisely those subsets which are the closure of a subset of the
associated points. Hint: show that for any associated point p, there is a section
supported precisely on p. Remark: This can be used to solve Exercise 6.5.P, but
some people prefer to do Exercise 6.5.P first, and obtain this as a consequence.

6.5.P. IMPORTANT EXERCISE. Suppose A is a Noetherian ring, and M is a finitely
generated A-module. Show that associated points/primes of M satisfy property
(A) as follows.

(a) Show that every associated point is the generic point of an irreducible
component of Supp m for some m € M. Hint: if p € A is associated, then
p = annm for some m € M, this is useful in Exercise 6.5.0 as well.

(b) If m € M, show that the support of m is the closure of those associated
points at which m has nonzero germ (cf. Exercise 6.5.D, which relied on
(A) and (B)). Hint: if p is in the closure of such an associated point, show
that m has nonzero germ at p. If p is not in the closure of such an asso-
ciated point, show that m is 0 in M,;, by localizing at p, and using Theo-
rem 6.5.8(b) in the localized ring A, (using Theorem 6.5.8(d)).

6.5.9. Loose ends.

We can easily extend the theory of associated points of schemes to a (very
special) setting without Noetherian hypotheses: integral domains, and integral
schemes.

6.5.Q. EXERCISE (EASY VARIATION: ASSOCIATED POINTS OF INTEGRAL SCHEMES).
Define the notion of associated points for integral domains and integral schemes.
More precisely, take (A) as the definition, and establish (B) and (C). (Hint: the
unique associated prime of an integral domain is (0), and the unique associated
point of an integral scheme is its generic point.) In particular, rational functions
on an integral scheme X are precisely elements of the function field K(X) (Defini-
tion 6.2.H).

Now that we have defined associated points, we can verify that there is an
example of the form described in Exercise 6.5.H

6.5.R. EXERCISE. LetI = (y—x?)3N(x—1,y—1)""nN(x—2,y—2). Show that
X = SpecC[x, yl/I satisfies the hypotheses of Exercise 6.5.H. (Rhetorical question:
Is there a “smaller” example? Is there a “smallest”?)

6.5.10. A non-Noetherian remark. By combining §6.5.3 with (C), we see that if A is a
Noetherian ring, then any element of any minimal prime p is a zerodivisor. This is
true without Noetherian hypotheses: suppose s € p. Then by minimality of p, pA,
is the unique prime ideal in A, so the element s/1 of A, is nilpotent (because it is
contained in all primes of A, Theorem 4.2.10). Thus for some t € A\ p, ts™ =0,
so s is a zerodivisor. We will use this in Exercise 12.1.G.

6.5.11. Aside: Primary ideals. The notion of primary ideals and primary decompo-
sition is important, although we won’t use it. (Anideal I C A in a ring is primary
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if  # A and if xy € I implies either x € I or y™ € I for some n > 0.) The associated
primes of an ideal turn out to be precisely those primes appearing in its primary
decomposition. Primary decomposition was first introduced by the world chess
champion Lasker in 1905, and later axiomatized by Noether in the 1920’s. See [E,
§3.3], for example, for more on this topic.
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CHAPTER 7

Morphisms of schemes

7.1 Introduction

We now describe the morphisms between schemes. We will define some easy-
to-state properties of morphisms, but leave more subtle properties for later.

Recall that a scheme is (i) a set, (ii) with a topology, (iii) and a (structure) sheaf
of rings, and that it is sometimes helpful to think of the definition as having three
steps. In the same way, the notion of morphism of schemes X — Y may be defined
(i) as a map of sets, (ii) that is continuous, and (iii) with some further informa-
tion involving the sheaves of functions. In the case of affine schemes, we have
already seen the map as sets (§4.2.7) and later saw that this map is continuous
(Exercise 4.4.H).

Here are two motivations for how morphisms should behave. The first is alge-
braic, and the second is geometric.

7.1.1. Algebraic motivation. We will want morphisms of affine schemes SpecB —
Spec A to be precisely the ring maps A — B. We have already seen that ring maps
A — B induce maps of topological spaces in the opposite direction (Exercise 4.4.H);
the main new ingredient will be to see how to add the structure sheaf of functions
into the mix. Then a morphism of schemes should be something that “on the level
of affine open sets, looks like this”.

7.1.2. Geometric motivation. Motivated by the theory of differentiable manifolds
(§4.1.1), which like schemes are ringed spaces, we want morphisms of schemes
at the very least to be morphisms of ringed spaces; we now motivate what these
are. (We will formalize this in the next section.) Notice thatif t: X — Yisa
map of differentiable manifolds, then a differentiable function on Y pulls back to
a differentiable function on X. More precisely, given an open subset U C Y, there
is a natural map T'(U, Oy) — T(n'(U), Ox). This behaves well with respect to
restriction (restricting a function to a smaller open set and pulling back yields
the same result as pulling back and then restricting), so in fact we have a map
of sheaves on Y: &y — m,0x. Similarly a morphism of schemes X — Y should
induce a map 0y — m,.Ox. But in fact in the category of differentiable manifolds
a continuous map X — Y is a map of differentiable manifolds precisely when
differentiable functions on Y pull back to differentiable functions on X (i.e. the
pullback map from differentiable functions on Y to functions on X in fact lies in the
subset of differentiable functions, i.e. the continuous map X — Y induces a pullback
of differential functions &y — €x), so this map of sheaves characterizes morphisms

165
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in the differentiable category. So we could use this as the definition of morphism in
the differentiable category (see Exercise 4.1.A).

But how do we apply this to the category of schemes? In the category of dif-
ferentiable manifolds, a continuous map X — Y induces a pullback of (the sheaf of)
functions, and we can ask when this induces a pullback of differentiable functions.
However, functions are odder on schemes, and we can’t recover the pullback map
just from the map of topological spaces. The right patch is to hardwire this into
the definition of morphism, i.e. to have a continuous map f : X — Y, along with a
pullback map f* : Oy — f,Ox. This leads to the definition of the category of ringed
spaces.

One might hope to define morphisms of schemes as morphisms of ringed
spaces. This isn’t quite right, as then Motivation 7.1.1 isn’t satisfied: as desired,
to each morphism A — B there is a morphism SpecB — Spec A, but there can be
additional morphisms of ringed spaces Spec B — Spec A not arising in this way
(see Exercise 7.2.E). A revised definition as morphisms of ringed spaces that lo-
cally look of this form will work, but this is awkward to work with, and we take a
different approach. However, we will check that our eventual definition actually
is equivalent to this (Exercise 7.3.C).

We begin by formally defining morphisms of ringed spaces.

7.2 Morphisms of ringed spaces

7.2.1. Definition. A morphism of ringed spaces 7 : X — Y is a continuous map
of topological spaces (which we unfortunately also call 7r) along with a map 0y —
7, Ox, which we think of as a “pullback map”. By adjointness (§3.6.1), this is the
same as a map 7' Oy — Ox. (It can be convenient to package this information as
in the diagram (3.6.2.1).) There is an obvious notion of composition of morphisms,
so ringed spaces form a category. Hence we have notion of automorphisms and
isomorphisms. You can easily verify that an isomorphism of ringed spaces means
the same thing as it did before (Definition 5.3.1).

If U C Y is an open subset, then there is a natural morphism of ringed spaces
(U, Oylu) — (Y, Oy) (which implicitly appeared earlier in Exercise 3.6.G). More
precisely, if U — Y is an isomorphism of U with an open subset V of Y, and we are
given an isomorphism (U, &y ) = (V, Oy|v) (via the isomorphism U = V), then the
resulting map of ringed spaces is called an open embedding (or open immersion)
of ringed spaces, and the morphism U — Y is often written U — Y.

7.2.A. EXERCISE (MORPHISMS OF RINGED SPACES GLUE). Suppose (X, Ox) and
(Y, Oy) are ringed spaces, X = U; U; is an open cover of X, and we have morphisms
of ringed spaces f; : U; — Y that “agree on the overlaps”, i.e. filu,nu; = fjlu.nu;-
Show that there is a unique morphism of ringed spaces f : X — Y such that fly, =
fi. (Exercise 3.2.F essentially showed this for topological spaces.)

7.2.B. EASY IMPORTANT EXERCISE: &-MODULES PUSH FORWARD. Given a mor-

phism of ringed spaces f : X — Y, show that sheaf pushforward induces a functor
Modﬁx — Modﬁy .
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7.2.C. EASY IMPORTANT EXERCISE. Given a morphism of ringed spaces f : X = Y
with f(p) = q, show that there is a map of stalks (Oy)q — (Ox)p.

7.2.D. KEY EXERCISE. Suppose 7* : B — A is a morphism of rings. Define a
morphism of ringed spaces 7 : Spec A — SpecB as follows. The map of topo-
logical spaces was given in Exercise 4.4.H. To describe a morphism of sheaves
OspecB — T Uspec A ON Spec B, it suffices to describe a morphism of sheaves on the
distinguished base of Spec B. On D(g) C Spec B, we define

ﬁSpecB(D(g)) — ﬁSpecA(TcilD(g)) = ﬁSpecA(D(ﬂﬁg))

by By — A,:g. Verify that this makes sense (e.g. is independent of g), and that
this describes a morphism of sheaves on the distinguished base. (This is the third
in a series of exercises. We saw that a morphism of rings induces a map of sets
in §4.2.7, a map of topological spaces in Exercise 4.4.H, and now a map of ringed
spaces here.)

The map of ringed spaces of Key Exercise 7.2.D is really not complicated. Here
is an example. Consider the ring map Cly] — C[x] givenby y — x? (see Figure 4.6).
We are mapping the affine line with coordinate x to the affine line with coordinate
y. The map is (on closed points) a — a?. For example, where does [(x — 3)] go to?
Answer: [(y — 9)], i.e. 3 — 9. What is the preimage of [(y — 4)]? Answer: those
prime ideals in C[x] containing [(x*—4)],ie. [(x—2)] and [(x +2)], so the preimage
of 4 is indeed +2. This is just about the map of sets, which is old news (§4.2.7), so
let’s now think about functions pulling back. What is the pullback of the function
3/(u—4)onD([(y—4)]) =A" —{4)? Of course itis 3/(x* —4) on A' —{-2,2}.

The construction of Key Exercise 7.2.D will soon be an example of morphism
of schemes! In fact we could make that definition right now. Before we do, we
point out (via the next exercise) that not every morphism of ringed spaces between
affine schemes is of the form of Key Exercise 7.2.D. (In the language of §7.3, this
morphism of ringed spaces is not a morphism of locally ringed spaces.)

7.2.E. UNIMPORTANT EXERCISE. Recall (Exercise 4.4.K) that Speck[y]y) has two
points, [(0)] and [(y)], where the second point is closed, and the first is not. De-
scribe a map of ringed spaces Speck(x) — Speck[y](y) sending the unique point
of Speck(x) to the closed point [(y)], where the pullback map on global sections
sends k to k by the identity, and sends y to x. Show that this map of ringed spaces
is not of the form described in Key Exercise 7.2.D.

7.2.2. Tentative Definition we won’t use (cf. Motivation 7.1.1 in §7.1). A mor-
phism of schemes f : (X,0x) — (Y,0y) is a morphism of ringed spaces that
“locally looks like” the maps of affine schemes described in Key Exercise 7.2.D.
Precisely, for each choice of affine open sets Spec A C X, SpecB C Y, such that
f(SpecA) C SpecB, the induced map of ringed spaces should be of the form
shown in Key Exercise 7.2.D.

We would like this definition to be checkable on an affine cover, and we might
hope to use the Affine Communication Lemma to develop the theory in this way.
This works, but it will be more convenient to use a clever trick: in the next section,
we will use the notion of locally ringed spaces, and then once we have used it, we
will discard it like yesterday’s garbage.
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7.3 From locally ringed spaces to morphisms of schemes

In order to prove that morphisms behave in a way we hope, we will use the
notion of a locally ringed space. It will not be used later, although it is useful else-
where in geometry. The notion of locally ringed spaces (and maps between them)
is inspired by what we know about manifolds (see Exercise 4.1.B). If m: X — Y
is a morphism of manifolds, with 7t(p) = g, and f is a function on Y vanishing
at g, then the pulled back function 7t (f) on X should vanish on p. Put differently:
germs of functions (at q € Y) vanishing at q should pull back to germs of functions
(at p € X) vanishing at p.

7.3.1. Definition. Recall (Definition 5.3.6) that a locally ringed space is a ringed space
(X, Ox) such that the stalks Ox ;, are all local rings. A morphism of locally ringed
spaces f : X — Y is a morphism of ringed spaces such that the induced map of
stalks Oy, — Ox p, (Exercise 7.2.C) sends the maximal ideal of the former into the
maximal ideal of the latter (a “morphism of local rings”). This means something
rather concrete and intuitive: “if p — g, and g is a function vanishing at q, then it
will pull back to a function vanishing at p.” (Side remark: you would also want:
“if p — g, and g is a function nof vanishing at q, then it will pull back to a function
not vanishing at p.” This follows from our definition — can you see why?) Note
that locally ringed spaces form a category.

To summarize: we use the notion of locally ringed space only to define mor-
phisms of schemes, and to show that morphisms have reasonable properties. The
main things you need to remember about locally ringed spaces are (i) that the func-
tions have values at points, and (ii) that given a map of locally ringed spaces, the
pullback of where a function vanishes is precisely where the pulled back function
vanishes.

7.3.A. EXERCISE. Show that morphisms of locally ringed spaces glue (cf. Exer-
cise 7.2.A). (Hint: your solution to Exercise 7.2.A may work without change.)

7.3.B. EASY IMPORTANT EXERCISE. (a) Show that Spec A is a locally ringed space.
(Hint: Exercise 5.3.F.) (b) Show that the morphism of ringed spaces f : Spec A —
Spec B defined by a ring morphism f : B — A (Exercise 4.4.H) is a morphism of
locally ringed spaces.

7.3.2. Key Proposition. — If f : Spec A — SpecB is a morphism of locally ringed
spaces then it is the morphism of locally ringed spaces induced by the map f* : B =
I'(SpecB, OspecB) — T'(Spec A, Ospec A) = A as in Exercise 7.3.B(b).

(Aside: Exercise 5.3.A is a special case of Key Proposition 7.3.2. You should
look back at your solution to Exercise 5.3.A, and see where you implicitly used
ideas about locally ringed spaces.)

Proof. Suppose f : Spec A — SpecB is a morphism of locally ringed spaces. We
wish to show that it is determined by its map on global sections f* : B — A.
We first need to check that the map of points is determined by global sections.
Now a point p of Spec A can be identified with the prime ideal of global functions
vanishing on it. The image point f(p) in Spec B can be interpreted as the unique
point q of Spec B, where the functions vanishing at q are precisely those that pull
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back to functions vanishing at p. (Here we use the fact that f is a map of locally
ringed spaces.) This is precisely the way in which the map of sets Spec A — Spec B
induced by a ring map B — A was defined (§4.2.7).

Note in particular that if b € B, f~1(D(b)) = D(f*b), again using the hypothe-
sis that f is a morphism of locally ringed spaces.

It remains to show that f? : OspecB — f+Ospec A is the morphism of sheaves
given by Exercise 7.2.D (cf. Exercise 7.3.B(b)). It suffices to check this on the dis-
tinguished base (Exercise 3.7.C(a)). We now want to check that for any map of
locally ringed spaces inducing the map of sheaves Ospec B — i Ospec A, the map of
sections on any distinguished open set D(b) C SpecB is determined by the map
of global sections B — A.

Consider the commutative diagram

i

£
B ——— I'(Spec B, GspecB) ——> T'(Spec A, Ospec ) ———— A
reSSpecB,D(b)i lreSSpeCA,D(fﬁb)
£
By MD(b), ﬁSpecB) ib)) r(D(fub)» ﬁSpecA) —— Aty = A ®8 Byp.

The vertical arrows (restrictions to distinguished open sets) are localizations by
b, so the lower horizontal map f%)(b] is determined by the upper map (it is just
localization by b). O

We are ready for our definition.

7.3.3. Definition. If X and Y are schemes, then a morphism 7 : X — Y as locally
ringed spaces is called a morphism of schemes. We have thus defined the category
of schemes, which we denote Sch. (We then have notions of isomorphism — just
the same as before, §5.3.6 — and automorphism. The farget Y of 7t is sometimes
called the base scheme or the base, when we are interpreting 7 as a family of
schemes parametrized by Y — this may become clearer once we have defined the
fibers of morphisms in §10.3.2.)

The definition in terms of locally ringed spaces easily implies Tentative Defi-
nition 7.2.2:

7.3.C. IMPORTANT EXERCISE. Show that a morphism of schemes f : X — Y is
a morphism of ringed spaces that looks locally like morphisms of affine schemes.
Precisely, if Spec A is an affine open subset of X and Spec B is an affine open subset
of Y, and f(Spec A) C SpecB, then the induced morphism of ringed spaces is a
morphism of affine schemes. (In case it helps, note: if W C X and Y C Z are both
open embeddings of ringed spaces, then any morphism of ringed spaces X — Y
induces a morphism of ringed spaces W — Z, by composition W — X = Y — Z))
Show that it suffices to check on a set (Spec Ay, Spec B;) where the Spec A; form
an open cover of X.

In practice, we will use the affine cover interpretation, and forget completely
about locally ringed spaces. In particular, put imprecisely, the category of affine
schemes is the category of rings with the arrows reversed. More precisely:
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7.3.D. EXERCISE. Show that the category of rings and the opposite category of
affine schemes are equivalent (see §2.2.21 to read about equivalence of categories).

In particular, here is something surprising: there can be interesting maps from
one point to another. For example, here are two different maps from the point
SpecC to the point SpecC: the identity (corresponding to the identity C — C),
and complex conjugation. (There are even more such maps!)

It is clear (from the corresponding facts about locally ringed spaces) that mor-
phisms glue (Exercise 7.3.A), and the composition of two morphisms is a mor-
phism. Isomorphisms in this category are precisely what we defined them to be
earlier (§5.3.6).

7.3.4. The category of complex schemes (or more generally the category of k-
schemes where k is a field, or more generally the category of A-schemes where
A is a ring, or more generally the category of S-schemes where S is a scheme).
The category of S-schemes Schs (where S is a scheme) is defined as follows. The
objects (S-schemes) are morphisms of the form

X

|

S

(The morphism to S is called the structure morphism. A motivation for this termi-
nology is the fact that if S = Spec A, the structure morphism gives the functions
on each open set of X the structure of an A-algebra, cf. §6.3.6.) The morphisms in
the category of S-schemes are defined to be commutative diagrams

X——=Y

|

S—_——-8§
which is more conveniently written as a commutative diagram
X——Y
S.

When there is no confusion (if the base scheme is clear), simply the top row of
the diagram is given. In the case where S = Spec A, where A is a ring, we get
the notion of an A-scheme, which is the same as the same definition as in §6.3.6
(Exercise 7.3.G), but in a more satisfactory form. For example, complex geometers
may consider the category of C-schemes.

The next two examples are important. The first will show you that you can

work with these notions in a straightforward, hands-on way. The second will show
that you can work with these notions in a formal way.

7.3.E. IMPORTANT EXERCISE.  (This exercise can give you some practice with
understanding morphisms of schemes by cutting up into affine open sets.) Make
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sense of the following sentence: “Ap ! \ {0} — P} given by
(XOvX1 yeee )XT'L) — [X(),X],. .. »Xn}

is a morphism of schemes.” Caution: you can’t just say where points go; you have
to say where functions go. So you may have to divide these up into affines, and
describe the maps, and check that they glue. (Can you generalize to the case where
k is replaced by a general ring B? See Exercise 7.3.N for an answer.)

7.3.F. ESSENTIAL EXERCISE. Show that morphisms X — SpecA are in natural
bijection with ring morphisms A — T'(X, €x). Hint: Show that this is true when X
is affine. Use the fact that morphisms glue, Exercise 7.3.A. (This is even true in the
category of locally ringed spaces. You are free to prove it in this generality, but it
is easier in the category of schemes.)

In particular, there is a canonical morphism from a scheme to Spec of its ring of
global sections. (Warning: Even if X is a finite type k-scheme, the ring of global sec-
tions might be nasty! In particular, it might not be finitely generated, see 20.11.11.)

7.3.G. EASY EXERCISE.  Show that this definition of A-scheme given in §7.3.4
agrees with the earlier definition of §6.3.6.

7.3.5. * Side fact for experts: T and Spec are adjoints. ~ We have a contravariant
functor Spec from rings to locally ringed spaces, and a contravariant functor I'
from locally ringed spaces to rings. In fact (I} Spec) is an adjoint pair! Thus we
could have defined Spec by requiring it to be right-adjoint to I'. (Fun but irrelevant
side question: if you used ringed spaces rather than locally ringed spaces, I" again
has a right adjoint. What is it?)

7.3.H. EASY EXERCISE. 1If S, is a finitely generated graded A-algebra, describe a
natural “structure morphism” Proj S, — SpecA.

7.3.1. EASY EXERCISE.  Show that SpecZ is the final object in the category of
schemes. In other words, if X is any scheme, there exists a unique morphism
to SpecZ. (Hence the category of schemes is isomorphic to the category of Z-
schemes.) If k is a field, show that Speck is the final object in the category of
k-schemes.

7.3.J. EXERCISE. Suppose p is a point of a scheme X. Describe a canonical (choice-
free) morphism Spec Ox,, — X. (Hint: do this for affine X first. But then for
general X be sure to show that your morphism is independent of choice.)

7.3.6. Remark. From Essential Exercise 7.3.F, it is one small step to show that some
products of schemes exist: if A and B are rings, then Spec A x Spec B = Spec(A®B);
and if A and B are C-algebras, then Spec A Xgpec ¢ Spec B = Spec(A ®@c B). But we
are in no hurry, so we wait until Exercise 10.1.B to discuss this properly.

7.3.K. x% EXERCISE FOR THOSE WITH APPROPRIATE BACKGROUND: THE ANALYTI-
FICATION FUNCTOR. Recall the analytification construction of Exercise 6.3.E. For
each morphism of reduced finite type C-schemes f : X — Y (over C), define a
morphism of complex analytic prevarieties fan : Xan — Yan (the analytification
of f). Show that analytification gives a functor from the category of reduced finite
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type C-schemes to the category of complex analytic prevarieties. (Remark: two
nonisomorphic varieties can have isomorphic analytifications. For example, Serre
described two different algebraic structures on the complex manifold C* x C*, see
[Ha2, p. 232] and [MO68421]; one is “the obvious one”, and the other is a P'-
bundle over an elliptic curve, with a section removed. For an example of a smooth
complex surface with infinitely many algebraic structures, see §20.11.3. On the
other hand, a compact complex variety can have only one algebraic structure.)

7.3.7. Definition: The functor of points, and S-valued points of a scheme. IfS
is a scheme, then S-valued points of a scheme X, denoted X(S), are defined to be
maps S — X. If A is a ring, then A-valued points of a scheme X, denoted X(A),
are defined to be the (Spec A)-valued points of the scheme. We denote S-valued
points of X by X(S) and A-valued points of X by X(A).

If you are working over a base scheme B — for example, complex algebraic
geometers will consider only schemes and morphisms over B = Spec C — then in
the above definition, there is an implicit structure map S — B (or SpecA — B in
the case of X(A)). For example, for a complex geometer, if X is a scheme over C,
the C(t)-valued points of X correspond to commutative diagrams of the form

SpecC(t) X

S A

SpecC

where g : X — SpecC is the structure map for X, and f corresponds to the obvious
inclusion of rings C — C(t). (Warning: a k-valued point of a k-scheme X is some-
times called a “rational point” of X, which is dangerous, as for most of the world,
“rational” refers to Q. We will use the safer phrase “k-valued point” of X.)

The terminology ”S-valued point” is unfortunate, because we earlier defined
the notion of points of a scheme, and S-valued points are not (necessarily) points!
But this definition is well-established in the literature.

7.3.L. EXERCISE.

(a) (easy) Show that a morphism of schemes X — Y induces a map of S-valued
points X(S) — Y(S).

(b) Note that morphisms of schemes X — Y are not determined by their “underly-
ing” map of points. (What is an example?) Show that they are determined by their
induced maps of S-valued points, as S varies over all schemes. (Hint: pick S = X.
In the course of doing this exercise, you will largely prove Yoneda’s Lemma in the
guise of Exercise 10.1.C.)

7.3.8. Furthermore, we will see that “products of S-valued points” behave as
you might hope (§10.1.3). A related reason this language is suggestive: the no-
tation X(S) suggests the interpretation of X as a (contravariant) functor hx from
schemes to sets — the functor of (scheme-valued) points of the scheme X (cf. Ex-
ample 2.2.20).

Here is another more low-brow reason S-valued points are a useful notion:
the A-valued points of an affine scheme SpecZ[x1,...,xnl/(f1,..., ) (where f; €
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Z[x1, ..., xn] are relations) are precisely the solutions to the equations
f](X],...,Xn) = :f‘l‘(x1v"')xﬂ) :O

in the ring A. For example, the rational solutions to x* + y? = 16 are precisely the
Q-valued points of Spec Z[x, yl/(x* +y? — 16). The integral solutions are precisely
the Z-valued points. So A-valued points of an affine scheme (finite type over Z)
can be interpreted simply. In the special case where A is local, A-valued points of
a general scheme have a good interpretation too:

7.3.M. EXERCISE (MORPHISMS FROM Spec OF A LOCAL RING TO X). Suppose
X is a scheme, and (A, m) is a local ring. Suppose we have a scheme morphism
7t : Spec A — X sending [m] to p. Show that any open set containing p contains
the image of 7. Show that there is a bijection between Mor(Spec A, X) and {p €
X, local homomorphisms &x , — A}. (Possible hint: Exercise 7.3.].)

On the other hand, S-valued points of projective space can be subtle. There
are some maps we can write down easily, as shown by applying the next exercise
in the case X = Spec A, where A is a B-algebra.

7.3.N. EASY (BUT SURPRISINGLY ENLIGHTENING) EXERCISE (CFE. EXERCISE 7.3.E).

(a) Suppose B is a ring. If X is a B-scheme, and f, ..., f, are n + 1 functions on X

with no common zeros, then show that [fy, ..., fn] gives a morphism X — P§.
(b) Suppose g is a nowhere vanishing function on x, and f; are as in part (a). Show
that the morphisms [fy, ..., fn] and [gfo,. .., gfn] to P} are the same.

7.3.9. Example: the tautological rational map from affine space to projective space. Con-
sider the n + 1 functions xo, ..., x, on A" (otherwise known as n + 1 sections of
the trivial bundle). They have no common zeros on A™*! — 0. Hence they deter-
mine a morphism A™"! — 0 — P™. (We discussed this morphism in Exercise 7.3.E,
but now we don’t need tedious gluing arguments.)

7.3.10. You might hope that Exercise 7.3.N(a) gives all morphisms to projective
space (over B). But this isn’t the case. Indeed, even the identity morphism X =
P] — P] isn’t of this form, as the source P! has no nonconstant global functions
with which to build this map. (There are similar examples with an affine source.)
However, there is a correct generalization (characterizing all maps from schemes
to projective schemes) in Theorem 17.4.1. This result roughly states that this works,
so long as the f; are not quite functions, but sections of a line bundle. Our desire
to understand maps to projective schemes in a clean way will be one important
motivation for understanding line bundles.

We will see more ways to describe maps to projective space in the next section.
A different description directly generalizing Exercise 7.3.N(a) will be given in Exer-
cise 16.3.F, which will turn out (in Theorem 17.4.1) to be a “universal” description.

Incidentally, before Grothendieck, it was considered a real problem to figure
out the right way to interpret points of projective space with “coordinates” in a
ring. These difficulties were due to a lack of functorial reasoning. And the clues to
the right answer already existed (the same problems arise for maps from a smooth
real manifold to RP™) — if you ask such a geometric question (for projective space
is geometric), the answer is necessarily geometric, not purely algebraic!
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7.3.11. Visualizing schemes IlI: picturing maps of schemes when nilpotents are present.
You now know how to visualize the points of schemes (§4.3), and nilpotents (§5.2
and §6.5). The following imprecise exercise will give you some sense of how to vi-
sualize maps of schemes when nilpotents are involved. Suppose a € C. Consider
the map of rings C[x] — Clel/e? given by x — ae. Recall that Spec Clel/(e?) may
be pictured as a point with a tangent vector (§5.2). How would you picture this
map if a # 0? How does your picture change if a = 0? (The tangent vector should
be “crushed” in this case.)

Exercise 13.1.G will extend this considerably; you may enjoy reading its state-
ment now.

7.4 Maps of graded rings and maps of projective schemes

As maps of rings correspond to maps of affine schemes in the opposite direc-
tion, maps of graded rings (over a base ring A) sometimes give maps of projective
schemes in the opposite direction. This is an imperfect generalization: not every
map of graded rings gives a map of projective schemes (§7.4.2); not every map of
projective schemes comes from a map of graded rings (later); and different maps
of graded rings can yield the same map of schemes (Exercise 7.4.C).

You may find it helpful to think through Examples 7.4.1 and 7.4.2 while work-
ing through the following exercise.

7.4.A. ESSENTIAL EXERCISE. Suppose that f:S, — R, is a morphism of (Z=°-
)graded rings over A. (By map of graded rings, we mean a map of rings that
preserves the grading as a map of “graded semigroups”. In other words, there is
a d > 0 such that S, maps to R4n, for all n.) Show that this induces a morphism of
schemes ProjR. \ V(f(S)) — ProjS.. (Hint: Suppose x is a homogeneous element
of S;. Define a map D(f(x)) — D(x). Show that they glue together (as x runs
over all homogeneous elements of S ). Show that this defines a map from all of
ProjR, \ V(f(S+)).) In particular, if

(7.4.0.1) V(f(S4)) = 2,

then we have a morphism Proj R, — Proj S,.

7.4.1. Example. Let’s see Exercise 7.4.A in action. We will scheme-theoretically
interpret the map of complex projective manifolds CP' to CP? given by

CP! CP?

[S, t] [ [SZO, S9t11 ,tZO]

Notice first that this is well-defined: [As,At] is sent to the same point of CP? as
s, t]. The reason for it to be well-defined is that the three polynomials s2°, s7t'!,
and t?° are all homogeneous of degree 20.
Algebraically, this corresponds to a map of graded rings in the opposite direc-
tion
Clx,y,z] — Cl[s, t]
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given by x — s20,y = s7t", z — t2°. You should interpret this in light of your
solution to Exercise 7.4.A, and compare this to the affine example of §4.2.8.

7.4.2. Example. Notice that there is no map of complex manifolds CP? — CP!
given by [x,y,z] — [x,u], because the map is not defined when x = y = 0. This
corresponds to the fact that the map of graded rings Cls, t] — Clx,y, z| given by
s — x and t — y, doesn’t satisfy hypothesis (7.4.0.1).

7.4.B. EXERCISE. Show thatif f : S, — R, satisfies \/(f(S+)) = Ry, then hypoth-
esis (7.4.0.1) is satisfied. (Hint: Exercise 5.5.1.) This algebraic formulation of the
more geometric hypothesis can sometimes be easier to verify.

7.4.C. UNIMPORTANT EXERCISE.  This exercise shows that different maps of
graded rings can give the same map of schemes. Let R, = klx,y,zl/(xz,yz, z?)
and S, = k[a,b,c]/(ac,be,c?), where every variable has degree 1. Show that
ProjRe = ProjS. = IPL. Show that the maps S¢ — R, given by (a,b,c) — (x,y,2)
and (a,b,c) — (x,y,0) give the same (iso)morphism ProjR, — ProjS.. (The real
reason is that all of these constructions are insensitive to what happens in a finite
number of degrees. This will be made precise in a number of ways later, most
immediately in Exercise 7.4.F.)

7.4.3. Veronese subrings.

Here is a useful construction. Suppose S, is a finitely generated graded ring.
Define the nth Veronese subring of S¢ by Sne = ©52,5n;. (The “old degree” n is
“new degree” 1.)

7.4.D. EXERCISE. Show that the map of graded rings Sn,e < S. induces an isomor-
phism Proj Se — Proj Sne. (Hint: if f € S is homogeneous of degree divisible by n,
identify D(f) on ProjS. with D(f) on ProjSn.. Why do such distinguished open
sets cover Proj S,?)

7.4.E. EXERCISE. If S, is generated in degree 1, show that S,,, is also generated in
degree 1. (You may want to consider the case of the polynomial ring first.)

7.4.F. EXERCISE. Use Exercise 7.4.D to show that if R, and S, are the same finitely
generated graded rings except in a finite number of nonzero degrees (make this
precise!), then ProjR, = Proj S,.

7.4.G. EXERCISE. Suppose S, is generated over Sy by fy, ..., fn. Find a d such
that S4. is generated in “new” degree 1 (= “old” degree d). (This is surprisingly
tricky, so here is a hint. Suppose there are generators xi, ..., X, of degrees d, ...,
dn, respectively. Show that any monomial x{' ---x&" of degree at least nd; ... dn
has a; > ( ]_[]. d;)/d; for some i. Show that the nd; ... dnth Veronese subring is
generated by elements in “new” degree 1.)

Exercise 7.4.G, in combination with Exercise 7.4.F, shows that there is little
harm in assuming that finitely generated graded rings are generated in degree 1,
as after a regrading (or more precisely, keeping only terms of degree a multiple of
d, then dividing the degree by d), this is indeed the case. This is handy, as it means
that, using Exercise 7.4.D, we can assume that any finitely generated graded ring
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is generated in degree 1. We will see that as a consequence we can place every Proj
in some projective space via the construction of Exercise 9.2.G.

7.4.H. LESS IMPORTANT EXERCISE. Suppose S, is a finitely generated ring. Show
that S, is a finitely generated graded ring. (Possible approach: use the previous
exercise, or something similar, to show there is some N such that S, n. is generated
in degree 1, so the graded ring Sn . is finitely generated. Then show that for each
0 <j <N, SyNe+nj is a finitely generated module over Sy ne.)

7.5 Rational maps from reduced schemes

Informally speaking, a “rational map” is “a morphism defined almost every-
where”, much as a rational function (Definition 6.5.4) is a name for a function
defined almost everywhere. We will later see that in good situations, just as with
rational functions, where a rational map is defined, it is uniquely defined (the
Reduced-to-Separated Theorem 11.2.2), and has a largest “domain of definition” (§11.2.3).
For this section only, we assume X to be reduced. A key example will be irreducible
varieties (§7.5.6), and the language of rational maps is most often used in this case.

7.5.1. Definition. A rational map from X to Y, denoted X --» Y, is a morphism on
a dense open set, with the equivalence relation (f: U — Y) ~ (g : V — Y) if there is
a dense open set Z C UNV such that f|z = g|z. (In §11.2.3, we will improve this to:
if flunv = glunv in good circumstances — when Y is separated.) People often use
the word “map” for “morphism”, which is quite reasonable, except that a rational
map need not be a map. So to avoid confusion, when one means “rational map”,
one should never just say “map”.

7.5.2. x Rational maps more generally. Just as with rational functions, Definition 7.5.1
can be extended to where X is not reduced, as is (using the same name, “rational
map”), or in a version that imposes some control over what happens over the
nonreduced locus (pseudomorphisms, [Stacks, tag 01RX]). We will see in §11.2 that
rational maps from reduced schemes to separated schemes behave particularly
well, which is why they are usually considered in this context. The reason for the
definition of pseudomorphisms is to extend these results to when X is nonreduced.
We will not use the notion of pseudomorphism.

7.5.3. An obvious example of a rational map is a morphism. Another important
example is the projection P --» ]P’R’] given by [xo, - ,xn] — [Xo0, -, Xn—1].
(How precisely is this a rational map in the sense of Definition 7.5.1? What is its
domain of definition?)

A rational map f : X --» Y is dominant (or in some sources, dominating) if for
some (and hence every) representative U — Y, the image is dense in Y. Equiv-
alently, f is dominant if it sends the generic point of X to the generic point of Y.
A little thought will convince you that you can compose (in a well-defined way)
a dominant map f : X --» Y from an irreducible scheme X with a rational map
g :Y --» Z. Integral schemes and dominant rational maps between them form a
category which is geometrically interesting.
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7.5.A. EASY EXERCISE. Show that dominant rational maps of integral schemes
give morphisms of function fields in the opposite direction.

It is not true that morphisms of function fields always give dominant rational
maps, or even rational maps. For example, Spec k[x| and Spec k(x) have the same
function field (k(x)), but there is no corresponding rational map Speck[x] --»
Speck(x). Reason: that would correspond to a morphism from an open subset
U of Speck[x], say Specklx, 1/f(x)], to Speck(x). But there is no map of rings
k(x) — k[x, 1/f(x)] (sending k identically to k and x to x) for any one f(x). How-
ever, maps of function fields indeed give dominant rational maps of integral finite
type k-schemes (and in particular, irreducible varieties, to be defined in §11.1.7),
see Proposition 7.5.7 below.

(If you want more evidence that the topologically-defined notion of domi-
nance is simultaneously algebraic, you can show that if $ : A — B is a ring
morphism, then the corresponding morphism SpecB — Spec A is dominant if
and only if ¢ has kernel contained in the nilradical of A.)

7.5.4. Definition. A rational map f: X — Y is said to be birational if it is dominant,
and there is another rational map (a “rational inverse”) that is also dominant, such
that f o g is (in the same equivalence class as) the identity on Y, and g o f is (in the
same equivalence class as) the identity on X. This is the notion of isomorphism
in the category of integral schemes and dominant rational maps. We say X and Y
are birational (to each other) if there exists a birational map X --» Y. Birational
maps induce isomorphisms of function fields. The fact that maps of function fields
correspond to rational maps in the opposite direction for integral finite type k-
schemes, to be proved in Proposition 7.5.7, shows that a map between integral
finite type k-schemes that induces an isomorphism of function fields is birational.
An integral finite type k-scheme is said to be rational if it is birational to A} for
some k. A morphism is birational if it is birational as a rational map.

7.5.5. Proposition. — Suppose X and Y are reduced schemes. Then X and Y are bira-
tional if and only if there is a dense open subscheme U of X and a dense open subscheme V
of Y such that U = V.

Proposition 7.5.5 tells you how to think of birational maps. Just as a rational
map is a “mostly defined function”, two birational reduced schemes are “mostly
isomorphic”. For example, a reduced finite type k-scheme (such as a reduced
affine variety over k) is rational if it has a dense open subscheme isomorphic to
an open subscheme of A™.

Proof. The “if” direction is trivial, so we prove the “only if” direction.

Step 1. Because X and Y are birational, we can find some dense open sub-
schemes X; C X and Y; C Y, along with F: X; — Yand G : Y; — X whose com-
position in either order is the identity morphism on some dense open subscheme
where it makes sense. Replace X; and Y; by those dense open subschemes.

We have thus found dense open subschemes X; C X and Y; C Y, along with
morphisms F : X5 — Y and G : Y7 — X, whose composition in either order is the
identity on the open subset where it is defined. (More precisely, if X, = F (Y1),
and Y = G! (X7),then G o F|x2 = idxz, and Fo G|Y2 = idyz.)
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Step 2. For n > 1, inductively define X,,41 = F'(Yn) and Yoy = G ' (Xn).
Informally, X,, is the (dense) open subset of points of X that can be mapped n
times by F and G alternately, and analogously for Y;,. Define Xo, = Nn>1Xy, and
Yoo = Mn>1Yn. Then X, = X3, as G o F is the identity on X; (so any point of
X2 can be acted on by F and G alternately any number of times), and similarly
Yo = Y2. Thus F and G define maps between X; and Y;, and these are inverse
maps by assumption. O

7.5.6. Rational maps of irreducible varieties.

7.5.7. Proposition. — Suppose X is an integral k-scheme and Y is an integral finite type
k-scheme, and we are given an extension of function fields * : K(Y) < K(X). Then there
exists a dominant rational map ¢ : X --» Y inducing ¢*.

Proof. By replacing Y with an open subset, we may assume that Y is affine, say
Spec B, where B is generated over k by finitely many elements y1, ..., yn. Since
we only need to define ¢ on an open subset of X, we may similarly assume that
X = Spec A is affine. Then ¢* gives an inclusion ¢f : B — K(A). Write the product
of the images of y1, ..., yn as f/g, with f,g € A. Then ¢* further induces an
inclusion B — Ag. Therefore ¢ : Spec Ay — SpecB induces ¢f. The morphism
¢ is dominant because the inverse image of the zero ideal under the inclusion
B — Ag is the zero ideal, so ¢ takes the generic point of X to the generic point of
Y. O

7.5.B. EXERCISE. Let K be a finitely generated field extension of k. (Informal
definition: a field extension K over k is finitely generated if there is a finite “gen-
erating set” x1, ..., xn in K such that every element of K can be written as a
rational function in x1, ..., x, with coefficients in k.) Show that there exists
an irreducible affine k-variety with function field K. (Hint: Consider the map
klt1,...,tn] — K given by t; — x;, and show that the kernel is a prime ideal
p, and that k[ty, ..., t,]/p has fraction field K. Interpreted geometrically: consider
the map SpecK — Specklty,...,tn] given by the ring map t; — x;, and take the
closure of the one-point image.)

7.5.C. EXERCISE. Describe an equivalence of categories between (a) finitely gen-
erated field extensions of k, and inclusions extending the identity on k, and the
opposite (“arrows-reversed”) category to (b) integral affine k-varieties, and domi-
nant rational maps defined over k.

In particular, an integral affine k-variety X is rational if its function field K(X)
is a purely transcendent extension of k, i.e. K(X) = k(x1,...,%n) for some n. (This
needs to be said more precisely: the map k — K(X) induced by X — Speck should
agree with the “obvious” map k < k(x1,...,xn) under this isomorphism.)

7.5.8. More examples of rational maps.

A recurring theme in these examples is that domains of definition of rational
maps to projective schemes extend over nonsingular codimension one points. We
will make this precise in the Curve-to-Projective Extension Theorem 17.5.1, when
we discuss curves.
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FIGURE 7.1. Finding primitive Pythagorean triples using geometry

The first example is the classical formula for Pythagorean triples. Suppose you
are looking for rational points on the circle C given by x*+y? = 1 (Figure 7.1). One
rational pointis p = (1,0). If q is another rational point, then pq is a line of rational
(non-infinite) slope. This gives a rational map from the conic C (now interpreted
as Spec Q[x, yl/(x* +y* —1)) to A}, given by (x,y) — y/(x—1). (Something subtle
just happened: we were talking about Q-points on a circle, and ended up with a
rational map of schemes.) Conversely, given a line of slope m through p, where m
is rational, we can recover ¢ by solving the equations y = m(x — 1), x> +y? =1
We substitute the first equation into the second, to get a quadratic equation in x.
We know that we will have a solution x = 1 (because the line meets the circle at
(x,y) = (1,0)), so we expect to be able to factor this out, and find the other factor.
This indeed works:

X2+ (mx—1)% = 1
= (M2 4+ 1)x>+ (=2m*)x+ (m?2—=1) = 0
= x—1((m*+1x—(m?>=1)) = 0

The other solution is x = (m? —1)/(m? + 1), which givesy = —2m/(m? +1). Thus
we get a birational map between the conic C and A! with coordinate m, given by
f:(x,y) — y/(x — 1) (which is defined for x # 1), and with inverse rational map
given by m — ((m? —1)/(m? + 1), —2m/(m? + 1)) (which is defined away from
m? +1=0).

We can extend this to a rational map C --» P{, via the “inclusion” Aj, — Py,
(which we later call an open embedding). Then f is given by (x,y) — [u,x—1]. We
then have an interesting question: what is the domain of definition of f? It appears
to be defined everywhere except for where y = x — 1 = 0, i.e. everywhere but p.
But in fact it can be extended over p! Note that (x,y) — [x + 1, —y] (where (x,y) #
(—1,0)) agrees with f on their common domains of definition, as [x + 1,—y] =
[y, x —1]. Hence this rational map can be extended farther than we at first thought.
This will be a special case of the Curve-to-Projective Extension Theorem 17.5.1.
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7.5.D. EXERCISE. Use the above to find a “formula” yielding all Pythagorean
triples.

7.5.E. EXERCISE. Show that the conic x* + y? = z? in P{ is isomorphic to P} for
any field k of characteristic not 2. (Aside: What happens in characteristic 2?)

7.5.9. In fact, any conic in PZ with a k-valued point (i.e. a point with residue field
k) of rank 3 (after base change to k, so “rank” makes sense, see Exercise 6.4.]) is iso-
morphic to P}. (The hypothesis of having a k-valued point is certainly necessary:
x? +y? + 2% = 0 over k = R is a conic that is not isomorphic to PP} .)

7.5.F. EXERCISE. Find all rational solutions to y? = x> +x?, by finding a birational
map to A}, mimicking what worked with the conic. (In Exercise 20.10.F, we will
see that these points form a group, and that this is a degenerate elliptic curve.)

You will obtain a rational map to }P’JQ that is not defined over the node x =
y = 0, and cannot be extended over this codimension 1 set. This is an example of
the limits of our future result, the Curve-to-Projective Extension Theorem 17.5.1,
showing how to extend rational maps to projective space over codimension 1 sets:
the codimension 1 sets have to be nonsingular.

7.5.G. EXERCISE. Use a similar idea to find a birational map from the quadric
Q = {(x*+y? =w? 422} C P to P§. Use this to find all rational points on Q. (This
illustrates a good way of solving Diophantine equations. You will find a dense
open subset of Q that is isomorphic to a dense open subset of P?, where you can
easily find all the rational points. There will be a closed subset of Q where the
rational map is not defined, or not an isomorphism, but you can deal with this
subset in an ad hoc fashion.)

7.5.H. EXERCISE (THE CREMONA TRANSFORMATION, A USEFUL CLASSICAL CON-
STRUCTION). Consider the rational map PZ --» PZ, given by [x,y,z] — [1/x,1/y,1/zl.
What is the the domain of definition? (It is bigger than the locus where xyz # 0')
You will observe that you can extend it over codimension 1 sets (ignoring the fact
that we don’t yet know what codimension means). This again foreshadows the
Curve-to-Projective Extension Theorem 17.5.1.

7.5.10. x Complex curves that are not rational (fun but inessential).

We now describe two examples of curves C that do not admit a nonconstant
rational map from P(.. Both proofs are by Fermat’s method of infinite descent. These
results can be interpreted (as you will later be able to check using Theorem 18.4.3)
as the fact that these curves have no “nontrivial” C(t)-valued points, where by
“nontrivial” we mean any such point is secretly a C-valued point. You may notice
that if you consider the same examples with C(t) replaced by Q (and where C
is a curve over Q rather than C), you get two fundamental questions in number
theory and geometry. The analog of Exercise 7.5.] is the question of rational points
on elliptic curves, and you may realize that the analog of Exercise 7.5.1 is even
more famous. Also, the arithmetic analogue of Exercise 7.5.J(a) is the “four squares
theorem” (there are not four integer squares in arithmetic progression), first stated
by Fermat. These examples will give you a glimpse of how and why facts over
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number fields are often parallelled by facts over function fields of curves. This
parallelism is a recurring deep theme in the subject.

7.5.1. EXERCISE. If n > 2, show that P/ has no dominant rational maps to the
“Fermat curve” x™ + y™ = z" in PA. Hint: reduce this to showing that there is
no “nonconstant” solution (f(t), g(t),h(t)) to f(t)™ + g(t)™ = h(t)", where f(t),
g(t), and h(t) are rational functions in t. By clearing denominators, reduce this to
showing that there is no nonconstant solution where f(t), g(t), and h(t) are rela-
tively prime polynomials. For this, assume there is a solution, and consider one
of the lowest positive degree. Then use the fact that C[t] is a unique factorization
domain, and h(t)™ — g(t)™ = [[;_; (h(t) — C'g(t)), where ( is a primitive nth root

of unity. Argue that each h(t) — C*g(t) is an nth power. Then use

(h(t) — g(t)) + a(h(t) — Cg(t)) = B (h(t) — C*g(t))

for suitably chosen o and 3 to get a solution of smaller degree. (How does this
argument fail for n = 27)

7.5.J. EXERCISE. Suppose a, b, and c are distinct complex numbers. By the fol-
lowing steps, show that if x(t) and y(t) are two rational functions of t (elements
of C(t)) such that

(7.5.10.1) y(t)? = (x(t) — a)(x(t) — b)(x(t) — c),

then x(t) and y(t) are constants (x(t),y(t) € C). (Here C may be replaced by any
field K of characteristic not 2; slight extra care is needed if K is not algebraically
closed.)

(a) Suppose P,Q € C[t] are relatively prime polynomials such that four dis-
tinct linear combinations of them are perfect squares. Show that P and
Q are constant (i.e. P,Q € C). Hint: By renaming P and Q, show that
you may assume that the perfect squares are P, Q, P — Q, P — AQ (for
some A € C). Define u and v to be square roots of P and Q respectively.
Show that u — v, u+ v, u — VAv, u + VAv are perfect squares, and that
u and v are relatively prime. If P and Q are not both constant, note that
0 < max(degu,degv) < max(degP,deg Q). Assume from the start that P
and Q were chosen as a counterexample with minimal max(deg P, deg Q)
to obtain a contradiction. (Aside: It is possible to have three distinct linear
combinations that are perfect squares. Such examples essentially corre-
spond to primitive Pythagorean triples in C(t) — can you see how?)

(b) Suppose (x,y) = (p/q,7/s) is a solution to (7.5.10.1), where p,q,r,s €
C[t], and p/q and r/s are in lowest terms. Clear denominators to show
that 12q> = s?(p — aq)(p — bq)(p — cq). Show that s?|q> and q3|s?, and
hence that s? = 8q3 for some & € C. From v? = §(p —aq)(p—bq)(p —cq),
show that (p — aq), (p —bq), (p — cq) are perfect squares. Show that q is
also a perfect square, and then apply part (a).

A much better geometric approach to Exercises 7.5. and 7.5.] is given in Exer-
cise 22.6.H.

7.6 « Representable functors and group schemes
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7.6.1. Maps to A' correspond to functions. If X is a scheme, there is a bijection
between the maps X — A' and global sections of the structure sheaf: by Exer-
cise 7.3.F, maps f : X — A} correspond to maps to ring maps f* : Z[t] — TI'(X, Ox),
and f#(t) is a function on X; this is reversible.

This map is very natural in an informal sense: you can even picture this map
to A as being given by the function. (By analogy, a function on a smooth manifold
is amap to R.) But itis natural in a more precise sense: this bijection is functorial in
X. We will ponder this example at length, and see that it leads us to two important
sophisticated notions: representable functors and group schemes.

7.6.A. EASY EXERCISE. Suppose X is a C-scheme. Verify that there is a natural
bijection between maps X — Al. in the category of C-schemes and functions on X.
(Notice: the base ring C plays no role.)

This interpretation can be extended to rational maps, as follows.

7.6.B. UNIMPORTANT EXERCISE. Interpretrational functions on an integral scheme
(Exercise 6.5.Q, see also Definition 6.5.4) as rational maps to AJ.

7.6.2. Representable functors. We restate the bijection of §7.6.1 as follows. We
have two different contravariant functors from Sch to Sets: mapsto A' (i.e. H: X —
Mor(X, A})), and functions on X (F : X — T(X, Ox)). The “naturality” of the bijec-
tion — the functoriality in X — is precisely the statement that the bijection gives a
natural isomorphism of functors (§2.2.21): given any f : X — X’, the diagram

H(X') — H(X)

o

F(X') —— F(X)

(where the vertical maps are the bijections given in §7.6.1) commutes.

More generally, if Y is an element of a category ¢ (we care about the spe-
cial case ¥ = Sch), recall the contravariant functor hy : ¥ — Sets defined by
hy(X) = Mor(X,Y) (Example 2.2.20). We say a contravariant functor from % to
Sets is represented by Y if it is naturally isomorphic to the functor hy. We say it is
representable if it is represented by some Y.

The bijection of §7.6.1 may now be stated as: the global section functor is repre-
sented by A

7.6.C. IMPORTANT EASY EXERCISE (REPRESENTING OBJECTS ARE UNIQUE UP TO
UNIQUE ISOMORPHISM). Show that if a contravariant functor F is represented by
Y and by Z, then we have a unique isomorphism Y — Z induced by the natural
isomorphism of functors hy — hz. Hint: this is a version of the universal prop-
erty arguments of §2.3: once again, we are recognizing an object (up to unique
isomorphism) by maps to that object. This exercise is essentially Exercise 2.3.Y(b).
(This extends readily to Yoneda’s Lemma in this setting, Exercise 10.1.C. You are
welcome to try that now.)

You have implicitly seen this notion before: you can interpret the existence of
products and fibered products in a category as examples of representable functors.
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(You may wish to work out how a natural isomorphism hyyz = hy X hz induces
the projectionmaps Y x Z = Yand Y x Z — Z.)

7.6.D. EXERCISE. In this exercise, Z may be replaced by any ring.

(a) (affine n-space represents the functor of n functions) Show that the functor X —
{(f1,...,fn) : fi € T(X, Ox)} is represented by AJ}. Show that A} xz Al = AZ (i.e.
A? satisfies the universal property of AT x A').

(b) (The functor of invertible functions is representable) Show that the functor taking
X to invertible functions on X is representable by Spec Z[t, t~']. Definition: This
scheme is called G,,.

7.6.E. LESS IMPORTANT EXERCISE. Fix a ring A. Consider the functor H from the
category of locally ringed spaces to Sets given by H(X) = {A — T'(X, Ox)}. Show
that this functor is representable (by Spec A). This gives another (admittedly odd)
motivation for the definition of Spec A, closely related to that of §7.3.5.

7.6.3. xx Group schemes (or more generally, group objects in a category).

(The rest of §7.6 should be read only for entertainment.) We return again to
Example 7.6.1. Functions on X are better than a set: they form a group. (Indeed
they even form a ring, but we will worry about this later.) Given a morphism
X — Y, pullback of functions I'(Y, Oy) — T'(X, Ox) is a group homomorphism.
So we should expect A' to have some group-like structure. This leads us to the
notion of group scheme, or more generally a group object in a category, which we
now define.

Suppose ¢ is a category with a final object Z and with products. (We know
that Sch has a final object Z = Spec Z, by Exercise 7.3.1. We will later see that it has
products, §10.1. But you can remove this hypothesis from the definition of group
object, so we won't worry about this.)

A group object in ¥ is an element X along with three morphisms:

o Multiplication: m: X x X — X
o Inverse:i: X — X
o Identity element: e : Z — X (not the identity map)

These morphisms are required to satisfy several conditions.
(i) associativity axiom:

(m,id)
XX XX X—XxX

(idym)l lm

X x X T X

commutes. (Here id means the equality X — X.)
(ii) identity axiom:

X—>7Zx X xwux ™ X

and

X—>XxZ 2 xxx™ X

are both the identity map X — X. (This corresponds to the group axiom: “multi-
plication by the identity element is the identity map”.)
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i,id id,i

Xx XX and X Xx X2 X are

both the map that is the composition X —=Z —=X..

As motivation, you can check that a group object in the category of sets is in
fact the same thing as a group. (This is symptomatic of how you take some notion
and make it categorical. You write down its axioms in a categorical way, and if
all goes well, if you specialize to the category of sets, you get your original notion.
You can apply this to the notion of “rings” in an exercise below.)

A group scheme is defined to be a group object in the category of schemes. A
group scheme over a ring A (or a scheme S) is defined to be a group object in the
category of A-schemes (or S-schemes).

(iii) inverse axiom: X

7.6.F. EXERCISE.  Give AJ, the structure of a group scheme, by describing the
three structural morphisms, and showing that they satisfy the axioms. (Hint: the
morphisms should not be surprising. For example, inverse is given by t — —t.
Note that we know that the product A} x A} exists, by Exercise 7.6.D(a).)

7.6.G. EXERCISE. Show that if G is a group object in a category €, then for any X &
¢, Mor(X, G) has the structure of a group, and the group structure is preserved by
pullback (i.e. Mor(+, G) is a contravariant functor to Groups).

7.6.H. EXERCISE. Show that the group structure described by the previous exer-
cise translates the group scheme structure on A} to the group structure on I'(X, Ox),
via the bijection of §7.6.1.

7.6.1. EXERCISE. Define the notion of ring scheme, and abelian group scheme.

The language of S-valued points (Definition 7.3.7) has the following advan-
tage: notice that the points of a group scheme need not themselves form a group
(consider A}). But Exercise 7.6.G shows that the S-valued points of a group scheme
indeed form a group.

7.6.4. Group schemes, more functorially. There was something unsatisfactory about
our discussion of the “group-respecting” nature of the bijection in §7.6.1: we ob-
served that the right side (functions on X) formed a group, then we developed
the axioms of a group scheme, then we cleverly figured out the maps that made
A} into a group scheme, then we showed that this induced a group structure on
the left side of the bijection (Mor(X, A')) that precisely corresponded to the group
structure on the right side (functions on X).
The picture is more cleanly explained as follows.

7.6.J. EXERCISE. Suppose we have a contravariant functor F from Sch (or indeed
any category) to Groups. Suppose further that F composed with the forgetful func-
tor Groups — Sets is represented by an object Y. Show that the group operations
on F(X) (as X varies through Sch) uniquely determinem : Y xY = Y, i:Y =Y,
e : Z — Y satisfying the axioms defining a group scheme, such that the group
operation on Mor (X, Y) is the same as that on F(X).

In particular, the definition of a group object in a category was forced upon
us by the definition of group. More generally, you should expect that any class of
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objects that can be interpreted as sets with additional structure should fit into this
picture.

You should apply this exercise to A}, and see how the explicit formulas you
found in Exercise 7.6.F are forced on you.

7.6.K. EXERCISE. Work out the maps m, i, and e in the group schemes of Exer-
cise 7.6.D.

7.6.L. EXERCISE.

(a) Define morphism of group schemes.

(b) Define the group scheme GL,,, and describe the determinant map det : GL,, —
Gm. (The group scheme G, was defined in Exercise 7.6.D(b).)

(c) Make sense of the statement: (-") : Gy — Gy, given by t — t™ is a morphism
of group schemes.

The language of Exercise 7.6.L(a) suggests that group schemes form a category;
feel free to prove this if you want. What is the zero object?

7.6.M. EXERCISE (KERNELS OF MAPS OF GROUP SCHEMES). Suppose F: G — G,
is a morphism of group schemes. Consider the contravariant functor Sch — Groups
given by X — ker(Mor(X, G1) — Mor(X, G,)). If this is representable, by a group
scheme Gy, say, show that Go — Gj is the kernel of F in the category of group
schemes.

7.6.N. EXERCISE. Show that the kernel of (-™) (Exercise 7.6.L) is representable.
Show that over a field k of characteristic p dividing 1, this group scheme is nonre-
duced. (Clarification: G, over a field k means Speck[t, t~'], with the same group
operations. Better: it represents the group of invertible functions in the category
of k-schemes. We can similarly define G, over an arbitrary scheme.)

7.6.0. EXERCISE. Show (as easily as possible) that A] is a ring scheme.

7.6.P. EXERCISE.

(a) Define the notion of a group scheme action (of a group scheme on another
scheme).

(b) Suppose A is a ring. Show that specifying an integer-valued grading on A
is equivalent to specifying an action of G, on Spec A. (This interpretation of a
grading is surprisingly enlightening.)

7.6.5. Aside: Hopf algebras. Here is a notion that we won’t use, but it is easy
enough to define now. Suppose G = Spec A is an affine group scheme, i.e. a group
scheme that is an affine scheme. The categorical definition of group scheme can be
restated in terms of the ring A. (This requires thinking through Remark 7.3.6; see
Exercise 10.1.B.) Then these axioms define a Hopf algebra. For example, we have
a “comultiplication map” A - A ® A.

7.6.Q. EXERCISE. As A] is a group scheme, k[t] has a Hopf algebra structure.
Describe the comultiplication map k[t] — k[t] ®i k[t].
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7.7 »x The Grassmannian (initial construction)

The Grassmannian is a useful geometric construction that is “the geometric
object underlying linear algebra”. In (classical) geometry over a field K = R or
C, just as projective space parametrizes one-dimensional subspaces of a given
n-dimensional vector space, the Grassmannian parametrizes k-dimensional sub-
spaces of n-dimensional space. The Grassmannian G(k, n) is a manifold of dimen-
sion k(n — k) (over the field). The manifold structure is given as follows. Given a

basis (v1,...,vn) of n-space, “most” k-planes can be described as the span of the
k vectors
n n n
(7701) <V1 + Z aivi, v2 + Z aziVi,...,Vk + Z akivi).
i=k+1 i=k+1 i=k41

(Can you describe which k-planes are not of this form? Hint: row reduced echelon
form. Aside: the stratification of G(k,n) by normal form is the decomposition of
the Grassmannian into Schubert cells. You may be able to show using the normal
form that each Schubert cell is isomorphic to an affine space.) Any k-plane of
this form can be described in such a way uniquely. We use this to identify those k-
planes of this form with the manifold K*("~¥) (with coordinates a;;). Thisis a large
affine patch on the Grassmannian (called the “open Schubert cell” with respect to
this basis). As the v; vary, these patches cover the Grassmannian (why?), and the
manifold structures agree (a harder fact).

We now define the Grassmannian in algebraic geometry, over a ring A. Sup-
pose v = (v1,...,vy) is a basis for A®™. More precisely: vi € A®™, and the map
AP — A9 oiven by (aj,...,an) M a1Vy + -+ + Ay vy is an isomorphism.

7.7.A. EXERCISE. Show that any two bases are related by an invertible n x n
matrix over A — a matrix with entries in A whose determinant is an invertible
element of A.

For each such basis v, we consider the scheme U,, = At\(nfk) , with coordinates

aji (k+1<1<n, 1 <j <k), which we imagine as corresponding to the k-plane
spanned by the vectors (7.7.0.1).

7.7.B. EXERCISE. Given two bases v and w, explain how to glue U, to U,, along
appropriate open sets. You may find it convenient to work with coordinates a;;
where i runs from 1 to n, not just k + 1 to n, but imposing a;; = ;i (i.e. 1 when
i = j and 0 otherwise) when i < k. This convention is analogous to coordinates
xi,; on the patches of projective space (§5.4.9). Hint: the relevant open subset of
U, will be where a certain determinant doesn’t vanish.

7.7.C. EXERCISE/DEFINITION. By checking triple intersections, verify that these
patches (over all possible bases) glue together to a single scheme (Exercise 5.4.A).
This is the Grassmannian G(k, ) over the ring A. Because it can be interpreted as
a space of linear ”IP"j\q ’s” in IF’R” , it is often also written G(k — 1,n — 1).

Although this definition is pleasantly explicit (it is immediate that the Grass-
mannian is covered by A*("~*)’s) and perhaps more “natural” than our original
definition of projective space in §5.4.9 (we aren’t making a choice of basis; we use
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all bases), there are several things unsatisfactory about this definition of the Grass-
mannian. In fact the Grassmannian is always projective; this isn’t obvious with
this definition. Furthermore, the Grassmannian comes with a natural closed em-
bedding into plx)- (the Pliicker embedding). Finally, there is an action of GL,, on
the space of k-planes in n-space, so we should be able to see this in our algebraic
incarnation. We will address these issues in §17.7, by giving a better description,
as a moduli space.

7.7.1. (Partial) flag varieties. Just as the Grassmannian “parametrizes” k-planes
in n-space, the flag variety parametrizes “flags” nested sequences of subspaces of
n-space

FoCckhH C---CFy
where dim F; = i. Generalizing both of these is the notion of a partial flag variety
associated to some data 0 < a1 < --- < ay < n, which parametrizes nested
sequences of subspaces of n-sapce

Fa, C -+ CFq,

where dim F; = ai. You should be able to generalize all of the discussion in §7.7
to this setting.






CHAPTER 8

Useful classes of morphisms of schemes

We now define an excessive number of types of morphisms. Some (often
finiteness properties) are useful because every “reasonable” morphism has such
properties, and they will be used in proofs in obvious ways. Others correspond to
geometric behavior, and you should have a picture of what each means.

8.0.2. One of Grothendieck’s lessons is that things that we often think of as proper-
ties of objects are better understood as properties of morphisms. One way of turning
properties of objects into properties of morphisms is as follows. If P is a property
of schemes, we say that a morphism f : X — Y has P if for every affine open sub-
set U C Y, f~'(U) has P. We will see this for P = quasicompact, quasiseparated,
affine, and more. (As you might hope, in good circumstances, P will satisfy the
hypotheses of the Affine Communication Lemma 6.3.2, so we don’t have to check
every affine open subset.) Informally, you can think of such a morphism as one
where all the fibers have P, although it means a bit more. (You can quickly define
the fiber of a morphism as a topological space, but once we define fiber product,
we will define the scheme-theoretic fiber, and then this discussion will make sense.)
But it means more than that: it means that “being P” is really not just fiber-by-
fiber, but behaves well as the fiber varies. (For comparison, a smooth morphism
of manifolds means more than that the fibers are smooth.)

8.1 An example of a reasonable class of morphisms: Open
embeddings

8.1.1. What to expect of any “reasonable” type of morphism.  You will notice that
essentially all classes of morphisms have three properties.

(i) They are “local on the target”. In other words, to check if a morphism
f : X — Yis in the class, then it suffices to check on an open cover on Y. In
particular, as schemes are built out of rings (i.e. affine schemes), it should
be possible to check on an affine cover, as described in §8.0.2.
(ii) They are closed under composition: if f : X — Yand g : Y — Z are both
in this class, then so is g o f.
(iii) They are closed under “base change” or “pullback” or “fibered product”.
We will discuss fibered product of schemes in Chapter 10.1.
When anyone tells you a new class of morphism, you should immediately ask
yourself (or them) whether these three properties hold. And it is essentially true
that a class of morphism is “reasonable” if and only if it satisfies these three prop-
erties. Here is a first example.

189
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An open embedding (or open immersion) of schemes is defined to be an open
embedding as ringed spaces (§7.2.1). In other words, a morphism f : (X, Ox) —
(Y, Oy) of schemes is an open embedding if f factors as

(X, Ox) —=> (U, Oylu )L (Y, Oy)

where g is an isomorphism, and U < Y is an inclusion of an open set. It is imme-
diate that isomorphisms are open embeddings. We often sloppily say that (X, Ox)
is an open subscheme of (Y, Oy). The symbol — is often used to indicate that a mor-
phism is an open embedding (or more generally, a locally closed embedding, see
§9.1.2). This is a bit confusing, and not too important: at the level of sets, open
subschemes are subsets, while open embeddings are bijections onto subsets.

8.1.A. EXERCISE (PROPERTIES (I) AND (II)). Verify that the class of open embed-
dings satisfies properties (i) and (ii) of §8.1.1.

8.1.B. IMPORTANT BUT EASY EXERCISE (PROPERTY (III)).  Verify that the class
of open embeddings satisfies property (iii) of §8.1.1. More specifically: suppose
i: U — Zis an open embedding, and f : Y — Z is any morphism. Show that
U x 7Y exists. (Hint: I'll even tell you what itis: (= (W), Oyl¢ (u)).) In particular,
if U — Zand V — Z are open embeddings, U xz V=UNV.

8.1.C. EASY EXERCISE. Suppose f : X — Y is an open embedding. Show that if
Y is locally Noetherian, then X is too. Show that if Y is Noetherian, then X is too.
However, show that if Y is quasicompact, X need not be. (Hint: let Y be affine but
not Noetherian, see Exercise 4.6.G(b).)

“Open embeddings” are scheme-theoretic analogues of open subsets. “Closed
embeddings” are scheme-theoretic analogues of closed subsets, but they have a
surprisingly different flavor, as we will see in §9.1.

8.2 Algebraic interlude: Lying Over and Nakayama

Algebra is the offer made by the devil to the mathematician. The devil says: 1 will give
you this powerful machine, it will answer any question you like. All you need to do is give
me your soul: give up geometry and you will have this marvelous machine.

— Michael Atiyah, [A, p. 659]; but see the Atiyah quote at the start of §1.2

To set up our discussion in the next section on integral morphisms, we de-
velop some algebraic preliminaries. A clever trick we use can also be used to
show Nakayama’s lemma, so we discuss this as well.

Suppose ¢ : B — A is a ring morphism. We say a € A is integral over B if a
satisfies some monic polynomial

at 2™ T 42 =0

where the coefficients lie in ¢(B). A ring homomorphism ¢ : B — A is integral if ev-
ery element of A is integral over ¢(B). An integral ring morphism ¢ is an integral
extension if ¢ is an inclusion of rings. You should think of integral homomorphisms
and integral extensions as ring-theoretic generalizations of the notion of algebraic
extensions of fields.
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8.2.A. EXERCISE. Show thatif ¢ : B — A is a ring morphism, (by,...,bn) =1
in B, and By, — Ag(v,) is integral for all i, then ¢ is integral. Hint: replace B by
¢(B) to reduce to the case where B is a subring of A. Suppose a € A. Show that
there is some t and m such that bla™ € B + Ba + Ba? + ... + Ba™ ! for some t
and m independent of i. Use a “partition of unity” argument as in the proof of
Theorem 5.1.2 to show that a™ € B+ Ba + Ba% + ---+Ba™ .

8.2.B. EXERCISE.

(a) Show that the property of a homomorphism ¢ : B — A being integral is always
preserved by localization and quotient of B, and quotient of A, but not localiza-
tion of A. More precisely: suppose ¢ is integral. Show that the induced maps
T 'B— ¢(T)'A,B/] = A/d(])A, and B — A/I are integral (where T is a multi-
plicative subset of B, | is an ideal of B, and I is an ideal of A), but B — S—TA need
not be integral (where S is a multiplicative subset of A). (Hint for the latter: show
that k[t] — k[t] is an integral homomorphism, but k[t] — k[t]() is not.)

(b) Show that the property of ¢ being an integral extension is preserved by localiza-
tion of B, but not localization or quotient of A. (Hint for the latter: k[t] — k[t] is an
integral extension, but k[t] — k[t]/(t) is not.)

(c) In fact the property of ¢ being an integral extension is not preserved by tak-
ing quotients of B either. (Let B = k[x,yl/(y?) and A = klx,y,zl/(z%,xz — y).
Then B injects into A, but B/(x) doesn’t inject into A/(x).) But it is in some cases.
Suppose ¢ : B — A is an integral extension, ] C B is the restriction of an ideal
I C A. (Side remark: you can show that this holds if | is prime.) Show that the in-
duced map B/] — A/JA is an integral extension. (Hint: show that the composition
B/] = A/JA — A/lis an injection.)

The following lemma uses a useful but sneaky trick.

8.2.1. Lemma. — Suppose ¢ : B — A is a ring homomorphism. Then a € A is
integral over B if and only if it is contained in a subalgebra of A that is a finitely generated
B-module.

Proof. If a satisfies a monic polynomial equation of degree n, then the B-submodule
of A generated by 1, a, ..., a™ 1 is closed under multiplication, and hence a sub-
algebra of A.

Assume conversely that a is contained in a subalgebra A’ of A that is a finitely
generated B-module. Choose a finite generating set m;, ..., m, of A’ (as a B-
module). Then am; = ) byym;, for some by; € B. Thus

my 0
(8.2.1.1) (aldnxn — [bijlij) : =1 : |

mMn 0

where Id,, is the n x n identity matrix in A. We can’t invert the matrix (aldnxn —
[bij]i;), but we almost can. Recall that an n x n matrix M has an adjugate matrix
adj(M) such that adj(M)M = det(M)Id,. (The (i,j)th entry of adj(M) is the de-
terminant of the matrix obtained from M by deleting the ith column and jth row,
times (—1)'"J. You have likely seen this in the form of a formula for M~! when
there is an inverse; see for example [DF, p. 440].) The coefficients of adj(M) are
polynomials in the coefficients of M. Multiplying (8.2.1.1) by adj(aldnxn — [bijli5),



192 Math 216: Foundations of Algebraic Geometry
we get

my 0
det(aldnxn — [bijlij) : =1 :
My 0

So det(al—[by;]) annihilates the generating elements m;, and hence every element
of A/, ie. det(al — [by;]) = 0. But expanding the determinant yields an integral
equation for a with coefficients in B. O

8.2.2. Corollary (finite implies integral). — If A is a finite B-algebra (a finitely
generated B-module), then ¢ is an integral homomorphism.

The converse is false: integral does not imply finite, as Q — Q is an integral
homomorphism, but Q is not a finite Q-module. (A field extension is integral if it
is algebraic.)

8.2.C. EXERCISE. Show that if C — B and B — A are both integral homomor-
phisms, then so is their composition.

8.2.D. EXERCISE. Suppose ¢ : B — A is a ring morphism. Show that the elements
of A integral over B form a subalgebra of A.

8.2.3. Remark: transcendence theory.  These ideas lead to the main facts about
transcendence theory we will need for a discussion of dimension of varieties, see
Exercise/Definition 12.2.A.

8.2.4. The Lying Over and Going-Up Theorems. The Lying Over Theorem is a
useful property of integral extensions.

8.2.5. The Lying Over Theorem. — Suppose ¢ : B — A is an integral extension.
Then for any prime ideal q C B, there is a prime ideal p C A such thatp N B = q.

To be clear on how weak the hypotheses are: B need not be Noetherian, and
A need not be finitely generated over B.

8.2.6. Geometric translation: Spec A — Spec B is surjective. (A map of schemes is
surjective if the underlying map of sets is surjective.)

Although this is a theorem in algebra, the name can be interpreted geometri-
cally: the theorem asserts that the corresponding morphism of schemes is surjec-
tive, and that “above” every prime q “downstairs”, there is a prime p “upstairs”,
see Figure 8.1. (For this reason, it is often said that p “lies over” qif pN B = q.) The
following exercise sets up the proof.

8.2.E. x EXERCISE. Show that the special case where A is a field translates to: if
B C A s a subring with A integral over B, then B is a field. Prove this. (Hint: you
must show that all nonzero elements in B have inverses in B. Here is the start: If
b € B, then 1/b € A, and this satisfies some integral equation over B.)

* Proof of the Lying Over Theorem 8.2.5. We first make a reduction: by localizing at
q (preserving integrality by Exercise 8.2.B(b)), we can assume that (B, q) is a local



October 10, 2012 draft 193

Spec A

/_\\/ Spec B
[q]

q

FIGURE 8.1. A picture of the Lying Over Theorem 8.2.5: if ¢ :
B — Ais an integral extension, then Spec A — Spec B is surjective

ring. Then let p be any maximal ideal of A. Consider the following diagram.
A
JB

The right vertical arrow is an integral extension by Exercise 8.2.B(c). By Exer-
cise 8.2.E, B/(p N B) is a field too, so p N B is a maximal ideal, hence it is g. O

A/p field

8.2.F. IMPORTANT EXERCISE (THE GOING-UP THEOREM).

(a) Suppose ¢ : B — A is an integral homomorphism (not necessarily an integral
extension). Show that if g1 C q2 C -+ C gy is a chain of prime ideals of B, and
p1 C -+ C pm is a chain of prime ideals of A such that p; “lies over” q; (and
1 < m < n), then the second chain can be extended to p; C --- C pn, so that this
remains true. (Hint: reduce to the case m = 1,n = 2; reduce to the case where
q1 = (0) and p7 = (0); use the Lying Over Theorem.)

(b) Draw a picture of this theorem.

There are analogous “Going-Down” results (requiring quite different hypothe-
ses); see for example Theorem 12.2.12 and Exercise 25.5.E.

8.2.7. Nakayama’s lemma.

The trick in the proof of Lemma 8.2.1 can be used to quickly prove Nakayama'’s
lemma, which we will use repeatedly in the future. This name is used for several
different but related results, which we discuss here. (A geometric interpretation
will be given in Exercise 14.7.E.) We may as well prove it while the trick is fresh in
our minds.
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8.2.8. Nakayama’s Lemma version 1. — Suppose A is a ring, 1 is an ideal of A, and
M is a finitely generated A-module, such that M = IM. Then there exists an a € A with
a=1 (mod I) with aM = 0.

Proof. Say M is generated by my, ..., mn. Then as M = IM, we have my =
2_; aijym; for some ay; € I. Thus

my
(8.2.8.1) (ld,—2)| : |=o0

Mn

where Z = (ai;). Multiplying both sides of (8.2.8.1) on the left by adj(Id,, — Z), we
obtain

my
det(ldy—2) | : | =o.

Mn

But when you expand out det(Id,, — Z), as Z has entries in I, you get something
thatis 1 (mod I). |

Here is why you care. Suppose I is contained in all maximal ideals of A. (The
intersection of all the maximal ideals is called the Jacobson radical, but we won’t
use this phrase. For comparison, recall that the nilradical was the intersection of
the prime ideals of A.) Then any a = 1 (mod I) is invertible. (We are not using
Nakayama yet!) Reason: otherwise (a) # A, so the ideal (a) is contained in some
maximal ideal m — but a = 1 (mod m), contradiction. As a is invertible, we have
the following.

8.2.9. Nakayama’s Lemma version 2. — Suppose A is a ring, 1 is an ideal of A
contained in all maximal ideals, and M is a finitely generated A-module. (The most inter-
esting case is when A is a local ring, and 1 is the maximal ideal.) Suppose M. = IM. Then
M =0.

8.2.G. EXERCISE (NAKAYAMA’S LEMMA VERSION 3). Suppose A is a ring, and [ is
an ideal of A contained in all maximal ideals. Suppose M is a finitely generated A-
module, and N C M is a submodule. If N/IN — M/IM is surjective, then M = N.

8.2.H. IMPORTANT EXERCISE (NAKAYAMA’S LEMMA VERSION 4: GENERATORS OF
M/mM LIFT TO GENERATORS OF M). Suppose (A, m)is alocal ring. Suppose M is
a finitely generated A-module, and fy, ..., fn, € M, with (the images of) f1,...,fn
generating M/mM. Then fy,...,f, generate M. (In particular, taking M = m, if
we have generators of m/m?, they also generate m.)

8.2.I. IMPORTANT EXERCISE GENERALIZING LEMMA 8.2.1. Suppose S is a subring
of aring A, and v € A. Suppose there is a faithful S[r]-module M that is finitely
generated as an S-module. Show that r is integral over S. (Hint: change a few
words in the proof of version 1 of Nakayama, Lemma 8.2.8.)



October 10, 2012 draft 195

8.2.J. EXERCISE. Suppose A is an integral domain, and A is the integral closure of
A in K(A), i.e. those elements of K(A) integral over A, which form a subalgebra by

Exercise 8.2.D. Show that A is integrally closed in K(K) =K(A).

8.3 A gazillion finiteness conditions on morphisms

By the end of this section, you will have seen the following types of mor-
phisms: quasicompact, quasiseparated, affine, finite, integral, closed, (locally) of
finite type, quasifinite — and possibly, (locally) of finite presentation.

8.3.1. Quasicompact and quasiseparated morphisms.

A morphism 7 : X — Y of schemes is quasicompact if for every open affine
subset U of Y, ' (U) is quasicompact. (Equivalently, the preimage of any quasi-
compact open subset is quasicompact. This is the right definition in other parts of
geometry.)

We will like this notion because (i) finite sets have advantages over infinite sets
(e.g. a finite set of integers has a maximum; also, things can be proved inductively),
and (ii) most reasonable schemes will be quasicompact.

Along with quasicompactness comes the weird notion of quasiseparatedness.
A morphism 7 : X — Y is quasiseparated if for every affine open subset U of
Y, m=1(U) is a quasiseparated scheme (§6.1.1). This will be a useful hypothesis
in theorems (in conjunction with quasicompactness). Various interesting kinds
of morphisms (locally Noetherian source, affine, separated, see Exercises 8.3.B(b),
8.3.D, and 11.1.Hresp.) are quasiseparated, and this will allow us to state theorems
more succinctly.

8.3.A. EASY EXERCISE. Show that the composition of two quasicompact mor-
phisms is quasicompact. (It is also true that the composition of two quasisepa-
rated morphisms is quasiseparated. This is not impossible to show directly, but
will in any case follow easily once we understand it in a more sophisticated way,
see Exercise 11.1.13(b).)

8.3.B. EASY EXERCISE.

(a) Show that any morphism from a Noetherian scheme is quasicompact.

(b) Show that any morphism from a locally Noetherian scheme is quasiseparated.
(Hint: Exercise 6.3.A.) Thus those readers working only with locally Noetherian
schemes may take quasiseparatedness as a standing hypothesis.

8.3.C. EXERCISE. (Obvious hint for both parts: the Affine Communication Lemma 6.3.2.)
(a) (quasicompactness is affine-local on the target) Show that a morphism : X — Y

is quasicompact if there is a cover of Y by open affine sets U; such that 7t (U;) is
quasicompact.

(b) (quasiseparatedness is affine-local on the target) Show that a morphism m: X — Y

is quasiseparated if there is cover of Y by open affine sets U; such that 7' (U;) is
quasiseparated.

Following Grothendieck’s philosophy of thinking that the important notions
are properties of morphisms, not of objects (§8.0.2), we can restate the definition
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of quasicompact (resp. quasiseparated) scheme as a scheme that is quasicompact
(resp. quasiseparated) over the final object SpecZ in the category of schemes (Ex-
ercise 7.3.1).

8.3.2. Affine morphisms.
A morphism 7 : X — Y is affine if for every affine open set U of Y, T (U)
(interpreted as an open subscheme of X) is an affine scheme.

8.3.D. FAST EXERCISE. Show that affine morphisms are quasicompact and qua-
siseparated. (Hint for the second: Exercise 6.1.G.)

8.3.3. Proposition (the property of “affineness” is affine-local on the target). —
A morphism 7t : X — Y is affine if there is a cover of Y by affine open sets U such that
71 (U) is affine.

This proof is the hardest part of this section. For part of the proof (which will
start in §8.3.5), it will be handy to have a lemma.

8.3.4. Qcqs Lemma. — If X is a quasicompact quasiseparated scheme and s € T'(X, Ox),
then the natural map T'(X, Ox)s — T'(Xs, Ox) is an isomorphism.

Here X; means the locus on X where s doesn’t vanish. (By Exercise 5.3.G(a),
Xs is open.) We avoid the notation D(s) to avoid any suggestion that X is affine.

8.3.E. EXERCISE (REALITY CHECK). Whatis the natural map I'(X, Ox)s — I'(Xs, Ox)
of the Qcqs Lemma 8.3.4? (Hint: the universal property of localization, Exer-
cise 2.3.D.)

To repeat the earlier reassuring comment on the “quasicompact quasisepa-
rated” hypothesis: this just means that X can be covered by a finite number of
affine open subsets, any two of which have intersection also covered by a finite
number of affine open subsets (Exercise 6.1.H). The hypothesis applies in lots of
interesting situations, such as if X is affine (Exercise 6.1.G) or Noetherian (Exer-
cise 6.3.A). And conversely, whenever you see quasicompact quasiseparated hy-
potheses (e.g. Exercises 14.3.E, 14.3.H), they are most likely there because of this
lemma. To remind ourselves of this fact, we call it the Qcqs Lemma.

Proof. Cover X with finitely many affine open sets U; = Spec A;. Let Uy; = U; N ;.
Then
0= T(X,0x) = [ JA: = [ [ T(Uy, 0x)
i i
is exact. (See the discussion after (5.1.2.1) for the signs arising in the last map.)

By the quasiseparated hypotheses, we can cover each U;; with a finite number of
affine open sets U;j, = Spec Aijk, so we have that

0— F(X, ﬁx) — HAI — H Aijk
i 1,k

is exact. Localizing at s (an exact functor, Exercise 2.6.F(a)) gives

O—)F(X,ﬁx)s—)<HAi> — | [T Aux
i s

i),k
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As localization commutes with finite products (Exercise 2.3.L(b)),

(8.3.4.1) 0= (X, 0x)s = [ [(AD,, = [T (Aui)s,,,
i i,k
is exact, where the global function s induces functions s; € A; and sijx € Ajjx.

But similarly, the scheme X, can be covered by affine opens Spec(A;)s,, and
Spec(Ai)s,NSpec(A;j)s; are covered by a finite number of affine opens Spec(A;i )s; ..,
so we have
(8.3.4.2) 0= T(Xs,0x) = [ (A, = T (Asi)

i 1,k
Notice that the maps [ [; (A1), — Hiv].‘k (Aijk)sijk in (8.3.4.1) and (8.3.4.2) are the
same, and we have described the kernel of the map in two ways, so I'(X, Ox)s —
I'(Xs, Ox) is indeed an isomorphism. (Notice how the quasicompact and quasisep-
arated hypotheses were used in an easy way: to obtain finite products, which
would commute with localization.) O

Sijk

8.3.5. Proof of Proposition 8.3.3.  As usual, we use the Affine Communication
Lemma 6.3.2. (We apply it to the condition “f is affine over”.) We check our two
criteria. First, suppose 7t : X — Y is affine over Spec B, i.e. 7~ '(SpecB) = Spec A.
Then 7' (Spec Bs) = Spec A s.

Second, suppose we are given 7 : X — SpecB and (s1,...,sn) = B with X;,
affine (Spec A, say). We wish to show that X is affine too. Let A = I'(X, Ox). Then
X — Spec B factors through the tautological map g : X — Spec A (arising from the
(iso)morphism A — T'(X, Ox), Exercise 7.3.F).

9
UiXpeg, = X

UiD(si) = SpecB

Spec A

(As in the statement of the Qcqs Lemma 8.3.4, X1, is the subset of X where mifs;
doesn’t vanish.) Then h™'(D(s;)) = D(h*s;) = SpecAy;,, (the preimage of a
distinguished open set is a distinguished open set), and 7~ '(D(s;)) = SpecA;.
Now X is quasicompact and quasiseparated by the affine-locality of these notions
(Exercise 8.3.C), so the hypotheses of the Qcqs Lemma 8.3.4 are satisfied. Hence
we have an induced isomorphism of Ay:s, = (X, Ox)nes, = T(Xnss,, Ox) = A4
Thus g induces an isomorphism Spec A; — Spec Ay, (an isomorphism of rings
induces an isomorphism of affine schemes, Exercise 5.3.A). Thus g is an isomor-
phism over each Spec Ay, which cover Spec A, and thus g is an isomorphism.
Hence X = Spec A, so is affine as desired. O

The affine-locality of affine morphisms (Proposition 8.3.3) has some nonobvi-
ous consequences, as shown in the next exercise.

8.3.F. USEFUL EXERCISE. Suppose Z is a closed subset of an affine scheme Spec A
locally cut out by one equation. (In other words, Spec A can be covered by smaller
open sets, and on each such set Z is cut out by one equation.) Show that the
complement Y of Z is affine. (This is clear if Z is globally cut out by one equation
f; then Y = Spec As. However, Z is not always of this form, see Exercise 6.4.N.)
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8.3.6. Finite and integral morphisms.

Before defining finite and integral morphisms, we give an example to keep in
mind. If L/K is a field extension, then SpecL — SpecX (i) is always affine; (ii) is
integral if L/K is algebraic; and (iii) is finite if L/K is finite.

An affine morphism 7 : X — Y is finite if for every affine open set Spec B of
Y, v (Spec B) is the spectrum of a B-algebra that is a finitely generated B-module.
Warning about terminology (finite vs. finitely generated): Recall that if we have a
ring morphism B — A such that A is a finitely generated B-module then we say that
A is a finite B-algebra. This is stronger than being a finitely generated B-algebra.

By definition, finite morphisms are affine.

8.3.G. EXERCISE (THE PROPERTY OF FINITENESS IS AFFINE-LOCAL ON THE TAR-
GET). Show that a morphism 7t : X — Y is finite if there is a cover of Y by affine
open sets Spec A such that 77! (Spec A) is the spectrum of a finite A-algebra.

The following four examples will give you some feeling for finite morphisms.
In each example, you will notice two things. In each case, the maps are always
finite-to-one (as maps of sets). We will verify this in general in Exercise 8.3.K. You
will also notice that the morphisms are closed as maps of topological spaces, i.e.
the images of closed sets are closed. We will show that finite morphisms are always
closed in Exercise 8.3.M (and give a second proof in §9.2.5). Intuitively, you should
think of finite as being closed plus finite fibers, although this isn’t quite true. We
will make this precise later.

Example 1: Branched covers. Consider the morphism Speck[t] — Speck[u]
given by u — p(t), where p(t) € k[t] is a degree n polynomial (see Figure 8.2).
This is finite: k[t] is generated as a k[u]-module by 1, t, 2, ..,

- X X

FIGURE 8.2. The “branched cover” A] — A] of the “u-line” by
the “t-line” given by u +— p(t) is finite

Example 2: Closed embeddings (to be defined soon, in §9.1.1). If I is an ideal of
a ring A, consider the morphism Spec A/l — Spec A given by the obvious map
A — A/I (see Figure 8.3 for an example, with A = k[t], I = (t)). This is a finite
morphism (A/I is generated as a A-module by the element 1 € A/I).

Example 3: Normalization (to be defined in §10.7). Consider the morphism Spec k[t] —
Specklx, yl/(y? —x? —x3) corresponding to klx,yl/(y? — x? —x3) — k[t] given by
x — t2 — 1,y = t3 — t (check that this is a well-defined ring map!), see Figure 8.4.
This is a finite morphism, as k[t] is generated as a (k[x, yl/(y? — x? — x3))-module

by 1 and t. (The figure suggests that this is an isomorphism away from the “node”
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FIGURE 8.3. The “closed embedding” Speck — Speck[t] given
by t — 0 is finite

of the target. You can verify this, by checking that it induces an isomorphism be-
tween D(t?> — 1) in the source and D(x) in the target. We will meet this example
again!)

FIGURE 8.4. The “normalization” Speck[t] — Specklx,yl/(y? —

x? —x3) given by (x,y) — (t* — 1,13 — t) is finite

8.3.H. IMPORTANT EXERCISE (EXAMPLE 4, FINITE MORPHISMS TO Speck). Show
that if X — Speck is a finite morphism, then X is a finite union of points with
the discrete topology, each point with residue field a finite extension of k, see Fig-
ure 8.5. (An example is SpecFs x F4lx,yl/(x?,y*) x F4[tl]/(t7) x F2 — SpecF,.)
Do not just quote some fancy theorem! Possible approach: Show that any integral
domain which is a finite k-algebra must be a field. If X = Spec A, show that ev-
ery prime p of A is maximal. Show that the irreducible components of Spec A are
closed points. Show Spec A is discrete and hence finite. Show that the residue
fields K(A/p) of A are finite field extensions of k. (See Exercise 8.4.C for an exten-
sion to quasifinite morphisms.)

8.3.I1. EASY EXERCISE (CF. EXERCISE 8.2.C). Show that the composition of two
finite morphisms is also finite.

8.3.J. EXERCISE (“FINITE MORPHISMS TO Spec A ARE PROJECTIVE”). If Ris an
A-algebra, define a graded ring S, by So = A, and S, = R for n > 0. (What is the
multiplicative structure? Hint: you know how to multiply elements of R together,
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®© @

FIGURE 8.5. A picture of a finite morphism to Speck. Bigger
fields are depicted as bigger points.

and how to multiply elements of A with elements of R.) Describe an isomorphism
ProjSe = SpecR. Show that if R is a finite A-algebra (finitely generated as an A-
module) then S, is a finitely generated graded ring over A, and hence that SpecR
is a projective A-scheme (§5.5.9).

8.3.K. IMPORTANT EXERCISE. Show that finite morphisms have finite fibers. (This
is a useful exercise, because you will have to figure out how to get at points in a
fiber of a morphism: given t: X — Y, and y € Y, what are the points of ' (y)?
This will be easier to do once we discuss fibers in greater detail, see Remark 10.3.4,
but it will be enlightening to do it now.) Hint: if X = SpecA and Y = SpecB
are both affine, and y = [q], then we can throw out everything in B outside ¥
by modding out by q; show that the preimage is Spec(A/m*qA). Then you have
reduced to the case where Y is the Spec of an integral domain B, and [q] = [(0)] is
the generic point. We can throw out the rest of the points of B by localizing at (0).
Show that the preimage is Spec of A localized at 7#B*. Show that the condition
of finiteness is preserved by the constructions you have done, and thus reduce the
problem to Exercise 8.3.H.

There is more to finiteness than finite fibers, as is shown by the following two
examples.

8.3.7. Example. The open embedding A2 —{(0,0)} — AZ has finite fibers, but is not
affine (as A% — {(0,0)} isn’t affine, §5.4.1) and hence not finite.

8.3.L. EASY EXERCISE. Show that the open embedding Al — {0} — Al has finite
fibers and is affine, but is not finite.

8.3.8. Definition. A morphism 7 : X — Y of schemes is integral if 7 is affine,
and for every affine open subset SpecB C Y, with m~!(SpecB) = SpecA, the in-
duced map B — A is an integral ring morphism. This is an affine-local condition
by Exercises 8.2.A and 8.2.B, and the Affine Communication Lemma 6.3.2. It is
closed under composition by Exercise 8.2.C. Integral morphisms are mostly useful
because finite morphisms are integral by Corollary 8.2.2. Note that the converse
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implication doesn’t hold (witness SpecQ — SpecQ, as discussed after the state-
ment of Corollary 8.2.2).

8.3.M. EXERCISE. Prove that integral morphisms are closed, i.e. that the image
of closed subsets are closed. (Hence finite morphisms are closed. A second proof
will be given in §9.2.5.) Hint: Reduce to the affine case. If ©* : B — A is a ring
map, inducing finite 7t : Spec A — Spec B, then suppose I C A cuts out a closed set
of SpecA, and ] = (7)1 (1), then note that B/J C A/, and apply the Lying Over
Theorem 8.2.5 here.

8.3.N. UNIMPORTANT EXERCISE. Suppose B — A is integral. Show that for any
ring homomorphism B — C, the induced map C — A ®g C is integral. (Hint: We
wish to show thatany Y " | a; ® ¢c; € A ®g C is integral over C. Use the fact that
each of the finitely many a; are integral over B, and then Exercise 8.2.D.) Once we
know what “base change” is, this will imply that the property of integrality of a
morphism is preserved by base change, Exercise 10.4.B(e).

8.3.9. Fibers of integral morphisms. Unlike finite morphisms (Exercise 8.3.K), inte-
gral morphisms don’t always have finite fibers. (Can you think of an example?)
However, once we make sense of fibers as topological spaces (or even schemes) in
§10.3.2, you can check (Exercise 12.1.D) that the fibers have the property that no
point is in the closure of any other point.

8.3.10. Morphisms (locally) of finite type.

A morphism 7t : X — Y is locally of finite type if for every affine open set
SpecB of Y, and every affine open subset Spec A of n~!(SpecB), the induced
morphism B — A expresses A as a finitely generated B-algebra. By the affine-
locality of finite-typeness of B-schemes (Proposition 6.3.3(c)), this is equivalent to:
711 (SpecB) can be covered by affine open subsets Spec A; so that each A; is a
finitely generated B-algebra.

A morphism 7 is of finite type if it is locally of finite type and quasicompact.
Translation: for every affine open set Spec B of Y, 7! (Spec B) can be covered with
a finite number of open sets Spec A so that the induced morphism B — A; expresses
A as a finitely generated B-algebra.

8.3.11. Linguistic side remark. It is a common practice to name properties as follows:
P= locally P plus quasicompact. Two exceptions are “ringed space” (§7.3) and
“finite presentation” (§8.3.14).

8.3.0. EXERCISE (THE NOTIONS “LOCALLY FINITE TYPE” AND “FINITE TYPE” ARE
AFFINE-LOCAL ON THE TARGET). Show that a morphism 7t : X — Y is locally of
finite type if there is a cover of Y by affine open sets Spec B; such that 1~ (Spec By )
is locally finite type over B;.

Example: the “structure morphism” P — Spec A is of finite type, as P} is
covered by n 4+ 1 open sets of the form Spec A[x1, ..., xn].

Our earlier definition of schemes of “finite type over k” (or “finite type k-
schemes”) from §6.3.6 is now a special case of this more general notion: the phrase
“a scheme X is of finite type over k” means that we are given a morphism X —
Speck (the “structure morphism”) that is of finite type.



202 Math 216: Foundations of Algebraic Geometry

Here are some properties enjoyed by morphisms of finite type.

8.3.P. EXERCISE (FINITE = INTEGRAL + FINITE TYPE).
(a) (easier) Show that finite morphisms are of finite type.
(b) Show that a morphism is finite if and only if it is integral and of finite type.

8.3.Q. EXERCISES (NOT HARD, BUT IMPORTANT).

(a) Show that every open embedding is locally of finite type, and hence that
every quasicompact open embedding is of finite type. Show that every
open embedding into a locally Noetherian scheme is of finite type.

(b) Show that the composition of two morphisms locally of finite type is lo-
cally of finite type. (Hence as the composition of two quasicompact mor-
phisms is quasicompact, the composition of two morphisms of finite type
is of finite type.)

(c) Suppose X — Y is locally of finite type, and Y is locally Noetherian. Show
that X is also locally Noetherian. If X — Y is a morphism of finite type,
and Y is Noetherian, show that X is Noetherian.

8.3.12. Definition. A morphism 7t is quasifinite if it is of finite type, and for
ally € Y, w '(y) is a finite set. The main point of this definition is the “finite
fiber” part; the “finite type” hypothesis will ensure that this notion is “preserved
by fibered product,” Exercise 10.4.C.

Combining Exercise 8.3.K with Exercise 8.3.P(a), we see that finite morphisms
are quasifinite. There are quasifinite morphisms which are not finite, such as
A% —{(0,0)} — A? (Example 8.3.7). However, we will soon see that quasifinite
morphisms to Spec k are finite (Exercise 8.4.C). A key example of a morphism with
finite fibers that is not quasifinite is Spec C(t) — SpecC. Another is SpecQ —
Spec Q. (For interesting behavior caused by the fact that Spec Q — Spec Q is not of
finite type, see Warning 10.1.4.)

8.3.13. How to picture quasifinite morphisms. 1f X — Y is a finite morphism, then any
quasi-compact open subset UL C X is quasi-finite over Y. In fact every reasonable
quasifinite morphism arises in this way. (This simple-sounding statement is in
fact a deep and important result — a form of Zariski’s Main Theorem.) Thus the
right way to visualize quasifiniteness is as a finite map with some (closed locus of)
points removed.

8.3.14. » Morphisms (locally) of finite presentation.
There is a variant often useful to non-Noetherian people. A ring A is a finitely
presented B-algebra (or B — A is finitely presented) if

A%B[Xh“-)Xn]/(r1(x1)---)Xﬂ))--')rj(x1)---)xn))

(“A has a finite number of generators and a finite number of relations over B”). If
A is Noetherian, then finitely presented is the same as finite type, as the “finite
number of relations” comes for free, so most of you will not care. A morphism
m : X — Y is locally of finite presentation (or locally finitely presented) if for
each affine open set SpecB of Y, ! (SpecB) = U; Spec A; with B — A; finitely
presented. A morphism is of finite presentation (or finitely presented) if it is
locally of finite presentation and quasiseparated and quasicompact. If X is locally
Noetherian, then locally of finite presentation is the same as locally of finite type,
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and finite presentation is the same as finite type. So if you are a Noetherian person,
you don’t need to worry about this notion.

This definition is a violation of the general principle that erasing “locally” is
the same as adding “quasicompact and” (Remark 8.3.11). But it is well motivated:
finite presentation means “finite in all possible ways” (the ring corresponding to
each affine open set has a finite number of generators, and a finite number of
relations, and a finite number of such affine open sets cover, and their intersections
are also covered by a finite number affine open sets) — it is all you would hope
for in a scheme without it actually being Noetherian. Exercise 10.3.G makes this
precise, and explains how this notion often arises in practice.

8.3.R. EXERCISE. Show that the notion of “locally of finite presentation” is affine-
local on the target.

8.3.S. EXERCISE. Show that the notion of “locally of finite presentation” is affine-
local on the source.

8.3.T. EXERCISE.  Show that the composition of two locally finitely presented
morphisms is finitely presented.

8.4 Images of morphisms: Chevalley’s theorem and elimination
theory

In this section, we will answer a question that you may have wondered about
long before hearing the phrase “algebraic geometry”. If you have a number of
polynomial equations in a number of variables with indeterminate coefficients,
you would reasonably ask what conditions there are on the coefficients for a (com-
mon) solution to exist. Given the algebraic nature of the problem, you might hope
that the answer should be purely algebraic in nature — it shouldn’t be “random”,
or involve bizarre functions like exponentials or cosines. You should expect the an-
swer to be given by “algebraic conditions”. This is indeed the case, and it can be
profitably interpreted as a question about images of maps of varieties or schemes,
in which guise it is answered by Chevalley’s Theorem 8.4.2 (see 8.4.5 for a more
precise proof). Chevalley’s Theorem will give an immediate proof of the Nullstel-
lensatz 4.2.3 (§8.4.3).

In special cases, the image is nicer still. For example, we have seen that fi-
nite morphisms are closed (the image of closed subsets under finite morphisms
are closed, Exercise 8.3.M). We will prove a classical result, the Fundamental The-
orem of Elimination Theory 8.4.7, which essentially generalizes this (as explained
in §9.2.5) to maps from projective space. We will use it repeatedly. In a different
direction, in the distant future we will see that in certain good circumstances (“flat”
plus a bit more, see Exercise 25.5.G), morphisms are open (the image of open sub-
sets is open); one example (which you can try to show directly) is Aj — Spec B.

8.4.1. Chevalley’s theorem.

If T : X — Y is a morphism of schemes, the notion of the image of 7 as sefs is
clear: we just take the points in Y that are the image of points in X. We know that
the image can be open (open embeddings), and we have seen examples where it
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is closed, and more generally, locally closed. But it can be weirder still: consider
the morphism Aﬁ — Ai given by (x,y) — (x,xy). The image is the plane, with
the y-axis removed, but the origin put back in. This isn’t so horrible. We make
a definition to capture this phenomenon. A constructible subset of a Noetherian
topological space is a subset which belongs to the smallest family of subsets such
that (i) every open set is in the family, (ii) a finite intersection of family members
is in the family, and (iii) the complement of a family member is also in the fam-
ily. For example the image of (x,y) — (x,xy) is constructible. (An extension of
the notion of constructibility to more general topological spaces is mentioned in
Exercise 10.3.H.)

8.4.A. EXERCISE: CONSTRUCTIBLE SUBSETS ARE DISJOINT FINITE UNIONS OF LO-
CALLY CLOSED SUBSETS. Recall that a subset of a topological space X is locally
closed if it is the intersection of an open subset and a closed subset. (Equivalently,
it is an open subset of a closed subset, or a closed subset of an open subset. We
will later have trouble extending this to open and closed and locally closed sub-
schemes, see Exercise 9.1.K.) Show that a subset of a Noetherian topological space
X is constructible if and only if it is the finite disjoint union of locally closed sub-
sets. As a consequence, if X — Y is a continuous map of Noetherian topological
spaces, then the preimage of a constructible set is a constructible set.

8.4.B. EXERCISE (USED IN EXERCISE 25.5.G).

(a) Show that a constructible subset of a Noetherian scheme is closed if and only if
it is “stable under specialization”. More precisely, if Z is a constructible subset of a
Noetherian scheme X, then Z is closed if and only if for every pair of points y; and
Yy withyy € y,if y2 € Z, theny; € Z. Hint for the “if” implication: show that Z
can be written as ]_[?:1 Ui N Z; where U; C Xis open and Z; C Xis closed. Show
that Z can be written as ]_[?:] U; N Z; (with possibly different n, U;, Z;) where
each Z; is irreducible and meets U;. Now use “stability under specialization” and
the generic point of Z; to show that Z; C Z for all i, so Z = UZ;.

(b) Show that a constructible subset of a Noetherian scheme is open if and only if
it is “stable under generization”. (Hint: this follows in one line from (a).)

The image of a morphism of schemes can be stranger than a constructible set.
Indeed if S is any subset of a scheme Y, it can be the image of a morphism: let X
be the disjoint union of spectra of the residue fields of all the points of S, and let
7 : X = Y be the natural map. This is quite pathological, but in any reasonable
situation, the image is essentially no worse than arose in the previous example of
(x,u) — (x,xy). This is made precise by Chevalley’s theorem.

8.4.2. Chevalley’s Theorem. — If 7t : X — Y is a finite type morphism of Noetherian
schemes, the image of any constructible set is constructible. In particular, the image of T
is constructible.

(For the minority who might care: see §10.3.6 for an extension to locally finitely
presented morphisms.) We discuss the proof after giving some important conse-
quences that may seem surprising, in that they are algebraic corollaries of a seem-
ingly quite geometric and topological theorem.
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8.4.3. Proof of the Nullstellensatz 4.2.3. The first is a proof of the Nullstellensatz. We
wish to show that if K is a field extension of k that is finitely generated as a ring,
say by x1, ..., xn, then it is a finite field extension. It suffices to show that each
x4 is algebraic over k. But if x; is not algebraic over k, then we have an inclusion
of rings k[x] — K, corresponding to a dominant morphism 7 : SpecK — A} of
finite type k-schemes. Of course SpecK is a single point, so the image of 7t is one
point. But Chevalley’s Theorem 8.4.2 implies that the image of 7 contains a dense

open subset of A], and hence an infinite number of points (see Exercises 4.2.D
and 44.G). O

A similar idea can be used in the following exercise.

8.4.C. EXERCISE (QUASIFINITE MORPHISMS TO A FIELD ARE FINITE). Suppose
7 : X — Speck is a quasifinite morphism. Show that 7 is finite. (Hint: deal first
with the affine case, X = SpecK, where K is finitely generated over k. Suppose
K contains an element x that is not algebraic over k, i.e. we have an inclusion
k[x] — K. Exercise 8.3.H may help.)

8.4.D. EXERCISE (FOR MAPS OF VARIETIES, SURJECTIVITY CAN BE CHECKED ON
CLOSED POINTS). Assume Chevalley’s Theorem 8.4.2. Show that a morphism of
k-varieties 7t : X — Y is surjective if and only if it is surjective on closed points (i.e.
if every closed point of Y is the image of a closed point of X).

In order to prove Chevalley’s Theorem 8.4.2 (in Exercise 8.4.N), we introduce
a useful idea of Grothendieck’s. For the purposes of this discussion only, we say a
B-algebra A satisfies (t) if for each finitely generated A-module M, there exists a
nonzero f € B such that My is a free Bs-module.

8.4.4. Grothendieck’s Generic Freeness Lemma. — Suppose B is a Noetherian
integral domain. Then every finitely generated B-algebra satisfies (7).

Proof. We prove the Generic Freeness Lemma 8.4.4 in a series of exercises. We
assume that B is a Noetherian integral domain until Lemma 8.4.4 is proved, at the
end of Exercise 8.4.].

8.4.E. EXERCISE. Show that B itself satisfies ().

8.4.F. EXERCISE. Reduce the proof of Lemma 8.4.4 to the following statement: if
A is a Noetherian B-algebra satisfying (1), then A[T] does too. (Hint: induct on the
number of generators of A as an B-algebra.)

We now prove this statement. Suppose A satisfies (1), and let M be a finitely
generated A[T]-module, generated by the finite set S. Let M be the sub-A-module
of M generated by S. Inductively define

Mn+1 =My, + TMn»

a sub-A-module of M. Note that M is the increasing union of the A-modules M,,.

8.4.G. EXERCISE. Show that multiplication by T induces a surjection

Pt Mn/Mn_1 = Mpg1/ My,
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8.4.H. EXERCISE. Show that for n > 0, {, is an isomorphism. Hint: use the
ascending chain condition on M.

8.4.1. EXERCISE. Show that there is a nonzero f € B such that (Mi1/M;)s is free
as an Be-module, for all i. Hint: as i varies, Mi41/M; passes through only finitely
many isomorphism classes.

The following result concludes the proof of the Generic Freeness Lemma 8.4.4.

8.4.]. EXERCISE (NOT REQUIRING NOETHERIAN HYPOTHESES). Suppose M is an
B-module that is an increasing union of submodules M;, with My = 0, and that
Mi/M;_; is free. Show that M is free. Hint: first construct compatible isomor-
phisms ¢, : & {M;i/Mi_1 — M,, by induction on n. Then show that the colimit
¢ = lim ¢ : B2 Mi/Mi1 = Mis an isomorphism. More generally, your argu-
ment will show that if the M;/M;_; are all projective, then M is (non-naturally)
isomorphic to their direct sum.

|

We now set up the proof of Chevalley’s Theorem 8.4.2.

8.4.K. EXERCISE. Suppose 7 : X — Y is a finite type morphism of Noetherian
schemes, and Y is irreducible. Show that there is a dense open subset U of Y such
that the image of 7 either contains U or else does not meet U. (Hint: suppose 7 :
Spec A — SpecB is such a morphism. Then by the Generic Freeness Lemma 8.4.4,
there is a nonzero f € B such that A is a free B;-module. It must have zero
rank or positive rank. In the first case, show that the image of 7w does not meet
D(f) C Spec B. In the second case, show that the image of 7 contains D(f).)

There are more direct ways of showing the content of the above hint. For
example, another proof in the case of varieties will turn up in the proof of Proposi-
tion 12.4.1. We only use the Generic Freeness Lemma because we will use it again
in the future (§25.5.8).

8.4.L. EXERCISE. Show that to prove Chevalley’s Theorem, it suffices to prove
that if 7t : X — Y is a finite type morphism of Noetherian schemes, the image of 7t
is constructible.

8.4.M. EXERCISE. Reduce further to the case where Y is affine, say Y = Spec B.
Reduce further to the case where X is affine.

We now give the rest of the proof by waving our hands, and leave it to you
to make it precise. The idea is to use Noetherian induction, and to reduce the
problem to Exercise 8.4.K.

We can deal with each of the components of Y separately, so we may assume
that Y is irreducible. We can then take B to be an integral domain. By Exercise 8.4.K,
there is a dense open subset U of Y where either the image of 7 includes it, or is
disjoint from it. If U = Y, we are done. Otherwise, it suffices to deal with the
complement of U. Renaming this complement Y, we return to the start of the
paragraph.

8.4.N. EXERCISE. Complete the proof of Chevalley’s Theorem 8.4.2, by making
the above argument precise.
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8.4.5. x Elimination of quantifiers. A basic sort of question that arises in any
number of contexts is when a system of equations has a solution. Suppose for
example you have some polynomials in variables x1, ..., xn over an algebraically
closed field k, some of which you set to be zero, and some of which you set to
be nonzero. (This question is of fundamental interest even before you know any
scheme theory!) Then there is an algebraic condition on the coefficients which will
tell you if there is a solution. Define the Zariski topology on k" in the obvious way:
closed subsets are cut out by equations.

8.4.0. EXERCISE (ELIMINATION OF QUANTIFIERS, OVER AN ALGEBRAICALLY CLOSED
FIELD). Fix an algebraically closed field k. Suppose

f1,...,fp,g1,...,gq 6E[A1,...,Am,X],...Xn]

are given. Show that there is a (Zariski-)constructible subset Y of k™ such that

(8.4.5.1) filar,...;am, X1,..., Xp) = =Tfplar,...,am, X1,..., Xn) =0
and

(84.52) gilar,...,am,X1,...,Xn) #0 -+ gplar,...,am, X1,...,Xn) #0
has a solution (Xj,...,X,) = (x1,...,x3) € k" if and only if (as,...,am) € Y.

Hints: if Z is a finite type scheme over k, and the closed points are denoted Z

“cl” is for either “closed” or “classical”), then under the inclusion of topological
spaces Z< — Z, the Zariski topology on Z induces the Zariski topology on Z°.
Note that we can identify ( A%)d with k" by the Nullstellensatz (Exercise 6.3.D). If
X is the locally closed subset of A™*™ cut out by the equalities and inequalities
(8.4.5.1) and (8.4.5.2), we have the diagram

xclc XC loc. Cl‘; Amtn

nCI\L lﬂ /
K s Am
where Y = im =<l By Chevalley’s theorem 8.4.2, im 7t is constructible, and hence

so is (im ) N k™. It remains to show that (im ) N KM =Y (= im 7). You might
use the Nullstellensatz.

This is called “elimination of quantifiers” because it gets rid of the quantifier
“there exists a solution”. The analogous statement for real numbers, where inequal-
ities are also allowed, is a special case of Tarski’s celebrated theorem of elimination
of quantifiers for real closed fields.

8.4.6. The Fundamental Theorem of Elimination Theory.
In the case of projective space (and later, projective morphisms), one can do
better than Chevalley.

8.4.7. Theorem (Fundamental Theorem of Elimination Theory). — The morphism
7t: P — Spec A is closed (sends closed sets to closed sets).

Note that no Noetherian hypotheses are needed.
A great deal of classical algebra and geometry is contained in this theorem as
special cases. Here are some examples.
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First, let A = k[a, b, c,...,1], and consider the closed subset of ]P’f\ (taken with
coordinates x, y, z) corresponding to ax+by+cz = 0, dx+ey+fz = 0, gx+hy+iz =
0. Then we are looking for the locus in Spec A where these equations have a non-
trivial solution. This indeed corresponds to a Zariski-closed set — where

a b c
det|{d e f]=0.
g h i

Thus the idea of the determinant is embedded in elimination theory.

As a second example, let A = k[ag, a1, ...,am,bo,b1,...,bn]. Now consider
the closed subset of P}, (taken with coordinates x and y) corresponding to apx™ +
arx™ 'y +-- F+anpy™ =0and box™ +b1x™ 'y +---+bry™ = 0. Then thereis a
polynomial in the coefficients ay, ..., bn (an element of A) which vanishes if and
only if these two polynomials have a common nonzero root — this polynomial is
called the resultant.

More generally, this question boils down to the following question. Given a
number of homogeneous equations in n + 1 variables with indeterminate coeffi-
cients, Theorem 8.4.7 implies that one can write down equations in the coefficients
that precisely determine when the equations have a nontrivial solution.

8.4.8. Proof of the Fundamental Theorem of Elimination Theory 8.4.7. Suppose Z — P
is a closed subset. We wish to show that 7t(Z) is closed. (See Figure 8.6.)

z ly P
e
D(f)
Spec A
C i > P
Yy
FIGURE 8.6.

Suppose y ¢ m(Z) is a closed point of Spec A. We will check that there is a
distinguished open neighborhood D(f) of y in Spec A such that D(f) doesn’t meet
n(Z). (If we could show this for all points of Spec A, we would be done. But I
prefer to concentrate on closed points first for simplicity.) Suppose y corresponds
to the maximal ideal m of A. We seek f € A — m such that n*f vanishes on Z.

Let Uy, ..., Uy, be the usual affine open cover of P;. The closed subsets 'y
and Z do not intersect. On the affine open set U;, we have two closed subsets
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Z N U; and 7'y N U; that do not intersect, which means that the ideals corre-
sponding to the two closed sets generate the unit ideal, so in the ring of functions

Alxo i, X1 /iy -+ Xn/il/ (%11 — 1) on Uj, we can write
T=ai+ ) migy
where my; € m, and a; vanishes on Z. Note that ai, gi; € Alxo i, ..., Xn/il/(Xi/1 —

1), so by multiplying by a sufficiently high power xN of x;, we have an equality

X =al+ Z miigi/j
in S¢ = Alxo, ..., Xn]. We may take N large enough so that it works for all 1. Thus
for N’ sufficiently large, we can write any monomial in xp, ..., xn of degree N’ as
something vanishing on Z plus a linear combination of elements of m times other
polynomials. Hence

Sny =I(Z)n: +mSn-
where 1(Z), is the graded ideal of functions vanishing on Z. By Nakayama’s
lemma (version 1, Lemma 8.2.8), taking M = Sn//I(Z)n/, we see that there ex-
ists f € A — m such that

fSne C I(Z)N/

Thus we have found our desired f.

We now tackle Theorem 8.4.7 in general, by simply extending the above argu-
ment so that y need not be a closed point. Suppose y = [p] not in the image of
Z. Applying the above argument in Spec A, we find Sny ® Ay = [(Z)n: @ Ay +
mSns ® Ay, from which g(Sn//I(Z)n/) ® Ay, = 0 for some g € A, — pA,, from
which (Sn//I(Z)n7) ® Ay = 0. As Sy is a finitely generated A-module, there
is some f € A — p with fSy C I(Z) (if the module-generators of Sy are hy, ...,
hg, and fy, ..., f4 are annihilate the generators hy, ..., hy, respectively, then take
f =[] fi), so once again we have found D(f) containing p, with (the pullback of) f
vanishing on Z. O

Notice that projectivity was crucial to the proof: we used graded rings in an
essential way.






CHAPTER 9

Closed embeddings and related notions

9.1 Closed embeddings and closed subschemes

The scheme-theoretic analogue of closed subsets has a surprisingly different
flavor from the analogue of open sets (open embeddings). However, just as open
embeddings (the scheme-theoretic version of open set) are locally modeled on
open sets U C Y, the analogue of closed subsets also has a local model. This
was foreshadowed by our understanding of closed subsets of Spec B as roughly
corresponding to ideals. If I C B is an ideal, then SpecB/I — SpecB is a mor-
phism of schemes, and we have checked that on the level of topological spaces,
this describes SpecB/I as a closed subset of Spec B, with the subspace topology
(Exercise 4.4.1). This morphism is our “local model” of a closed embedding.

9.1.1. Definition. A morphism 7 : X — Y is a closed embedding (or closed im-
mersion) if it is an affine morphism, and for every affine open subset SpecB C Y,
with 7171 (Spec B) = Spec A, the map B — A is surjective (i.e. of the form B — B/I,
our desired local model). If X is a subset of Y (and f on the level of sets is the inclu-
sion), we say that X is a closed subscheme of Y. The difference between a closed
embedding and a closed subscheme is confusing and unimportant; the same issue
for open embeddings/subschemes was discussed in §8.1.1. The symbol — often
is used to indicate that a morphism is a closed embedding (or more generally, a
locally closed embedding, §9.1.2.)

9.1.A. EASY EXERCISE. Show that closed embeddings are finite, hence of finite
type.

9.1.B. EASY EXERCISE. Show that the composition of two closed embeddings is a
closed embedding.

9.1.C. EXERCISE. Show that the property of being a closed embedding is affine-
local on the target.

9.1.D. EXERCISE. Suppose B — A is a surjection of rings. Show that the induced
morphism Spec A — SpecB is a closed embedding. (Our definition would be a
terrible one if this were not true!)

A closed embedding 7 : X — Y determines an ideal sheaf on Y, as the kernel
Fx v of the map of Oy-modules

ﬁy — ﬂ*ﬁx.

211
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An ideal sheaf on Y is what it sounds like: it is a sheaf of ideals. It is a sub-
Oy-module .# of Oy. On each open subset, it gives an ideal .#(U) of the ring
Oy(U). We thus have an exact sequence (of Oy-modules) 0 — Ix,y — Oy —
m.Ox — 0. (On SpecB, the epimorphism 0y — 7,0 is the surjection B — A of
Definition 9.1.1.)

Thus for each affine open subset SpecB — Y, we have an ideal I(B) C B,
and we can recover X from this information: the I(B) (as Spec B < Y varies over
the affine open subsets) defines an &-module on the base, hence an Jy-module
on Y, and the cokernel of .¢ — Oy is Ox. It will be useful to understand when
the information of the I(B) (for all affine opens Spec B — Y) actually determines
a closed subscheme. Our life is complicated by the fact that the answer is “not
always”, as shown by the following example.

9.1.E. UNIMPORTANT EXERCISE. Let X = Speck[x](y), the germ of the affine line at
the origin, which has two points, the closed point and the generic point 1. Define
F(X) =1{0} € Ox(X) = kIx](x), and .#(n) = k(x) = Ox(n). Show that this sheaf
of ideals does not correspond to a closed subscheme. (Possible approach: do the
next exercise first.)

The next exercise gives a necessary condition.

9.1.F. EXERCISE. Suppose .#x v is a sheaf of ideals corresponding to a closed
embedding X — Y. Suppose Spec B — Y is an affine open subscheme, and f € B.
Show that the natural map I(B)¢ — I(B¢) is an isomorphism. (First state what the
“natural map” is!)

It is an important and useful fact that this is sufficient:

9.1.G. ESSENTIAL (HARD) EXERCISE: A USEFUL CRITERION FOR WHEN IDEALS IN
AFFINE OPEN SETS DEFINE A CLOSED SUBSCHEME. Suppose Y is a scheme, and for
each affine open subset SpecB of Y, I(B) C B is an ideal. Suppose further that for
each affine open subset Spec B — Y and each f € B, restriction of functions from
B — B¢ induces an isomorphism I(B¢) = I(B)¢. Show that these data arises from a
(unique) closed subscheme X < Y by the above construction. In other words, the
closed embeddings Spec B/I — Spec B glue together in a well-defined manner to
obtain a closed embedding X — Y.

This is a hard exercise, so as a hint, here are three different ways of proceed-
ing; some combination of them may work for you. Approach 1. For each affine
open Spec B, we have a closed subscheme SpecB/I — SpecB. (i) For any two
affine open subschemes Spec A and Spec B, show that the two closed subschemes
Spec A/I(A) — Spec A and Spec B/I(B) — Spec B restrict to the same closed sub-
scheme of their intersection. (Hint: cover their intersection with open sets simulta-
neously distinguished in both affine open sets, Proposition 6.3.1.) Thus for exam-
ple we can glue these two closed subschemes together to get a closed subscheme
of Spec A U Spec B. (ii) Use Exercise 5.4.A on gluing schemes (or the ideas therein)
to glue together the closed embeddings in all affine open subschemes simultane-
ously. You will only need to worry about triple intersections. Approach 2. (i) Use
the data of the ideals I(B) to define a sheaf of ideals .# — ¢&. (ii) For each affine
open subscheme Spec B, show that .# (Spec B) is indeed I(B), and (&/.#)(Spec B)
is indeed B/I(B), so the data of .# recovers the closed subscheme on each Spec B
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as desired. Approach 3. (i) Describe X first as a subset of Y. (ii) Check that X is
closed. (iii) Define the sheaf of functions €x on this subset, perhaps using compat-
ible stalks. (iv) Check that this resulting ringed space is indeed locally the closed
subscheme given by Spec B/I — Spec B.)

We will see later (§14.5.6) that closed subschemes correspond to quasicoherent
sheaves of ideals; the mathematical content of this statement will turn out to be
precisely Exercise 9.1.G.

9.1.H. IMPORTANT EXERCISE.

(a) In analogy with closed subsets, define the notion of a finite union of closed
subschemes of X, and an arbitrary (not necessarily finite) intersection of closed
subschemes of X. (Exercise 9.1.G may help.)

(b) Describe the scheme-theoretic intersection of V(y — x?) and V(y) in A2. See
Figure 5.5 for a picture. (For example, explain informally how this corresponds
to two curves meeting at a single point with multiplicity 2 — notice how the 2 is
visible in your answer. Alternatively, what is the nonreducedness telling you —
both its “size” and its “direction”?) Describe their scheme-theoretic union.

(c) Show that the underlying set of a finite union of closed subschemes is the finite
union of the underlying sets, and similarly for arbitrary intersections.

(d) Describe the scheme-theoretic intersection of V(y? —x?) and V(y) in A?. Draw
a picture. (Did you expect the intersection to have multiplicity one or multiplicity
two?) Hence show that if X, Y, and Z are closed subschemes of W, then (XN Z) U
(YNZ)# (XUY)NZin general.

9.1.1. IMPORTANT EXERCISE / DEFINITION: THE VANISHING SCHEME.

(a) Suppose Y is a scheme, and s € I'(Oy, Y). Define the closed scheme cut out by s.
We call this the vanishing scheme V(s) of s, as it is the scheme-theoretic version of
our earlier (set-theoretical) version of V(s) (§4.4). (Hint: on affine open Spec B, we
just take Spec B/(sg ), where sg is the restriction of s to Spec B. Use Exercise 9.1.G
to show that this yields a well-defined closed subscheme.)

(b) If u is an invertible function, show that V(s) = V(su).

(c) If S is a set of functions, define V(S). In Exercise 9.1.H(b), you are computing

V(y —x%,y).

9.1.J. x HARD EXERCISE (NOT USED LATER). In the literature, the usual definition
of a closed embedding is a morphism 7t : X — Y such that f induces a homeo-
morphism of the underlying topological space of X onto a closed subset of the
topological space of Y, and the induced map 7* : &y — m.0x of sheaves on Y is
surjective. Show that this definition agrees with the one given above. (To show
that our definition involving surjectivity on the level of affine open sets implies
this definition, you can use the fact that surjectivity of a morphism of sheaves can
be checked on a base, Exercise 3.7.E.)

We have now defined the analogue of open subsets and closed subsets in the
land of schemes. Their definition is slightly less “symmetric” than in the classical
topological setting: the “complement” of a closed subscheme is a unique open
subscheme, but there are many “complementary” closed subschemes to a given
open subscheme in general. (We will soon define one that is “best”, that has a
reduced structure, §9.3.8.)
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9.1.2. Locally closed embeddings and locally closed subschemes.

Now that we have defined analogues of open and closed subsets, it is natural
to define the analogue of locally closed subsets. Recall that locally closed subsets
are intersections of open subsets and closed subsets. Hence they are closed subsets
of open subsets, or equivalently open subsets of closed subsets. The analog of
these equivalences will be a little problematic in the land of schemes.

We say a morphism h : X — Y is a locally closed embedding (or locally

closed immersion) if h can factored into X — 1~ 72 .Y where fis a closed
embedding and g is an open embedding. If X is a subset of Y (and h on the level
of sets is the inclusion), we say X is a locally closed subscheme of Y. (Warning;:
The term immersion is often used instead of locally closed embedding or locally closed
immersion, but this is unwise terminology. The differential geometric notion of
immersion is closer to what algebraic geometers call unramified, which we will
define in §22.5. The naked term embedding should be avoided, because it is not
precise.) The symbol — is often used to indicate that a morphism is a locally
closed embedding.

For example, the morphism Speck[t,t~'] — Speck[x,y] given by (x,y) —
(t,0) is a locally closed embedding (Figure 9.1).

FIGURE 9.1. The locally closed embedding Specklt,t™'] —
Specklx,yl (t — (t,0) = (x,y), ie. (x,y) = (t,0))

At this point, you could define the intersection of two locally closed embed-
dings in a scheme X (which will also be a locally closed embedding in X). But
it would be awkward, as you would have to show that your construction is in-
dependent of the factorizations of each locally closed embedding into a closed
embedding and an open embedding. Instead, we wait until Exercise 10.2.C, when
recognizing the intersection as a fibered product will make this easier.

Clearly an open subscheme U of a closed subscheme V of X can be interpreted
as a closed subscheme of an open subscheme: as the topology on V is induced
from the topology on X, the underlying set of U is the intersection of some open
subset U’ on X with V. We can take V' = VN U/, and then V' — U’ is a closed
embedding, and U’ — X is an open embedding.
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It is not clear that a closed subscheme V'’ of an open subscheme U’ can be
expressed as an open subscheme of a closed subscheme V. In the category of
topological spaces, we would take V as the closure of V’, so we are now motivated
to define the analogous construction, which will give us an excuse to introduce
several related ideas, in §9.3. We will then resolve this issue in good cases (e.g. if X
is Noetherian) in Exercise 9.3.C.

We formalize our discussion in an exercise.

9.1.K. EXERCISE. Suppose V — X is a morphism. Consider three conditions:

(i) V is the intersection of an open subscheme of X and a closed subscheme
of X (you will have to define the meaning of “intersection” here, see Ex-
ercise 8.1.B, or else see the hint below).

(if) V is an open subscheme of a closed subscheme of X, i.e. it factors into an
open embedding followed by a closed embedding.

(iii) V is a closed subscheme of an open subscheme of X, i.e. V is a locally
closed embedding.

Show that (i) and (ii) are equivalent, and both imply (iii). (Remark: (iii) does not
always imply (i) and (ii), see the pathological example [Stacks, tag 01QW].) Hint:
It may be helpful to think of the problem as follows. You might hope to think of a
locally closed embedding as a fibered diagram

open emb.

Ve— =K
closed emb. closed emb.

ue—————=x.

open emb.

Interpret (i) as the existence of the diagram. Interpret (ii) as this diagram minus
the lower left corner. Interpret (iii) as the diagram minus the upper right corner.

9.1.L. EXERCISE. Show that the composition of two locally closed embeddings is
a locally closed embedding. (Hint: you might use (ii) implies (iii) in the previous
exercise.)

9.1.3. Unimportant remark. It may feel odd that in the definition of a locally closed
embeddings, we had to make a choice (as a composition of a closed embedding
followed by an open embedding, rather than vice versa), but this type of issue
comes up earlier: a subquotient of a group can be defined as the quotient of a sub-
group, or a subgroup of a quotient. Which is the right definition? Or are they the
same? (Hint: compositions of two subquotients should certainly be a subquotient,
cf. Exercise 9.1.L.)

9.2 More projective geometry

We now interpret closed embeddings in terms of graded rings. Don’t worry;
most of the annoying foundational discussion of graded rings is complete, and we
now just take advantage of our earlier work.
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9.2.1. Example: Closed embeddings in projective space P%. Recall the definition
of projective space Py given in §5.4.10 (and the terminology defined there). Any
homogeneous polynomial f in Xy, ..., xn defines a closed subscheme. (Thus even if
f doesn’t make sense as a function, its vanishing scheme still makes sense.) On
the open set U;, the closed subscheme is V(f(x¢/1,...,%n/i)), which we privately

think of as V(f(xo, . .. ,xn)/xfegf). On the overlap
U; NUj = SpecAlxg i, - - - ,Xn/i,X;/]i]/(Xi/i —1),

these functions on U; and U; don’t exactly agree, but they agree up to a non-
vanishing scalar, and hence cut out the same closed subscheme of U; N U; (Ex-
ercise 9.1.1(b)):

deg f
f(XO/i)---aXn/i) ZX]-;% f(Xo/j,...,Xn/j).

Similarly, a collection of homogeneous polynomials in Alxo,...,xn] cuts out a
closed subscheme of Py .

9.2.2. Definition. A closed subscheme cut out by a single (homogeneous) equation
is called a hypersurface in P;. A hypersurface is locally principal. Of course, a
hypersurface is not in general cut out by a single global function on P}: if A =k,
there are no nonconstant global functions (Exercise 5.4.E). The degree of a hyper-
surface is the degree of the polynomial. (Implicit in this is that this notion can
be determined from the subscheme itself; we won’t really know this until Exer-
cise 19.5.H.) A hypersurface of degree 1 (resp. degree 2, 3, ...) is called a hyper-
plane (resp. quadric, cubic, quartic, quintic, sextic, septic, octic, ... hypersurface).
If n = 2, a degree 1 hypersurface is called a line, and a degree 2 hypersurface is
called a conic curve, or a conic for short. If n = 3, a hypersurface is called a
surface. (In Chapter 12, we will justify the terms curve and surface.)

9.2.A. EXERCISE.

(a) Show that wz = xy,x?> = wy,y? = xz describes an irreducible subscheme in
IPi. In fact it is a curve, a notion we will define once we know what dimension
is. This curve is called the twisted cubic. (The twisted cubic is a good non-trivial
example of many things, so you should make friends with it as soon as possible.
It implicitly appeared earlier in Exercise 4.6.F.)

(b) Show that the twisted cubic is isomorphic to P}.

We now extend this discussion to projective schemes in general.

9.2.B. EXERCISE. Suppose that S, —= R, is a surjection of graded rings. Show
that the induced morphism ProjR, — Proj S, (Exercise 7.4.A) is a closed embed-
ding.

9.2.C. EXERCISE (CONVERSE TO EXERCISE 9.2.B). Suppose X — Proj S, is a closed
embedding in a projective A-scheme (where S, is a finitely generated graded A-
algebra). Show that X is projective by describing it as Proj(S./I), where I is a
homogeneous ideal, of “projective functions” vanishing on X.

9.2.D. EXERCISE.  Show that an injective linear map of k-vector spaces V —
W induces a closed embedding PV — PW. (This is another justification for the
definition of PV in Example 5.5.12 in terms of the dual of V.)
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9.2.3. Definition. This closed subscheme is called a linear space. Once we know
about dimension, we will call this closed subscheme a linear space of dimension
dimV — 1 = dimPV. A linear space of dimension 1 (resp. 2, n, dimPW — 1) is
called a line (resp. plane, n-plane, hyperplane). (If the linear map in the previous
exercise is not injective, then the hypothesis (7.4.0.1) of Exercise 7.4.A fails.)

9.2.E. EXERCISE (A SPECIAL CASE OF BEZOUT’S THEOREM). Suppose X C P} is
a degree d hypersurface cut out by f = 0, and L is a line not contained in X. A
very special case of Bézout’s theorem (Exercise 19.5.K) implies that X and L meet
with multiplicity d, “counted correctly”. Make sense of this, by restricting the
homogeneous degree d polynomial f to the line L, and using the fact that a degree
d polynomial in k[x] has d roots, counted properly. (If it makes you feel better,
assume k = k.)

9.2.F. EXERCISE. Show that the map of graded rings k[w, x,y, z] — ks, t] given by
(w,%,y,z) — (s3,s%t,st?,t3) induces a closed embedding P} < P3, which yields
an isomorphism of IED]]< with the twisted cubic (defined in Exercise 9.2.A — in fact,
this will solve Exercise 9.2.A(b)).

9.2.4. A particularly nice case: when S, is generated in degree 1.

Suppose S, is a finitely generated graded ring generated in degree 1. Then
S1 is a finitely generated So-module, and the irrelevant ideal S, is generated in
degree 1 (cf. Exercise 5.5.D(a)).

9.2.G. EXERCISE. Show thatif S, is generated (as an A-algebra) in degree 1 by n+1
elements X, . . ., Xxn, then Proj S, may be described as a closed subscheme of P} as
follows. Consider A®("t1) a5 a free module with generators to, ..., tn associated
to xo, ..., xn. The surjection of

Sym® A9+ = Aftg, t1,...,tn] — S,

implies So = Alto, t1,...tnl/I, where I is a homogeneous ideal. (In particular, by
Exercise 7.4.G, Proj S, can always be interpreted as a closed subscheme of some
P%.)

This is analogous to the fact that if R is a finitely generated A-algebra, then
choosing 1 generators of R as an algebra is the same as describing SpecR as a
closed subscheme of A%. In the affine case this is “choosing coordinates”; in the
projective case this is “choosing projective coordinates”.

For example, Projk[x,y,zl/(z> — x> — y?) is a closed subscheme of PZ. (A
picture is shown in Figure 9.3.)

Recall (Exercise 5.4.F) that if k is algebraically closed, then we can interpret the
closed points of P™ as the lines through the origin in (n + 1)-space. The following

exercise states this more generally.
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9.2.H. EXERCISE. Suppose S, is a finitely generated graded ring over an alge-
braically closed field k, generated in degree 1 by xo, ..., Xn, inducing closed em-
beddings ProjS. < P™ and SpecS, < A™"'. Give a bijection between the closed
points of Proj S, and the “lines through the origin” in Spec S, C A™*1.

9.2.5. A second proof that finite morphisms are closed. This interpretation of Proj S, as
a closed subscheme of projective space (wWhen it is generated in degree 1) yields the
following second proof of the fact (shown in Exercise 8.3.M) that finite morphisms
are closed. Suppose ¢ : X — Y is a finite morphism. The question is local on the
target, so it suffices to consider the affine case Y = Spec B. It suffices to show that
¢ (X) is closed. Then by Exercise 8.3.], X is a projective B-scheme, and hence by the
Fundamental Theorem of Elimination Theory 8.4.7, its image is closed.

9.2.6. Important classical construction: The Veronese embedding.
Suppose Se = klx,yl, so ProjS, = P}. Then Szs = k[x?,xy,y?] C klx,y] (see
§7.4.3 on the Veronese subring). We identify this subring as follows.

9.2.I. EXERCISE. Letu = x?,v = xy, w = y2. Show that S, = k[u, v, w]/(uw—v?).

We have a graded ring generated by three elements in degree 1. Thus we think
of it as sitting “in” P2, via the construction of §9.2.G. This can be interpreted as “P'
as a conic in P?”.

9.2.7. Thus if k is algebraically closed of characteristic not 2, using the fact that we
can diagonalize quadrics (Exercise 6.4.]), the conics in P?, up to change of coordi-
nates, come in only a few flavors: sums of 3 squares (e.g. our conic of the previous
exercise), sums of 2 squares (e.g. y? — x* = 0, the union of 2 lines), a single square
(e.g. xZ = 0, which looks set-theoretically like a line, and is nonreduced), and 0
(perhaps not a conic at all). Thus we have proved: any plane conic (over an alge-
braically closed field of characteristic not 2) that can be written as the sum of three
nonzero squares is isomorphic to P'. (See Exercise 7.5.E for a closely related fact.)
We now soup up this example.

9.2.]J. EXERCISE. Show that Proj Sq. is given by the equations that

( Yo Y1 - Ya )
Y Yz -+ Ya
is rank 1 (i.e. that all the 2 x 2 minors vanish). This is called the degree d rational

normal curve “in” P4. You did the twisted cubic case d = 3 in Exercises 9.2.A and
9.2.F.

9.2.8. Definition. More generally, if S¢ = K[xo,...,Xn], then ProjS4e C PN

(where N is the dimension of the vector space of homogeneous degree d polynomi-
alsin xo, ..., Xn) is called the d-uple embedding or d-uple Veronese embedding.
The reason for the word “embedding” is historical; we really mean closed embed-
ding. (Combining Exercise 7.4.E with Exercise 9.2.G shows that Proj S, — PN~ is
a closed embedding.)

n+d).

9.2.K. COMBINATORIAL EXERCISE (CF. REMARK 5.5.3). Show that N = ( a
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9.2.L. UNIMPORTANT EXERCISE. Find six linearly independent quadric equations
vanishing on the Veronese surface ProjS,, where S, = k[xo, x1,%2], which sits
naturally in P°. (You needn’t show that these equations generate all the equations
cutting out the Veronese surface, although this is in fact true.) Possible hint: use
the identity

XoXo Xo0X1 X0X2

det | x1x0 x1X1 X1X2 =0.
X2X0 X2X1 X2X2

9.2.9. Rulings on the quadric surface. We return to rulings on the quadric surface,
which first appeared in the optional (starred) section §5.4.12.

9.2.M. USEFUL GEOMETRIC EXERCISE: THE RULINGS ON THE QUADRIC SURFACE
wz = xy. This exercise is about the lines on the quadric surface wz —xy = 0in P}
(where the projective coordinates on P} are ordered w, x, y, z). This construction
arises all over the place in nature.

(a) Suppose ap and by are elements of k, not both zero. Make sense of the state-
ment: as [c, d] variesin P!, [agc, boc, apd, bod] is a line in the quadric surface. (This
describes “a family of lines parametrized by P'”, although we can’t yet make this
precise.) Find another family of lines. These are the two rulings of the quadric
surface.

(b) Show there are no other lines. (There are many ways of proceeding. At risk
of predisposing you to one approach, here is a germ of an idea. Suppose L is a
line on the quadric surface, and [1,x,y,z] and [1,x’,y’, z'] are distinct points on
it. Because they are both on the quadric, z = xy and z" = x"y’. Because all of L
is on the quadric, (1 + t)(z + tz') — (x + tx')(y + ty’) = 0 for all t. After some
algebraic manipulation, this translates into (x — x’)(y —y’) = 0. How can this be
made watertight? Another possible approach uses Bézout’s theorem, in the form
of Exercise 9.2.E.)

Hence by Exercise 6.4.], if we are working over an algebraically closed field
of characteristic not 2, we have shown that all rank 4 quadric surfaces have two
rulings of lines. (In Example 10.6.2, we will recognize this quadric as P! x P'.)

9.2.10. Weighted projective space. If we put a non-standard weighting on the
variables of k[x1,...,xn] — say we give x; degree d; — then Projk[xs,...,xn] is
called weighted projective space P(d;, da,...,dn).

9.2.N. EXERCISE. Show that P(m,n) is isomorphic to P'. Show that P(1,1,2) =
Proj k[u,v,w, z]/(uw — v?). Hint: do this by looking at the even-graded parts of
klxo,x1,x2], cf. Exercise 7.4.D. (This is a projective cone over a conic curve. Over a
field of characteristic not 2, it is isomorphic to the traditional cone x?2 +y?2 =2z%in
PP, Figure 9.3.)

9.2.11. Affine and projective cones.

If S, is a finitely generated graded ring, then the affine cone of ProjS, is
SpecS,. Note that this construction depends on S,, not just on ProjS,. As mo-
tivation, consider the graded ring S. = Clx,y,zl/(z* — x*> — y?). Figure 9.3 is a
sketch of Spec S.. (Here we draw the “real picture” of z2 = x? + y2 in R3.) Itis a
cone in the traditional sense; the origin (0, 0, 0) is the “cone point”.
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FIGURE 9.2. The two rulings on the quadric surface V(wz—xy) C
3. One ruling contains the line V(w, x) and the other contains the

line V(w,y).

FIGURE 9.3. The cone Specklx,y,zl/(z* — x* —y?).

This gives a useful way of picturing Proj (even over arbitrary rings, not just
C). Intuitively, you could imagine that if you discarded the origin, you would
get something that would project onto Proj S.. The following exercise makes that
precise.

9.2.0. EXERCISE (CF. EXERCISE 7.3.E). If Proj S, is a projective scheme over a field
k, describe a natural morphism SpecS, \ V(S4+) — ProjS.. (Can you see why
V(S ) is a single point, and should reasonably be called the origin?)

This readily generalizes to the following exercise, which again motivates the
terminology “irrelevant”.

9.2.P. EASY EXERCISE. If S, is a finitely generated graded ring, describe a natural
morphism Spec S, \ V(S1) — ProjS..
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In fact, it can be made precise that Proj S, is the quotient (by the multiplicative
group of scalars) of the affine cone minus the origin.

9.2.12. Definition. The projective cone of Proj S, is Proj S.[T], where T is a new vari-
able of degree 1. For example, the cone corresponding to the conic Proj k([x, y, zl/ (22—
x? —y?) is Projklx,y, z, T1/(z* — x* — y?2). The projective cone is sometimes called

the projective completion of SpecS,.

9.2.Q. LESS IMPORTANT EXERCISE (CF. §5.5.1). Show that the “projective cone”
Proj S[T] of Proj S, has a closed subscheme isomorphic to Proj S, (informally, cor-
responding to T = 0), whose complement (the distinguished open set D(T)) is
isomorphic to the affine cone Spec S,.

This construction can be usefully pictured as the affine cone union some points
“at infinity”, and the points at infinity form the Proj. The reader may wish to
ponder Figure 9.3, and try to visualize the conic curve “at infinity”.

We have thus completely described the algebraic analogue of the classical pic-
ture of 5.5.1.

9.3 Smallest closed subschemes such that ...

We now define a series of notions that are all of the form “the smallest closed
subscheme such that something or other is true”. One example will be the notion
of scheme-theoretic closure of a locally closed embedding, which will allow us
to interpret locally closed embeddings in three equivalent ways (open subscheme
intersect closed subscheme; open subscheme of closed subscheme; and closed sub-
scheme of open subscheme — cf. Exercise 9.1.K).

9.3.1. Scheme-theoretic image.

We start with the notion of scheme-theoretic image. Set-theoretic images are
badly behaved in general (§8.4.1), and even with reasonable hypotheses such as
those in Chevalley’s theorem 8.4.2, things can be confusing. For example, there
is no reasonable way to impose a scheme structure on the image of AZ — A?
given by (x,y) — (x,xy). It will be useful (e.g. Exercise 9.3.C) to define a notion
of a closed subscheme of the target that “best approximates” the image. This will
incorporate the notion that the image of something with nonreduced structure
(“fuzz”) can also have nonreduced structure. As usual, we will need to impose
reasonable hypotheses to make this notion behave well (see Theorem 9.3.4 and
Corollary 9.3.5).

9.3.2. Definition. Suppose i : Z — Y is a closed subscheme, giving an exact
sequence 0 — Iz ,y — Oy — 1,07 — 0. We say that the image of f : X — Y lies
in Z if the composition .77 ,y — Oy — f,0x is zero. Informally, locally, functions
vanishing on Z pull back to the zero function on X. If the image of f lies in some
subschemes Z; (as i runs over some index set), it clearly lies in their intersection
(cf. Exercise 9.1.H(a) on intersections of closed subschemes). We then define the
scheme-theoretic image of f, a closed subscheme of Y, as the “smallest closed
subscheme containing the image”, i.e. the intersection of all closed subschemes
containing the image. In particular (and in our first examples), if Y is affine, the
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scheme-theoretic image is cut out by functions on Y that are 0 when pulled back to
X.

Example 1. Consider Speckl[e]/(e?) — Speck[x] = A] given by x — €. Then
the scheme-theoretic image is given by Speck(x]/(x?) (the polynomials pulling
back to 0 are precisely multiples of x?). Thus the image of the fuzzy point still has
some fuzz.

Example 2. Consider f : Speckle]/(e?) — Speckl[x] = A] given by x — 0.
Then the scheme-theoretic image is given by k[x]/x: the image is reduced. In this
picture, the fuzz is “collapsed” by f.

Example 3. Consider f : Speck[t,t~'] = A' — {0} — A' = Speck[u] given by
u — t. Any function g(u) which pulls back to 0 as a function of t must be the
zero-function. Thus the scheme-theoretic image is everything. The set-theoretic
image, on the other hand, is the distinguished open set A' —{0}. Thus in not-too-
pathological cases, the underlying set of the scheme-theoretic image is not the set-
theoretic image. But the situation isn’t terrible: the underlying set of the scheme-
theoretic image must be closed, and indeed it is the closure of the set-theoretic
image. We might imagine that in reasonable cases this will be true, and in even
nicer cases, the underlying set of the scheme-theoretic image will be set-theoretic
image. We will later see that this is indeed the case (§9.3.6).

But sadly pathologies can sometimes happen in, well, pathological situations.

Example 4. Let X = [ [ Specklen]/((en)™) and Y = Speck[x], and define X — Y
by x — e, on the nth component of X. Then if a function g(x) on Y pulls back to
0 on X, then its Taylor expansion is 0 to order n (by examining the pullback to the
nth component of X) for all n, so g(x) must be 0. Thus the scheme-theoretic image
is V(0) on Y, i.e. Y itself, while the set-theoretic image is easily seen to be just the
origin.

9.3.3. Criteria for computing scheme-theoretic images affine-locally. Example 4 clearly
is weird though, and we can show that in “reasonable circumstances” such pathol-
ogy doesn’t occur. It would be great to compute the scheme-theoretic image affine-
locally. On the affine open set Spec B C Y, define the ideal I(B) C B of functions
which pull back to 0 on X. Formally, I(B) := ker(B — T'(SpecB,f.(0x)). Then
if for each such B, and each g € B, I(B) ®g By — I(Bg) is an isomorphism,
then we will have defined the scheme-theoretic image as a closed subscheme (see
Exercise 9.1.G). Clearly each function on Spec B that vanishes when pulled back
to f~'(SpecB) also vanishes when restricted to D(g) and then pulled back to
f~1(D(g)). So the question is: given a function t/g™ on D(g) that pulls back to zero
on f~1(D(g)), is it true that for some m, rg™ = 0 when pulled back to ' (Spec B)?
Here are three cases where the answer is “yes”. (I would like to add a picture here,
but I can’t think of one that would enlighten more people than it would confuse.
So you should try to draw one that suits you.) For each affine in the source, there is
some m which works. There is one that works for all affines in a cover (i) if m = 1

always works, or (ii) if there are only a finite number of affines in the cover.
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(i) The answer is yes if f~'(SpecB) is reduced: we simply take m = 1 (as r
vanishes on Spec B4 and g vanishes on V(g), so rg vanishes on Spec B = SpecB4 U
V(g).)

(ii) The answer is also yes if f~!(Spec B) is affine, say Spec A: if r’ = ffr and
g’ = flgin A, then if v’ = 0 on D(g’), then there is an m such that r/(g’)™ = 0 (as
the statement v’ = 0 in D(g’) means precisely this fact — the functions on D(g’)
are Ag).

(i)’ More generally, the answer is yes if ! (SpecB) is quasicompact: cover
f~1(Spec B) with finitely many affine open sets. For each one there will be some
m; so that g™ = 0 when pulled back to this open set. Then let m = max(m;).
(We see again that quasicompactness is our friend!)

In conclusion, we have proved the following (subtle) theorem.

9.3.4. Theorem. — Suppose f : X — Y is a morphism of schemes. If X is reduced or f
is quasicompact, then the scheme-theoretic image of f may be computed affine-locally: on
Spec A C Y, it is cut out by the functions that pull back to 0.

9.3.5. Corollary. — Under the hypotheses of Theorem 9.3.4, the closure of the set-
theoretic image of f is the underlying set of the scheme-theoretic image.

(Example 4 above shows that we cannot excise these hypotheses.)

9.3.6. In particular, if the set-theoretic image is closed (e.g. if f is finite or projec-
tive), the set-theoretic image is the underlying set of the scheme-theoretic image,
as promised in Example 3 above.

Proof of Corollary 9.3.5. The set-theoretic image is in the underlying set of the
scheme-theoretic image. (Check this!) The underlying set of the scheme-theoretic
image is closed, so the closure of the set-theoretic image is contained in the under-
lying set of the scheme-theoretic image. On the other hand, if U is the complement
of the closure of the set-theoretic image, f~' (L) = @. As under these hypotheses,
the scheme theoretic image can be computed locally, the scheme-theoretic image
is the empty set on U. O

We conclude with a few stray remarks.

9.3.A. EASY EXERCISE. If X is reduced, show that the scheme-theoretic image of
f: X — Yis also reduced.

More generally, you might expect there to be no unnecessary nonreduced
structure on the image not forced by nonreduced structure on the source. We
make this precise in the locally Noetherian case, when we can talk about associ-
ated points.

9.3.B. x UNIMPORTANT EXERCISE. If f : X — Y is a quasicompact morphism
of locally Noetherian schemes, show that the associated points of the image sub-
scheme are a subset of the image of the associated points of X. (The example of
[ {occ SpecCltl/(t — a) — Spec C[t] shows what can go wrong if you give up qua-
sicompactness — note that reducedness of the source doesn’t help.) Hint: reduce
to the case where X and Y are affine. (Can you develop your geometric intuition
so that this is geometrically plausible?)

9.3.7. Scheme-theoretic closure of a locally closed subscheme.
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We define the scheme-theoretic closure of a locally closed embedding f : X —
Y as the scheme-theoretic image of X.

9.3.C. EXERCISE. If a locally closed embedding V — X is quasicompact (e.g. if V
is Noetherian, Exercise 8.3.B(a)), or if V is reduced, show that (iii) implies (i) and
(i) in Exercise 9.1.K. Thus in this fortunate situation, a locally closed embedding
can be thought of in three different ways, whichever is convenient.

9.3.D. UNIMPORTANT EXERCISE, USEFUL FOR INTUITION. If f: X — Yis alocally
closed embedding into a locally Noetherian scheme (so X is also locally Noether-
ian), then the associated points of the scheme-theoretic closure are (naturally in
bijection with) the associated points of X. (Hint: Exercise 9.3.B.) Informally, we get
no nonreduced structure on the scheme-theoretic closure not “forced by” that on
X.

9.3.8. The (reduced) subscheme structure on a closed subset.

Suppose X is a closed subset of a scheme Y. Then we can define a canonical
scheme structure X on X that is reduced. We could describe it as being cut out
by those functions whose values are zero at all the points of X*¢'. On the affine
open set SpecB of Y, if the set X*¢' corresponds to the radical ideal I = I(X*)
(recall the I(-) function from §4.7), the scheme X corresponds to Spec B/I. You can
quickly check that this behaves well with respect to any distinguished inclusion
Spec B¢ — SpecB. We could also consider this construction as an example of a
scheme-theoretic image in the following crazy way: let W be the scheme that is a
disjoint union of all the points of X*¢, where the point corresponding to p in X5
is Spec of the residue field of Oy . Let f : W — Y be the “canonical” map sending
“p to p”, and giving an isomorphism on residue fields. Then the scheme structure
on X is the scheme-theoretic image of f. A third definition: it is the smallest closed
subscheme whose underlying set contains X**.

This construction is called the (induced) reduced subscheme structure on the
closed subset X*¢'. (Vague exercise: Make a definition of the reduced subscheme
structure precise and rigorous to your satisfaction.)

9.3.E. EXERCISE. Show that the underlying set of the induced reduced subscheme
X — Y is indeed the closed subset X*¢'. Show that X is reduced.

9.3.9. Reduced version of a scheme.

In the main interesting case where X**! is all of Y, we obtain a reduced closed
subscheme Y4 — Y, called the reduction of Y. On the affine open subset Spec B <
Y, yred <y Y corresponds to the nilradical 91(B) of B. The reduction of a scheme is
the “reduced version” of the scheme, and informally corresponds to “shearing off
the fuzz”.

An alternative equivalent definition: on the affine open subset Spec B — Y, the
reduction of Y corresponds to the ideal 91(B) C B of nilpotents. As for any f € B,
M(B)¢ = N(B¢), by Exercise 9.1.G this defines a closed subscheme. In particular,
the locus of points on a scheme X that are reduced is open.

9.3.10. * Caution/example. It is not true that for every open subset U C Y, T'(U, Oyred)
is I'(U, &y) modulo its nilpotents. For example, on Y = [][Speck(x]/(x™), the
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function x is not nilpotent, but is 0 on Y™4, as it is “locally nilpotent”. This may
remind you of Example 4 after Definition 9.3.2.

9.3.11. Scheme-theoretic support of a quasicoherent sheaf. Similar ideas are
used in the definition of the scheme-theoretic support of a quasicoherent sheaf,
see Exercise 19.8.B.

9.4 Regular sequences and locally complete intersections

We now introduce locally complete intersections, an important class of locally
closed embeddings. Locally closed embeddings of nonsingular schemes in non-
singular schemes are one important example of locally complete intersections (Ex-
ercise 13.6.C). The codimension 1 case (effective Cartier divisors) will turn out to
be repeatedly useful as well — to see how useful, see how often it appears in the
index. We begin with this case.

9.4.1. Locally principal closed subschemes, and effective Cartier divisors.

A closed subscheme is locally principal if on each open set in a small enough
open cover it is cut out by a single equation. Thus each homogeneous polynomial
inn+1 variables defines a locally principal closed subscheme of P™. (Warning: this
is not an affine-local condition, see Exercise 6.4.N! Also, the example of a projective
hypersurface, §9.2.1 shows that a locally principal closed subscheme need not be
cut out by a globally-defined function.)

If the ideal sheaf is locally generated by a function that is not a zerodivisor, we
call the closed subscheme an effective Cartier divisor. Warning: We will use this
terminology before we explain where it came from.

9.4.A. EXERCISE. Suppose X is a locally Noetherian scheme, and t € I'(X, Ox) is
a function on it. Show that t (or more precisely the closed subscheme V(t)) is an
effective Cartier divisor if and only if it doesn’t vanish on any associated point of
X.

9.4.B. UNIMPORTANT EXERCISE. Suppose V(s) = V(s’) < Spec A is an effective
Cartier divisor, with s and s’ non-zerodivisors in A. Show that s is an invertible
function times s’.

9.4.2. Regular sequences.

Our definition of complete intersection will roughly be this: locally, we take
an effective Cartier divisor (a non-zerodivisor); then an effective Cartier divisor
on that; then an effective Cartier divisor on that; and so on, a finite number of
times. This is the notion of a regular sequence in a ring A. A little care is necessary;
for example, we might want this to be independent of the order of the equations
imposed, and this is true only when we say this in the right way.

We make the definition of regular sequence more generally for an A-module
M.

9.4.3. Definition. If M is an A-module, a sequence x1,...,x, € A is called an M-
regular sequence (or a regular sequence for M) if for each i, x; is not a zerodivisor
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for M/(x1,...,xi—1)M. (The case i = 1 should be interpreted as: “x; is not a
zerodivisor of M.”)

In the case most relevant to us, when M = A, this should be seen as a reason-
able approximation of a “complete intersection”, and indeed we will use this as
the definition (§9.4.5). An A-regular sequence is just called a regular sequence.

9.4.C. EXERCISE. If M is an A-module, show that an M-regular sequence remains
regular upon any localization. (More generally, your argument will likely show
that sequences remain regular upon any flat ring extension, but we will not need
this, and you may not know what this means.)

9.4.D. EXERCISE.  If x, y is an M-regular sequence, show that x2, y is an M-
regular sequence. (More generally, if x1, ..., xn is a regular sequence, and aj,
., an € Z2°, then x{", ..., x%" is a regular sequence, see [E, Ex. 17.5], [M-CRT,
Thm. 16.1],or [M-CA, Thm. 26]. We give this easier special case as an exercise
because we will use it.)

We now give an example ([E, Example 17.3]) showing that the order of a regu-
lar sequence matters. Suppose A = k[x,y, z]/(x—1)z, so X = Spec A is the union of
the z = 0 plane and the x = 1 plane — X is reduced and has two components (see
Figure 9.4). You can readily verify that x is a non-zerodivisor on X (x = 0 misses
one component, and doesn’t vanish entirely on the other), and that the effective
Cartier divisor, X’ = Specklx,y, zl/(x,z) is integral. Then (x — 1)y is an effective
Cartier on X’ (it doesn’t vanish entirely on X’), so x, (x — 1)y is a regular sequence.
However, (x — 1)y is not a non-zerodivisor of A, as it does vanish entirely on one
of the two components. Thus (x — 1)y, x is not a regular sequence. The reason that
reordering the regular sequence x, (x — 1)y ruins regularity is clear: there is a locus
on which (x — 1)y isn’t effective Cartier, but it disappears if we enforce x = 0 first.
The problem is one of “nonlocality” — “near” x =y = z = 0 there is no problem.
This may motivate the fact that in the (Noetherian) local situation, this problem
disappears. We now make this precise.

[to be made]

FIGURE 9.4. Order matters in a regular sequence (in the “non-
local” situation)

9.4.4. Theorem. — Suppose (A, m) is a Noetherian local ring, and M is a finitely
generated A-module. Then any M-reqular sequence (x1,...,%,) in m remains a regular
sequernce upon any reordering.

(Dieudonné showed that Noetherian hypotheses are necessary in Theorem 9.4.4,
[Di].)

Before proving Theorem 9.4.4 (in Exercise 9.4.E), we prove the first nontrivial
case, when r = 2. (This discussion is secretly a baby case of the Koszul complex.)
Suppose x, y is an M-regular sequence, and x,y € m. In other words, x is a non-
zerodivisor on M, and y is a non-zerodivisor on M /xM.
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Consider the double complex

X (—x)
M

M
xyT TX(—y)

MM

9.4.4.1)

where the bottom left is considered to be in position (0, 0).

We compute the cohomology of the total complex using a (simple) spectral se-
quence, beginning with the rightward orientation. (The use of spectral sequences
here, as in many of our other applications, is overkill; we partially do this in order
to get practice with the machine.) On the first page, we have

(0:(x)) M/xM
XyT TX(y)
(0:(x)) M/xM

The entries (0 : (x)) in the first column are 0, as x is a non-zerodivisor on M. Taking
homology in the vertical direction to obtain the second page, we find

(9.44.2) 0 M/(x,y)M

0 0

using the fact that y is a non-zerodivisor on M/xM. The sequence clearly con-
verges here. Thus the original double complex (9.4.4.1) only has nonzero cohomol-
ogy in degree 2, where it is M/(x,y)M.

Now we run the spectral sequence on (9.4.4.1) using the upward orientation.
The first page of the sequence is:

M/yM =L MM

(0: (y)) == (0: (y))
The sequence must converge to (9.4.4.2) after the next step. From the top row, we
see that multiplication by x must be injective on M /yM, so x is a non-zerodivisor
on M/yM. From the bottom row, multiplication by x gives an isomorphism of
(0: (y)) with itself. As x € m, by version 2 of Nakayama’s Lemma (Lemma 8.2.9),
this implies that (0 : (y)) = 0, so y is a non-zerodivisor on M. Thus we have shown
that y, x is a regular sequence on M — the n = 2 case of Theorem 9.4.4.

9.4.E. EASY EXERCISE. Prove Theorem 9.4.4. Hint: show it first in the case of
a reordering where only two adjacent x; are swapped, using the n = 2 case just
discussed.

9.4.5. Local completion intersection subschemes.
Suppose 7t : X — Y is a locally closed embedding. We say that 7t is a local
complete intersection at a point p € X (of codimension 1) if in the local ring Oy,
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the ideal of X is generated by a regular sequence (of length r). We say that 7is a
local complete intersection (of codimension 1) if it is a local complete intersection
(of codimension r) at all p € X. “Local complete intersection” is often abbreviated
to “Ici”. (Warning: if you use the phrase “locally closed immersion” instead of
“locally closed embedding”, be sure not to abbreviate it as “Ici”, or else you will
confuse people.)

9.4.F. EXERCISE (THE CONDITION OF BEING A LOCAL COMPLETE INTERSECTION
OPEN). Show that if a locally closed embedding 7 : X < Y of locally Noetherian
schemes is a local complete intersection at p, then it is a local complete intersection
in some neighborhood of p in X. Hint: reduce to the case where 7 is a closed
embedding, and then where Y (hence X) is affine — say Y = Spec B, X = SpecB/I,
and p = [p] — and there are fy,...,f; such that in Ox ,, the images of the f; are
a regular sequence generating I,. We wish to show that (f,...,f;) = I “ina
neighborhood of p”. Prove the following fact in algebra: if I and | are ideals of a
Noetherian ring A, and p C A is a prime ideal such that I, = J,, show that there
exists a € A\psuch that I, = J, in A4. To do this, show that it suffices to consider
the special case I C ], by considering I N ] and ] instead of I and J. To show this
special case, let K = J/I, a finitely generated module, and show that if K, = 0 then
Kq =0forsomea € A\ p.

Hence if X is quasicompact, then to check that a closed embedding 7 is a lo-
cal complete intersection it suffices to check at closed points of X. Also, you can
use Exercise 9.4.F to justify the name “locally complete intersection”: in an affine
neighborhood of p, X is “an honest complete intersection”.

Exercise 13.1.E(b) will show that not all closed embeddings are complete inter-
sections.



CHAPTER 10

Fibered products of schemes

10.1 They exist

Before we get to products, we note that coproducts exist in the category of
schemes: just as with the category of sets (Exercise 2.3.S), coproduct is disjoint
union. The next exercise makes this precise (and directly extends to coproducts of
an infinite number of schemes).

10.1.A. EASY EXERCISE. Suppose X and Y are schemes. Let X] [ Y be the scheme
whose underlying topological space is the disjoint union of the topological spaces
of X and Y, and with structure sheaf on (the part corresponding to) X given by 0,
and similarly for Y. Show that X[V is the coproduct of X and Y (justifying the
use of the symbol [ [).

We will now construct the fibered product in the category of schemes.

10.1.1. Theorem: Fibered products exist. — Suppose f : X — Zand g:Y — Z are
morphisms of schemes. Then the fibered product

Xx, Y2 oy

)

X—" o7

exists in the category of schemes.

Note: if A is a ring, people often sloppily write x A for xspeca. If B is an A-
algebra, and X is an A-scheme, people often write Xg or X x o B for X xspec A Spec B.

10.1.2. Warning: products of schemes aren’t products of sets. Before showing exis-
tence, here is a warning: the product of schemes isn’t a product of sets (and more
generally for fibered products). We have made a big deal about schemes being
sets, endowed with a topology, upon which we have a structure sheaf. So you might
think that we will construct the product in this order. But we won't, because prod-
ucts behave oddly on the level of sets. You may have checked (Exercise 7.6.D(a))
that the product of two affine lines over your favorite algebraically closed field k
is the affine plane: Al xi- Al = AZ2. But the underlying set of the latter is nof the
underlying set of the former — we get additional points, corresponding to curves
in A? that are not lines parallel to the axes!

229
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10.1.3. On the other hand, S-valued points (where S is a scheme, Definition 7.3.7)
do behave well under (fibered) products (as mentioned in §7.3.8). This is just the
universal property definition of fibered product: an S-valued point of a scheme X
is defined as an element of Hom(S, X), and the fibered product is defined by

(10.1.3.1) Hom(S,X xz Y) = Hom(S, X) Xgom(s,z) Hom(S,Y).

This is one justification for making the definition of S-valued point. For this reason,
those classical people preferring to think only about varieties over an algebraically
closed field k (or more generally, finite type schemes over k), and preferring to un-
derstand them through their closed points — or equivalently, the k-valued points,
by the Nullstellensatz (Exercise 6.3.D) — needn’t worry: the closed points of the
product of two finite type k-schemes over k are (naturally identified with) the
product of the closed points of the factors. This will follow from the fact that the
product is also finite type over k, which we verify in Exercise 10.2.D. This is one
of the reasons that varieties over algebraically closed fields can be easier to work
with. But over a nonalgebraically closed field, things become even more interest-
ing; Example 10.2.2 is a first glimpse.

(Fancy remark: You may feel that (i) “products of topological spaces are prod-
ucts on the underlying sets” is natural, while (ii) “products of schemes are not
necessarily products on the underlying sets” is weird. But really (i) is the lucky
consequence of the fact that the underlying set of a topological space can be in-
terpreted as set of p-valued points, where p is a point, so it is best seen as a con-
sequence of paragraph 10.1.3, which is the “more correct” — i.e. more general —
fact.)

10.1.4. Warning on Noetherianness. The fibered product of Noetherian schemes
need not be Noetherian. You will later be able to verify that Exercise 10.2.E gives an
example, i.e. that A := Q ®q Q is not Noetherian, as follows. By Exercise 12.1.G(a),
dim A = 0. A Noetherian dimension 0 scheme has a finite number of points (Exer-
cise 12.1.C). But by Exercise 10.2.E, Spec A has an infinite number of points.

On the other hand, the fibered product of finite type k-schemes over finite type
k-schemes is a finite type k-scheme (Exercise 10.2.D), so this pathology does not
arise for varieties.

10.1.5. Philosophy behind the proof of Theorem 10.1.1. The proof of Theo-
rem 10.1.1 can be confusing. The following comments may help a little.

We already basically know existence of fibered products in two cases: the case
where X, Y, and Z are affine (stated explicitly below), and the case where Y — Z is
an open embedding (Exercise 8.1.B).

10.1.B. EXERCISE (PROMISED IN REMARK 7.3.6). Use Exercise 7.3.F (Homg, (W, Spec A) =
Homgings (A, T(W, Ow))) to show that given ring maps C — A and C — B,
Spec(A ®c B) = Spec A Xspec ¢ Spec B.

(Interpret tensor product as the “cofibered product” in the category of rings.) Hence
the fibered product of affine schemes exists (in the category of schemes). (This gen-
eralizes the fact that the product of affine lines exist, Exercise 7.6.D(a).)

The main theme of the proof of Theorem 10.1.1 is that because schemes are
built by gluing affine schemes along open subsets, these two special cases will be
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all that we need. The argument will repeatedly use the same ideas — roughly,
that schemes glue (Exercise 5.4.A), and that morphisms of schemes glue (Exer-
cise 7.3.A). This is a sign that something more structural is going on; §10.1.6 de-
scribes this for experts.

Proof of Theorem 10.1.1. The key idea is this: we cut everything up into affine open
sets, do fibered products there, and show that everything glues nicely. The concep-
tually difficult part of the proof comes from the gluing, and the realization that we
have to check almost nothing. We divide the proof up into a number of bite-sized
pieces.

Step 1: fibered products of affine with almost-affine over affine. We begin by combin-
ing the affine case with the open embedding case as follows. Suppose X and Z are

affine, and Y — Z factors as YOl Y ~ 7 whereiisan open embedding
and Y’ is affine. Then X x 7 Y exists. This is because if the two small squares of

W——Y

L

W —Y’

|

X——Z

are fibered diagrams, then the “outside rectangle” is also a fibered diagram. (This
was Exercise 2.3.P, although you should be able to see this on the spot.) It will be
important to remember (from Important Exercise 8.1.B) that “open embeddings”
are “preserved by fibered product”: the fact that Y — Y’ is an open embedding
implies that W — W’ is an open embedding.

Key Step 2: fibered product of affine with arbitrary over affine exists. We now come
to the key part of the argument: if X and Z are affine, and Y is arbitrary. This is
confusing when you first see it, so we first deal with a special case, when Y is the
union of two affine open sets Y1 U Y. Let Yi, =Y N Y.

Now for i = 1 and 2, X xz Y; exists by the affine case, Exercise 10.1.B. Call
this W;. Also, X xz Yj, exists by Step 1 (call it Wi;,), and comes with canonical
open embeddings into W4 and W, (by construction of fibered products with open
embeddings, see the last sentence of Step 1). Thus we can glue W; to W, along
Wi;; call this resulting scheme W.

We check that the result is the fibered product by verifying that it satisfies the
universal property. Suppose we have maps f” : V. — X, g” : V — Y that compose
(with f and g respectively) to the same map V — Z. We need to construct a unique
maph:V — W,sothatf'oh=g”and g’ oh =f".

(10.1.5.1)




232 Math 216: Foundations of Algebraic Geometry

Fori = 1,2, define V; := (g”)~'(Y;). Define Vi, := (g”)"'(Y12) = Vi N V,. Then
there is a unique map Vi — Wi, such that the composed maps V; — Xand V; = Y;
are as desired (by the universal product of the fibered product X xz Y; = W;),
hence a unique map h; : Vi — W. Similarly, there is a unique map hy, : Vi, = W
such that the composed maps Vi, — X and Vi, — Y are as desired. But the
restriction of h; to Vi, is one such map, so it must be hy,. Thus the maps h; and
h, agree on Vi, and glue together to a unique map h : V— W. We have shown
existence and uniqueness of the desired h.

We have thus shown that if Y is the union of two affine open sets, and X and
Z are affine, then X x 7 Y exists.

We now tackle the general case. (You may prefer to first think through the
case where “two” is replaced by “three”.) We now cover Y with open sets Y;, as
i runs over some index set (not necessarily finite!). As before, we define W; and
Wij. We can glue these together to produce a scheme W along with open sets
we identify with W; (Exercise 5.4.A — you should check the triple intersection
“cocycle” condition).

As in the two-affine case, we show that W is the fibered product by showing
that it satisfies the universal property. Suppose we have maps f” : V. — X, g” :
V — Y that compose to the same map V — Z. We construct a unique map h :
V — W, sothatf’ oh = g” and g’ o h = f". Define V; = (g”)~ (Vi) and V;; :=
(g”)7 (Y1) = VinV;. Then there is a unique map V; — W; such that the composed
maps Vi — X and V; — Y; are as desired, hence a unique map h; : V; — W.
Similarly, there is a unique map hy; : Vi; — W such that the composed maps
Vij; — X and Vi; — Y are as desired. But the restriction of h; to Vj; is one such
map, so it must be hi;. Thus the maps h; and h; agree on Vij. Thus the h; glue
together to a unique map h : V. — W. We have shown existence and uniqueness
of the desired h, completing this step.

Step 3: Z affine, X and Y arbitrary. We next show that if Z is affine, and X and
Y are arbitrary schemes, then X xz Y exists. We just follow Step 2, with the roles
of X and Y reversed, using the fact that by the previous step, we can assume that
the fibered product of an affine scheme with an arbitrary scheme over an affine
scheme exists.

Step 4: Z admits an open embedding into an affine scheme Z', X and Y arbitrary. This
is akin to Step 1: X x z Y satisfies the universal property of X xz/ Y.

Step 5: the general case. We employ the same trick yet again. Suppose f: X — Z,
g : Y — Z are two morphisms of schemes. Cover Z with affine open subschemes
Zi,and let X; = 1 (Zl) and Y; = 971 (Zl) Define Zij =7 N Zj, Xij = ! (Zij ),
and Yi; = g! (Zi;). Then W; := X; xz, Y; exists for all i (Step 3), and Wy; =
Xij X z;; Yij exists for all i,j (Step 4), and for each i and j, W;; comes with a canoni-
cally open immersion into both W; and W; (see the last sentence in Step 1). As W;
satisfies the universal property of X x 7 Y; (do you see why?), we may canonically
identify W; (which we know to exist by Step 3) with with X xz Y;. Similarly, we
identify Wij with X x z Yij .

We then proceed exactly as in Step 2: the W;’s can be glued together along the
Wi (the cocycle condition can be readily checked to be satisfied), and W can be
checked to satisfy the universal property of X x z Y (again, exactly as in Step 2). O
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10.1.6. »x Describing the existence of fibered products using the high-falutin’
language of representable functors. The proof above can be described more
cleanly in the language of representable functors (§7.6). This will be enlightening
only after you have absorbed the above argument and meditated on it for a long
time. It may be most useful to shed light on representable functors, rather than on
the existence of the fibered product.

Until the end of §10.1 only, by functor, we mean contravariant functor from the cate-
gory Sch of schemes to the category of Sets. For each scheme X, we have a functor hy,
taking a scheme Y to the set Mor(Y, X) (§2.2.20). Recall (§2.3.10, §7.6) that a functor
is representable if it is naturally isomorphic to some hx. If a functor is representable,
then the representing scheme is unique up to unique isomorphism (Exercise 7.6.C).
This can be usefully extended as follows:

10.1.C. EXERCISE (YONEDA’S LEMMA). If Xand Y are schemes, describe a bijection
between morphisms of schemes X — Y and natural transformations of functors
hx — hy. Hence show that the category of schemes is a fully faithful subcategory
(§2.2.15) of the “functor category” of all functors (contravariant, Sch — Sets). Hint:
this has nothing to do with schemes; your argument will work in any category.
This is the contravariant version of Exercise 2.3.Y(c).

One of Grothendieck’s insights is that we should try to treat such functors as
“geometric spaces”, without worrying about representability. Many notions carry
over to this more general setting without change, and some notions are easier. For
example, fibered products of functors always exist: h Xy~ h’/ may be defined by

(h xpr W) (W) = h(W) X0 w) K/ (W),

where the fibered product on the right is a fibered product of sets, which always
exists. (This isn’t quite enough to define a functor; we have only described where
objects go. You should work out where morphisms go too.) We didn’t use any-
thing about schemes; this works with Sch replaced by any category.

Then “X x z Y exists” translates to “hx xn, hy is representable”.

10.1.7. Representable functors are Zariski sheaves. Because “morphisms to schemes
glue” (Exercise 7.3.A), we have a necessary condition for a functor to be repre-
sentable. We know that if {U;} is an open cover of Y, a morphism Y — X is deter-
mined by its restrictions U; — X, and given morphisms U; — X that agree on the
overlap U; N'U; — X, we can glue them together to get a morphism Y — X. In the
language of equalizer exact sequences (§3.2.7),

- —— hx(Y) — [Thx (W) —= [T hx (Ui N 1)

is exact. Thus morphisms to X (i.e. the functor hx) form a sheaf on every scheme
Y. If this holds, we say that the functor is a Zariski sheaf. (You can impress your
friends by telling them that this is a sheaf on the big Zariski site.) We can repeat this
discussion with Sch replaced by the category Schs of schemes over a given base
scheme S. We have proved (or observed) that in order for a functor to be representable,
it is necessary for it to be a Zariski sheaf.

The fiber product passes this test:
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10.1.D. EXERCISE. If X,Y — Z are schemes, show that hx xy, hy is a Zariski
sheaf. (Do not use the fact that X x 7 Y is representable! The point of this section is
to recover representability from a more sophisticated perspective.)

We can make some other definitions that extend notions from schemes to
functors. We say that a map (i.e. natural transformation) of functors h’ — h ex-
presses h’ as an open subfunctor of h if for all representable functors hx and maps
hx — h, the fibered product hx xn h' is representable, by U say, and hy — hx cor-
responds to an open embedding of schemes U — X. The following fibered square
may help.

open
hu E—— hx

o

h!——=h

10.1.E. EXERCISE. Show that a map of representable functors hy, — hyz is an open
subfunctor if and only if W — Z is an open embedding, so this indeed extends the
notion of open embedding to (contravariant) functors (Sch — Sets).

10.1.FE. EXERCISE (THE GEOMETRIC NATURE OF THE NOTION OF “OPEN SUBFUNC-
TOR”).

(a) Show that an open subfunctor of an open subfunctor is also an open subfunc-
tor.

(b) Suppose h' — hand h” — h are two open subfunctors of h. Define the inter-
section of these two open subfunctors, which should also be an open subfunctor
of h.

(c) Suppose U and V are two open subschemes of a scheme X, so hy — hx and
hy — hx are open subfunctors. Show that the intersection of these two open
subfunctors is, as you would expect, hynv.

10.1.G. EXERCISE. Suppose X — Z and Y — Z are morphisms of schemes, and
UcX,VCY, W C Zare open embeddings, where U and V map to W. Interpret
hu Xn,, hyv as an open subfunctor of hx xn, hy. (Hint: given a map ht — hxx,v,
what open subset of T should correspond to U xw V?)

A collection h; of open subfunctors of h is said to cover h if for every map
hx — h from a representable subfunctor, the corresponding open subsets U; — X
cover X.

Given that functors do not have an obvious underlying set (let alone a topol-
ogy), it is rather amazing that we are talking about when one is an “open subset”
of another, or when some functors “cover” another!

10.1.H. EXERCISE. Suppose {Z;}; is an affine cover of Z, {X;;}; is an affine cover
of the preimage of Z; in X, and {YixJx is an affine cover of the preimage of Z; in
Y. Show that {hx,; Xh,, hy,, Jijk is an open cover of the functor hx xn, hy. (Hint:
consider a map ht — hx Xy, hy, and extend your solution to Exercise 10.1.G.)

We now come to a key point: a Zariski sheaf that is “locally representable”
must be representable:
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10.1.1. KEY EXERCISE. If a functor h is a Zariski sheaf that has an open cover by
representable functors (“is covered by schemes”), then h is representable. (Hint:
use Exercise 5.4.A to glue together the schemes representing the open subfunctors.)

This immediately leads to the existence of fibered products as follows. Exer-
cise 10.1.D shows that hx , v is a Zariski sheaf. But hx,; xn, hy,, is representable
for each 1, j, k (fibered products of affines over an affine exist, Exercise 10.1.B), and
these functors are an open cover of hx xn, hy by Exercise 10.1.H, so by Key Exer-
cise 10.1.I we are done.

10.2 Computing fibered products in practice

Before giving some examples, we first see how to compute fibered products
in practice. There are four types of morphisms (1)-(4) that it is particularly easy to
take fibered products with, and all morphisms can be built from these four atomic
components (see the last paragraph of (1)).

(1) Base change by open embeddings.

We have already done this (Exercise 8.1.B), and we used it in the proof that
fibered products of schemes exist.

Thanks to (1), to understand fibered products in general, it suffices to under-
stand it on the level of affine sets, i.e. to be able to compute A ®p C given rings A,
B, and C (and ring maps B — A, B — C).

(2) Adding an extra variable.
10.2.A. EASY ALGEBRA EXERCISE. Show that A ®g B[t] = Alt], so the following is
a fibered diagram. (Your argument might naturally extend to allow the addition

of infinitely many variables, but we won’t need this generality.) Hint: show that
Alt] satisfies an appropriate universal property.

Spec A[t] —— SpecB|[t]

]

Spec A Spec B

(3) Base change by closed embeddings

10.2.B. EXERCISE. Suppose ¢ : B — A is a ring morphism, and I C B is an ideal.
Let I¢ := ($(i))ie1 C A be the extension of I to A. Describe a natural isomorphism
A/I¢ = A®g (B/I). (Hint: consider I — B — B/I — 0, and use the right-exactness
of ®p A, Exercise 2.3.H.)

10.2.1. As an immediate consequence: the fibered product with a closed sub-
scheme is a closed subscheme of the fibered product in the obvious way. We say
that “closed embeddings are preserved by base change”.

10.2.C. EXERCISE.
(a) Interpret the intersection of two closed embeddings into X (cf. Exercise 9.1.H)
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as their fibered product over X.

(b) Show that “locally closed embeddings” are preserved by base change.

(c) Define the intersection of n locally closed embeddings X; — Z (1 <i<n)by
the fibered product of the X; over Z (mapping to Z). Show that the intersection of
(a finite number of) locally closed embeddings is also a locally closed embedding.

As an application of Exercise 10.2.B, we can compute tensor products of finitely
generated k algebras over k. For example, we have

Kix1, %21/ (3 —x2) @k kly1,v21/(u3 +u3) = klx1,%x2,y1,2)/(x3 —x2,y3 +v3).

10.2.D. EXERCISE. Suppose X and Y are locally of finite type A-schemes. Show
that X x 4 Y is also locally of finite type over A. Prove the same thing with “locally”
removed from both the hypothesis and conclusion.

10.2.2. Example. We can these ideas to compute C @ C:

CerC = C&g (RK/(x*+1))

(CerRK])/(x*+1) by 10.2(3)

Clxl/(x* +1) by 10.2(2)

Clxl/ ((x =1)(x +1))

Clx]/(x —1) x C[x]/(x +1) by the Chinese Remainder Theorem
CxC

lle 11l 1

1K

Thus SpecC xg SpecC = SpecC[[SpecC. This example is the first example of
many different behaviors. Notice for example that two points somehow corre-
spond to the Galois group of C over R; for one of them, x (the “i” in one of the
copies of C) equals i (the “i” in the other copy of C), and in the other, x = —i.

10.2.3. * Remark. Here is a clue that there is something deep going on behind
Example 10.2.2. If L/K is a (finite) Galois extension with Galois group G, then
L ®k L is isomorphic to L€ (the product of |G| copies of L). This turns out to be
a restatement of the classical form of linear independence of characters! In the
language of schemes, SpecL xx SpecL is a union of a number of copies of Spec L
that naturally form a torsor over the Galois group G; but we will not define torsor
here.

10.2.E. x HARD BUT FASCINATING EXERCISE FOR THOSE FAMILIAR WITH Gal(Q/Q).
Show that the points of Spec Q ®g Q are in natural bijection with Gal(Q/Q), and
the Zariski topology on the former agrees with the profinite topology on the latter.
(Some hints: first do the case of finite Galois extensions. Relate the topology on
Spec of a direct limit of rings to the inverse limit of Specs. Can you see which point
corresponds to the identity of the Galois group?)

At this point, we can compute any A®p C (where A and C are B-algebras): any
map of rings ¢ : B — A can be interpreted by adding variables (perhaps infinitely
many) to B, and then imposing relations. But in practice (4) is useful, as we will
see in examples.

(4) Base change of affine schemes by localization.
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10.2.F. EXERCISE. Suppose ¢ : A — B is a ring morphism, and S C Ais a
multiplicative subset of A, which implies that ¢(S) is a multiplicative subset of B.
Describe a natural isomorphism ¢( S)"'B=Bw®a (STA).

Translation: the fibered product with a localization is the localization of the
fibered product in the obvious way. We say that “localizations are preserved by
base change”. This is handy if the localization is of the form A — At (correspond-
ing to taking distinguished open sets) or A — K(A) (from A to the fraction field of
A, corresponding to taking generic points), and various things in between.

10.2.4. Examples. These four facts let you calculate lots of things in practice, and
we will use them freely.

10.2.G. EXERCISE: THE THREE IMPORTANT TYPES OF MONOMORPHISMS OF SCHEMES.
Show that the following are monomorphisms (Definition 2.3.9): open embeddings,
closed embeddings, and localization of affine schemes. As monomorphisms are
closed under composition, Exercise 2.3.U, compositions of the above are also monomor-
phisms — for example, locally closed embeddings, or maps from “Spec of stalks

at points of X” to X. (Caution: if p is a point of a scheme X, the natural morphism
Spec Ox , — X, cf. Exercise 7.3.M, is a monomorphism but is not in general an
open embedding.)

10.2.H. EXERCISE. Prove that A} = A7 Xgpecz Spec A. Prove that Py = P} Xgpecz
Spec A. Thus affine space and projective space are pulled back from their “univer-
sal manifestation” over the final object Spec Z.

10.2.5. Extending the base field. One special case of base change is called extending
the base field: if X is a k-scheme, and { is a field extension (often { is the algebraic
closure of k), then X xspec . Spec { (sometimes informally written X xy { or X;) is an
{-scheme. Often properties of X can be checked by verifying them instead on X,.
This is the subject of descent — certain properties “descend” from X, to X. We have
already seen that the property of being the Spec of a normal integral domain de-
scends in this way (Exercise 6.4.M). Exercises 10.2.1 and 10.2.] give other examples
of properties which descend: the property of two morphisms being equal, and the
property of a(n affine) morphism being a closed embedding, both descend in this
way. Those interested in schemes over non-algebraically closed fields will use this
repeatedly, to reduce results to the algebraically closed case.

10.2.I. EXERCISE. Suppose m : X — Y and p : X — Y are morphisms of k-
schemes, {/k is a field extension, and 7ty : X Xgpeck Specl — Y Xgpeck Spect and
Pe @ X Xspeck Spect — Y Xgpeck Spect are the induced maps of {-schemes. (Be
sure you understand what this means!) Show that if 7ty = p,; then m = p. (Hint:
show that 7t and p are the same on the level of sets. To do this, you may use that
X Xspeck Spect — X is surjective, which we will soon prove in Exercise 10.4.D.
Then reduce to the case where X and Y are affine.)

10.2.J. EASY EXERCISE. Suppose f : X — Y is an affine morphism over k. Show
that f is a closed embedding if and only if f X} k: X xy k — Y xy k is. (The affine
hypothesis is not necessary for this result, but it makes the proof easier, and this is
the situation in which we will most need it.)
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10.2.K. UNIMPORTANT BUT FUN EXERCISE. Show that SpecQ(t) ®¢ C has closed
points in natural correspondence with the transcendental complex numbers. (If
the description Spec Q(t) ®g; C[t] is more striking, you can use that instead.) This
scheme doesn’t come up in nature, but it is certainly neat! A related idea comes
up in Remark 12.2.14.

10.2.6. A first view of a blow-up.

10.2.L. IMPORTANT CONCRETE EXERCISE. (The discussion here immediately gen-
eralizes to A%.) Define a closed subscheme Bl (o o) AZ of A7 x P} as follows (see
Figure 10.1). If the coordinates on A are x, y, and the projective coordinates on P}
are u, v, this subscheme is cut out in A7 x P} by the single equation xv = yu. (You
may wish to interpret Bl(o o) AZ as follows. The P| parametrizes lines through
the origin. The blow-up corresponds to ordered pairs of (point p, line {) such that
(0,0),p € L.) Describe the fiber of the morphism Bl (o o) AZ — P} over each closed
point of P. Show that the morphism Bl(o,0) Ai — Ai is an isomorphism away
from (0,0) € AZ. Show that the fiber over (0,0) is a an effective Cartier divisor
(89.4.1, a closed subscheme that is locally cut out by a single equation, which is
not a zerodivisor). It is called the exceptional divisor. We will discuss blow-ups
in Chapter 23. This particular example will come up in the motivating example of
§23.1, and in Exercise 21.2.D.

;
AR

FIGURE 10.1. A first example of a blow-up

We haven't yet discussed nonsingularity, but here is a hand-waving argument
suggesting that the Bl o) AZ is “smooth”: the preimage above either standard
open set U; C P! is isomorphic to A%. Thus “the blow-up is a surgery that takes
the smooth surface A7, cuts out a point, and glues back in a P!, in such a way that
the outcome is another smooth surface.”

10.3 Interpretations: Pulling back families, and fibers of
morphisms

10.3.1. Pulling back families.
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We can informally interpret fibered product in the following geometric way.
Suppose Y — Z is a morphism. We interpret this as a “family of schemes parametrized
by a base scheme (or just plain base) Z.” Then if we have another morphism
f: X — Z, we interpret the induced map X xz Y — X as the “pulled back family”
(see Figure 10.