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Je pourrais illustrer la ... approche, en gardant l'image de la noix qu’il s’agit d’ouvrir.
La premiere parabole qui m’est venue a 'esprit tantét, c’est qu’on plonge la noix dans
un liquide émollient, de I'eau simplement pourquoi pas, de temps en temps on frotte pour
qu’elle pénetre mieux, pour le reste on laisse faire le temps. La coque s’assouplit au fil des
semaines et des mois — quand le temps est milr, une pression de la main suffit, la coque
s’ouvre comme celle d’un avocat miir a point! ...

L'image qui m’était venue il y a quelques semaines était différente encore, la chose
inconnue qu’il s’agit de connaitre m’apparaissait comme quelque étendue de terre ou de
marnes compactes, réticente a se laisser pénétrer. ... La mer s’avance insensiblement et
sans bruit, rien ne semble se casser rien ne bouge 'eau est si loin on l'entend a peine...
Pourtant elle finit par entourer la substance rétive...

I can illustrate the ... approach with the ... image of a nut to be opened. The first
analogy that came to my mind is of immersing the nut in some softening liquid, and why
not simply water? From time to time you rub so the liquid penetrates better, and otherwise
you let time pass. The shell becomes more flexible through weeks and months — when the
time is ripe, hand pressure is enough, the shell opens like a perfectly ripened avocado! ...

A different image came to me a few weeks ago. The unknown thing to be known
appeared to me as some stretch of earth or hard marl, resisting penetration ... the sea
advances insensibly in silence, nothing seems to happen, nothing moves, the water is so
far off you hardly hear it ... yet finally it surrounds the resistant substance.

— A. Grothendieck [Gr5, p. 552-3], translation by C. McLarty [Mc, p. 1]






Preface

This book is intended to give a serious and reasonably complete introduction
to algebraic geometry, not just for (future) experts in the field. The exposition
serves a narrow set of goals (see §0.4), and necessarily takes a particular point of
view on the subject.

It has now been many decades since David Mumford wrote that algebraic
geometry “seems to have acquired the reputation of being esoteric, exclusive, and
very abstract, with adherents who are secretly plotting to take over all the rest of
mathematics! In one respect this last point is accurate ...” ([Mu4, preface] and
[Mu?, p. 227]). The revolution has now fully come to pass, and has fundamentally
changed how we think about many fields of pure mathematics. A remarkable
number of celebrated advances rely in some way on the insights and ideas first
articulated by Alexander Grothendieck, Jean-Pierre Serre, and others.

For a number of reasons, algebraic geometry has earned a reputation of being
inaccessible. The power of the subject comes from rather abstract heavy machin-
ery, and it is easy to lose sight of the intuitive nature of the objects and methods.
Many in nearby fields have only a vague sense of the fundamental ideas of the
subject. Algebraic geometry itself has fractured into many parts, and even within
algebraic geometry, new researchers are often unaware of the basic ideas in sub-
fields removed from their own.

But there is another more optimistic perspective to be taken. The ideas that al-
low algebraic geometry to connect several parts of mathematics are fundamental,
and well-motivated. Many people in nearby fields would find it useful to develop
a working knowledge of the foundations of the subject, and not just at a super-
ficial level. Within algebraic geometry itself, there is a canon (at least for those
approaching the subject from this particular direction), that everyone in the field
can and should be familiar with. The rough edges of scheme theory have been
sanded down over the past half century, although there remains an inescapable
need to understand the subject on its own terms.

0.0.1. The importance of exercises. This book has a lot of exercises. I have found
that unless I have some problems I can think through, ideas don’t get fixed in my
mind. Some exercises are trivial — some experts find this offensive, but I find
this desirable. A very few necessary ones may be hard, but the reader should have
been given the background to deal with them — they are not just an excuse to push
hard material out of the text. The exercises are interspersed with the exposition,
not left to the end. Most have been extensively field-tested. The point of view here
is one I explored with Kedlaya and Poonen in [KPV], a book that was ostensibly
about problems, but secretly a case for how one should learn and do and think
about mathematics. Most people learn by doing, rather than just passively reading.

11



12 The Rising Sea: Foundations of Algebraic Geometry

Judiciously chosen problems can be the best way of guiding the learner toward
enlightenment.

0.0.2. Structure. You will quickly notice that everything is numbered by chapter
and section, and everything is numbered the same way after that (for ease of refer-
ence), except exercises are indicated by letters (and are sprinkled throughout the
text, rather than at the end of sections). Individual paragraphs often get numbers
for ease of reference, or to indicate a new topic. Definitions are in bold, and are
sometimes given in passing.

0.0.3. Acknowledgments.

This one is going to be really hard, so I'll mostly write this later. Mike Stay
is the author of Jokes 1.3.12 and 21.5.2. The phrase “The Rising Sea” is due to
Grothendieck [Gr5, p. 552-3], with this particular translation by McLarty [Mc, p. 1],
and popularized as the title of Daniel Murfet’s excellent blog [Mur].

0.1 For the reader

The contents of this book are intended to be a collection of communal wisdom,
necessarily distilled through an imperfect filter. I wish to say a few words on how
you might use it, although it is not clear to me if you should or will follow this
advice.

Before discussing details, I want to say clearly at the outset: the wonderful
machine of modern algebraic geometry was created to understand basic and naive
questions about geometry (broadly construed). The purpose of this book is to
give you a thorough foundation in these powerful ideas. Do not be seduced by the
lotus-eaters into infatuation with untethered abstraction. Hold tight to your geometric
motivation as you learn the formal structures which have proved to be so effective
in studying fundamental questions. When introduced to a new idea, always ask
why you should care. Do not expect an answer right away, but demand an answer
eventually. Try at least to apply any new abstraction to some concrete example
you can understand well.

Understanding algebraic geometry is often thought to be hard because it con-
sists of large complicated pieces of machinery. In fact the opposite is true; to switch
metaphors, rather than being narrow and deep, algebraic geometry is shallow but
extremely broad. It is built out of a large number of very small parts, in keeping
with Grothendieck’s vision of mathematics. It is a challenge to hold the entire
organic structure, with its messy interconnections, in your head.

A reasonable place to start is with the idea of “affine complex varieties”: sub-
sets of C™ cut out by some polynomial equations. Your geometric intuition can im-
mediately come into play — you may already have some ideas or questions about
dimension, or smoothness, or solutions over subfields such as R or Q. Wiser heads
would counsel spending time understanding complex varieties in some detail be-
fore learning about schemes. Instead, I encourage you to learn about schemes
immediately, learning about affine complex varieties as the central (but not exclu-
sive) example. This is not ideal, but can save time, and is surprisingly workable.
An alternative is to learn about varieties elsewhere, and then come back later.
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The intuition for schemes can be built on the intuition for affine complex vari-
eties. Allen Knutson and Terry Tao have pointed out that this involves three differ-
ent simultaneous generalizations, which can be interpreted as three large themes
in mathematics. (i) We allow nilpotents in the ring of functions, which is basically
analysis (looking at near-solutions of equations instead of exact solutions). (ii) We
glue these affine schemes together, which is what we do in differential geometry
(looking at manifolds instead of coordinate patches). (iii) Instead of working over
C (or another algebraically closed field), we work more generally over a ring that
isn’t an algebraically closed field, or even a field at all, which is basically number
theory (solving equations over number fields, rings of integers, etc.).

Because our goal is to be comprehensive, and to understand everything one
should know after a first course, it will necessarily take longer to get to interesting
sample applications. You may be misled into thinking that one has to work this
hard to get to these applications — it is not true! You should deliberately keep an
eye out for examples you would have cared about before. This will take some time
and patience.

As you learn algebraic geometry, you should pay attention to crucial stepping
stones. Of course, the steps get bigger the farther you go.

Chapter 1. Category theory is only language, but it is language with an em-
bedded logic. Category theory is much easier once you realize that it is designed
to formalize and abstract things you already know. The initial chapter on cate-
gory theory prepares you to think cleanly. For example, when someone names
something a “cokernel” or a “product”, you should want to know why it deserves
that name, and what the name really should mean. The conceptual advantages of
thinking this way will gradually become apparent over time. Yoneda’s Lemma —
and more generally, the idea of understanding an object through the maps to it —
will play an important role.

Chapter 2. The theory of sheaves again abstracts something you already un-
derstand well (see the motivating example of §2.1), and what is difficult is under-
standing how one best packages and works with the information of a sheaf (stalks,
sheafification, sheaves on a base, etc.).

Chapters 1 and 2 are a risky gamble, and they attempt a delicate balance. Attempts
to explain algebraic geometry often leave such background to the reader, refer to
other sources the reader won't read, or punt it to a telegraphic appendix. Instead,
this book attempts to explain everything necessary, but as little as possible, and
tries to get across how you should think about (and work with) these fundamental
ideas, and why they are more grounded than you might fear.

Chapters 3-5. Armed with this background, you will be able to think cleanly
about various sorts of “spaces” studied in different parts of geometry (including
real manifolds, topological spaces, and complex manifolds), as ringed spaces that
locally are of a certain form. A scheme is just another kind of “geometric space”,
and we are then ready to transport lots of intuition from “classical geometry” to
this new setting. (This also will set you up to later think about other geometric
kinds of spaces in algebraic geometry, such as complex analytic spaces, algebraic
spaces, orbifolds, stacks, rigid analytic spaces, and formal schemes.) The ways
in which schemes differ from your geometric intuition can be internalized, and
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your intuition can be expanded to accomodate them. There are many properties
you will realize you will want, as well as other properties that will later prove
important. These all deserve names. Take your time becoming familiar with them.

Chapters 7-11. Thinking categorically will lead you to ask about morphisms
of schemes (and other spaces in geometry). One of Grothendieck’s fundamental
lessons is that the morphisms are central. Important geometric properties should
really be understood as properties of morphisms. There are many classes of mor-
phisms with special names, and in each case you should think through why that
class deserves a name.

Chapters 12-13. You will then be in a good position to think about fundamen-
tal geometric properties of schemes: dimension and smoothness. You may be sur-
prised that these are subtle ideas, but you should keep in mind that they are subtle
everywhere in mathematics.

Chapters 14-21. Vector bundles are ubiquitous tools in geometry, and algebraic
geometry is no exception. They lead us to the more general notion of quasicoher-
ent sheaves, much as free modules over a ring lead us to modules more generally.
We study their properties next, including cohomology. Chapter 19, applying these
ideas to study curves, may help make clear how useful they are.

Chapters 23-29. With this in hand, you are ready to learn more advanced tools
widely used in the subject. Many examples of what you can do are given, and
the classical story of the 27 lines on a smooth cubic surface (Chapter 27) is a good
opportunity to see many ideas come together.

The rough logical dependencies among the chapters are shown in Figure 0.1.
(Caution: this should be taken with a grain of salt. For example, you can avoid
using much of Chapter 19 on curves in later chapters, but it is a crucial source of
examples, and a great way to consolidate your understanding. And Chapter 28 on
completions uses Chapters 19, 20 and 22 only in the discussion of Castelnuovo’s
Criterion 28.7.1.)

In general, I like having as few hypotheses as possible. Certainly a hypothesis
that isn’t necessary to the proof is a red herring. But if a reasonable hypothesis can
make the proof cleaner and more memorable, I am willing to include it.

In particular, Noetherian hypotheses are handy when necessary, but are oth-
erwise misleading. Even Noetherian-minded readers (normal human beings) are
better off having the right hypotheses, as they will make clearer why things are
true.

We often state results particular to varieties, especially when there are tech-
niques unique to this situation that one should know. But restricting to alge-
braically closed fields is useful surprisingly rarely. Geometers needn’t be afraid
of arithmetic examples or of algebraic examples; a central insight of algebraic ge-
ometry is that the same formalism applies without change.

Pathological examples are useful to know. On mountain highways, there are
tall sticks on the sides of the road designed for bad weather. In winter, you cannot
see the road clearly, and the sticks serve as warning signs: if you cross this line,
you will die! Pathologies and (counter)examples serve a similar goal. They also
serve as a reality check, when confronting a new statement, theorem, or conjecture,
whose veracity you may doubt. (See, for example, §4.1.8.)
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FIGURE 0.1. Important logical dependences among chapters (or
more precisely, a directed graph showing which chapter should
be read before which other chapter)
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When working through a book in algebraic geometry, it is particularly helpful
to have other algebraic geometry books at hand, to see different approaches and
to have alternate expositions when things become difficult. This book may serve
as a good secondary book. If it is your primary source, then two other excellent
books with what I consider a similar philosophy are [Liu] and [GW]. De Jong’s
encyclopedic online reference [Stacks] is peerless. There are many other outstand-
ing sources out there, perhaps one for each approach to the subject; you should
browse around and find one you find sympathetic.

If you are looking for a correct or complete history of the subject, you have
come to the wrong place. This book is not intended to be a complete guide to
the literature, and many important sources are ignored or left out, due to my own
ignorance and laziness.

Finally, if you attempt to read this without working through a significant num-
ber of exercises (see §0.0.1), I will come to your house and pummel you with
[Gr-EGA] until you beg for mercy. It is important to not just have a vague sense of
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what is true, but to be able to actually get your hands dirty. To quote Mark Kisin:
“You can wave your hands all you want, but it still won’t make you fly.” Note: The
hints may help you, but sometimes they may not.

0.2 For the expert

If you use this book for a course, you should of course adapt it to your own
point of view and your own interests. In particular, you should think about an
application or theorem you want to reach at the end of the course (which may
well not be in this book), and then work toward it. You should feel no compulsion
to sprint to the end; I advise instead taking more time, and ending at the right
place for your students. (Figure 0.1, showing large-scale dependencies among the
chapters, may help you map out a course.) I have found that the theory of curves
(Chapter 19) and the 27 lines on the cubic surface (Chapter 27) have served this
purpose well at the end of winter and spring quarters. This was true even if some
of the needed background was not covered, and had to be taken by students as
some sort of black box. For the firt quarter, the goal is to build a common language
for many kinds of geometry and geometric spaces (not just algebraic geometry, but
also manifolds, complex geometry, some differential geometry, and more) — a sort
of archetypal form of a geometric space.

Faithfulness to the goals of §0.4 required a brutal triage, and I have made a
number of decisions you may wish to reverse. I will briefly describe some choices
made that may be controversial.

Decisions on how to describe things were made for the sake of the learners.
If there were two approaches, and one was “correct” from an advanced point of
view, and one was direct and natural from a naive point of view, I went with the
latter.

On the other hand, the theory of varieties (over an algebraically closed field,
say) was not done first and separately. This choice brought me close to tears, but
in the end I am convinced that it can work well, if done in the right spirit.

Instead of spending the first part of the course on varieties, I spent the time
in a different way. It is tempting to assume that students will either arrive with
great comfort and experience with category theory and sheaf theory, or that they
should pick up these ideas on their own time. I would love to live in that world.
I encourage you to not skimp on these foundational issues. I have found that
although these first lectures felt painfully slow to me, they were revelatory to a
number of the students, and those with more experience were not bored and did
not waste their time. This investment paid off in spades when I was able to rely
on their ability to think cleanly and to use these tools in practice. Furthermore, if
they left the course with nothing more than hands-on experience with these ideas,
the world was still better off for it.

For the most part, we will state results in the maximal generality that the proof
justifies, but we will not give a much harder proof if the generality of the stronger
result will not be used. There are a few cases where we work harder to prove
a somewhat more general result that many readers may not appreciate. For ex-
ample, we prove a number of theorems for proper morphisms, not just projective
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morphisms. But in such cases, readers are invited or encouraged to ignore the
subtleties required for the greater generality.

I consider line bundles (and maps to projective space) more fundamental than
divisors. General Cartier divisors are not discussed (although effective Cartier divi-
sors play an essential role).

Cohomology is done first using the Cech approach (as Serre first did), and de-
rived functor cohomology is introduced only later. I am well aware that Grothendieck
thinks of the fact that the agreement of Cech cohomology with derived functor co-
homology “should be considered as an accidental phenomenon”, and that “it is
important for technical reasons not to take as definition of cohomology the Cech
cohomology”, [Gr3, p. 108]. But I am convinced that this is the right way for most
people to see this kind of cohomology for the first time. (It is certainly true that
many topics in algebraic geometry are best understood in the language of derived
functors. But this is a view from the mountaintop, looking down, and not the best
way to explore the forests. In order to appreciate derived functors appropriately,
one must understand the homological algebra behind it, and not just take it as a
black box.)

We restrict to the Noetherian case only when it is necessary, or (rarely) when it
really saves effort. In this way, non-Noetherian people will clearly see where they
should be careful, and Noetherian people will realize that non-Noetherian things
are not so terrible. Moreover, even if you are interested primarily in Noetherian
schemes, it helps to see “Noetherian” in the hypotheses of theorems only when
necessary, as it will help you remember how and when this property gets used.

There are some cases where Noetherian readers will suffer a little more than
they would otherwise. As an inflammatory example, instead of using Noetherian
hypotheses, the notion of quasiseparatedness comes up early and often. The cost
is that one extra word has to be remembered, on top of an overwhelming number
of other words. But once that is done, it is not hard to remember that essentially
every scheme anyone cares about is quasiseparated. Furthermore, whenever the
hypotheses “quasicompact and quasiseparated” turn up, the reader will immedi-
ately guess a key idea of the proof. As another example, coherent sheaves and
finite type (quasicoherent) sheaves are the same in the Noetherian situation, but
are still worth distinguishing in statements of the theorems and exercises, for the
same reason: to be clearer on what is used in the proof.

Many important topics are not discussed. Valuative criteria are not proved
(see §13.7), and their statement is relegated to an optional section. Completely
omitted: dévissage, formal schemes, and cohomology with supports. Sorry!

0.3 Background and conventions

“Should you just be an algebraist or a geometer?” is like saying “Would you rather
be deaf or blind?”
— M. Atiyah, [At2, p. 659]

All rings are assumed to be commutative unless explicitly stated otherwise.
All rings are assumed to contain a unit, denoted 1. Maps of rings must send 1 to
1. We don’t require that 0 # 1; in other words, the “0-ring” (with one element)
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is a ring. (There is a ring map from any ring to the O-ring; the 0-ring only maps
to itself. The 0-ring is the final object in the category of rings.) The definition of
“integral domain” includes 1 # 0, so the 0-ring is not an integral domain. We
accept the Axiom of Choice. In particular, any proper ideal in a ring is contained
in a maximal ideal. (The Axiom of Choice also arises in the argument that the
category of A-modules has enough injectives, see Exercise 23.2.G.)

The reader should be familiar with some basic notions in commutative ring
theory, in particular the notion of ideals (including prime and maximal ideals), var-
ious types of rings (including integral domains, principal ideal domains, unique
factorization domains, and local rings), localization, and modules. Tensor prod-
ucts and exact sequences of A-modules will be important. We will use the notation
(A,m) or (A, m, k) for local rings (rings with a unique maximal ideal) — A is the
ring, m its maximal ideal, and k = A/m its residue field. We will use the struc-
ture theorem for finitely generated modules over a principal ideal domain A: any
such module can be written as the direct sum of principal modules A/(a). Some
experience with field theory will be important from time to time.

Manifolds will be brought up periodically as examples, but for the most part,
they are meant for motivation, so we will often not specify whether they are topo-
logical (real) manifolds, differentiable (C*, i.e., smooth) real manifolds, analytic
(real) manifolds, or complex (holomorphic) manifolds. Nonetheless, we will de-
fine all four (Definition 4.3.9).

0.3.1. Caution about foundational issues. We will not concern ourselves with subtle
foundational issues (set-theoretic issues, universes, etc.). It is true that some peo-
ple should be careful about these issues. But is that really how you want to live
your life? (If you are one of these rare people, a good start is [KS2, §1.1].)

0.3.2. Further background. It may be helpful to have books on other subjects at
hand that you can dip into for specific facts, rather than reading them in advance.
In commutative algebra, [E] is good for this. Other popular choices are [AtM] and
[Mat2]. The book [Al] takes a point of view useful to algebraic geometry. For
homological algebra, [Weib] is simultaneously detailed and readable.

Background from other parts of mathematics (topology, geometry, complex
analysis, number theory, ...) will of course be helpful for intuition and grounding.
Some previous exposure to topology is certainly essential.

0.3.3. Nonmathematical conventions. “Unimportant” means “unimportant for the
current exposition”, not necessarily unimportant in the larger scheme of things.
Other words may be used idiosyncratically as well.

There are optional starred sections of topics worth knowing on a second or
third (but not first) reading. They are marked with a star: *. Starred sections are
not necessarily harder, merely unimportant. You should not read double-starred
sections (%) unless you really really want to, but you should be aware of their
existence. (It may be strange to have parts of a book that should ot be read!)

Let’s now find out if you are taking my advice about double-starred sections.

0.4 «x The goals of this book
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There are a number of possible introductions to the field of algebraic geome-
try: Riemann surfaces; complex geometry; the theory of varieties; a nonrigorous
examples-based introduction; algebraic geometry for number theorists; an abstract
functorial approach; and more. All have their place. Different approaches suit dif-
ferent students (and different advisors). This book takes only one route.

Our intent is to cover a canon completely and rigorously, with enough exam-
ples and calculations to help develop intuition for the machinery. This is often
the content of a second course in algebraic geometry, and in an ideal world, peo-
ple would learn this material over many years, after having background courses
in commutative algebra, algebraic topology, differential geometry, complex analy-
sis, homological algebra, number theory, and French literature. We do not live in
an ideal world. For this reason, the book is written as a first introduction, but a
challenging one.

This book seeks to do a very few things, but to try to do them well. Our goals
and premises are as follows.

The core of the material should be digestible over a single year. After a
year of blood, sweat, and tears, readers should have a broad familiarity with the
foundations of the subject, and be ready to attend seminars, and learn more ad-
vanced material. They should not just have a vague intuitive understanding of
the ideas of the subject; they should know interesting examples, know why they
are interesting, and be able to work through their details. Readers in other fields
of mathematics should know enough to understand the algebro-geometric ideas
that arise in their area of interest.

This means that this book is not encyclopedic, and even beyond that, hard
choices have to be made. (In particular, analytic aspects are essentially ignored,
and are at best dealt with in passing without proof. This is a book about algebraic
algebraic geometry.)

This book is usable (and has been used) for a course, but the course should
(as always) take on the personality of the instructor. With a good course, people
should be able to leave early and still get something useful from the experience.
With this book, it is possible to leave without regret after learning about category
theory, or about sheaves, or about geometric spaces, having become a better per-
son.

The book is also usable (and has been used) for learning on your own. But
most mortals cannot learn algebraic geometry fully on their own; ideally you
should read in a group, and even if not, you should have someone you can ask
questions to (both stupid and smart questions).

There is certainly more than a year’s material here, but I have tried to make
clear which topics are essential, and which are not. Those teaching a class will
choose which “inessential” things are important for the point they wish to get
across, and use them.

There is a canon (at least for this particular approach to algebraic geometry). I
have been repeatedly surprised at how much people in different parts of algebraic
geometry agree on what every civilized algebraic geometer should know after a
first (serious) year. (There are of course different canons for different parts of the
subject, e.g., complex algebraic geometry, combinatorial algebraic geometry, com-
putational algebraic geometry, etc.) There are extra bells and whistles that different
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instructors might add on, to prepare students for their particular part of the field
or their own point of view, but the core of the subject remains unified, despite the
diversity and richness of the subject. There are some serious and painful compro-
mises to be made to reconcile this goal with the previous one.

Algebraic geometry is for everyone (with the appropriate definition of “ev-
eryone”). Algebraic geometry courses tend to require a lot of background, which
makes them inaccessible to all but those who know they will go deeply into the
subject. Algebraic geometry is too important for that; it is essential that many of
those in nearby fields develop some serious familiarity with the foundational ideas
and tools of the subject, and not just at a superficial level. (Similarly, algebraic ge-
ometers uninterested in any nearby field are necessarily arid, narrow thinkers. Do
not be such a person!)

For this reason, this book attempts to require as little background as possible.
The background required will, in a technical sense, be surprisingly minimal — ide-
ally just some commutative ring theory and point-set topology, and some comfort
with things like prime ideals and localization. This is misleading of course — the
more you know, the better. And the less background you have, the harder you will
have to work — this is not a light read. On a related note...

The book is intended to be as self-contained as possible. I have tried to
follow the motto: “if you use it, you must prove it”. I have noticed that most
students are human beings: if you tell them that some algebraic fact is in some late
chapter of a book in commutative algebra, they will not immediately go and read
it. Surprisingly often, what we need can be developed quickly from scratch, and
even if people do not read it, they can see what is involved. The cost is that the
book is much denser, and that significant sophistication and maturity is demanded
of the reader. The benefit is that more people can follow it; they are less likely to
reach a point where they get thrown. On the other hand, people who already have
some familiarity with algebraic geometry, but want to understand the foundations
more completely, should not be bored, and can focus on more subtle issues.

This goal is important because one should not just know what is true, but also
know why things are true, and what is hard, and what is not hard. Also, this helps
the previous goal, by reducing the number of prerequisites.

The book is intended to build intuition for the formidable machinery of al-
gebraic geometry. The exercises are central for this (see §0.0.1). Informal language
can sometimes be helpful. Many examples are given. (If you do not have pic-
tures in your head which provide you with insight into why things are true, and
how to prove things, then you cannot really say that you are “thinking geometri-
cally”.) Learning how to think cleanly (and in particular categorically) is essential.
The advantages of appropriate generality should be made clear by example, and
not through intimidation. The motivation is more local than global. For example,
there is no introductory chapter explaining why one might be interested in alge-
braic geometry, and instead there is an introductory chapter explaining why you
should want to think categorically (and how to actually do this).

Balancing the above goals is already impossible. We must thus give up any
hope of achieving any other desiderata. There are no other goals.
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CHAPTER 1

Just enough category theory to be dangerous

Was mich nicht umbringt macht mich stirker.

That which does not kill me, makes me stronger.
— F. Nietzsche [N, aphorism number 8]

1.1 Motivation

The introduction of the digit O or the group concept was general nonsense too, and
mathematics was more or less stagnating for thousands of years because nobody was
around to take such childish steps...

— A. Grothendieck, [BP, p. 4-5]

Before we get to any interesting geometry, we need to develop a language
to discuss things cleanly and effectively. This is best done in the language of
categories. There is not much to know about categories to get started; it is just
a very useful language. Like all mathematical languages, category theory comes
with an embedded logic, which allows us to abstract intuitions in settings we know
well to far more general situations.

Our motivation is as follows. We will be creating some new mathematical
objects (such as schemes, and certain kinds of sheaves), and we expect them to
act like objects we have seen before. We could try to nail down precisely what
we mean by “act like”, and what minimal set of things we have to check in order
to verify that they act the way we expect. Fortunately, we don’t have to — other
people have done this before us, by defining key notions, such as abelian categories,
which behave like modules over a ring.

Our general approach will be as follows. I will try to tell you what you need to
know, and no more. (This I promise: if I use the word “topoi”, you can shoot me.) I
will begin by telling you things you already know, and describing what is essential
about the examples, in a way that we can abstract a more general definition. We
will then see this definition in less familiar settings, and get comfortable with using
it to solve problems and prove theorems.

For example, we will define the notion of product of schemes. We could just
give a definition of product, but then you should want to know why this precise
definition deserves the name of “product”. As a motivation, we revisit the notion
of product in a situation we know well: (the category of) sets. One way to define
the product of sets U and V is as the set of ordered pairs {(u,v) : uwe U,v € VL
But someone from a different mathematical culture might reasonably define it as

23
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the set of symbols {V: u € U,v € V). These notions are “obviously the same”.
Better: there is “an obvious bijection between the two”.

This can be made precise by giving a better definition of product, in terms
of a universal property. Given two sets M and N, a product is a set P, along with
maps p: P — M and v: P — N, such that for any set P’ with maps u': P’ — M and
v’: P’ = N, these maps must factor uniquely through P:

(1.1.0.1)

(The symbol 3 means “there exists”, and the symbol ! means “unique”.) Thus a
product is a diagram

P—>N

!

M

and not just a set P, although the maps i and v are often left implicit.

This definition agrees with the traditional definition, with one twist: there
isn’t just a single product; but any two products come with a unique isomorphism
between them. In other words, the product is unique up to unique isomorphism.
Here is why: if you have a product

Py — >N

'

and I have a product

then by the universal property of my product (letting (P2, u2,v2) play the role of
(P, v), and (Py, 11, vy) play the role of (P’,pu’,v’) in (1.1.0.1)), there is a unique
map f: Py — P, making the appropriate diagram commute (i.e., p; = p o f and
vq = v of). Similarly by the universal property of your product, there is a unique
map g: P, — P; making the appropriate diagram commute. Now consider the
universal property of my product, this time letting (P2, u2,v2) play the role of
both (P, i, v) and (P’,pn’,v’) in (1.1.0.1). There is a unique map h: P, — P, such
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that
P2
\h V2
AN
M2 P> T> N
\L H2
M

commutes. However, I can name two such maps: the identity map idp,, and f o g.
Thus f o g = idp,. Similarly, g o f = idp,. Thus the maps f and g arising from
the universal property are bijections. In short, there is a unique bijection between
P; and P; preserving the “product structure” (the maps to M and N). This gives
us the right to name any such product M x N, since any two such products are
uniquely identified.

This definition has the advantage that it works in many circumstances, and
once we define categories, we will soon see that the above argument applies ver-
batim in any category to show that products, if they exist, are unique up to unique
isomorphism. Even if you haven’t seen the definition of category before, you can
verify that this agrees with your notion of product in some category that you have
seen before (such as the category of vector spaces, or the category of manifolds).

This is handy even in cases that you understand. For example, one way of
defining the product of two manifolds M and N is to cut them both up into charts,
then take products of charts, then glue them together. But if I cut up the manifolds
in one way, and you cut them up in another, how do we know our resulting mani-
folds are the “same”? We could wave our hands, or make an annoying argument
about refining covers, but instead, we should just show that they are “categorical
products” and hence canonically the “same” (i.e., isomorphic). We will formalize
this argument in §1.3.

Another set of notions we will abstract are categories that “behave like mod-
ules”. We will want to define kernels and cokernels for new notions, and we
should make sure that these notions behave the way we expect them to. This
leads us to the definition of abelian categories, first defined by Grothendieck in his
Tohoku paper [Grl].

In this chapter, we will give an informal introduction to these and related no-
tions, in the hope of giving just enough familiarity to comfortably use them in
practice.

1.2 Categories and functors

Before functoriality, people lived in caves. — B. Conrad

We begin with an informal definition of categories and functors.

1.2.1. Categories.

A category consists of a collection of objects, and for each pair of objects, a
set of morphisms (or arrows) between them. (For experts: technically, this is the
definition of a locally small category. In the correct definition, the morphisms need
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only form a class, not necessarily a set, but see Caution 0.3.1.) Morphisms are often
informally called maps. The collection of objects of a category ¥ is often denoted
obj(%’), but we will usually denote the collection also by €. If A,B € €, then the
set of morphisms from A to B is denoted Mor(A, B). A morphism is often written
f: A — B, and A is said to be the source of f, and B the target of f. (Of course,
Mor(A, B) is taken to be disjoint from Mor(A’,B’) unless A = A’ and B = B’.)

Morphisms compose as expected: there is a composition Mor (B, C) xMor(A, B) —
Mor(A, C), and if f € Mor(A, B) and g € Mor(B, C), then their composition is de-
noted g o f. Composition is associative: if f € Mor(A,B), g € Mor(B, C), and
h € Mor(C,D), then ho (gof) = (hog)of. For each object A € €, there is always
an identity morphism ida : A — A, such that when you (left- or right-)compose a
morphism with the identity, you get the same morphism. More precisely, for any
morphisms f: A — Band g: B — C,idgof = f and g oidg = g. (If you wish,
you may check that “identity morphisms are unique”: there is only one morphism
deserving the name id 5 .) This ends the definition of a category.

We have a notion of isomorphism between two objects of a category (a mor-
phism f: A — B such that there exists some — necessarily unique — morphism
g: B = A, where f o g and g o f are the identity on B and A respectively).

1.2.2. Example. The prototypical example to keep in mind is the category of sets,
denoted Sets. The objects are sets, and the morphisms are maps of sets. (Because
Russell’s paradox shows that there is no set of all sets, we did not say earlier that
there is a set of all objects. But as stated in §0.3, we are deliberately omitting all
set-theoretic issues.)

1.2.3. Example. Another good example is the category Vecy of vector spaces over
a given field k. The objects are k-vector spaces, and the morphisms are linear
transformations. (What are the isomorphisms?)

1.2.A. UNIMPORTANT EXERCISE. A category in which each morphism is an iso-
morphism is called a groupoid. (This notion is not important in what we will
discuss. The point of this exercise is to give you some practice with categories, by
relating them to an object you know well.)

(a) A perverse definition of a group is: a groupoid with one object. Make sense of
this. (Similarly, in case you care: a perverse definition of a monoid is: a category
with one object.)

(b) Describe a groupoid that is not a group.

1.2.B. EXERCISE. If A is an object in a category &, show that the invertible ele-
ments of Mor(A, A) form a group (called the automorphism group of A, denoted
Aut(A)). What are the automorphism groups of the objects in Examples 1.2.2
and 1.2.3? Show that two isomorphic objects have isomorphic automorphism
groups. (For readers with a topological background: if X is a topological space,
then the fundamental groupoid is the category where the objects are points of X,
and the morphisms x — y are paths from x to y, up to homotopy. Then the auto-
morphism group of x, is the (pointed) fundamental group 71 (X, xo). In the case
where X is connected, and 717 (X) is not abelian, this illustrates the fact that for
a connected groupoid — whose definition you can guess — the automorphism
groups of the objects are all isomorphic, but not canonically isomorphic.)
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1.2.4. Example: abelian groups. The abelian groups, along with group homomor-
phisms, form a category Ab.

1.2.5. Important Example: Modules over a ring. If A is a ring, then the A-modules
form a category Mod . (This category has additional structure; it will be the pro-
totypical example of an abelian category, see §1.6.) Taking A = k, we obtain Exam-
ple 1.2.3; taking A = Z, we obtain Example 1.2.4.

1.2.6. Example: rings. There is a category Rings, where the objects are rings, and
the morphisms are maps of rings in the usual sense (maps of sets which respect
addition and multiplication, and which send 1 to 1 by our conventions, §0.3).

1.2.7. Example: topological spaces. The topological spaces, along with continuous
maps, form a category Top. The isomorphisms are homeomorphisms.

In all of the above examples, the objects of the categories were in obvious
ways sets with additional structure (a concrete category, although we won’t use
this terminology). This needn’t be the case, as the next example shows.

1.2.8. Example: partially ordered sets. A partially ordered set, (or poset), is a set S
along with a binary relation > on S satisfying:
(i) x > x (reflexivity),
(if) x > yand y > zimply x > z (transitivity), and
(iif) if x >y andy > x then x = y (antisymmetry).
A partially ordered set (S,>) can be interpreted as a category whose objects are
the elements of S, and with a single morphism from x to y if and only if x > y (and
no morphism otherwise).
A trivial example is (S, >) where x >y if and only if x = y. Another example
is

(1.2.8.1)

o<—-9

|

Here there are three objects. The identity morphisms are omitted for convenience,
and the two non-identity morphisms are depicted. A third example is

(1.2.8.2)

_

oe<——0
o<—-290

_

Here the “obvious” morphisms are again omitted: the identity morphisms, and
the morphism from the upper left to the lower right. Similarly,

depicts a partially ordered set, where again, only the “generating morphisms” are
depicted.

1.2.9. Example: the category of subsets of a set, and the category of open subsets of a topo-
logical space. If X is a set, then the subsets form a partially ordered set, where the
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order is given by inclusion. Informally, if U C V, then we have exactly one mor-
phism U — V in the category (and otherwise none). Similarly, if X is a topological
space, then the open sets form a partially ordered set, where the order is given by
inclusion.

1.2.10. Definition. A subcategory .o of a category % has as its objects some of the
objects of #, and some of the morphisms, such that the morphisms of < include
the identity morphisms of the objects of 7, and are closed under composition.
(For example, (1.2.8.1) is in an obvious way a subcategory of (1.2.8.2). Also, we
have an obvious “inclusion functor” i: & — A.)

1.2.11. Functors.

A covariant functor F from a category <7 to a category %, denoted F: & — %,
is the following data. It is a map of objects F: obj(.#/) — obj(#), and for each A,
A, € &/, and morphism m: A; — A, amorphism F(m): F(A;) — F(A;) in Z. We
require that F preserves identity morphisms (for A € &7, F(ida) = idf(a)), and that
F preserves composition (F(m; o m;) = F(m;) o F(my)). (You may wish to verify
that covariant functors send isomorphisms to isomorphisms.) A trivial example is
the identity functor id: &/ — </, whose definition you can guess. Here are some
less trivial examples.

1.2.12. Example: a forgetful functor. Consider the functor from the category of
vector spaces (over a field k) Vecy to Sets, that associates to each vector space its
underlying set. The functor sends a linear transformation to its underlying map of
sets. This is an example of a forgetful functor, where some additional structure is
forgotten. Another example of a forgetful functor is Moda — Ab from A-modules
to abelian groups, remembering only the abelian group structure of the A-module.

1.2.13. Topological examples. Examples of covariant functors include the funda-
mental group functor 717, which sends a topological space X with choice of a point
xo € X to a group 77 (X, xo) (what are the objects and morphisms of the source cat-
egory?), and the ith homology functor Top — Ab, which sends a topological space
X to its ith homology group H; (X, Z). The covariance corresponds to the fact that
a (continuous) morphism of pointed topological spaces ¢: X — Y with ¢(x0) =yo
induces a map of fundamental groups 71 (X,%x0) — m1(Y,yo), and similarly for
homology groups.

1.2.14. Example. Suppose A is an object in a category €. Then there is a func-
tor h*: ¢ — Sets sending B € ¢ to Mor(A,B), and sending f: By — B to
Mor(A,B1) — Mor(A, B,) described by

[g:A—=Bil—[fog: A— By — Byl
This seemingly silly functor ends up surprisingly being an important concept.

1.2.15. Definitions. If F: &/ — % and G: 4 — ¥ are covariant functors, then we
define a functor G o F: &/ — ¥ (the composition of G and F) in the obvious way.
Composition of functors is associative in an evident sense.

A covariant functor F: &/ — £ is faithful if for all A,A’ € &/, the map
Mor (A, A’) — Morg(F(A),F(A’)) is injective, and full if it is surjective. A func-
tor that is full and faithful is fully faithful. A subcategory i: & — % is a full
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subcategory if i is full. (Inclusions are always faithful, so there is no need for the
phrase “faithful subcategory”.) Thus a subcategory <7’ of <7 is full if and only if for
all A, B € obj(«/’), Mor.(A,B) = Mor (A, B). For example, the forgetful func-
tor Vecy — Sets is faithful, but not full; and if A is a ring, the category of finitely
generated A-modules is a full subcategory of the category Moda of A-modules.

1.2.16. Definition. A contravariant functor is defined in the same way as a covari-
ant functor, except the arrows switch directions: in the above language, F(A; —
A>) is now an arrow from F(A) to F(A7). (Thus F(m; o m;) = F(m4) o F(m;), not
F(mz) o F(mq).)

It is wise to state whether a functor is covariant or contravariant, unless the
context makes it very clear. If it is not stated (and the context does not make it
clear), the functor is often assumed to be covariant.

Sometimes people describe a contravariant functor ¥ — & as a covariant func-
tor €°PP — &, where €°FP is the same category as € except that the arrows go in
the opposite direction. Here ¢°PP is said to be the opposite category to .

One can define fullness, etc. for contravariant functors, and you should do so.

1.2.17. Linear algebra example. If Vecy is the category of k-vector spaces (introduced
in Example 1.2.3), then taking duals gives a contravariant functor (-)V: Vec, —
Vecy.. Indeed, to each linear transformation f: V — W, we have a dual transforma-
tion f¥: WY — VV,and (fog)Y =gY of".

1.2.18. Topological example (cf. Example 1.2.13) for those who have seen cohomology. The
ith cohomology functor H'(-, Z): Top — Ab is a contravariant functor.

1.2.19. Example. There is a contravariant functor Top — Rings taking a topological
space X to the ring of real-valued continuous functions on X. A morphism of
topological spaces X — Y (a continuous map) induces the pullback map from
functions on Y to functions on X.

1.2.20. Example (the functor of points, cf. Example 1.2.14). Suppose A is an object
of a category ¢. Then there is a contravariant functor ha: ¢ — Sets sending
B € ¥ to Mor(B, A), and sending the morphism f: By — B, to the morphism
Mor(B,,A) — Mor(Bq,A) via

[g: B 2 Al——=[gof: By — By, — Al

This example initially looks weird and different, but Examples 1.2.17 and 1.2.19
may be interpreted as special cases; do you see how? What is A in each case? This
functor might reasonably be called the functor of maps (to A), but is actually known
as the functor of points. We will meet this functor again in §1.3.11 and (in the
category of schemes) in Definition 7.3.10.

1.2.21. * Natural transformations (and natural isomorphisms) of covariant func-
tors, and equivalences of categories.

(This notion won’t come up in an essential way until at least Chapter 7, so you
shouldn’t read this section until then.) Suppose F and G are two covariant functors
from &/ to #. A natural transformation of covariant functors F — G is the data
of a morphism ma: F(A) — G(A) for each A € &/ such that for each f: A — A’ in
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o/, the diagram

FA) — 7 Fan

ml lm/\,

!
G(A) <+ G(A)
commutes. A natural isomorphism of functors is a natural transformation such
that each ma is an isomorphism. (We make analogous definitions when F and G
are both contravariant.)

The data of functors F: &/ — % and F': % — & such that F o F/ is naturally
isomorphic to the identity functor idg on % and F’ o F is naturally isomorphic
to id,y is said to be an equivalence of categories. The right notion of when two
categories are “essentially the same” is not isomorphism (a functor giving bijections
of objects and morphisms) but equivalence. Exercises 1.2.C and 1.2.D might give
you some vague sense of this. Later exercises (for example, that “rings” and “affine
schemes” are essentially the same, once arrows are reversed, Exercise 7.3.E) may
help too.

Two examples might make this strange concept more comprehensible. The
double dual of a finite-dimensional vector space V is not V, but we learn early to
say that it is canonically isomorphic to V. We can make that precise as follows. Let
f.d.Vec, be the category of finite-dimensional vector spaces over k. Note that this
category contains oodles of vector spaces of each dimension.

1.2.C. EXERCISE. Let (-)VV: f.d.Vec, — f.d.Vec, be the double dual functor from
the category of finite-dimensional vector spaces over k to itself. Show that (-)¥"
is naturally isomorphic to the identity functor on f.d.Vec,. (Without the finite-
dimensionality hypothesis, we only get a natural transformation of functors from
idto (1)VV.)

Let 7 be the category whose objects are the k-vector spaces k™ for eachn > 0
(there is one vector space for each n), and whose morphisms are linear transfor-
mations. The objects of ¥ can be thought of as vector spaces with bases, and the
morphisms as matrices. There is an obvious functor 7" — f.d.Vec, , as each k™ is a
finite-dimensional vector space.

1.2.D. EXERCISE. ~ Show that #* — f.d.Vec, gives an equivalence of categories,
by describing an “inverse” functor. (Recall that we are being cavalier about set-
theoretic assumptions, see Caution 0.3.1, so feel free to simultaneously choose
bases for each vector space in f.d.Vec, . To make this precise, you will need to use
Godel-Bernays set theory or else replace f.d.Vec, with a very similar small category,
but we won’t worry about this.)

1.2.22. xx Aside for experts. Your argument for Exercise 1.2.D will show that (mod-
ulo set-theoretic issues) this definition of equivalence of categories is the same as
another one commonly given: a covariant functor F: &/ — % is an equivalence
of categories if it is fully faithful and every object of % is isomorphic to an object
of the form F(A) for some A € & (F is essentially surjective, a term we will not
need). Indeed, one can show that such a functor has a quasiinverse (another term
we will not use later), i.e., a functor G: ## — &/ (necessarily also an equivalence
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and unique up to unique isomorphism) for which Go F = id, and Fo G = idg,
and conversely, any functor that has a quasiinverse is an equivalence.

1.3 Universal properties determine an object up to unique
isomorphism

Given some category that we come up with, we often will have ways of pro-
ducing new objects from old. In good circumstances, such a definition can be
made using the notion of a universal property. Informally, we wish that there were
an object with some property. We first show that if it exists, then it is essentially
unique, or more precisely, is unique up to unique isomorphism. Then we go about
constructing an example of such an object to show existence.

Explicit constructions are sometimes easier to work with than universal prop-
erties, but with a little practice, universal properties are useful in proving things
quickly and slickly. Indeed, when learning the subject, people often find explicit
constructions more appealing, and use them more often in proofs, but as they be-
come more experienced, they find universal property arguments more elegant and
insightful.

1.3.1. Products were defined by a universal property. We have seen one im-
portant example of a universal property argument already in §1.1: products. You
should go back and verify that our discussion there gives a notion of product in
any category, and shows that products, if they exist, are unique up to unique iso-
morphism.

1.3.2. Initial, final, and zero objects. Here are some simple but useful concepts
that will give you practice with universal property arguments. An object of a
category ¢ is an initial object if it has precisely one map to every object. It is a
final object if it has precisely one map from every object. It is a zero object if it is
both an initial object and a final object.

1.3.A. EXERCISE. Show that any two initial objects are uniquely isomorphic. Show
that any two final objects are uniquely isomorphic.

In other words, if an initial object exists, it is unique up to unique isomorphism,
and similarly for final objects. This (partially) justifies the phrase “the initial object”
rather than “an initial object”, and similarly for “the final object” and “the zero
object”. (Convention: we often say “the”, not “a”, for anything defined up to
unique isomorphism.)

1.3.B. EXERCISE. What are the initial and final objects in Sets, Rings, and Top (if
they exist)? How about in the two examples of §1.2.9?

1.3.3. Localization of rings and modules. Another important example of a defi-
nition by universal property is the notion of localization of a ring. We first review a
constructive definition, and then reinterpret the notion in terms of universal prop-
erty. A multiplicative subset S of a ring A is a subset closed under multiplication
containing 1. We define a ring S~'A. The elements of S~'A are of the form a/s
where a € A and s € S, and where a;/s1 = ay/s; if (and only if) for some s € S,
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s(s2a; —sjay) = 0. We define (ai/s1) + (az/s2) = (s2a7 + s1a2)/(s1s2), and
(a1/s1) x (a2/s2) = (araz2)/(s1s2). (If you wish, you may check that this equal-
ity of fractions really is an equivalence relation and the two binary operations on
fractions are well-defined on equivalence classes and make S~' A into a ring.) We
have a canonical ring map

(1.3.3.1) A—>STA

given by a — a/1. Note thatif 0 € S, S' A is the O-ring.

There are two particularly important flavors of multiplicative subsets. The
first is {1,f,f%,...}, where f € A. This localization is denoted A¢. (Can you de-
scribe an isomorphism A¢ «— A[t]/(tf — 1)?) The second is A — p, where p is a
prime ideal. This localization S~'A is denoted A,. (Notational warning: If p is a
prime ideal, then A, means you're allowed to divide by elements not in p. How-
ever, if f € A, Ar means you're allowed to divide by f. This can be confusing. For
example, if (f) is a prime ideal, then A # A f).)

Warning: sometimes localization is first introduced in the special case where A
is an integral domain and O ¢ S. In that case, A — S—TA, but thisisn’t always true,
as shown by the following exercise. (But we will see that noninjective localizations
needn’t be pathological, and we can sometimes understand them geometrically,
see Exercise 3.2.L.)

1.3.C. EXERCISE. Show that A — S~'A is injective if and only if S contains no
zerodivisors. (A zerodivisor of a ring A is an element a such that there is a nonzero
element b with ab = 0. The other elements of A are called non-zerodivisors. For
example, an invertible element is never a zerodivisor. Counter-intuitively, 0 is a
zerodivisor in every ring but the 0-ring. More generally, if M is an A-module, then
a € Ais a zerodivisor for M if there is a nonzero m € M with am = 0. The other
elements of A are called non-zerodivisors for M. Equivalently, and very usefully,
a € A is a non-zerodivisor for M if and only if xa : M — M is an injection, or
equivalently in the language of §1.6, if

0— =M% M

is exact.)

If A is an integral domain and S = A—{0}, then S~" A is called the fraction field
of A, which we denote K(A). The previous exercise shows that A is a subring of its
fraction field K(A). We now return to the case where A is a general (commutative)
ring.

1.3.D. EXERCISE. Verify that A — S~'A satisfies the following universal property:
S~'A is initial among A-algebras B where every element of S is sent to an invert-
ible element in B. (Recall: the data of “an A-algebra B” and “a ring map A — B”
are the same.) Translation: any map A — B where every element of S is sent to an
invertible element must factor uniquely through A — S~TA. Another translation:
a ring map out of S'A is the same thing as a ring map from A that sends every
element of S to an invertible element. Furthermore, an S~ A-module is the same
thing as an A-module for which s x -: M = M is an A-module isomorphism for
alls € S.
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In fact, it is cleaner to define A — S~'A by the universal property, and to
show that it exists, and to use the universal property to check various properties
S~TA has. Let’s get some practice with this by defining localizations of modules
by universal property. Suppose M is an A-module. We define the A-module map
$: M — S~'M as being initial among A-module maps M — N such that elements
of S are invertible in N (s x -: N — N is an isomorphism for all s € S). More
precisely, any such map a: M — N factors uniquely through ¢:

M—2s51Mm

3!
x v

N

(Translation: M — S~'M is universal (initial) among A-module maps from M to
modules that are actually S~'A-modules. Can you make this precise by defining
clearly the objects and morphisms in this category?)

Notice: (i) this determines ¢: M — S~'M up to unique isomorphism (you
should think through what this means); (ii) we are defining not only S~'M, but
also the map ¢ at the same time; and (iii) essentially by definition the A-module
structure on S~'M extends to an S~' A-module structure.

1.3.E. EXERCISE.  Show that ¢: M — S™'M exists, by constructing something
satisfying the universal property. Hint: define elements of S™'M to be of the
form m/s where m € M and s € S, and m;/s1 = m2/s; if and only if for some
s € S, s(spmy —symy) = 0. Define the additive structure by (m;/s1) + (my/s2) =
(somq + s1m2)/(s1s2), and the S—TA-module structure (and hence the A-module
structure) is given by (aj/s1) - (m2/s2) = (ayma)/(s152).

1.3.F. EXERCISE.

(a) Show that localization commutes with finite products, or equivalently, with

finite direct sums. In other words, if My, ..., M,, are A-modules, describe an iso-

morphism (of A-modules, and of S~' A-modules) S~ (M x---xMy) — S™'Mj x

S x STTM,.

(b) Show that localization commutes with arbitrary direct sums.

(c) Show that “localization does not necessarily commute with infinite products”:

the obvious map S~ ([ ]; Mi) — []; S~'M; induced by the universal property of

localization is not always an isomorphism. (Hint: (1,1/2,1/3,1/4,...) € Q x Q x
-)

1.3.4. Remark.  Localization does not always commute with Hom, see Exam-
ple 1.6.10. But Exercise 1.6.H will show that in good situations (if the first argu-
ment of Hom is finitely presented), localization does commute with Hom.

1.3.5. Tensor products. Another important example of a universal property con-
struction is the notion of a tensor product of A-modules

RA: obj(Moda) x obj(Moda) — obj(Moda)

M,N)——>M®a N
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The subscript A is often suppressed when it is clear from context. The tensor prod-
uct is often defined as follows. Suppose you have two A-modules M and N. Then
elements of the tensor product M®a N are finite A-linear combinations of symbols
m@n(m e M, n € N), subject to relations (m; + mz) @ N =m; N+ m; n,
me M +n) =men;+meny, amen) = (am)n =m® (an) (where a € A,
my, my € M, ny,n, € N). More formally, M ®a N is the free A-module generated
by M x N, quotiented by the submodule generated by (m; + my,n) — (my,n) —
(m2,n), (myng+nz)—(m,ny)—(m,nz), a(m,n)—(am,n),and a(m,n)—(m, an)
fora € A, mymy,my € M, n,ny,n; € N. The image of (m,n) in this quotient is
men.
If A is a field k, we recover the tensor product of vector spaces.

1.3.G. EXERCISE (IF YOU HAVEN’T SEEN TENSOR PRODUCTS BEFORE). Show that
Z/(10) ®z Z/(12) = Z/(2). (This exercise is intended to give some hands-on prac-
tice with tensor products.)

1.3.H. IMPORTANT EXERCISE: RIGHT-EXACTNESS OF (-) ® A N. Show that (-)®a N
gives a covariant functor Moda — Moda. Show that (-) ®a N is a right-exact
functor, i.e., if

M —-M-M"=0
is an exact sequence of A-modules (which means f: M — M” is surjective, and
M’ surjects onto the kernel of f; see §1.6), then the induced sequence

M AN -=-MeaAN-SM" @4 N =0

is also exact. This exercise is repeated in Exercise 1.6.G, but you may get a lot out of
doing it now. (You will be reminded of the definition of right-exactness in §1.6.6.)

In contrast, you can quickly check that tensor product is not left-exact: tensor
the exact sequence of Z-modules

0 7227, 7)(2) 0

with Z/(2).

The constructive definition ® is a weird definition, and really the “wrong”
definition. To motivate a better one: notice that there is a natural A-bilinear map
M xN = M®a N. If M,N,P € Moda, amap f: M x N — P is A-bilinear if
f(m] + mZ)n) = f(mhn) + f(mZ»n)r f(m» ny + le) = f(m) Tl]) + f(m) nZ)/ and
flam,n) = f(m, an) = af(m,n).) Any A-bilinear map M x N — P factors through
the tensor product uniquely: M x N — M ®a N — P. (Think this through!)

We can take this as the definition of the tensor product as follows. It is an
A-module T along with an A-bilinear map t: M x N — T, such that given any
A-bilinear map t': M x N — T/, there is a unique A-linear map f: T — T’ such
thatt' =fot.

7

t

M x N

\ A

T/

T

1.3.1. EXERCISE. Show that (T,t: M xN — T) is unique up to unique isomorphism.
Hint: first figure out what “unique up to unique isomorphism” means for such
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pairs, using a category of pairs (T,t). Then follow the analogous argument for the
product.

In short: given M and N, there is an A-bilinear map t: M X N — M ®a N,
unique up to unique isomorphism, defined by the following universal property:
for any A-bilinear map t’: M x N — T’ there is a unique A-linear map f: M ®a
N — T’ such thatt’ =fot.

As with all universal property arguments, this argument shows uniqueness
assuming existence. To show existence, we need an explicit construction.

1.3.]J. EXERCISE. Show that the construction of §1.3.5 satisfies the universal prop-
erty of tensor product.

The three exercises below are useful facts about tensor products with which
you should be familiar.

1.3.K. IMPORTANT EXERCISE.

(a) If M is an A-module and A — B is a morphism of rings, give B ®a M the
structure of a B-module (this is part of the exercise). Show that this describes a
functor Moda — Modg.

(b) (tensor product of rings) If further A — C is another morphism of rings, show
that B ®a C has a natural structure of a ring. Hint: multiplication will be given by
(b1®cq1)(b2®cz) = (b1b2)®(cicz2). (Exercise 1.3.U will interpret this construction
as a fibered coproduct.)

1.3.L. IMPORTANT EXERCISE. If S is a multiplicative subset of A and M is an
A-module, describe a natural isomorphism (S7'A) ®a M — S~'M (as S~'A-
modules and as A-modules).

1.3.M. EXERCISE (® COMMUTES WITH @). Show that tensor products commute
with arbitrary direct sums: if M and {N }i¢1 are all A-modules, describe an isomor-
phism

M ® (®ie1Ni) — Bier (M @ Ny).

1.3.6. Essential Example: Fibered products. = Suppose we have morphisms
a: X — Zand B: Y — Z (in any category). Then the fibered product (or fi-
bred product) is an object X xz Y along with morphisms prx: X xz Y — X and
prv: X xzY = Y, where the two compositions x o prx, B opry: X Xz Y — Z agree,
such that given any object W with maps to X and Y (whose compositions to Z
agree), these maps factor through some unique W — X xz Y:

XxzY—2Y

PTY
\LPVX \LB

X—>—=7Z

(Warning: the definition of the fibered product depends on & and f3, even though
they are omitted from the notation X xz Y.)
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By the usual universal property argument, if it exists, it is unique up to unique
isomorphism. (You should think this through until it is clear to you.) Thus the use
of the phrase “the fibered product” (rather than “a fibered product”) is reasonable,
and we should reasonably be allowed to give it the name X xz Y. We know what
maps to it are: they are precisely maps to X and maps to Y that agree as maps to Z.

1.3.7. Definition. ~As an example, if m: X — Y is a morphism, and the fibered
product X xy X exists, then this determines a diagonal morphism 6,: X — X xy X.
The diagonal morphism will turn out to be a very useful notion.

Depending on your religion, the diagram

XXzY——=Y
PTY

.

X—>—=7Z

is called a fibered/pullback/Cartesian diagram/square (six possibilities — even
more are possible if you prefer “fibred” to “fibered”).

The right way to interpret the notion of fibered product is first to think about
what it means in the category of sets.

1.3.N. EXERCISE (FIBERED PRODUCTS OF SETS). Show that in Sets,
XxzY={xy)eXxY : alx) =By

More precisely, show that the right side, equipped with its evident maps to X and
Y, satisfies the universal property of the fibered product. (This will help you build
intuition for fibered products.)

1.3.0. EXERCISE. If X is a topological space, show that fibered products always
exist in the category of open sets of X, by describing what a fibered product is.
(Hint: it has a one-word description.)

1.3.P. EXERCISE. If Z is the final object in a category %, and X,Y € €, show that
“XxzY =XxY" “the” fibered product over Z is uniquely isomorphic to “the”
product. Assume all relevant (fibered) products exist. (This is an exercise about
unwinding the definition.)

1.3.Q. USEFUL EXERCISE: TOWERS OF CARTESIAN DIAGRAMS ARE CARTESIAN DI-
AGRAMS. If the two squares in the following commutative diagram are Cartesian
diagrams, show that the “outside rectangle” (involving U, V, Y, and Z) is also a
Cartesian diagram.

P

R

P
i

N<=—X<—<L

1.3.R. EXERCISE. Given morphisms X; =Y, X, — Y, and Y — Z, show that there
is a natural morphism X; xy X2 — X7 Xz X3, assuming that both fibered products
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exist. (This is trivial once you figure out what it is saying. The point of this exercise
is to see why it is trivial.)

1.3.S. IMPORTANT EXERCISE: THE DIAGONAL-BASE-CHANGE DIAGRAM.  Sup-
pose we are given morphisms X;,X; — Y and Y — Z. Show that the following
diagram is a Cartesian square.

X] XyX24>X1 XzXz

| |

Y——YxzY

Assume all relevant (fibered) products exist. (If this exercise is too hard now, you
can try it again at Exercise 1.4.B.) You will appreciate how useful this diagram is
when you repeatedly use the diagonal morphism in proofs and constructions.

If you liked this problem, you may enjoy Exercise 11.2.C.

1.3.8. Coproducts. Define coproduct in a category by reversing all the arrows in
the definition of product. Define fibered coproduct in a category by reversing all
the arrows in the definition of fibered product.

1.3.T. EXERCISE. Show that coproduct for Sets is disjoint union. This is why we
use the notation [ | for disjoint union.

1.3.U. EXERCISE. Suppose A — B and A — C are two ring morphisms, so in
particular B and C are A-modules. Recall (Exercise 1.3.K) that B ®a C has a ring
structure. Show that there is a natural morphism B — B ®a C givenby b — b ® 1.
(This is not necessarily an inclusion; see Exercise 1.3.G.) Similarly, there is a natural
morphism C — B®a C. Show that this gives a fibered coproduct on rings, i.e., that

Boa C=——C

]

B A

satisfies the universal property of fibered coproduct.
1.3.9. Monomorphisms and epimorphisms.

1.3.10. Definition. A morphism 7i: X — Y is a monomorphism if any two mor-
phisms p: Z — Xand py: Z — X such that 7t o py = o gy must satisfy py = py.
In other words, there is at most one way of filling in the dotted arrow so that the

diagram
<1 \
Y

commutes — for any object Z, the natural map Mor(Z,X) — Mor(Z,Y) is an in-
jection. Intuitively, it is the categorical version of an injective map, and indeed
this notion generalizes the familiar notion of injective maps of sets. (The reason



38 The Rising Sea: Foundations of Algebraic Geometry

we don’t use the word “injective” is that in some contexts, “injective” will have
an intuitive meaning which may not agree with “monomorphism”. One example:
in the category of divisible groups, the map Q — Q/Z is a monomorphism but
not injective. This is also the case with “epimorphism” (to be defined shortly) vs.
“surjective”.)

1.3.V. EXERCISE. Show that the composition of two monomorphisms is a monomor-
phism.

1.3.W. EXERCISE. Prove that a morphism 7: X — Y is a monomorphism if and
only if the fibered product X xy X exists, and the induced diagonal morphism
b1 X = X xy X (Definition 1.3.7) is an isomorphism. We may then take this
as the definition of monomorphism. (Monomorphisms aren’t central to future
discussions, although they will come up again. This exercise is just good practice.)

1.3.X. EASY EXERCISE. We use the notation of Exercise 1.3.R. Show thatif Y — Z
is a monomorphism, then the morphism X; xy X; — Xj xz X, you described in
Exercise 1.3.R is an isomorphism. (Hint: for any object V, give a natural bijection
between maps from V to the first and maps from V to the second. It is also possible
to use the Diagonal-Base-Change diagram, Exercise 1.3.5.)

The notion of an epimorphism is “dual” to the definition of monomorphism,
where all the arrows are reversed. This concept will not be central for us, although
it turns up in the definition of an abelian category. Intuitively, it is the categori-
cal version of a surjective map. (But be careful when working with categories of
objects that are sets with additional structure, as epimorphisms need not be surjec-
tive. Example: in the category Rings, Z — Q is an epimorphism, but obviously not
surjective.)

1.3.11. Representable functors and Yoneda’s Lemma. Much of our discussion
about universal properties can be cleanly expressed in terms of representable func-
tors, under the rubric of “Yoneda’s Lemma”. Yoneda’s lemma is an easy fact stated
in a complicated way. Informally speaking, you can essentially recover an object
in a category by knowing the maps into it. For example, we have seen that the
data of maps to X x Y are naturally (canonically) the data of maps to X and to Y.
Indeed, we have now taken this as the definition of X x Y.

Recall Example 1.2.20. Suppose A is an object of category ¢. For any object
C € €, we have a set of morphisms Mor(C, A). If we have a morphism f: B — C,
we get a map of sets

(1.3.11.1) Mor(C,A) — Mor(B, A),

by composition: given a map from C to A, we get a map from B to A by precom-
posing with f: B — C. Hence this gives a contravariant functor ha: € — Sets.
Yoneda’s Lemma states that the functor ha determines A up to unique isomor-
phism. More precisely:

1.3.Y. IMPORTANT EXERCISE THAT YOU SHOULD DO ONCE IN YOUR LIFE (YONEDA'S
LEMMA).
(a) Suppose you have two objects A and A’ in a category ¢, and morphisms

(1.3.11.2) ic: Mor(C,A) — Mor(C,A’)
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that commute with the maps (1.3.11.1). Show that the ic (as C ranges over the ob-
jects of €’) are induced from a unique morphism g: A — A’. More precisely, show
that there is a unique morphism g: A — A’ such thatforall C € ¢, icisu+— gou.
(b) If furthermore the ic are all bijections, show that the resulting g is an isomor-
phism. (Hint for both: This is much easier than it looks. This statement is so
general that there are really only a couple of things that you could possibly try.
For example, if you're hoping to find a morphism A — A’, where will you find
it? Well, you are looking for an element Mor(A,A’). So just plug in C = A to
(1.3.11.2), and see where the identity goes.)

There is an analogous statement with the arrows reversed, where instead of
maps into A, you think of maps from A. The role of the contravariant functor ha
of Example 1.2.20 is played by the covariant functor h* of Example 1.2.14. Because
the proof is the same (with the arrows reversed), you needn’t think it through.

The phrase “Yoneda’s Lemma” properly refers to a more general statement.
Although it looks more complicated, it is no harder to prove.

1.3.Z. » EXERCISE.

(a) Suppose A and B are objects in a category €. Give a bijection between the nat-
ural transformations h* — h® of covariant functors ¢ — Sets (see Example 1.2.14
for the definition) and the morphisms B — A.

(b) State and prove the corresponding fact for contravariant functors ha (see Ex-
ample 1.2.20). Remark: A contravariant functor F from % to Sets is said to be
representable if there is a natural isomorphism

& F——=ha .

Thus the representing object A is determined up to unique isomorphism by the
pair (F, &). There is a similar definition for covariant functors. (We will revisit
this in §7.6, and this problem will appear again as Exercise 7.6.C. The element
£-1(ida) € F(A) is often called the “universal object”; do you see why?)

(c) Yoneda’s Lemma. Suppose F is a covariant functor ¥ — Sets, and A € €.
Give a bijection between the natural transformations h* — F and F(A). (The
corresponding fact for contravariant functors is essentially Exercise 10.1.B.)

In fancy terms, Yoneda’s lemma states the following. Given a category %, we
can produce a new category, called the functor category of ¢, where the objects are
contravariant functors ¥ — Sets, and the morphisms are natural transformations
of such functors. We have a functor (which we can usefully call h) from % to its
functor category, which sends A to ha. Yoneda’s Lemma states that this is a fully
faithful functor, called the Yoneda embedding. (Fully faithful functors were defined
in §1.2.15.)

1.3.12. Joke. The Yoda embedding, contravariant it is.

1.4 Limits and colimits
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Limits and colimits are two important definitions determined by universal
properties. They generalize a number of familiar constructions. I will give the def-
inition first, and then show you why it is familiar. For example, fractions will be
motivating examples of colimits (Exercise 1.4.D(a)), and the p-adic integers (Exam-
ple 1.4.4) will be motivating examples of limits.

1.4.1. Limits. We say that a category is a small category if the objects form a
set and the morphisms form a set. (This is a technical condition intended only for
experts.) Suppose .# is any small category, and ¥ is any category. Then a functor
F: # — € (i.e., with an object A; € € for each element i € .#, and appropriate
commuting morphisms dictated by .#) is said to be a diagram indexed by .#. We
call .# an index category. Our index categories will usually be partially ordered
sets (Example 1.2.8), in which in particular there is at most one morphism between
any two objects. (But other examples are sometimes useful.) For example, if O is
the category

[

.

and  is a category, then a functor [ — &/ is precisely the data of a commuting
square in 7.
Then the limit of the diagram is an object li;n Ai (or im A;) of ¢ along with
‘ g

_

oe<—-0

_

morphisms fj: lgn Ay — Aj for each j € ., such that if m: j — k is a morphism
in ., then

(1.4.1.1) lim A
|
A AL

commutes, and this object and maps to each A; are universal (final) with respect to
this property. More precisely, given any other object W along with maps gi: W —
A; commuting with the F(m) (if m: j — kis a morphismin .#, then g = F(m)og;j),
then there is a unique map

g:-W-— li}n Aq

so that g; = fj o g for all i. (In some cases, the limit is sometimes called the inverse
limit or projective limit. We won't use this language.) By the usual universal
property argument, if the limit exists, it is unique up to unique isomorphism.

1.4.2. Examples: products. For example, if .7 is the partially ordered set

we obtain the fibered product.
If .7 is
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we obtain the product.

If .7 is a set (i.e., the only morphisms are the identity maps), then the limit is
called the product of the A;, and is denoted [ [; A;. The special case where .# has
two elements is the example of the previous paragraph.

1.4.A. EXERCISE (REALITY CHECK). Suppose that the partially ordered set .# has
an initial object e. Show that the limit of any diagram indexed by .# exists.

1.4.B. EXERCISE: THE DIAGONAL-BASE-CHANGE DIAGRAM, AGAIN. Solve 1.3.5
again by identifying both X; xy Xz and Y Xy, ,v) (X1 xz X3) as the limit of the
diagram

X3

Y—>Z
X2
1.4.3. Example: formal power series. For a ring A, the formal power series, A[[x]],
are often described informally (and somewhat unnaturally) as being the ring

Allx]] ={ap +aix+ a2x2+...}

(where a; € A, and the ring operations are the “obvious” ones). They are an
example of a limit in the category of rings:

Allx]]

e

o A/ (x3) —— AX]/(x?) —= Alx]/(x).

The universal property of limits yields a natural ring morphism A[x] — A[[x]]. If
A =R or C, this map factors through the ring of convergent power series.

1.4.4. Example: the p-adic integers. For a prime number p, the p-adic integers
(or more informally, p-adics), Zy, are often described informally (and somewhat
unnaturally) as being of the form

ao+a1p+azp2+---
(where 0 < a3 < p). They are an example of a limit in the category of rings:

Ly

D

e —— > Z/(ps) — Z/(pz) —7Z/(p).

(Warning: Z, is sometimes is used to denote the integers modulo p, but Z/(p) or
Z/pZ is better to use for this, to avoid confusion. Worse: by §1.3.3, Z;, also denotes
those rationals whose denominators are a power of p. Hopefully the meaning of
Z,, will be clear from the context.)
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The similarity of Examples 1.4.3 and 1.4.4 is no coincidence. Formal power
series and the p-adic integers are examples of completions, the topic of Chapter 28.

Limits do not always exist for any index category .#. However, you can often
easily check that limits exist if the objects of your category can be interpreted as
sets with additional structure, and arbitrary products exist (respecting the set-like
structure).

1.4.C. IMPORTANT EXERCISE. Show that in the category Sets,

{(ai)iey € HAi :F(m)(a;) = ax forall m € Mor #(j, k) € Mor(ﬂ)} ,

along with the obvious projection maps to each Aj, is the limit li}/n Ai.

This clearly also works in the category Moda of A-modules (in particular Vecy
and Ab), as well as Rings.

From this point of view, 2 4+ 3p + 2p% + -+ € Z, can be understood as the
sequence (2,2 +3p,2 +3p + 2p2,...).

1.4.5. Colimits. = More immediately relevant for us will be the dual (arrow-
reversed version) of the notion of limit (or inverse limit). We just flip the arrows
f; in (1.4.1.1), and get the notion of a colimit, which is denoted colim » A; (or
li_rr)l, #Ai). (You should draw the corresponding diagram.) Again, if it exists, it
is unique up to unique isomorphism. (In some cases, the colimit is sometimes
called the direct limit, inductive limit, or injective limit. We won’t use this lan-
guage. I prefer using limit/colimit in analogy with kernel/cokernel and prod-
uct/coproduct. This is more than analogy, as kernels and products may be inter-
preted as limits, and similarly with cokernels and coproducts. Also, I remember
that kernels “map to”, and cokernels are “mapped to”, which reminds me that a
limit maps fo all the objects in the big commutative diagram indexed by .#; and a
colimit has a map from all the objects.)

1.4.6. Joke. A comathematician is a device for turning cotheorems into ffee.

Even though we have just flipped the arrows, colimits behave quite differently
from limits.

1.4.7. Example. The abelian group 5~°°Z of rational numbers whose denominators
are powers of 5 is a colimit colim;ez+ 5~ 'Z. More precisely, 5 °°Z is the colimit of
the diagram

7 —=517 — 527 — - ...

in the category of abelian groups.
The colimit over an index set I is called the coproduct, denoted [ [; A;, and is
the dual (arrow-reversed) notion to the product.

1.4.D. EXERCISE.

(a) Interpret the statement “Q = colim %Z”.

(b) Interpret the union of some subsets of a given set as a colimit. (Dually, the
intersection can be interpreted as a limit.) The objects of the category in question
are the subsets of the given set.
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Colimits do not always exist, but there are two useful large classes of examples
for which they do.

1.4.8. Definition. A nonempty partially ordered set (S, >) is filtered (or is said to
be a filtered set) if for each x,y € S, there is a z such that x > zand y > z. More
generally (see Figure 1.1, a nonempty category .# is filtered if:

(i) foreachx,y € .7, thereisaz € .# and arrows x — zand y — z, and

(ii) for every two arrows u: x — y and v: x — y, there is an arrow w: y — z
such thatwou =wowv.

(Other terminologies are also commonly used, such as “directed partially ordered
set” and “filtered index category”, respectively.)

3

3 % b z

¥ —
Q) (i)

FIGURE 1.1. A filtered category (pictorial definition)

1.4.E. EXERCISE. Suppose . is filtered. (We will almost exclusively use the case
where .7 is a filtered set.) Recall the symbol || for disjoint union of sets. Show
that any diagram in Sets indexed by .# has the following, with the obvious maps
to it, as a colimit:

(au,i) € H A (ai,i) ~ (aj,j) if and only if there are f: A; — Ay and
v = ' g: Aj — Ay in the diagram for which f(a;) = g(a;) in Ay

(You will see that the “filtered” hypothesis is there is to ensure that ~ is an equiva-
lence relation.)

For example, in Example 1.4.7, each element of the colimit is an element of
something upstairs, but you can’t say in advance what it is an element of. For
instance, 17/125 is an element of the 5737 (or 547, or later ones), but not 5 2Z.

This idea applies to many categories whose objects can be interpreted as sets
with additional structure (such as abelian groups, A-modules, groups, etc.). For ex-
ample, the colimit colim M; in the category of A-modules Mod s can be described
as follows. The set underlying colim M; is defined as in Exercise 1.4.E. To add the
elements m; € M; and m; € M;, choose an { € . with arrows u: i — ¢ and
v:j — {, and then define the sum of m; and m; to be F(u)(m;) + F(v)(m;) € M,.
The element m; € M, is 0 if and only if there is some arrow u: i — k for which
F(u)(my) =0, i.e., if it becomes 0 “later in the diagram”. Last, multiplication by an
element of A is defined in the obvious way.
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1.4.F. EXERCISE. Verify that the A-module described above is indeed the colimit.
(Make sure you verify that addition is well-defined, i.e., is independent of the
choice of representatives m; and m;, the choice of {, and the choice of arrows u
and v. Similarly, make sure that scalar multiplication is well-defined.)

1.4.G. USEFUL EXERCISE (LOCALIZATION AS A COLIMIT). Generalize Exercise 1.4.D(a)
to interpret localization of an integral domain as a colimit over a filtered set: sup-
pose S is a multiplicative set of A, and interpret S~'A = colim %A where the limit

is over s € S, and in the category of A-modules. (Aside: Can you make some ver-
sion of this work even if A isn’t an integral domain, e.g., S~TA = colim A¢? This
will work in the category of A-algebras.)

A variant of this construction works without the filtered condition, if you have
another means of “connecting elements in different objects of your diagram”. For
example:

1.4.H. EXERCISE: COLIMITS OF A-MODULES WITHOUT THE FILTERED CONDITION.
Suppose you are given a diagram of A-modules indexed by .#: F: .4 — Moda,
where we let M; := F(i). Show that the colimit is ®;c_»M; modulo the relations
mi—F(n)(my) foreveryn: i — jin .# (i.e., for every arrow in the diagram). (Some-
what more precisely: “modulo” means “quotiented by the submodule generated
by”.)

1.4.9. Summary. One useful thing to informally keep in mind is the following. In
a category where the objects are “set-like”, an element of a limit can be thought of
as a family of elements of each object in the diagram, that are “compatible” (Exer-
cise 1.4.C). And an element of a colimit can be thought of (“has a representative
that is”) an element of a single object in the diagram (Exercise 1.4.E). Even though
the definitions of limit and colimit are the same, just with arrows reversed, these
interpretations are quite different.

1.4.10. Small remark. In fact, colimits exist in the category of sets for all reasonable
(“small”) index categories (see for example [E, Thm. A6.1]), but that won’t matter
to us.

1.4.11. Joke. What do you call someone who reads a paper on category theory? A
coauthor!

1.5 Adjoints

We next come to a very useful notion closely related to universal properties.
Just as a universal property “essentially” (up to unique isomorphism) determines
an object in a category (assuming such an object exists), “adjoints” essentially de-
termine a functor (again, assuming it exists). Two covariant functors F: &/ — %
and G: # — o are adjoint if there is a natural bijection for all A € &/ and B € #

(1.5.0.1) Tap: Morgz(F(A),B) — Mor (A, G(B)).

We say that (F, G) form an adjoint pair, and that F is left-adjoint to G (and G is
right-adjoint to F). We say Fis a left adjoint (and G is a right adjoint). By “natural”
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we mean the following. For all f: A — A’ in </, we require

(1.5.0.2) Mor(F(A'),B) — > Morz(F(A), B)

iTA/B \LTAB
*

Mor,,(A’, G(B)) —— Mor. (A, G(B))

to commute, and for all g: B — B’ in % we want a similar commutative diagram to
commute. (Here f* is the map induced by f: A — A’, and Ff* is the map induced
by Ff: F(A) — F(A').)

1.5.A. EXERCISE. Write down what this diagram should be.

1.5.B. EXERCISE. Show that the map tag (1.5.0.1) has the following properties.
For each A there is a map na: A — GF(A) so that for any g: F(A) — B, the corre-
sponding Tag(g): A — G(B) is given by the composition

A2 GR(A) 595

G(B).
Similarly, there is a map eg: FG(B) — B for each B so that for any f: A — G(B),
the corresponding map T:\}g (f): F(A) — B is given by the composition

Ff €B

F(A) ——FG(B) —— B.
Here is a key example of an adjoint pair.

1.5.C. EXERCISE. Suppose M, N, and P are A-modules (where A is a ring). De-
scribe a bijection Homa (M ®a N, P) < Homa (M, Homa (N, P)). (Hint: try to use
the universal property of ®.)

1.5.D. EXERCISE (TENSOR-HOM ADJUNCTION). Show that (-)®a N and Homa (N, -)
are adjoint functors.

1.5.E. EXERCISE. Suppose B — A is a morphism of rings. If M is an A-module,
you can create a B-module Mg by considering it as a B-module. This gives a
functor -g: Moda — Modg. Show that this functor is right-adjoint to - ®g A. In
other words, describe a bijection

Homa (N ®g A, M) = Homg (N, M3g)
functorial in both arguments. (This adjoint pair is very important.)

1.5.1.  Fancier remarks we won’t use.  You can check that the left adjoint deter-
mines the right adjoint up to natural isomorphism, and vice versa. The maps
na and ep of Exercise 1.5.B are called the unit and counit of the adjunction. This
leads to a different characterization of adjunction. Suppose functors F: &/ — %
and G: # — & are given, along with natural transformations n: id,; — GF and
€: FG — idg with the property that Ge o NG = idg (for each B € %, the compo-
sition of ng(g): G(B) — GFG(B) and G(eg): GFG(B) — G(B) is the identity) and
eFoFn = idr. Then you can check that T is left-adjoint to G. These facts aren’t hard
to check, so if you want to use them, you should verify everything for yourself.
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1.5.2. Examples from other fields. ~ For those familiar with representation theory:
Frobenius reciprocity may be understood in terms of adjoints. Suppose V is a
finite-dimensional representation of a finite group G, and W is a representation of
asubgroup H < G. Then induction and restriction are an adjoint pair (Indg}, Res)
between the category of G-modules and the category of H-modules.

Topologists’ favorite adjoint pair may be the suspension functor and the loop
space functor.

1.5.3. Example: groupification of abelian semigroups. Here is another motivat-
ing example: getting an abelian group from an abelian semigroup. (An abelian
semigroup is just like an abelian group, except we don’t require an identity or an
inverse. Morphisms of abelian semigroups are maps of sets preserving the binary
operation. One example is the non-negative integers 72° =1{0,1,2,...} under ad-
dition. Another is the positive integers 1,2,... under multiplication. You may
enjoy groupifying both.) From an abelian semigroup, you can create an abelian
group. In our examples, from the nonnegative (Z=°, +), we create the integers Z,
and from the positive integers under multiplication (Z>°, x), we create the posi-
tive rationals Q~°. Here is a formalization of that notion. A groupification of an
abelian semigroup S is a map of abelian semigroups 7: S — G such that G is an
abelian group, and any map of abelian semigroups from S to an abelian group G’

factors uniquely through G:
\ 3

v
G !/
(Perhaps “abelian groupification” would be more precise than “groupification”.)

1.5.F. EXERCISE (AN ABELIAN GROUP IS GROUPIFIED BY ITSELF). Show that if an
abelian semigroup is already a group then the identity morphism is the groupifi-
cation. (More correct: the identity morphism is a groupification.) Note that you
don’t need to construct groupification (or even know that it exists in general) to
solve this exercise.

1.5.G. EXERCISE.  Construct the “groupification functor” H from the category
of nonempty abelian semigroups to the category of abelian groups. (One possible
construction: given an abelian semigroup S, the elements of its groupification H(S)
are ordered pairs (a,b) € S x S, which you may think of as a — b, with the equiva-
lence that (a,b) ~ (c,d) if a+d+e = b+c+e for some e € S. Describe addition in
this group, and show that it satisfies the properties of an abelian group. Describe
the abelian semigroup map S — H(S).) Let F be the forgetful functor from the
category of abelian groups Ab to the category of abelian semigroups. Show that H
is left-adjoint to F.

(Here is the general idea for experts: We have a full subcategory of a category.
We want to “project” from the category to the subcategory. We have

Morcategory (S) H) = Morsubcategory ( G ) H)

automatically; thus we are describing the left adjoint to the forgetful functor. How
the argument worked: we constructed something which was in the smaller cate-
gory, which automatically satisfies the universal property.)
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1.5.H. EXERCISE (CF. EXERCISE 1.5.E). The purpose of this exercise is to give
you more practice with “adjoints of forgetful functors”, the means by which we
get abelian groups from abelian semigroups, and sheaves from presheaves. Sup-
pose A is a ring, and S is a multiplicative subset. Then S~'A-modules are a
full subcategory (§1.2.15) of the category of A-modules (via the obvious inclusion
Mods—1 5 — Moda). Then Moda — Mods—1 5 can be interpreted as an adjoint to
the forgetful functor Mods—1 o — Mod . State and prove the correct statements.

(Here is the larger story. Every S~!A-module is an A-module, and this is an
injective map, so we have a covariant forgetful functor F: Mods—1 5, — Moda. In
fact this is a fully faithful functor: it is injective on objects, and the morphisms
between any two S~! A-modules as A-modules are just the same when they are con-
sidered as S~'A-modules. Then there is a functor G: Moda — Modg 1 5, which
might reasonably be called “localization with respect to S”, which is left-adjoint
to the forgetful functor. Translation: If M is an A-module, and N is an S~'A-
module, then Mor(GM, N) (morphisms as S~! A-modules, which are the same as
morphisms as A-modules) are in natural bijection with Mor(M, FN) (morphisms
as A-modules).)

Here is a table of most of the adjoints that will come up for us.

situation category category | left adjoint | right adjoint
of B Fiod - A8 G:AB— o

A-modules (Ex. 1.5.D) | Moda Mod A (\)®a N Homa (N, -)

ring maps ()@ A M — Mg

B — A (Ex. 1.5.E) Modg Mod (extension (restriction

of scalars) of scalars)

(pre)sheaves on a presheaves | sheaves

topological space on X on X sheafification forgetful

X (Ex. 2.4.K)

(semi)groups (§1.5.3) | semigroups | groups | groupification | forgetful

sheaves, sheaves sheaves ! T,

m: X — Y (Ex. 2.7.B) onY on X

sheaves of abelian

groups or 0-modules, | sheaves sheaves 3 !

open embeddings on U onY

m: U — Y (Ex.234.G)

quasicoherent sheaves, | QCohy QCohy T T,

m: X — Y (Prop. 14.6.7)

ring maps M — Mg N —

B — A (Ex. 17.1)]) Mod Modg (restriction | Hompg (A, N)

of scalars)

quasicoherent sheaves,

affine t: X — Y QCohy QCohy, T, !

(Ex. 17.1.K(b))

Other examples will also come up, such as the adjoint pair (~,I,) between
graded modules over a graded ring, and quasicoherent sheaves on the correspond-
ing projective scheme (§15.6).
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1.5.4. Useful comment for experts. One last comment only for people who have seen
adjoints before: If (F, G) is an adjoint pair of functors, then F commutes with col-
imits, and G commutes with limits. Also, limits commute with limits and colimits
commute with colimits. We will prove these facts (and a little more) in §1.6.14.

1.6 An introduction to abelian categories

Ton papier sur I’Algebre homologique a été lu soigneusement, et a converti tout le
monde (méme Dieudonné, qui semble complétement fonctorisé!) a ton point de vue.

Your paper on homological algebra was read carefully and converted everyone (even
Dieudonné, who seems to be completely functorised!) to your point of view.

— |.-P. Serre, letter to A. Grothendieck, Jul 13, 1955 [Gr1S, p. 17-18]

Since learning linear algebra, you have been familiar with the notions and
behaviors of kernels, cokernels, etc. Later in your life you saw them in the category
of abelian groups, and later still in the category of A-modules.

We will soon define some new categories (certain sheaves) that will have familiar-
looking behavior, reminiscent of that of modules over a ring. The notions of ker-
nels, cokernels, images, and more will make sense, and they will behave “the way
we expect” from our experience with modules. This can be made precise through
the notion of an abelian category. Abelian categories are the right general setting
in which one can do “homological algebra”, in which notions of kernel, cokernel,
and so on are used, and one can work with complexes and exact sequences.

We will see enough to motivate the definitions that we will see in general:
monomorphism (and subobject), epimorphism, kernel, cokernel, and image. But
in this book we will avoid having to show that they behave “the way we expect”
in a general abelian category because the examples we will see are directly inter-
pretable in terms of modules over rings. In particular, it is not worth memorizing
the definition of abelian category.

Two central examples of an abelian category are the category Ab of abelian
groups, and the category Moda of A-modules. The first is a special case of the
second (just take A = Z). As we give the definitions, you should verify that Moda
is an abelian category.

We first define the notion of additive category. We will use it only as a stepping
stone to the notion of an abelian category. Two examples you can keep in mind
while reading the definition: the category of free A-modules (where A is a ring),
and real (or complex) Banach spaces.

1.6.1. Definition. A category ¥ is said to be additive if it satisfies the following
properties.

Adl. Foreach A,B € €, Mor(A, B) is an abelian group, such that composition
of morphisms distributes over addition. (You should think about what
this means — it translates to two distinct statements.)

Ad2. € has a zero object, denoted 0. (This is an object that is simultaneously
an initial object and a final object, Definition 1.3.2.)

Ad3. It has products of two objects (a product A x B for any pair of objects),
and hence by induction, products of any finite number of objects.
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In an additive category, the morphisms are often called homomorphisms, and
Mor is denoted by Hom. In fact, this notation Hom is a good indication that you're
working in an additive category. A functor between additive categories preserving
the additive structure of Hom, is called an additive functor.

1.6.2. Remarks. It is a consequence of the definition of additive category that finite
direct products are also finite direct sums (coproducts) — the details don’t matter
to us. The symbol @ is used for this notion. Also, it is quick to show that additive
functors send zero objects to zero objects (show that Z is a 0-object if and only if
idz = 0z; additive functors preserve both id and 0), and preserve products.

One motivation for the name 0-object is that the O-morphism in the abelian
group Hom(A, B) is the composition A — 0 — B. (We also remark that the notion
of 0-morphism thus makes sense in any category with a 0-object.)

(A cleaner axiomatization of additive categories that makes clear that the abelian
group structure of Mor(A, B) is intrinsic to the category itself is the following, [Lur,
p. 21-22]. AO. € has a zero object. Al. € has products of any two objects, and coproducts
of any two objects. By the universal property of product and coproduct, we have
natural morphisms ¢pap : A[[B — A x B. A2. dap is an isomorphism. This allows
us to to define a binary operation on Mor(A, B), with f + g (for f,g € Mor(A, B))
defined by the composition

9
AL g g PP BIIB— B

where the last map is the “codiagonal” defined by universal property of coproduct.
A little work shows that this endows Mor(A, B) with the structure of a commuta-
tive monoid, i.e., an abelian subgroup with identity. The identity is the composi-
tion A — 0 — B. A3. This commutative monoid Mor (A, B) is an abelian group.)

1.6.3. The category of A-modules Mod 4 is clearly an additive category, but it has
even more structure, which we now formalize as an example of an abelian cate-

gory.
1.6.4. Definition. Let % be a category with a 0-object (and thus 0O-morphisms). A

kernel of a morphism f: B — Cisamapi: A — B such that f o1 =0, and that is
universal with respect to this property. Diagramatically:

\\
3
v i f

A——B——=C

0

(Note that the kernel is not just an object; it is a morphism of an object to B.) Hence
it is unique up to unique isomorphism by universal property nonsense. The kernel
is written ker f — B. A cokernel (denoted coker f) is defined dually by reversing
the arrows — do this yourself. The kernel of f: B — C is the limit (§1.4) of the
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diagram

(1.6.4.1) 0

L

B——C

and similarly the cokernel is a colimit (see (2.6.0.1)).

Ifi: A — B is a monomorphism, then we say that A is a subobject of B, where
the map i is implicit. There is also the notion of quotient object, defined dually to
subobject.

An abelian category is an additive category satisfying three additional prop-
erties.

(1) Every map has a kernel and cokernel.
(2) Every monomorphism is the kernel of its cokernel.
(3) Every epimorphism is the cokernel of its kernel.

It is a nonobvious (and imprecisely stated) fact that every property you want
to be true about kernels, cokernels, etc. follows from these three. (Warning: in
part of the literature, additional hypotheses are imposed as part of the definition.)

The image of a morphism f: A — B is defined as im(f) = ker(coker f) when-
ever it exists (e.g., in every abelian category). The morphism f: A — B factors
uniquely through imf — B whenever im f exists, and A — imf is an epimor-
phism and a cokernel of kerf — A in every abelian category. The reader may
want to verify this as a (hard!) exercise.

The cokernel of a monomorphism is called the quotient. The quotient of a
monomorphism A — B is often denoted B/A (with the map from B implicit).

We will leave the foundations of abelian categories untouched. The key thing
to remember is that if you understand kernels, cokernels, images and so on in the
category of modules over a given ring, you can manipulate objects in any abelian
category. This is made precise by the Freyd-Mitchell Embedding Theorem (Re-
mark 1.6.5).

However, the abelian categories we will come across will obviously be related
to modules, and our intuition will clearly carry over, so we needn’t invoke a the-
orem whose proof we haven’t read. For example, we will show that sheaves of
abelian groups on a topological space X form an abelian category (§2.6), and the
interpretation in terms of “compatible germs” will connect notions of kernels, cok-
ernels etc. of sheaves of abelian groups to the corresponding notions of abelian
groups.

1.6.5. Small remark on chasing diagrams. It is useful to prove facts (and solve ex-
ercises) about abelian categories by chasing elements. Unfortunately, some com-
monly used abelian categories, such as the category of complexes (to be defined in
Exercise 1.6.C), do not have “elements” — they are not naturally “sets with addi-
tional structure” in any obvious way. Nonetheless, proof by element-chasing can
be justified by the Freyd-Mitchell Embedding Theorem: If ¢ is an abelian category
whose objects form a set, such that Hom(X, Y) is a set for all X, Y € &, then there is
aring A and an exact, fully faithful functor from ¢ into Mod o, which embeds ¢ as
a full subcategory. (Unfortunately, the ring A need not be commutative.) A proof
is sketched in [Weib, §1.6], and references to a complete proof are given there. A
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proof is also given in [KS1, §9.7]. The upshot is that to prove something about
a diagram in some abelian category, we may assume that it is a diagram of mod-
ules over some ring, and we may then “diagram-chase” elements. Moreover, any
fact about kernels, cokernels, and so on that holds in Moda holds in any abelian
category.

If invoking a theorem whose proof you haven’t read bothers you, a short al-
ternative is Mac Lane’s “elementary rules for chasing diagrams”, [Mac, Thm. 3,
p- 200]; [Mac, Lem. 4, p. 201] gives a proof of the Five Lemma (Exercise 1.7.6) as an
example.

But in any case, do what you need to do to put your mind at ease, so you can
move forward. Do as little as your conscience will allow.

1.6.6. Complexes, exactness, and homology.
(In this entire discussion, we assume we are working in an abelian category.)
We say a sequence

(1.6.6.1) At 2.

is a complex at B if g o f = 0, and is exact at B if ker g = im f. (More specifically,
g has a kernel that is an image of f. Exactness at B implies being a complex at B
— do you see why?) A sequence is a complex (resp. exact) if it is a complex (resp.
exact) at each (internal) term. A short exact sequence is an exact sequence with
five terms, the first and last of which are zeros — in other words, an exact sequence
of the form

0 A B C 0.

For example, 0 —— A —— 0 is exactif and only if A = 0;

0—>A—">B

is exact if and only if f is a monomorphism (with a similar statement for A s B—>0)

f

0 A B 0
is exact if and only if f is an isomorphism; and
0 A—>B—-2>C
is exactif and only if f is a kernel of g (with a similar statement for A f.p—2>c 0).

To show some of these facts it may be helpful to prove that (1.6.6.1) is exact at B if
and only if the cokernel of f is a cokernel of the kernel of g.

If you would like practice in playing with these notions before thinking about
homology, you can prove the Snake Lemma (stated in Example 1.7.5, with a stronger
version in Exercise 1.7.B), or the Five Lemma (stated in Example 1.7.6, with a
stronger version in Exercise 1.7.C). (I would do this in the category of A-modules,
but see [KS1, Lem. 12.1.1, Lem. 8.3.13] for proofs in general.)

If (1.6.6.1) is a complex at B, then its homology at B (often denoted by H) is
ker g /imf. (More precisely, there is some monomorphism im f < ker g, and that
H is the cokernel of this monomorphism.) Therefore, (1.6.6.1) is exact at B if and
only if its homology at B is 0. We say that elements of ker g (assuming the ob-
jects of the category are sets with some additional structure) are the cycles, and
elements of im f are the boundaries (so homology is “cycles mod boundaries”). If
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the complex is indexed in decreasing order, the indices are often written as sub-
scripts, and H; is the homology at Ai.1 — Ay — Ai_1. If the complex is indexed
in increasing order, the indices are often written as superscripts, and the homology
Htat A1 — At — A™! is often called cohomology.

An exact sequence
fi+1

fifl fi

Ai Ai+1

(1.6.6.2) A°: e AT
can be “factored” into short exact sequences
0 ——=kerfl —= A" — = ker il — =0

which is helpful in proving facts about long exact sequences by reducing them to
facts about short exact sequences.

More generally, if (1.6.6.2) is assumed only to be a complex, then it can be
“factored” into short exact sequences.

(1.6.6.3) 0 ker fi Al im 0

0 ——=imf! — s kerft — = H}(A®) ——=0

1.6.A. EXERCISE. Describe exact sequences

(1.6.6.4) 0 ——imft At coker fl ——= 0

0 —— H*(A®) — coker fi~! im ! 0

(These are somehow dual to (1.6.6.3). In fact in some mirror universe this might
have been given as the standard definition of homology.) Assume the category is
that of modules over a fixed ring for convenience, but be aware that the result is
true for any abelian category.

1.6.B. EXERCISE AND IMPORTANT DEFINITION. Suppose

d1 dr\f] an

A" 0

is a complex of finite-dimensional k-vector spaces (often called A*® for short). De-
fine h'(A®) := dim H'(A®). Show that } (—1)'dimA' = 5 (—1)'hi(A®). In par-
ticular, if A® is exact, then Y (—1)'dim A' = 0. (If you haven’t dealt much with
cohomology, this will give you some practice.)

1.6.C. IMPORTANT EXERCISE. Suppose ¢ is an abelian category. Define the cate-
gory Comy of complexes) as follows. The objects are infinite complexes

A°: . . Aif1 il Ai fl Ai+1 i
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in ¢, and the morphisms A®* — B*® are commuting diagrams

fi+1

(1.6.6.5) AT I AT e 2

b

i— i1
gi-1 9 Bi_ 9, git1 9

Show that Coms is an abelian category. Feel free to deal with the special case of
modules over a fixed ring. (Remark for experts: Essentially the same argument
shows that ¥ is an abelian category for any small category .# and any abelian
category ¢. This immediately implies that the category of presheaves on a topo-
logical space X with values in an abelian category ¥ is automatically an abelian
category, cf. §2.3.5.)

1.6.D. IMPORTANT EXERCISE. Show that (1.6.6.5) induces a map of homology
Hi(A®) — H¥(B*®). Show furthermore that H' is a covariant functor Comey — %.
(Again, feel free to deal with the special case Mod )

1.6.7. Homotopic maps induce the same maps on homology. ~We say two maps of
complexes f: C* — D*® and g: C* — D* are homotopic if there is a sequence of
maps w: Ct — D' such that f — g = dw + wd.

1.6.E. EXERCISE. Show that two homotopic maps give the same map on homol-
ogy.

1.6.8. Theorem (Long exact sequences). — A short exact sequence of complexes
0° : - 0 0 0
A. Al*] f"f] A‘l. fi A1+1 fi +1
B® Bi-1 g Bt g' Bit1! g
Ce : . ci-th' i cipr R
0® : e 0 0 0

induces a long exact sequence in cohomology

..— > H"1(C*) ——=

HY(A®) — H{(B*) — H{(C*) ——

Hi—H (A')
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(This requires a definition of the connecting homomorphism H~'(C*) —
H'(A*®), which is “natural” in an appropriate sense.) In the category of modules
over a ring, Theorem 1.6.8 will come out of our discussion of spectral sequences,
see Exercise 1.7.F, but this is a somewhat perverse way of proving it. For a proof
in general, see [KS1, Theorem 12.3.3]. You may want to prove it yourself, by first
proving a weaker version of the Snake Lemma (Example 1.7.5), where in the hy-
potheses (1.7.5.1), the 0’s in the bottom left and top right are removed, and in the
conclusion (1.7.5.2), the first and last 0’s are removed.

1.6.9. Exactness of functors. If F: o/ — % is an additive covariant functor from one
abelian category to another, we say that F is right-exact if the exactness of

A’ A A 0,
in o7 implies that
F(A’) F(A) F(A") 0

is also exact. Dually, we say that F is left-exact if the exactness of

0 A’ A A implies

0 F(A') F(A) F(A") is exact.

An additive contravariant functor is left-exact if the exactness of

Al A A" 0 implies

0 F(A") F(A) ——=F(A') is exact.

The reader should be able to deduce what it means for a contravariant functor to
be right-exact.

An additive covariant or contravariant functor is exact if it is both left-exact
and right-exact.

1.6.F. EXERCISE. Suppose F is an exact functor. Show that applying F to an exact
sequence preserves exactness. For example, if F is covariant,and A’ - A — A" is
exact, then FA’ — FA — FA” is exact. (This will be generalized in Exercise 1.6.1(c).)

1.6.G. EXERCISE. Suppose A is aring, S C A is a multiplicative subset, and M is
an A-module.

(a) Show that localization of A-modules Moda — Mods 1 5 is an exact covariant
functor.

(b) Show that (-) ® A M is a right-exact covariant functor Mods — Moda. (This is a
repeat of Exercise 1.3.H.)

(c) Show that Hom(M, -) is a left-exact covariant functor Mody — Moda. If € is
any abelian category, and C € ¥, show that Hom(C,-) is a left-exact covariant
functor € — Ab.

(d) Show that Hom(-, M) is a left-exact contravariant functor Moda — Moda. If €
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is any abelian category, and C € ¢, show that Hom(:, C) is a left-exact contravari-
ant functor ¥ — Ab.

1.6.H. EXERCISE. Suppose M is a finitely presented A-module: M has a finite
number of generators, and with these generators it has a finite number of relations;
or usefully equivalently, fits in an exact sequence

(1.6.9.1) A®d AP M 0
Use (1.6.9.1) and the left-exactness of Hom to describe an isomorphism
S~ Homa (M, N) «— Homg 1 (S™'"M,S™'N).

(You might be able to interpret this in light of a variant of Exercise 1.6.1 below, for
left-exact contravariant functors rather than right-exact covariant functors.)

1.6.10. Example: Hom doesn't always commute with localization. In the language of
Exercise 1.6.H, take A=N=7Z, M =Q,and S = Z \ {0}.

1.6.11. « Two useful facts in homological algebra.

We now come to two (sets of) facts I wish I had learned as a child, as they
would have saved me lots of grief. They encapsulate what is best and worst of
abstract nonsense. The statements are so general as to be nonintuitive. The proofs
are very short. They generalize some specific behavior that is easy to prove on an
ad hoc basis. Once they are second nature to you, many subtle facts will become
obvious to you as special cases. And you will see that they will get used (implicitly
or explicitly) repeatedly.

1.6.12. x Interaction of homology and (right/left-)exact functors.
You might wait to prove this until you learn about cohomology in Chapter 18,
when it will first be used in a serious way.

1.6.I. IMPORTANT EXERCISE (THE FHHF THEOREM). This result can take you
far, and perhaps for that reason it has sometimes been called the Fernbahnhof
(FernbaHnHoF) Theorem, notably in [Vak1, Exer. 1.6.I]. Suppose F: &/ — A is a
covariant functor of abelian categories, and C* is a complex in /.

(a) (F right-exact yields FH® —— H*F ) If T is right-exact, describe a natu-
ral morphism FH®* — H°®F. (More precisely, for each i, the left side is F
applied to the cohomology at piece i of C®, while the right side is the
cohomology at piece i of FC*.)

(b) (Fleft-exact yields FH®* <—— H*F ) If F is left-exact, describe a natural mor-
phism H*F — FH*.

(c) (F exact yields FH® <— H®F ) If F is exact, show that the morphisms of
(a) and (b) are inverses and thus isomorphisms.

Hint for (a): use C'—%> Ci+] cokerd —= 0 to give an isomorphism
Fcoker d' «+— coker Fd'. Then use the first line of (1.6.6.4) to give a epimorphism
Fim d* ——= imFd' . Then use the second line of (1.6.6.4) to give the desired map
FH'C®* —— H'FC® . While you are at it, you may as well describe a map for the
fourth member of the quartet {coker,im, H, ker}: Fkerd' ——= kerFd'.
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1.6.13. If this makes your head spin, you may prefer to think of it in the following
specific case, where both .7 and % are the category of A-modules, and Fis (-) ® N
for some fixed N-module. Your argument in this case will translate without change
to yield a solution to Exercise 1.6.1(a) and (c) in general. If ®N is exact, then N is
called a flat A-module. (The notion of flatness will turn out to be very important,
and is discussed in detail in Chapter 24.)

For example, localization is exact (Exercise 1.6.G(a)), so S~ A is a flat A-algebra
for all multiplicative sets S. Thus taking cohomology of a complex of A-modules
commutes with localization — something you could verify directly.

1.6.14. Interaction of adjoints, (co)limits, and (left- and right-) exactness.

A surprising number of arguments boil down to the statement:

Limits commute with limits and right adjoints. In particular, in an abelian category,
because kernels are limits, both limits and right adjoints are left-exact.

as well as its dual:

Colimits commute with colimits and left adjoints. In particular, because cokernels are
colimits, both colimits and left adjoints are right-exact.

These statements were promised in §1.5.4, and will be proved below. The latter
has a useful extension:

In Mod a, colimits over filtered index categories are exact. “Filtered” was defined
in §1.4.8.

1.6.15. +x Caution. It is not true that in abelian categories in general, colimits
over filtered index categories are exact. (Grothendieck realized the desirability of
such colimits being exact, and formalized this as his “AB5” axiom, see for exam-
ple [Stacks, tag 079A].) Here is a counterexample. Because the axioms of abelian
categories are self-dual, it suffices to give an example in which a cofiltered limit fails
to be exact (where cofiltered has the obvious dual definition to filtered), and we do
this. Fix a prime p. In the category Ab of abelian groups, for each positive integer
1, we have an exact sequence Z — Z/(p™) — 0. Taking the limit over all n in the
obvious way, we obtain Z — Z,, — 0, which is certainly not exact.)
Unimportant Remark 1.6.18 will dash another hope you may have.

1.6.16. If you want to use these statements (for example, later in this book), you
will have to prove them. Let’s now make them precise.

1.6.J. EXERCISE (KERNELS COMMUTE WITH LIMITS). Suppose ¢ is an abelian
category, and a: .# — ¢ and b: ./ — ¥ are two diagrams in ¢ indexed by .#.
For convenience, let A; = a(i) and B; = b(i) be the objects in those two diagrams.
Let hi: Ay — B; be maps commuting with the maps in the diagram. (Translation:
h is a natural transformation of functors a — b, see §1.2.21.) Then the ker h;
form another diagram in ¢ indexed by .#. Describe a canonical isomorphism

limker h; «— ker(lim A; — lim By), assuming the limits exist.

Implicit in the previous exercise is the idea that limits should somehow be
understood as functors.

1.6.K. EXERCISE. Make sense of the statement that “limits commute with lim-
its” in a general category, and prove it. (Hint: recall that kernels are limits. The
previous exercise should be a corollary of this one.)



June 29, 2023 draft 57

1.6.17. Proposition (right adjoints commute with limits). — Suppose (F: € —
2,G: 9 — €) is a pair of adjoint functors. If A = lim A is a limit in 9 of a diagram
indexed by .7, then GA = lim GA; (with the corresponding maps GA — GA;) is a limit
ing.

Proof. We must show that GA — GA; satisfies the universal property of limits.
Suppose we have maps W — GA; commuting with the maps of .#. We wish to
show that there exists a unique W — GA extending the W — GA,;. By adjointness
of F and G, we can restate this as: Suppose we have maps FW — A; commuting
with the maps of .#. We wish to show that there exists a unique FW — A extending
the FW — A;. But this is precisely the universal property of the limit. O

Of course, the dual statements to Exercise 1.6.K and Proposition 1.6.17 hold by
the dual arguments.

If F and G are additive functors between abelian categories, and (F, G) is an
adjoint pair, then (as kernels are limits and cokernels are colimits) G is left-exact
and F is right-exact.

1.6.L. EXERCISE. Show that in Moda, colimits over filtered index categories are
exact. (Your argument will apply without change to any abelian category whose
objects can be interpreted as “sets with additional structure”.) Right-exactness
follows from the above discussion, so the issue is left-exactness. (Possible hint:
After you show that localization is exact, Exercise 1.6.G(a), or stalkification is exact,
Exercise 2.6.E, in a hands-on way, you will be easily able to prove this. Conversely,
if you do this exercise, those two will be easy.)

1.6.M. EXERCISE. Show that filtered colimits commute with homology in Moda .
Hint: use the FHHF Theorem (Exercise 1.6.I), and the previous Exercise.

In light of Exercise 1.6.M, you may want to think about how limits (and colim-
its) commute with homology in general, and which way maps go. The statement
of the FHHF Theorem should suggest the answer. (Are limits analogous to left-
exact functors, or right-exact functors?) We won't directly use this insight, but see
§18.1 (vii) for an example.

Just as colimits are exact (not just right-exact) in especially good circumstances,
limits are exact (not just left-exact) too. The following will be used twice in Chap-
ter 28.
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1.6.N. EXERCISE. Suppose

0——Ani1 —Bn Cni1 0

O An Bn Cn O

0 Ao Bo CO 0
0 0 0

is an inverse system of exact sequences of modules over a ring, such that the maps
An+1 — A, are surjective. (We say: “transition maps of the left term are surjec-
tive”.) Show that the limit

(1.6.17.1) 0 ——IlimA,, —1limB,, —1limC,, ——0

is also exact. (You will need to define the maps in (1.6.17.1).)

1.6.18. Unimportant Remark. Based on these ideas, you may suspect that right-
exact functors always commute with colimits. The fact that tensor product com-
mutes with infinite direct sums (Exercise 1.3.M) may reinforce this idea. Unfortu-
nately, it is not true — “double dual” MV Veey — Vecy is covariant and right exact
(in fact, exact), but does not commute with infinite direct sums, as &2, (kVV) is
not isomorphic to (652, k)VVY.

1.6.19. x Dreaming of derived functors. When you see a left-exact functor, you
should always dream that you are seeing the end of a long exact sequence. If

0 M’ M m” 0

is an exact sequence in abelian category </, and F: &/ — # is a left-exact functor,
then

0 FM/ M FM”

is exact, and you should always dream that it should continue in some natural
way. For example, the next term should depend only on M/, call it R'"FM’, and if it
is zero, then FM — FM"” is an epimorphism. This remark holds true for left-exact
and contravariant functors too. In good cases, such a continuation exists, and is
incredibly useful. We will discuss this in Chapter 23.
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1.7 « Spectral sequences

Je suis quelque peu affolé par ce déluge de cohomologie, mais j’ai courageusement tenu
le coup. Tu suite spectrale me parait raisonnable (je croyais, sur un cas particulier, I'avoir
mise en défaut, mais je m'’étais trompé, et cela marche au contraire admirablement bien).

I am a bit panic-stricken by this flood of cohomology, but have borne up courageously.
Your spectral sequence seems reasonable to me (I thought I had shown that it was wrong
in a special case, but I was mistaken, on the contrary it works remarkably well).

— |].-P. Serre, letter to A. Grothendieck, March 14, 1956 [GrS, p. 38]

Spectral sequences are a powerful book-keeping tool for proving things in-
volving complicated commutative diagrams. They were introduced by Leray in
the 1940’s at the same time as he introduced sheaves. They have a reputation for
being abstruse and difficult. It has been suggested that the name ‘spectral” was
given because, like spectres, spectral sequences are terrifying, evil, and danger-
ous. I have heard no one disagree with this interpretation, which is perhaps not
surprising since I just made it up.

Nonetheless, the goal of this section is to tell you enough that you can use
spectral sequences without hesitation or fear, and why you shouldn’t be frightened
when they come up in a seminar. What is perhaps different in this presentation is
that we will use spectral sequences to prove things that you may have already seen,
and that you can prove easily in other ways. This will allow you to get some hands-
on experience for how to use them. We will also see them only in the special case of
double complexes (the version by far the most often used in algebraic geometry),
and not in the general form usually presented (filtered complexes, exact couples,
etc.). See [Weib, Ch. 5] for more detailed information if you wish.

You should not read this section when you are reading the rest of Chapter 1.
Instead, you should read it just before you need it for the first time. When you
finally do read this section, you must do the exercises up to Exercise 1.7.F.

For concreteness, we work in the category Moda of module over a ring A.
However, everything we say will apply in any abelian category. (And if it helps
you feel secure, work instead in the category Vecy of vector spaces over a field k.)

1.7.1. Double complexes.

A double complex is a collection of A-modules EP>9 (p,q € Z), and “right-
ward” morphisms dP;9: EP>9 — EP+19 and “upward” morphisms d?’q: EP9 —
EP-9*1. In the superscript, the first entry denotes the column number (the “x-
coordinate”), and the second entry denotes the row number (the “y-coordinate”).
(Warning: this is opposite to the convention for matrices.) The subscript is meant
to suggest the direction of the arrows. We will always write these as d_, and d;
and ignore the superscripts. We require that d_, and d; satisfy (a) d%, = 0, (b)
d% = 0, and one more condition: (c) either d_,d+ = dt+d_, (all the squares com-
mute) or d_,d; + dyd_, = 0 (they all anticommute). Both come up in nature, and
you can switch from one to the other by replacing d‘{”q with (—1)P d?‘q. So I will
assume that all the squares anticommute, but that you know how to turn the com-
muting case into this one. (You will see that there is no difference in the recipe,
basically because the image and kernel of a homomorphism f equal the image and
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kernel respectively of —f.)

dpoa+1
EP>a+1 - Ep+T,q+1
ap anticommutes aprta
dL’)»‘{ 1
EP:d EP+la

There are variations on this definition, where for example the vertical arrows
go downwards, or some subset of the EP>9 is required to be zero.

From the double complex we construct a corresponding (single) complex E*
with E* = @{Eb*Y, with d = d_, + dy. In other words, when there is a single
superscript k, we mean a sum of the kth antidiagonal of the double complex. The
single complex is sometimes called the total complex. Note that d> = (d_,+d;)? =
d2, 4+ (ddy +drd-) + df =0, s0 E* is indeed a complex.

The cohomology of the single complex is sometimes called the hypercoho-
mology of the double complex. We will instead use the phrase cohomology of the
double complex.

Our initial goal will be to find the cohomology of the double complex. You
will see later that we secretly also have other goals.

A spectral sequence is a recipe for computing some information about the
cohomology of the double complex. I won't yet give the full recipe. Surprisingly,
this fragmentary bit of information is sufficent to prove lots of things.

1.7.2. Approximate Definition. A spectral sequence with rightward orientation
is a sequence of tables or pages _,ES*9, JEV', JED', ... (p, q € Z), where LE]T =
EP-9, along with a differential

—r+1
—>d}r),q: —>E?,q > —)EE rhhatr

with ,dP% 0 ,dP™™ 197" — 0 and with an isomorphism of the cohomology of
_,d, at LEP9 (e, ker ,dP9/im ,dPT"197T) with SERI.

The orientation indicates that our Oth differential is the rightward one: do =
d_,. The left subscript “—"” is usually omitted.

The order of the morphisms is best understood visually:

(1.7.2.1) .
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(the morphisms each apply to different pages). Notice that the map always is
“degree 1” in terms of the grading of the single complex E°. (You should figure
out what this informal statement really means.)

The actual definition describes what E?® and d'® really are, in terms of E*°.
We will describe do, di, and d, below, and you should for now take on faith that
this sequence continues in some natural way.

Note that EY’9 is always a subquotient of the corresponding term on the ith
page EP>9 for all i < r. In particular, if EP-9 = 0, then EP>9 = 0 for all r.

Suppose now that E** is a first quadrant double complex, i.e.,, EP*9 = 0 for
p <O0orq < 0(soEPY =0 forall r unless p,q € Z=°). Then for any fixed p, q,
once t is sufficiently large, EF}9 is computed from (E$'®, d,) using the complex

0

'E]T?vq

dp+1-71 ,q—T
r

o

and thus we have canonical isomorphisms
Pd ~ P9 ~ P9 ~ ...
Ery _Er1_Er 2= .

We denote this module EP;9. The same idea works in other circumstances, for
example if the double complex is only nonzero in a finite number of rows — EP>9 =
0 unless qo < g < q1. This will come up for example in the mapping cone and
long exact sequence discussion (Exercises 1.7.F and 1.7.E below).

We now describe the first few pages of the spectral sequence explicitly. As
stated above, the differential dp on E}®* = E** is defined to be d_,. The rows are
complexes:

o ——>0 —> 0
The Oth page Eo: e

o ——=>0 —> 0

and so Ej is just the table of cohomologies of the rows. You should check that
there are now vertical maps d}*%: ED°9 — E?’qH of the row cohomology groups,
induced by dt, and that these make the columns into complexes. (This is essen-
tially the fact that a map of complexes induces a map on homology.) We have
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“used up the horizontal morphisms”, but “the vertical differentials live on”.

The 1st page E;:

o——>0 ——>0
o———>0 —>0
o———>0 —> 0

We take cohomology of d; on E4, giving us a new table, Eg’q. It turns out that
there are natural morphisms from each entry to the entry two above and one to the
left, and that the composition of these two is 0. (It is a very worthwhile exercise
to work out how this natural morphism d, should be defined. Your argument
may be reminiscent of the connecting homomorphism in the Snake Lemma 1.7.5
or in the long exact sequence in cohomology arising from a short exact sequence
of complexes, Theorem 1.6.8. This is no coincidence.)

[ ] [ ] o
The 2nd page E»: o\o\o
[ ] [ ] L]

This is the beginning of a pattern.

Then it is a theorem that there is a filtration of H*(E®) by ER;9 where p+q = k.
(We can’t yet state it as an official Theorem because we haven't precisely defined
the pages and differentials in the spectral sequence.) More precisely, there is a
filtration

Ek—2,2

o Ex " > N K
(1.7.2.2) EX 7 C s 5 k(e

where the quotients are displayed above each inclusion. (Here is a tip for remem-
ber which way the quotients are supposed to go. The differentials on later and later
pages point deeper and deeper into the filtration. Thus the entries in the direction
of the later arrowheads are the subobjects, and the entries in the direction of the
later “arrowtails” are quotients. This tip has the advantage of being independent
of the details of the spectral sequence, e.g., the “quadrant” or the orientation.)

We say that the spectral sequence _,E*® converges to H*(E®). We often say
that _,ES'® (or any other page) abuts to H*(E®).

Although the filtration gives only partial information about H*(E®), some-
times one can find H®*(E®) precisely. One example is if all EL* are zero, or if
all but one of them are zero (e.g., if E?’® has precisely one nonzero row or col-
umn, in which case one says that the spectral sequence collapses at the rth step,
although we will not use this term). Another example is in the category of vector
spaces over a field, in which case we can find the dimension of H*(E®). Also, in
lucky circumstances, E, (or some other small page) already equals E..
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1.7.A. EXERCISE: INFORMATION FROM THE SECOND PAGE. Show that HO(E®) =
E%C = E9C and

dsg!

0 E}° H'(E®) ES EZ° H2(E*)

is exact.

1.7.3. The other orientation.

You may have observed that we could as well have done everything in the
opposite direction, i.e., reversing the roles of horizontal and vertical morphisms.
Then the sequences of arrows giving the spectral sequence would look like this
(compare to (1.7.2.1)).

[
[

(1.7.3.1)

—_— 0

~

This spectral sequence is denoted {Eg** (“with the upward orientation”). Then
we would again get pieces of a filtration of H*(E®) (where we have to be a bit
careful with the order with which {EE:9 corresponds to the subquotients — it is
the opposite order to that of (1.7.2.2) for ER:9). Warning: in general there is no
isomorphism between _,E%;9 and +ER;9.

In fact, this observation that we can start with either the horizontal or vertical
maps was our secret goal all along. Both algorithms compute information about
the same thing (H*(E®)), and usually we don’t care about the final answer — we
often care about the answer we get in one way, and we get at it by doing the
spectral sequence in the other way.

1.7.4. Examples.

We are now ready to see how this is useful. The moral of these examples is
the following. In the past, you may have proved various facts involving various
sorts of diagrams, by chasing elements around. Now, you will just plug them into
a spectral sequence, and let the spectral sequence machinery do your chasing for
you.

1.7.5. Example: Proving the Snake Lemma. Consider the diagram

(1.7.5.1) 0 D E F 0
|
0 A B C 0

where the rows are exact in the middle (at A, B, C, D, E, F) and the squares com-
mute. (Normally the Snake Lemma is described with the vertical arrows pointing
downwards, but I want to fit this into my spectral sequence conventions.) We wish
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to show that there is an exact sequence
(1.7.5.2) 0 — ker « — ker 3 — kery — coker o« — coker p — cokery — 0.

We plug this into our spectral sequence machinery. We first compute the co-
homology using the rightward orientation, i.e., using the order (1.7.2.1). Then be-
cause the rows are exact, E}"9 = 0, so the spectral sequence has already converged:
ER9 =0.

We next compute this “0” in another way, by computing the spectral sequence
using the upward orientation. Then +E}>* (with its differentials) is:

0 —— coker x —— coker f —— cokery ——= 0

0 ker o ker 3 kery 0.
Then E3* is of the form:

0 0

N,

0 0

0

0

We see that after 1E;, all the terms will stabilize except for the double question
marks — all maps to and from the single question marks are to and from 0O-entries.
And after {E3, even these two double-question-mark terms will stabilize. But in
the end our complex must be the 0 complex. This means that in +E;, all the entries
must be zero, except for the two double question marks, and these two must be
isomorphic. This means that 0 — ker x — ker p — kery and coker o« — coker 3 —
cokery — 0 are both exact (that comes from the vanishing of the single question
marks), and

coker(ker p — kery) = ker(coker & — coker f3)

is an isomorphism (that comes from the equality of the double question marks).
Taken together, we have proved the exactness of (1.7.5.2), and hence the Snake
Lemma! (Notice: in the end we didn’t really care about the double complex. We
just used it as a prop to prove the Snake Lemma.)

Spectral sequences make it easy to see how to generalize results further. For
example, if A — B is no longer assumed to be injective, how would the conclusion
change?

1.7.B. UNIMPORTANT EXERCISE (GRAFTING EXACT SEQUENCES, A VARIANT OF
THE SNAKE LEMMA). Extend the Snake Lemma as follows. Suppose we have a
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commuting diagram

0 X’ Y’ yal A’
o ]
w X Y Z 0.

where the top and bottom rows are exact. Show that the top and bottom rows can
be “grafted together” to an exact sequence

w kera kerb ———=kerc

——— coker a —— cokerb —— cokerc ——= A’/ —— ...,

1.7.6. Example: the Five Lemma. Suppose

(1.7.6.1) F G H I J
1ol ]
A B C D E

where the rows are exact and the squares commute.
Suppose «, B, §, € are isomorphisms. We will show that v is an isomorphism.
We first compute the cohomology of the total complex using the rightward
orientation (1.7.2.1). We choose this because we see that we will get lots of zeros.
Then _,E}* looks like this:

REn

Then _,E; looks similar, and the sequence will converge by E,, as we will never get
any arrows between two nonzero entries in a table thereafter. We can’t conclude
that the cohomology of the total complex vanishes, but we can note that it van-
ishes in all but four degrees — and most important, it vanishes in the two degrees
corresponding to the entries C and H (the source and target of ).

We next compute this using the upward orientation (1.7.3.1). Then {E; looks
like this:

0 0 ? 0 0

0 0 ? 0 0

and the spectral sequence converges at this step. We wish to show that those two
question marks are zero. But they are precisely the cohomology groups of the total
complex that we just showed were zero — so we are done!

The best way to become comfortable with this sort of argument is to try it out
yourself several times, and realize that it really is easy. So you should do the fol-
lowing exercises! Many can readily be done directly, but you should deliberately
try to use this spectral sequence machinery in order to get practice and develop
confidence.




66 The Rising Sea: Foundations of Algebraic Geometry

1.7.C. EXERCISE: A SUBTLER FIVE LEMMA. By looking at the spectral sequence
proof of the Five Lemma above, prove a subtler version of the Five Lemma, where
one of the isomorphisms can instead just be required to be an injection, and an-
other can instead just be required to be a surjection. (I am deliberately not telling
you which ones, so you can see how the spectral sequence is telling you how to
improve the result.)

1.7.D. EXERCISE: ANOTHER SUBTLE VERSION OF THE FIVE LEMMA. If 3 and 6 (in
(1.7.6.1)) are injective, and « is surjective, show that v is injective. Give the dual
statement (whose proof is of course essentially the same).

The next two exercises no longer involve first quadrant double complexes.
You will have to think a little to realize why there is no reason for confusion or
alarm.

1.7.E. EXERCISE (THE MAPPING CONE). Suppose pu: A®* — B*® is a morphism of
complexes. Suppose C*® is the single complex associated to the double complex
A® — B®. (C® is called the mapping cone of |1.) Show that there is a long exact
sequence of complexes:

. = HYT(C®) = HY(A®) - HY(B®) — HY(C®) = H'T(A®) — ...
(There is a slight notational ambiguity here; depending on how you index your
double complex, your long exact sequence might look slightly different.) In partic-

ular, we will use the fact that p induces an isomorphism on cohomology if and only
if the mapping cone is exact. (We won't use it until the proof of Theorem 18.2.4.)

1.7.F. EXERCISE. Use spectral sequences to show that a short exact sequence of
complexes gives a long exact sequence in cohomology (Theorem 1.6.8). (This is a
generalization of Exercise 1.7.E.)

The Grothendieck composition-of-functors spectral sequence (Theorem 23.3.5)
will be an important example of a spectral sequence that specializes in a number
of useful ways.

You are now ready to go out into the world and use spectral sequences to your
heart’s content!

1.7.7. Complete definition of spectral sequences, and proof.

You should most definitely not read the precise definition of a spectral se-
quence, and the proof that they work as advertised, any time soon after reading the
introduction to spectral sequences above. But after a suitable interval, you should
at least flip through a construction and proof to convince yourself that nothing
fancy is involved. The idea is not as bad as you might think, see [Vak2].

It is useful to notice that the proof implies that spectral sequences are functo-
rial in the Oth page: the spectral sequence formalism has good functorial proper-
ties in the double complex. Unfortunately, Grothendieck’s terminology “spectral
functor” [Gr1, §2.4] did not catch on.



CHAPTER 2

Sheaves

It is perhaps surprising that geometric spaces are often best understood in
terms of (nice) functions on them. For example, a differentiable manifold that is
a subset of R™ can be studied in terms of its smooth (C*) functions. Because
“geometric spaces” can have few (everywhere-defined) functions, a more precise
version of this insight is that the structure of the space can be well understood
by considering all functions on all open subsets of the space. This information is
encoded and organized in something called a sheaf. Sheaves were introduced by
Leray in the 1940’s, and Serre introduced them to algebraic geometry. (The reason
for the name will be somewhat explained in Remark 2.4.3.) We will define sheaves
and describe useful facts about them. We will begin with a motivating example to
convince you that the notion is not so foreign.

One reason sheaves are slippery to work with is that they keep track of a huge
amount of information, and there are some subtle local-to-global issues. There are
also three different ways of getting a hold of them:

e in terms of open sets (the definition §2.2) — intuitive but in some ways
the least helpful;

e in terms of stalks (see §2.4.1); and

e in terms of a base of a topology (§2.5).

(Some people strongly prefer the espace étalé interpretation, §2.2.11, as well.) Know-
ing which to use requires experience, so it is essential to do a number of exercises
on different aspects of sheaves in order to truly understand the concept.

2.1 Motivating example: The sheaf of smooth functions

Consider smooth (C*) functions on the topological space X = R™ (or more
generally on a manifold X). The sheaf of smooth functions on X is the data of all
smooth functions on all open subsets on X. We will see how to manage these data,
and observe some of their properties. On each open set U C X, we have a ring of
smooth functions. We denote this ring of functions &'(U).

Given a smooth function on an open set, you can restrict it to a smaller open
set, obtaining a smooth function there. In other words, if U C V is an inclusion of
open sets, we have a “restriction map” resy,u: 0(V) — O(U).

Take a smooth function on a big open set, and restrict it to a medium open set,
and then restrict that to a small open set. The result is the same as if you restrict
the smooth function on the big open set directly to the small open set. In other

67
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words, if U < V — W, then the following diagram commutes:

o(W) oy (V)
re% Au
o)

Next take two smooth functions f; and f, on a big open set U, and an open
cover of U by some collection of open subsets {L;}. (We say {U;} covers U, or is
an open cover of U, if U = UU;.) Suppose that f; and f, agree on each of these
U;. Then they must have been the same function to begin with. In other words, if
{Ui}ier isa cover of U, and fy,f, € &(U), and resy,u, f1 = resy,u; 2, thenf; = f,.
Thus we can identify functions on an open set by looking at them on a covering by
small open sets.

Finally, suppose you are given the same U and cover {U;}, take a smooth func-
tion on each of the U; — a function f; on Uy, a function f, on U,, and so on — and
assume they agree on the pairwise overlaps. Then they can be “glued together”
to make one smooth function on all of U. In other words, given f; € ¢(U,) for
all i, such that resu, u,nu; fi = resu;,u;nu; fj for all i and j, then there is some
f € 0(U) such that resy y, f = f; for all i.

The entire example above would have worked just as well with continuous
functions, or real-analytic functions, or just plain real-valued functions. Thus all
of these classes of “nice” functions share some common properties. We will soon
formalize these properties in the notion of a sheaf.

2.1.1. The germ of a smooth function. Before we do, we first give another def-
inition, that of the germ of a smooth function at a point p € X. Intuitively, it is a
“shred” of a smooth function at p. Germs are objects of the form

(f,opensetU) suchthat pelU,feo(U)

modulo the relation that (f, U) ~ (g, V) if there is some open set W C U, V contain-
ing p where flw = glw (i.e., resy,w f = resyv,w g). In other words, two functions
that are the same in an open neighborhood of p (but may differ elsewhere) have
the same germ. We call this set of germs the stalk at p, and denote it &},. Notice
that the stalk is a ring: you can add two germs, and get another germ: if you have
a function f defined on U, and a function g defined on V, then f + g is defined on
U N V. Moreover, f + g is well-defined: if f has the same germ as f, meaning that
there is some open set W containing p on which they agree, and § has the same
germ as g, meaning they agree on some open W’ containing p, then f + § is the
same functionas f + gonUNVNWnNW’.

Notice also that if p € U, you get a map &(U) — &,,. Experts may already see
that we are talking about germs as colimits.

We can see that &, is a local ring as follows. Consider those germs vanishing
at p, which we denote m,, C &,. They certainly form an ideal: m,, is closed under
addition, and when you multiply something vanishing at p by any function, the
result also vanishes at p. We check that this ideal is maximal by showing that the
quotient ring is a field:

(21.1.1) 0 —— m, = ideal of germs vanishing at p Oy =) R 0
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2.1.A. EXERCISE. Show that this is the only maximal ideal of &,. (Hint: show that
every element of &, \ m,, is invertible.)

Note that we can interpret the value of a function at a point, or the value of
a germ at a point, as an element of the local ring modulo the maximal ideal. (We
will see that this doesn’t work for more general sheaves, but does work for things
behaving like sheaves of functions. This will be formalized in the notion of a locally
ringed space, which we will see, briefly, in §7.3.)

2.1.2. Aside. Notice thatm,,/ m% is amodule over &, /m, = R, i.e., itis a real vector
space. It turns out to be naturally (whatever that means) the cotangent space to the
differentiable or analytic manifold at p. This insight will prove handy later, when
we define tangent and cotangent spaces of schemes.

2.1.B. x EXERCISE FOR THOSE WITH DIFFERENTIAL GEOMETRIC BACKGROUND.
Prove this. (Rhetorical question for experts: what goes wrong if the sheaf of contin-
uous functions is substituted for the sheaf of smooth functions? What goes wrong
if you use the sheaf of C! functions?)

2.2 Definition of sheaf and presheaf

We now formalize these notions, by defining presheaves and sheaves. Presheaves
are simpler to define, and notions such as kernel and cokernel are straightforward.
Sheaves are more complicated to define, and some notions such as cokernel re-
quire more thought. But sheaves are more useful because they are in some vague
sense more geometric; you can get information about a sheaf locally.

2.2.1. Definition of sheaf and presheaf on a topological space X.

To be concrete, we will define sheaves of sets. However, in the definition the
category Sets can be replaced by any category, and other important examples are
abelian groups Ab, k-vector spaces Vecy, rings Rings, modules over a ring Moda,
and more. (You may have to think more when dealing with a category of objects
that aren’t “sets with additional structure”, but there aren’t any new complications.
In any case, this won't be relevant for us, although people who want to do this
should start by solving Exercise 2.2.C.) Sheaves (and presheaves) are often written
in calligraphic font. The fact that .% is a sheaf on a topological space X is often
written as

F

X

2.2.2. Definition: Presheaf. A presheaf .# on a topological space X is the follow-
ing data.

e To each open set U C X, we have a set .%#(U) (e.g., the set of differentiable
functions in our motivating example). (Notational warning: Several notations are
in use, for various good reasons: .Z (U) = I'(U,.#) = H°(U,.#). We will use them
all.) The elements of % (U) are called sections of .# over U. (§2.2.11 combined
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with Exercise 2.2.G gives a motivation for this terminology, although this isn’t so
important for us.)

By convention, if the “U” is omitted, it is implicitly taken to be X: “sections of
F"” means “sections of .# over X”. These are also called global sections.

e For each inclusion U < V of open sets, we have a restriction map

resyu: F(V) — F(U)
(just as we did for differentiable functions). If f € .#(V), we often write
flu

for resyv,y (f).

The data is required to satisfy the following two conditions.

e The map resy, is the identity: resy,y = id .z (u).

e If U — V — W are inclusions of open sets, then the restriction maps com-
mute, i.e.,

F (W) vy F (V)
rem Au
Z(U)

commutes.

2.2.A. EXERCISE FOR CATEGORY-LOVERS: “A PRESHEAF IS THE SAME AS A CON-
TRAVARIANT FUNCTOR”. Given any topological space X, we have a “category
of open sets” (Example 1.2.9), where the objects are the open sets and the mor-
phisms are inclusions. Verify that the data of a presheaf is precisely the data of a
contravariant functor from the category of open sets of X to the category of sets.
(This interpretation is surprisingly useful.)

2.2.3. Definition: Stalks and germs. We define the stalk of a presheaf at a point
in two equivalent ways. One will be hands-on, and the other will be as a colimit.

2.2.4. Define the stalk of a presheaf .% at a point p to be the set of germs of .% at p,
denoted .%,, as in the example of §2.1.1. Germs correspond to sections over some
open set containing p, and two of these sections are considered the same if they
agree on some smaller open set. More precisely: the stalk is

{(f,openlU) : p e U, fe .F(U)}

modulo the relation that (f, U) ~ (g, V) if there is some open set W C U,V where
P € Wand resywf = resy,w g. (To explain the agricultural terminology: the
French name “germe” is meant to suggest a tiny shoot sprouting from a seed, cf.
“germinate”.)

2.2.5. A useful equivalent definition of a stalk is as a colimit of all . (U) over all
open sets U containing p:

Fp, = colim .7 (U).
The index category is a filtered set (given any two such open sets, there is a third

such set contained in both), so these two definitions are the same by Exercise 1.4.E.
Hence we can define stalks for sheaves of sets, groups, rings, and other things for
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which colimits exist for directed sets. It is very helpful to keep both definitions of
stalk in mind at the same time.

If p € U, and f € .#(U), then the image of f in .7, is called the germ of f at p.
(Warning: unlike the example of §2.1.1, in general, the value of a section at a point
doesn’t make sense.)

2.2.6. Definition: Sheaf. A presheaf is a sheaf if it satisfies two more axioms.
Notice that these axioms use the additional information of when some open sets
cover another.

Identity axiom. If {U;}ic1 is an open cover of U, and f1,f, € & (U), and
filu, = f2lu, for all i, then f; = f;.

(A presheaf satisfying the identity axiom is called a separated presheaf, but
we will not use that notation in any essential way:.)

Gluability axiom. If {U;}ic is an open cover of U, then given f; € .# (U;) for
all i, such that filu,nu; = fjlu;nu; for all i,j, then there is some f € .7 (U) such
that resy,y, f = fi for all i.

In mathematics, definitions often come paired: “at most one” and “at least
one”. In this case, identity means there is at most one way to glue, and gluability
means that there is at least one way to glue.

(For experts and scholars of the empty set only: an additional axiom some-
times included is that .# (@) is a one-element set, and in general, for a sheaf with
values in a category, .7 (@) is required to be the final object in the category. This
actually follows from the above definitions, assuming that the empty product is
appropriately defined as the final object.)

Example. If U and V are disjoint, then . (LU V) = .# (U) x .# (V). Here we use
the fact that .% (@) is the final object.

The stalk of a sheaf at a point is just its stalk as a presheaf — the same defini-
tion applies — and similarly for the germs of a section of a sheaf.

2.2.B. UNIMPORTANT EXERCISE: PRESHEAVES THAT ARE NOT SHEAVES. Show
that the following are presheaves on C (with the classical topology), but not sheaves:
(a) bounded functions, (b) holomorphic functions admitting a holomorphic square
root.

Both of the presheaves in the previous Exercise satisfy the identity axiom. A
“natural” example failing even the identity axiom is implicit in Remark 2.5.5.
We now make a couple of points intended only for category-lovers.

2.2.7. Interpretation in terms of the equalizer exact sequence. The two axioms for a
presheaf to be a sheaf can be interpreted as “exactness” of the “equalizer exact
sequence”: - —— .7 (U) —— ][ #(Uy)) —= [[ # (U; N U;). Identity is exact-
ness at % (U), and gluability is exactness at [ [ % (U;). I won’t make this precise,
or even explain what the double right arrow means. (What is an exact sequence of
sets?!) But you may be able to figure it out from the context.

2.2.C. EXERCISE. The identity and gluability axioms may be interpreted as saying
that % (Uic1U;) is a certain limit. What is that limit?

Here are a number of examples of sheaves.
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2.2.D. EXERCISE.

(a) Verify that the examples of §2.1 are indeed sheaves (of smooth functions, or
continuous functions, or real-analytic funcitons, or plain real-valued functions, on
a manifold or R™).

(b) Show that real-valued continuous functions on (open sets of) a topological
space X form a sheaf.

2.2.8. Important Example: Restriction of a sheaf. Suppose .# is a sheaf on X, and U
is an open subset of X. Define the restriction of .# to U, denoted .#|y, to be the
collection .Z |y (V) = Z (V) for all open subsets V C U. Clearly this is a sheaf on
U. (Unimportant but fun fact: §2.7 will tell us how to restrict sheaves to arbitrary
subsets.)

2.2.9. Important Example: the skyscraper sheaf. ~Suppose X is a topological space,
withp € X, and Sis a set. Leti,: p — Xbe the inclusion. Then i, .S defined by

S ifpel, and

b S(U) = {{e} ifpéu

forms a sheaf. Here {e} is any one-element set. (Check this if it isn’t clear to you —
what are the restriction maps?) This is called a skyscraper sheaf supported at p,
because the informal picture of it looks like a skyscraper at p. (Mild caution: this
informal picture suggests that the only nontrivial stalk of a skyscraper sheaf is at p,
which isn’t the case. Exercise 6.1.B(b) gives an example, although it certainly isn’t
the simplest one.) There is an analogous definition for sheaves of abelian groups,
except i, . (S)(U) = {0} if p ¢ U; and for sheaves with values in a category more
generally, i, ,S(U) should be a final object.

(This notation is admittedly hideous, and the alternative (i,).S is equally bad.
In §2.2.12 we explain this notation.)

2.2.10. Constant presheaves and constant sheaves. Let X be a topological space, and S
aset. Define S, (U) = S for all open sets U. You will readily verify that S, forms
a presheaf (with restriction maps the identity). This is called the constant presheaf
associated to S. This isn’t (in general) a sheaf. (It may be distracting to say why.
Lovers of the empty set will insist that the sheaf axioms force the sections over the
empty set to be the final object in the category, i.e., a one-element set. But even if
we patch the definition by setting §pre(®) = {e}, if S has more than one element,
and X is the two-point space with the discrete topology, i.e., where every subset
is open, you can check that S, fails gluability.)

2.2.E. EXERCISE (CONSTANT SHEAVES). Now let .#(U) be the maps to S that
are locally constant, i.e., for any point p in U, there is an open neighborhood of p
where the function is constant. Show that this is a sheaf. (A better description is
this: endow S with the discrete topology, and let .# (Ul) be the continuous maps
U — S.) This is called the constant sheaf (with values in S); do not confuse it with
the constant presheaf. (I would prefer the name “locally constant sheaf”, but it is
too late in history for this change.) We denote this sheaf S.

2.2.F. EXERCISE (“MORPHISMS GLUE”). Suppose Y is a topological space. Show
that “continuous maps to Y” form a sheaf of sets on X. More precisely, to each
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open set U of X, we associate the set of continuous maps of U to Y. Show that this
forms a sheaf. (Exercise 2.2.D(b), with Y = R, and Exercise 2.2.E, with Y = S with
the discrete topology, are both special cases.)

2.2.G. EXERCISE. This is a fancier version of the previous exercise.

(a) (sheaf of sections of a map) Suppose we are given a continuous map pu: Y — X.
Show that “sections of n” form a sheaf. More precisely, to each open set U of X,
associate the set of continuous maps s: U — Y such that p o s = id|y. Show that
this forms a sheaf. (For those who have heard of vector bundles, these are a good
example.) This is motivation for the phrase “section of a sheaf”.

(b) (This exercise is for those who know what a topological group is. If you don’t
know what a topological group is, you might be able to guess.) Suppose that Y is
a topological group. Show that continuous maps to Y form a sheaf of groups.

2.2.11. * The space of sections (espace étalé) of a (pre)sheaf. Depending on your back-
ground, you may prefer the following perspective on sheaves. Suppose .Z is a
presheaf (e.g., a sheaf) on a topological space X. Construct a topological space F
along with a continuous map 7t: F — X as follows: as a set, F is the disjoint union
of all the stalks of .%. This naturally gives a map of sets 7t: F — X. Topologize T as
follows. Each s in % (U) determines a subset {(x,sx) : x € U} of F. The topology
on F is the weakest topology such that these subsets are open. (These subsets form
a base of the topology. For each y € F, there is an open neighborhood V of y and
an open neighborhood U of 7t(y) such that 7t is a homeomorphism from V to U.
Do you see why these facts are true?) The topological space F could be thought of
as the space of sections of .# (and in French is called the espace étalé of 7). We
will not discuss this construction at any length, but it can have some advantages:
(a) It is always better to know as many ways as possible of thinking about a con-
cept. (b) Pullback has a natural interpretation in this language (mentioned briefly
in Exercise 2.7.C). (c) Sheafification has a natural interpretation in this language
(see Remark 2.4.7).

2.2.H. IMPORTANT EXERCISE / DEFINITION: THE PUSHFORWARD SHEAF OR DIRECT
IMAGE SHEAF. Suppose 71: X — Y is a continuous map, and .# is a presheaf on X.
Then define 7,.% by 7. % (V) = F(m1(V)), where V is an open subset of Y. Show
that 7t,.# is a presheaf on Y, and is a sheaf if .# is. This is called the pushforward
(or direct image) of .%. More precisely, 7,7 is called the pushforward of .7 by m.

2.2.12. As the notation suggests, the skyscraper sheaf (Example 2.2.9) can be inter-
preted as the pushforward of the constant sheaf S on a one-point space p, under
the inclusion morphism i, : {p} — X.

Once we endow sheaves with the structure of a category, we will see that the
pushforward is a functor from sheaves on X to sheaves on Y (Exercise 2.3.B).

2.2.1. EXERCISE (PUSHFORWARD INDUCES MAPS OF STALKS). Suppose 7t: X — Y
is a continuous map, and .% is a sheaf of sets (or rings or A-modules) on X. If
7i(p) = q, describe the natural morphism of stalks (71,.% )y — .%,. (You can use the
explicit definition of stalk using representatives, §2.2.4, or the universal property,
§2.2.5. If you prefer one way, you should try the other.)
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2.2.13. Important Example: Ringed spaces, and Ox-modules. Suppose O is
a sheaf of rings on a topological space X (i.e., a sheaf on X with values in the
category of Rings). Then (X, Ox) is called a ringed space. The sheaf of rings is
often denoted by Ox, pronounced “oh-X”. This sheaf is called the structure sheaf
of the ringed space. Sections of the structure sheaf &x over an open subset U
are called functions on U. Functions on X are called global functions, or just
functions. (Caution: what we call “functions”, others sometimes call “regular functions”.
Furthermore, we will later define “rational functions” on schemes in §5.2.1 and §6.6.36,
which are not precisely functions in this sense; they are a particular type of “partially-
defined function”.)

The symbol &’x will always refer to the structure sheaf of a ringed space X.
The restriction Ox|u of Ox to an open subset U C X is denoted &y. (We will later
call (U, Ou) — (X, Ox) an open embedding of ringed spaces, see Definition 7.2.1.)
The stalk of Ox at a point p is written “Ox ,”, because this looks less hideous than
“Oxyp”.

?ust as we have modules over a ring, we have &x-modules over a sheaf of
rings Ox. There is only one possible definition that could go with the name Ox-
module (or often &-module) — a sheaf of abelian groups % with the following
additional structure. For each U, .%#(U) is an Ox(U)-module. Furthermore, this
structure should behave well with respect to restriction maps: if U C V, then

Ox(V) x F(V) 2L 7 (v)

(22131) resy,u X resy,u

resy, u

X <— X

Ox(U) x F(U) 2522 F (W)

commutes. (You should convince yourself that I haven’t forgotten anything.)
Recall that the notion of A-module generalizes the notion of abelian group,

because an abelian group is the same thing as a Z-module. Similarly, the notion

of Ox-module generalizes the notion of sheaf of abelian groups, because the latter

is the same thing as a Z-module. Hence when we are proving things about Ox-

modules, we are also proving things about sheaves of abelian groups.

2.2.J. EXERCISE. If (X, Ox) is a ringed space, and .# is an Ox-module, describe
how for each p € X, .7, is an O p-module.

2.2.14. For those who know about vector bundles. The motivating example of Ox-
modules is the sheaf of sections of a vector bundle. If (X, Ox) is a differentiable
manifold (so Ox is the sheaf of smooth functions), and 7t: V — X is a vector bundle
over X, then the sheaf of smooth sections o: X — V is an Ox-module. Indeed,
given a section s of 7t over an open subset U C X, and a function f on U, we can
multiply s by f to get a new section fs of 7 over U. Moreover, if U’ is a smaller
subset, then we could multiply f by s and then restrict to U’, or we could restrict
both f and s to U’ and then multiply, and we would get the same answer. That is
precisely the commutativity of (2.2.13.1).

2.3 Morphisms of presheaves and sheaves
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2.3.1. Definitions. Whenever one defines a new mathematical object, category the-
ory teaches to try to understand maps between them. We now define morphisms
of presheaves, and similarly for sheaves. In other words, we will describe the
category of presheaves (of sets, abelian groups, etc.) and the category of sheaves.

A morphism of presheaves of sets (or indeed of presheaves with values in
any category) on X, ¢: F — ¥, is the data of maps $(U): & (U) — 4 (U) forall U
behaving well with respect to restriction: if U < V then

7v) 2V 4w
(u)

resy,u

lres v, u

7 2 g

commutes. (Notice: the underlying space of both .# and ¢ is X.)

Morphisms of sheaves are defined identically: the morphisms from a sheaf .7
to a sheaf ¢ are precisely the morphisms from .% to ¢ as presheaves. (Translation:
The category of sheaves on X is a full subcategory of the category of presheaves on
X)) If (X, Ox) is a ringed space, then morphisms of &x-modules have the obvious
definition. (Can you write it down?)

An example of a morphism of sheaves is the map from the sheaf of smooth
functions on R to the sheaf of continuous functions. This is a “forgetful map”: we
are forgetting that these functions are differentiable, and remembering only that
they are continuous.

2.3.2. Notation. We may as well set some notation: let Setsx, Abx, etc. denote
the category of sheaves of sets, abelian groups, etc. on a topological space X. Let
Mod s, denote the category of O'x-modules on a ringed space (X, Ox). Let Setsy",
etc. denote the category of presheaves of sets, etc. on X.

2.3.3. Aside for category-lovers. If you interpret a presheaf on X as a contravari-
ant functor (from the category of open sets), a morphism of presheaves on X is a
natural transformation of functors (§1.2.21).

2.3.A. EXERCISE: MORPHISMS OF (PRE)SHEAVES INDUCE MORPHISMS OF STALKS.
If ¢: F — ¢ is a morphism of presheaves on X, and p € X, describe an induced
morphism of stalks ¢, : 7, — ¥,. Translation: taking the stalk at p induces a
functor Setsx — Sets. (Your proof will extend in obvious ways. For example, if ¢
is a morphism of &’x-modules, then ¢, is a map of &’x ,-modules.)

2.3.B. EXERCISE. Suppose 7: X — Y is a continuous map of topological spaces
(i.e., a morphism in the category of topological spaces). Show that pushforward
gives a functor 7,: Setsx — Setsy. Here Sets can be replaced by other categories.
(Watch out for some possible confusion: a presheaf is a functor, and presheaves
form a category. It may be best to forget that presheaves are functors for now.)

2.3.C. IMPORTANT EXERCISE AND DEFINITION: “SHEAF Hom”. Suppose .# and
% are two sheaves of sets on X. (In fact, it will suffice that .# is a presheaf.) Let
Hom(.F,%9) be the collection of data

Hom (.7 ,%9)(U) := Mor(F|u,¥Iu)-
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(Recall the notation #|y, the restriction of the sheaf to the open set U, Exam-
ple 2.2.8.) Show that this is a sheaf of sets on X. (To avoid a common confusion:
the right side does not say Mor(.# (U),%(U)).) This sheaf is called “sheaf Hom".
(Strictly speaking, we should reserve Hom for when we are in an additive cate-
gory, so this should possibly be called “sheaf Mor”. But the terminology “sheaf
Hom” is too established to uproot.) It will be clear from your construction that,
like Hom, #Hom is a contravariant functor in its first argument and a covariant func-
tor in its second argument.

Warning: Hom does not commute with taking stalks. More precisely: it is
not true that Hom(.%#,%), is isomorphic to Hom(.%#,,%,). (Can you think of a
counterexample? There is at least a map from one of these to the other — in which
direction?)

2.3.4. We will use many variants of the definition of Hom. For example, if .# and
@ are sheaves of abelian groups on X, then Homgy, (% ,%) is defined by taking
Hompp, (F,9)(U) to be the maps as sheaves of abelian groups F |y — ¥lu. (Note
that Homy, (F,%) has the structure of a sheaf of abelian groups in a natural way.)
Similarly, if .% and ¢ are Ox-modules, we define Homy,y ox (#,4) in the analo-
gous way (and it is an Ox-module). Obnoxiously, the subscripts Abx and Mod g,
are often dropped (here and in the literature), so be careful which category you are
working in! We call Hormppq ox (F, Ox) the dual of the &x-module .%, and denote

it #7V.
2.3.D. UNIMPORTANT EXERCISE (REALITY CHECK).

(a) If Z is a sheaf of sets on X, then show that Hom({p}, #) = .%, where {p}
is the constant sheaf “with values in the one element set {p}”.

(b) If .7 is a sheaf of abelian groups on X, then show that Homay, (Z, F) = F
(an isomorphism of sheaves of abelian groups).

(c) If Z is an Ox-module, then show that Hom,g ox (Ox,F) = Z (an iso-
morphism of &x-modules).

A key idea in (b) and (c) is that 1 “generates” (in some sense) Z (in (b)) and & (in
(©).

2.3.5. Presheaves of abelian groups (and even “presheaf &’x-modules”) form an
abelian category.

We can make module-like constructions using presheaves of abelian groups
on a topological space X. (Throughout this section, all (pre)sheaves are of abelian
groups.) For example, we can clearly add maps of presheaves and get another map
of presheaves: if ¢,P: . F — ¢, then we define the map ¢ + ¢ by (¢ +¥P)(V) =
&(V) + (V). (There is something small to check here: that the result is indeed a
map of presheaves.) In this way, presheaves of abelian groups form an additive
category (Definition 1.6.1: the morphisms between any two presheaves of abelian
groups form an abelian group; there is a 0-object; and one can take finite products).
For exactly the same reasons, sheaves of abelian groups also form an additive
category.

If ¢: .7 — ¢ is a morphism of presheaves, define the presheaf kernel kerp, ¢
by (kerpre ¢)(U) := ker p(U).
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2.3.E. EXERCISE. Show that kerp ¢ is a presheaf. (Hint: if U < V, define the
restriction map by chasing the following diagram:

0 —— kerpre (V) —— F (V) —=¥(V)

3! resv,u \Lresv,u
Y
0—— kerpre d(U) — 7 (U) —= ¥ (U)

You should check that the restriction maps compose as desired.)

Define the presheaf cokernel coker,,. ¢ similarly. Itis a presheaf by essentially
the same (dual) argument.

2.3.F. EXERCISE: THE COKERNEL DESERVES ITS NAME. Show that the presheaf cok-
ernel satisfies the universal property of cokernels (Definition 1.6.4) in the category
of presheaves.

Similarly, kerpre ¢ — F satisfies the universal property for kernels in the cate-
gory of presheaves.

Itis not too tedious to verify that presheaves of abelian groups form an abelian
category, and the reader is free to do so. The key idea is that all abelian-categorical
notions may be defined and verified “open set by open set”. We needn’t worry
about restriction maps — they “come along for the ride”. Hence we can define
terms such as subpresheaf, image presheaf (or presheaf image), and quotient
presheaf (or presheaf quotient), and they behave as you would expect. You con-
struct kernels, quotients, cokernels, and images open set by open set. Homological
algebra (exact sequences and so forth) works, and also “works open set by open
set”. In particular:

2.3.G. EASY EXERCISE. Show (or observe) that for a topological space X with open
set U, .Z +— Z(U) gives a functor from presheaves of abelian groups on X, AbY*,
to abelian groups, Ab. Then show that this functor is exact.

2.3.H. EXERCISE. Show that a sequence of presheaves 0 — %1 — % — --- —
Fn — Oisexactif and only if 0 — F (U) — F#(U) — --- — F(U) — 0is exact
for all U.

The above discussion essentially carries over without change to presheaves
with values in any abelian category. (Think this through if you wish.)

However, we are interested in more geometric objects, sheaves, where things
can be understood in terms of their local behavior, thanks to the identity and glu-
ing axioms. We will soon see that sheaves of abelian groups also form an abelian
category, but a complication will arise that will force the notion of sheafification on
us. Sheafification will be the answer to many of our prayers. We just haven't yet
realized what we should be praying for.

To begin with, sheaves Abx form an additive category, as described in the first
paragraph of §2.3.5.

Kernels work just as with presheaves:
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2.3.I. IMPORTANT EXERCISE. Suppose ¢: .F — ¢ is a morphism of sheaves. Show
that the presheaf kernel kerpre ¢ is in fact a sheaf. Show that it satisfies the uni-
versal property of kernels (Definition 1.6.4). (Hint: the second question follows
immediately from the fact that kerp. ¢ satisfies the universal property in the cate-
gory of presheaves.)

Thus if ¢ is a morphism of sheaves, we define
ker ¢ = kerpe .

The problem arises with the cokernel.

2.3.J. IMPORTANT EXERCISE. Let X be C with the classical topology, let &x be the
sheaf of holomorphic functions, and let . be the presheaf of functions admitting a
holomorphic logarithm. Describe an exact sequence of presheaves on X:

0 Z Ox F 0

where Z — O is the natural inclusion and Ox — % is given by f — exp(2mif).
(Be sure to verify exactness.) Show that .% is not a sheaf. (Hint: .# does not satisfy
the gluability axiom. The problem is that there are functions that don’t have a
logarithm but locally have a logarithm.) This will come up again in Example 2.4.9.

We will have to put our hopes for understanding cokernels of sheaves on hold
for a while. We will first learn to understand sheaves using stalks.

2.4 Properties determined at the level of stalks, and sheafification

2.4.1. Properties determined by stalks. =~ We now come to the second way of
understanding sheaves mentioned at the start of the chapter. In this section, we
will see that lots of facts about sheaves can be checked “at the level of stalks”.
We call any property determined at the level of stalks stalk-local. This isn’t true
for presheaves, and reflects the local nature of sheaves. We will see that sections
and morphisms are determined “by their stalks”, and the property of a morphism
being an isomorphism may be checked at stalks. (The last one is the trickiest.)

2.4.A. IMPORTANT EASY EXERCISE (sections are determined by germs). Prove
that a section of a sheaf of sets is determined by its germs, i.e., the natural map

(24.1.1) FU) — TTpeu Fo

is injective. Hint 1: you won’t use the gluability axiom, so this is true for separated
presheaves. Hint 2: it is false for presheaves in general, see Exercise 2.4.E, so you
will use the identity axiom. (Your proof will also apply to sheaves of groups, rings,
etc. — to categories of “sets with additional structure”. The same is true of many
exercises in this section.)

Exercise 2.4.A suggests a question: which elements of the right side of (2.4.1.1)
are in the image of the left side?

2.4.2. Important definition. We say that an element (s, ),cu of the right side
[I,cuFp of (2.4.1.1) consists of compatible germs if for all p € U, there is some
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representative
(5p € #(Up), U, openin U)

for s, (where p € U, C U) such that the germ of §, at all ¢ € U, is sq. Equiv-
alently, there is an open cover {U;} of U, and sections f; € % (l;), such that if
p € Uy, then s, is the germ of f; at p. Clearly any section s of .# over U gives a
choice of compatible germs for U.

2.4.B. IMPORTANT EXERCISE. Prove that any choice of compatible germs for a
sheaf of sets # over U is the image of a section of .# over U. (Hint: you will use
gluability.)

We have thus completely described the image of (2.4.1.1), in a way that will
prove useful.

2.4.3. Remark. This perspective motivates the agricultural terminology “sheaf”: a
sheaf is (the data of) a bunch of stalks, bundled together appropriately.

Now we throw morphisms into the mix. Recall Exercise 2.3.A: morphisms of
(pre)sheaves induce morphisms of stalks.

2.4.C. EXERCISE (morphisms are determined by stalks). If ¢ and ¢, are mor-
phisms from a presheaf of sets .7 to a sheaf of sets ¢ that induce the same maps
on each stalk, show that ¢1 = ¢,. Hint: consider the following diagram.

(2.4.3.1) FZU) — = %(U)

|

Hpeu Fp —> Hpeu %

2.4.D. TRICKY EXERCISE (isomorphisms are determined by stalks). Show that a
morphism of sheaves of sets is an isomorphism if and only if it induces an isomor-
phism of all stalks. Hint: Use (2.4.3.1). Once you have injectivity, show surjectivity,
perhaps using Exercise 2.4.B, or gluability in some other way; this is more subtle.
Warning: This exercise does not say that if two sheaves have isomorphic stalks,
then they are isomorphic.

2.4.E. EXERCISE.

(a) Show that Exercise 2.4.A is false for general presheaves.

(b) Show that Exercise 2.4.C is false for general presheaves.

(c) Show that Exercise 2.4.D is false for general presheaves.

(General hint for finding counterexamples of this sort: consider a 2-point space
with the discrete topology.)

2.4.4. Sheafification.

Every sheaf is a presheaf (and indeed by definition sheaves on X form a full
subcategory of the category of presheaves on X). Just as groupification (§1.5.3)
gives an abelian group that best approximates an abelian semigroup, sheafifica-
tion gives the sheaf that best approximates a presheaf, with an analogous univer-
sal property. (One possible example to keep in mind is the sheafification of the
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presheaf of holomorphic functions admitting a square root on C with the classical
topology. See also the exponential exact sequence, Example 2.4.9.)

2.4.5. Definition. If % is a presheaf on X, then a morphism of presheaves sh: 7% —
F on X is a sheafification of .7 if .7*!" is a sheaf, and for any sheaf ¢, and
any presheaf morphism g: .# — ¥, there exists a unique morphism of sheaves
f: 7" — & making the diagram

commute.
We still have to show that it exists. The following two exercises require exis-
tence (which we will show shortly), but not the details of the construction.

2.4.F. EXERCISE. Show that sheafification is unique up to unique isomorphism, as-

suming it exists. Show that if .# is a sheaf, then the sheafificationis id : # —— # .
(This should be second nature by now.)

2.4.G. EASY EXERCISE (SHEAFIFICATION IS A FUNCTOR). Assume for now that
sheafification exists. Use the universal property to show that for any morphism of
presheaves ¢: .F — ¢, we get a natural induced morphism of sheaves ¢": .Zh —
@sh. Show that sheafification is a functor from presheaves on X to sheaves on X.

2.4.6. Construction. We next show that any presheaf of sets (or groups, rings, etc.)
has a sheafification. Suppose .7 is a presheaf. Define .7 by defining .Z*"(U) as
the set of “compatible germs” of the presheaf .# over U. Explicitly:

Fh(U) = {(fp € Zp)peu: forall p € U, there exists an open neighborhood V
of p, contained in U, and s € .7 (V) with sq = f4 forall q € V}.

Here s; means the germ of s at ¢ — the image of s in the stalk 7.

2.4.H. EASY EXERCISE. Show that .#! (using the tautological restriction maps)
forms a sheaf.

2.4.1. EASY EXERCISE. Describe a natural map of presheaves sh: % — 7.

2.4.J. EXERCISE. Show that the map sh satisfies the universal property of sheafifi-
cation (Definition 2.4.5). (This is easier than you might fear.)

2.4 K. USEFUL EXERCISE, NOT JUST FOR CATEGORY-LOVERS. Show that the sheafi-
fication functor is left-adjoint to the forgetful functor from sheaves on X to presheaves
on X. This is not difficult — it is largely a restatement of the universal property.
But it lets you use results from §1.6.14, and can “explain” why you don’t need to
sheafify when taking kernel (why the presheaf kernel is already the sheaf kernel),
and why you need to sheafify when taking cokernel and (soon, in Exercise 2.6.K)
.
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2.4.L. EXERCISE. Show .# — %M induces an isomorphism of stalks. (Possible
hint: Use the concrete description of the stalks. Another possibility once you read
Remark 2.7.3: judicious use of adjoints.)

As areality check, you may want to verify that “the sheafification of a constant

presheaf is the corresponding constant sheaf” (see §2.2.10): if X is a topological
space and S is a set, then ( §pre)5h may be naturally identified with S.
2.4.7.  Remark. The “space of sections” (or “espace étalé”) construction (§2.2.11)
yields a different-sounding description of sheafification which may be preferred
by some readers. The main idea is identical: if .# is a presheaf, let T be the space of
sections (or espace étalé) of .#. You may wish to show that if .# is a presheaf, the
sheaf of sections of F — X (defined in Exercise 2.2.G(a)) is the sheafification of .%.
Exercise 2.2.E may be interpreted as an example of this construction. The “space
of sections” construction of the sheafification is essentially the same as Construc-
tion 2.4.6.

2.4.8. Subsheaves and quotient sheaves.
We now discuss subsheaves and quotient sheaves from the perspective of
stalks.

2.4.M. EXERCISE. Suppose ¢: .F — ¥ is a morphism of sheaves of sets on a
topological space X. Show that the following are equivalent.

(@) ¢ is a monomorphism in the category of sheaves.

(b) ¢ is injective on the level of stalks: ¢, : F#, — ¥, is injective for all p € X.

(c) ¢ is injective on the level of open sets: ¢(U): .Z(U) — Z(U) is injective
for all open U C X.

(Possible hints: for (b) implies (a), recall that morphisms are determined by stalks,
Exercise 2.4.C. For (a) implies (c), use the “indicator sheaf” with one section over
every open set contained in U, and no section over any other open set.) If these
conditions hold, we say that .# is a subsheaf of ¢ (where the “inclusion” ¢ is
sometimes left implicit).

(You may later wish to extend your solution to Exercise 2.4.M to show that for
any morphism of presheaves, if all maps of sections are injective, then all stalk maps
are injective. And furthermore, if ¢: .# — ¢ is a morphism from a separated
presheaf to an arbitrary presheaf, then injectivity on the level of stalks implies
that ¢ is a monomorphism in the category of presheaves. This is useful in some
approaches to Exercise 2.6.C.)

2.4.N. EXERCISE. Continuing the notation of the previous exercise, show that the
following are equivalent.

(@) ¢ is an epimorphism in the category of sheaves.
(b) ¢ is surjective on the level of stalks: ¢,,: %, — %, is surjective for all
peX

(Possible hint: use a skyscraper sheaf.)
If these conditions hold, we say that ¢ is a quotient sheaf of .7.

Thus monomorphisms and epimorphisms — subsheafiness and quotient sheafiness —
can be checked at the level of stalks.
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Both exercises generalize readily to sheaves with values in any reasonable cat-
egory, where “injective” is replaced by “monomorphism” and “surjective” is re-
placed by “epimorphism”.

Notice that there was no part (c) to Exercise 2.4.N, and Example 2.4.9 shows
why. (But there is a version of (c) that implies (a) and (b): surjectivity on all open
sets in the base of a topology implies that the corresponding map of sheaves is an
epimorphism, Exercise 2.5.D.)

2.4.9. Example (cf. Exercise 2.3.]). Let X = C with the classical topology, and define
Ox to be the sheaf of holomorphic functions, and 0% to be the sheaf of invertible
(nowhere zero) holomorphic functions. This is a sheaf of abelian groups under
multiplication. We have maps of sheaves

X2mi exp

(2.49.1) 0 z Ox

%9 1.

(You can figure out what the sheaves 0 and 1 mean; they are isomorphic, and are
written in this way for reasons that may be clear.) We will soon interpret this as
an exact sequence of sheaves of abelian groups (the exponential exact sequence, see
Exercise 2.6.F), although we don’t yet have the language to do so.

2.4.0. ENLIGHTENING EXERCISE. Show that exp: Ox —— 0% describes 0% as
a quotient sheaf of &x. Find an open set on which this map is not surjective.

This is a great example to get a sense of what “surjectivity” means for sheaves:
nowhere vanishing holomorphic functions (such as the function x away from the
origin) have logarithms locally, but they need not have logarithms globally.

2.5 Recovering sheaves from a “sheaf on a base”

Sheaves are natural things to want to think about, but hard to get our hands on.
We like the identity and gluability axioms, but they make proving things trickier
than for presheaves. We have discussed how we can understand sheaves using
stalks (using “compatible germs”). We now introduce a second way of getting a
hold of sheaves, by introducing the notion of a sheaf on a base. Warning: this way
of understanding an entire sheaf from limited information is confusing. It may
help to keep sight of the central insight that this partial information is enough
to understand germs, and the notion of when they are compatible (with nearby
germs).

First, we define the notion of a base of a topology. Suppose we have a topo-
logical space X, i.e., we know which subsets U; of X are open. Then a base of
a topology is a subcollection of the open sets {B;} C {U;}, such that each U; is a
union of the Bj. Here is one example that you have seen early in your mathemati-
cal life. Suppose X = R™. Then the way the classical topology is often first defined
is by defining open balls B-(x) = {y € R™ : |y —x| < 7}, and declaring that any
union of open balls is open. So the balls form a base of the classical topology — we
say they generate the classical topology. As an application of how we use them, to
check continuity of some map 7t: X — R™, you need only think about the pullback
of balls on R™ — part of the traditional 6-€ definition of continuity.
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Now suppose we have a sheaf .# on a topological space X, and a base {B;} of
open sets on X. Then consider the information

({7 (Bi)}, {resp, B, : Z(Bi) = F(B))}),

which is a subset of the information contained in the sheaf — we are only paying
attention to the information involving elements of the base, not all open sets.

We can recover the entire sheaf from this information. This is because we can
determine the stalks from this information, and we can determine when germs are
compatible.

2.5.A. IMPORTANT EXERCISE. Make this precise. How can you recover a sheaf .%
from this partial information?

This suggests a notion, called a sheaf on a base. A sheaf of sets (or abelian
groups, rings, ...) on a base {B;} is the following. For each B; in the base, we have
a set F(Bi). If Bi C Bj, we have maps resg; g, : F(B;) — F(Bi), with resg, 5, =
idf(g,)- (Things called “B” are always assumed to be in the base.) If B; C B; C By,
then resg, B, = resp; B, oresg, ;. So far we have defined a presheaf on a base
{Bi}.

We also require the base identity axiom: If B = UB;, then if f,g € F(B) are
such that resg g, f =resg g, g forall i, then f = g.

We require the base gluability axiom too: If B = UB;, and we have f; €
F(Bi) such that f; agrees with f; on any basic open set contained in B; N Bj (i.e.,
resg, B, fi = resg, g, fj for all By C Bi N Bj) then there exists f € F(B) such that
resg g, f = f; for all i.

2.5.1. Theorem. — Suppose {Bi} is a base on X, and F is a sheaf of sets on this base.
Then there is a sheaf F extending F (with isomorphisms .7 (By) «— F(By) agreeing with
the restriction maps). This sheaf F is unique up to unique isomorphism.

Proof. We will define .# as the sheaf of compatible germs of F.
Define the stalk of a presheaf F on a base at p € X by

Fp, = colim F(B;)

where the colimit is over all B; (in the base) containing p.

We will say a family of germs in an open set U is compatible near p if there is a
section s of F over some B; containing p such that the germs over B; are precisely
the germs of s. More formally, define

F(U) :={(fp € Fp)peu: forall p € U, there exists B withp € B C U, s € F(B),
with sq = fq for all q € B}

where each B is in our base.

This is a sheaf (for the same reasons that the sheaf of compatible germs was,
cf. Exercise 2.4.H).

Inext claim that if B is in our base, the natural map F(B) — % (B) is an isomor-
phism.
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2.5.B. EXERCISE. Verify that F(B) — % (B) is an isomorphism, likely by showing
that it is injective and surjective (or else by describing the inverse map and verify-
ing that it is indeed inverse). Possible hint: elements of .% (B) are determined by
stalks, as are elements of F(B).

It will be clear from your solution to Exercise 2.5.B that the restriction maps
for F are the same as the restriction maps of .% (for elements of the base).

Finally, you should verify to your satisfaction that .# is indeed unique up to
unique isomorphism. (First be sure that you understand what this means!) O

Theorem 2.5.1 shows that sheaves on X can be recovered from their “restriction
to a base”. It is clear from the argument (and in particular the solution to the
Exercise 2.5.B) that if .# is a sheaf and F is the corresponding sheaf on the base B,
then for any p € X, %, is naturally isomorphic to F,.

Theorem 2.5.1 is a statement about objects in a category, so we should hope for
a similar statement about morphisms.

2.5.C. IMPORTANT EXERCISE: MORPHISMS OF SHEAVES CORRESPOND TO MOR-
PHISMS OF SHEAVES ON A BASE. Suppose {Bi} is a base for the topology of X. A
morphism F — G of sheaves on the base is a collection of maps F(By) — G(Bx)
such that the diagram

F(Bi) — G(By)
resB ;B i

F(B;j) — G(B;)

i)
resBi,Bj
i)

commutes for all B; — B;.

(a) Verify that a morphism of sheaves is determined by the induced morphism of
sheaves on the base.

(b) Show that a morphism of sheaves on the base gives a morphism of the induced
sheaves. (Possible hint: compatible stalks.)

2.5.2. Remark. The above constructions and arguments describe an equivalence of
categories (§1.2.21) between sheaves on X and sheaves on a given base of X. There
is no new content to this statement, but you may wish to think through what it
means. What are the functors in each direction? Why aren’t their compositions
the identity?

2.5.3. Remark. It will be useful to extend these notions to &x-modules (see for
example Exercise 6.2.C). You will readily be able to verify that there is a correspon-
dence (really, equivalence of categories) between &’x-modules and “@x-modules
on a base”. Rather than working out the details, you should just informally think
through the main points: what is an “&x-module on a base”? Given an &x-module
on a base, why is the corresponding sheaf naturally an &x-module? Later, if you
are forced at gunpoint to fill in details, you will be able to.

2.5.D. UNIMPORTANT EXERCISE. Suppose a morphism of sheaves F — G on a
base {B;} is surjective for all B; (i.e., F(Bi) — G(B;) is surjective for all i). Show
that the corresponding morphism of sheaves (10t on the base) is surjective (or more
precisely: an epimorphism). The converse is not true, unlike the case for injectivity.
This gives a useful sufficient criterion for “surjectivity”: a morphism of sheaves is
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an epimorphism (“surjective”) if it is surjective for sections on a base. You may
enjoy trying this out with Example 2.4.9 (dealing with holomorphic functions in
the classical topology on X = C), showing that the exponential map exp: Ox — Ox
is surjective, using the base of contractible open sets.

2.5.4. Gluing sheaves.

We will repeatedly see the theme of constructing some object by gluing, in
many different contexts. Keep an eye out for it! In each case, we carefully consider
what information we need in order to glue.

2.5.E. IMPORTANT EXERCISE. Suppose X = Ul is an open cover of X, and we
have sheaves .#; on U, along with isomorphisms

dij: Filuinu; — Fluiny,
(with ¢i; the identity) that agree on triple overlaps, i.e.,

(2.5.4.1) bjk o by = dik

on U; NU; N Uy (this is called the cocycle condition, for reasons we ignore). Show
that these sheaves can be glued together into a sheaf .# on X (unique up to unique
isomorphism), with isomorphisms Z|y, — %i, and the isomorphisms over U; N
Uj are the obvious ones. Warning: we are not assuming this is a finite cover, so you
cannot use induction. For this reason this exercise can be perplexing. (You can use
the ideas of this section to solve this problem, but you don’t necessarily need to.
Hint: As the base, take those open sets contained in some U,;.)

Thus we can “glue sheaves together”, using limited patching information.
Small observation: the hypothesis ¢; is the identity is extraneous, as it follows
from the cocycle condition.

2.5.5. Remark for experts. Exercise 2.5.E almost says that the “set” of sheaves forms
a sheaf itself, but not quite. Making this precise leads one to the notion of a stack.

2.6 Sheaves of abelian groups, and Jx-modules, form abelian
categories

We are now ready to see that sheaves of abelian groups, and their cousins, Ox-
modules, form abelian categories. In other words, we may treat them similarly to
vector spaces, and modules over a ring. In the process of doing this, we will see
that this is much stronger than an analogy; kernels, cokernels, exactness, and so
forth can be understood at the level of stalks (which are just abelian groups), and
the compatibility of the germs will come for free.

The category of sheaves of abelian groups on a topological space X is clearly an
additive category (Definition 1.6.1). In order to show that it is an abelian category,
we must begin by showing that any morphism ¢: .# — ¢ has a kernel and a
cokernel. We have already seen that ¢ has a kernel (Exercise 2.3.I): the presheaf
kernel is a sheaf, and is a kernel in the category of sheaves.
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2.6.A. EXERCISE. Show that the stalk of the kernel is the kernel of the stalks: for
all p € X, there is a natural isomorphism

(ker(.F — 9))p < ker(Fp — ).

We next address the issue of the cokernel. Now ¢: .% — ¢ has a cokernel in
the category of presheaves; call it /. (Where the subscript is meant to remind us
that this is a presheaf). Let sh : J4,. — J be its sheafification. Recall that the
cokernel is defined using a universal property: it is the colimit of the diagram

2.6.0.1) 7. g

|

0
in the category of presheaves (cf. (1.6.4.1) and the comment thereafter).

2.6.1. Proposition. — The composition ¢ — ¢ is the cokernel of ¢ in the category of
sheaves.

Proof. We show that it satisfies the universal property. Given any sheaf & and a
commutative diagram

o<
H<—K

We construct

\g

We show that there is a unique morphism J# — & making the diagram commute.
As Hpre is the cokernel in the category of presheaves, there is a unique morphism
of presheaves ./, — & making the diagram commute. But then by the universal
property of sheafification (Definition 2.4.5), there is a unique morphism of sheaves
s — & making the diagram commute. O

2.6.B. EXERCISE. Show that the stalk of the cokernel is naturally isomorphic to
the cokernel of the stalk.

We have now defined the notions of kernel and cokernel, and verified that they
may be checked at the level of stalks. We have also verified that the properties of
a morphism being a monomorphism or epimorphism are also determined at the
level of stalks (Exercises 2.4.M and 2.4.N). Hence we have proved the following:

2.6.2. Theorem. — Sheaves of abelian groups on a topological space X form an abelian
category.
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That’s all there is to it — what needs to be proved has been shifted to the stalks,
where everything works because stalks are abelian groups!

And we see more: all structures coming from the abelian nature of this cate-
gory may be checked at the level of stalks. For example:

2.6.C. EXERCISE. Suppose ¢: F — ¥ is a morphism of sheaves of abelian groups.
Show that the image sheaf im ¢ is the sheafification of the image presheaf. (You
must use the definition of image in an abelian category. In fact, this gives the
accepted definition of image sheaf for a morphism of sheaves of sets.) Show that
the stalk of the image is the image of the stalk.

As a consequence, exactness of a sequence of sheaves may be checked at the
level of stalks. If you are not sure about this, you should do the following exercise.

2.6.D. EXERCISE. Suppose & : .# — ¢4 and 3 : 4 — % are two morphisms of
sheaves of abelian groups on X. Show that

B

F G "
is exact (at ¢) if and only if for all p € X,

z, g, 0
Tp —>=%p — > Hp

is exact.

In particular:

2.6.E. IMPORTANT EXERCISE (CF. EXERCISE 2.3.A). Show that taking the stalk of
a sheaf of abelian groups is an exact functor. More precisely, if X is a topological
space and p € X is a point, show that taking the stalk at p defines an exact functor
Abx — Ab.

2.6.F. EXERCISE. Check that the exponential exact sequence (2.4.9.1) is exact.

2.6.G. EXERCISE: LEFT-EXACTNESS OF THE FUNCTOR OF “SECTIONS OVER U”.
Suppose U C X is an open set, and 0 — % — ¢ — J is an exact sequence
of sheaves of abelian groups. Show that

0 Z(U) 4(U) — (1)

is exact. (You should do this “by hand”, even if you realize there is a very fast
proof using the left-exactness of the “forgetful” right adjoint to the sheafification
functor.) Show that the section functor need not be exact: show thatif 0 —» .% —
¢ — ¢ — 0is an exact sequence of sheaves of abelian groups, then

00— F#(U) —¥9(U) — 7 (U) —0

need not be exact. (Hint: the exponential exact sequence (2.4.9.1). But feel free to
make up a different example.)

2.6.H. EXERCISE: LEFT-EXACTNESS OF PUSHFORWARD. Suppose 0 — .# — & —
S is an exact sequence of sheaves of abelian groups on X. If 71: X — Y is a contin-
uous map, show that

0 T T .9 I
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is exact. (The previous exercise, dealing with the left-exactness of the global sec-
tion functor can be interpreted as a special case of this, in the case where Y is a
point.)

2.6.1. EXERCISE: LEFT-EXACTNESS OF Hom (CF. EXERCISE 1.6.G(C) AND (D)). Sup-
pose 7 is a sheaf of abelian groups on a topological space X. Show that Hom(.7, -)
is a left-exact covariant functor Abx — Abx. Show that Hom(-,.%) is a left-exact
contravariant functor Abx — Abx.

2.6.3. Ox-modules.

2.6.J. EXERCISE. Show that if (X, Ox) is a ringed space, then &’x-modules form an
abelian category. (There is a fair bit to check, but there aren’t many new ideas.)

2.6.4. Many facts about sheaves of abelian groups carry over to &x-modules with-
out change, because a sequence of &x-modules is exact if and only if the under-
lying sequence of sheaves of abelian groups is exact. You should be able to easily
check that all of the statements of the earlier exercises in §2.6 also hold for Ox-
modules, when modified appropriately. For example (Exercise 2.6.1), Home, (-, )
is a left-exact contravariant functor in its first argument and a left-exact covariant
functor in its second argument.
We end with a useful construction using some of the ideas in this section.

2.6.K. IMPORTANT EXERCISE: TENSOR PRODUCTS OF Ox-MODULES.

(a) Suppose Ox is a sheaf of rings on X. Define (categorically) what we should
mean by tensor product of two Ox-modules. Give an explicit construction, and
show that it satisfies your categorical definition. Hint: take the “presheaf tensor
product” — which needs to be defined — and sheafify. Note: ®¢, is often written
® when the subscript is clear from the context. (An example showing sheafifica-
tion is necessary will arise in Example 15.1.1.)

(b) Show that the tensor product of stalks is the stalk of the tensor product. (If you
can show this, you may be able to make sense of the phrase “colimits commute
with tensor products”.)

2.6.5. Conclusion. Just as presheaves of abelian groups on a topological space
form an abelian category because all abelian-categorical notions make sense open
set by open set, sheaves of abelian groups on a topological space form an abelian
category because all abelian-categorical notions make sense stalk by stalk.

2.7 The inverse image sheaf

We next describe a notion that is fundamental, but rather intricate. We will
not need it for some time, so this may be best left for a second reading. Suppose
we have a continuous map 7: X — Y. If .% is a sheaf on X, we have defined
the pushforward or direct image sheaf m,.#, which is a sheaf on Y. There is also a
notion of inverse image sheaf. (We will not call it the pullback sheaf, reserving that
name for a later construction for quasicoherent sheaves, §14.6.) This is a covariant
functor m~! from sheaves on Y to sheaves on X. If the sheaves on Y have some
additional structure (e.g., group or ring), then this structure is respected by 7w '.
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2.7.1. Definition by adjoint: elegant but abstract. We define the inverse image ' as
the left adjoint to ..

This isn’t really a definition; we need a construction to show that the adjoint
exists. Note that we then get canonical maps n~'m,.# — Z (associated to the
identity in Mory (7, #,m. %)) and ¥ — m.m 'Y (associated to the identity in
Morx (n'9, " 19)).

Y ——=F

/

X G T, F
Y/

2.7.2. Construction: concrete but ugly. Define the temporary notation

71;2%(11) = colimy ) 4(V).

(Recall the explicit description of colimit: sections of 711;]2 over U are sections on
open sets containing 7t(U), with an equivalence relation. Note that 7t(ll) won't be
an open set in general.)

2.7.A. EXERCISE. Show that this defines a presheaf on X. Show that it needn’t
form a sheaf. (Hint: map 2 points to 1 point.)

Now define the inverse image of ¥ by m '% = (m,,.%)". Note that 7'
is a functor from sheaves on Y to sheaves on X. The next exercise shows that
7! is indeed left-adjoint to 7t,. But you may wish to try the later exercises first,
and come back to Exercise 2.7.B at another time. (For the later exercises, try to
give two proofs, one using the universal property, and the other using the explicit

description.)

2.7.B. IMPORTANT TRICKY EXERCISE ((7t',7,) ARE ADJOINT). Ift: X — Yisa
continuous map, and .# is a sheaf on X and ¥ is a sheaf on Y, describe a bijection

Morx (9, %) <— Mory (¥, m,.7).

Observe that your bijection is “natural” in the sense of the definition of adjoints
(i-e., functorial in both .# and ¥). Thus Construction 2.7.2 satisfies the universal
property of Definition 2.7.1. Possible hint: Show that both sides agree with the
following third construction, which we denote Moryx (¥, .% ). A collection of maps
dvu: 9(V) — Z(U) (as U runs through all open sets of X, and V runs through all
open sets of Y containing 7t(l)) is said to be compatible if for all open U’ C U C X
and allopen V' C V C Ywith (U) C V, (U’) C V', the diagram

2.7.2.1) g(v) v

reSvyvli lresu»u/

bvirur

gV —F(U)

F(U)



90 The Rising Sea: Foundations of Algebraic Geometry

commutes. Define Moryx(¥,.#) to be the set of all compatible collections ¢ =

{dvul-

2.7.3. Remark (“stalk and skyscraper are an adjoint pair”). As a special case, if X is a
point p € Y, we see that ' is the stalk %, of ¢, and maps from the stalk ¢, to
a set S are the same as maps of sheaves on Y from ¢ to the skyscraper sheaf with
set S supported at p. You may prefer to prove this special case by hand directly
before solving Exercise 2.7.B, as it is enlightening. (It can also be useful — can you
use it to solve Exercises 2.4.L and 2.4.N?)

2.7.C. EXERCISE. Show that the stalks of 7% are the same as the stalks of ¢.
More precisely, if 7t(p) = q, describe a natural isomorphism ¢, — (n 19 )p. (Pos-
sible hint: use the concrete description of the stalk, as a colimit. Recall that stalks
are preserved by sheafification, Exercise 2.4.L. Alternatively, use adjointness.)

Exercise 2.7.C, along with the notion of compatible germs, may give you a
simple way of thinking about (and perhaps visualizing) inverse image sheaves.
Closely related: you can think of sections of the inverse image sheaf as, locally,
pullbacks of sections on the target. (Those preferring the “espace étalé” or “space
of sections” perspective, §2.2.11, can check that the pullback of the “space of sec-
tions” is the “space of sections” of the pullback.)

2.7.D. EXERCISE (EASY BUT USEFUL). If Uis an open subset of Y, i: U — Y is the

inclusion, and ¢ is a sheaf on Y, show that i~'¥ is naturally isomorphic to ¢|u
(the restriction of ¢ to U, §2.2.8).

2.7.E. EXERCISE. Show that 7t~ is an exact functor from sheaves of abelian groups
on Y to sheaves of abelian groups on X (cf. Exercise 2.6.E). (Hint: exactness can be
checked on stalks, and by Exercise 2.7.C, the stalks are the same.) Essentially the
same argument will show that 7! is an exact functor from &y-modules (on Y) to
(m~1&y)-modules (on X), but don’t bother writing that down. (Remark for experts:
7! is a left adjoint, hence right-exact by abstract nonsense, as discussed in §1.6.14.
Left-exactness holds because colimits of abelian groups over filtered index sets are
exact, Exercise 1.6.L.)

2.7.4. Definition: The push-pull map.
Suppose

2.7.4.1) w_

X
a‘/i ia
B
y—f.7

is a commutative (not necessarily Cartesian!) diagram, and .% is a sheaf on X.
Define the push-pull map

(2.7.4.2) B o, ——= () ' F

of sheaves on Y as follows. Start with the identity (B')~'.% — (B’)"'.% on W.
By adjointness of ((B’ )~', L), this is the same as the data of a morphism .% —
(BL)(B") " on X. Apply . to get a map .. — o (BL)(B)"'.F on Z. By
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the commutativity of (2.7.4.1), this is the map «..#Z — B.(«.)(B’)"'.Z on Z. By
adjointness of (B~ B.), this yields a map (2.7.4.2).

We observe that this entire construction is functorial in .# (i.e., given a map
F — ¢ of sheaves on X, we get a certain commutative diagram of sheaves on Y —
what is it?). (We will later extend this to &-modules, quasicoherent sheaves, and
cohomology, see Exercises 7.2.D(f), 14.6.K, and 18.7.B.)

2.7.F. EXERCISE. We could have defined the push-pull map in a “dual way” start-
ing with the identity «,.# — «..# on Z, then using adjointness of («*, ), and
continuing from there. Why does this give the same definition of the push-pull
map?

2.7.5. The support of a sheaf, and the support of a section of a sheaf.
Exercise 2.7.H below gives us an excuse to introduce the notion of support,
which we use repeatedly later.

2.7.6. Definition. Suppose .# is a sheaf (or indeed separated presheaf) of abelian
groups on X, and s is a global section of 7. Define the support of the section s,
denoted Supp s, to be the set of points p of X where s has a nonzero germ:

Supps:={p e X : s, #0in .F,}.

We think of this as the subset of X where “the section s lives” — the complement
is the locus where s is the O-section. (Unimportant: We could define this even if
7 is a presheaf, but without the inclusion .# (U) < [, #p of Exercise 2.4.A,
we could have the strange situation where we have a nonzero section that “lives
nowhere”, because it is 0 “near every point”, i.e., is 0 in every stalk.) Define the
support of a sheaf ¢ of sets, denoted Supp ¥, as the locus where the stalks are
nonempty:
Supp¥ :={p X : |%]#0}

Equivalently, Supp ¢ is the union of supports of sections over all open sets. Clearly
supportis a “stalk-local notion”, and hence “commutes” with to restriction to open
sets.

More generally, if the sheaf has value in some category, the support consists of
points where the stalk is not the initial object.

2.7.G. EXERCISE (THE SUPPORT OF A SECTION IS CLOSED). Show that Suppsisa
closed subset of X.

2.7.7. Caution: the locus where a continuous function is nonzero is open; the locus where
the germ of a function is nonzero is closed. Basically by the definition of continuity, the
locus where the value of a continuous function is nonzero is open. (More generally,
the locus where the value of a function on a locally ringed space is nonzero is
open, see Exercise 4.3.F(a).) In contrast, Exercise 2.7.G shows that the locus where
the germ of a function is nonzero is closed. We will try to avoid misunderstanding
by using phrases like “f is 0 at p” (the value of f is zero, i.e., f(p) = 0) and “f is 0
near p” (the germ of f is zero, i.e., f = 0in Ox , or equivalently, f is zero in some
neighborhood of p).

2.7.H. EXERCISE.
(a) Suppose Z C Y is a closed subset, and i: Z < Y is the inclusion. If % is a sheaf
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of sets on Z, then show that the stalk (i,.#)qis@if q ¢ Z,and F if q € Z.

(b) Suppose Supp ¥ C Z where Z is closed. Show that the natural map ¢ — i.i~'%9
is an isomorphism. Thus a sheaf supported on a closed subset can be considered
a sheaf on that closed subset.

2.7.8. Extension by zero, an occasional left adjoint to the inverse image functor.
In addition to always being a left adjoint, 7' can sometimes be a right adjoint,

when 7 is an inclusion of an open subset. We discuss this when we need it, in
§23.4.7.



Part 11

Schemes



L'idée méme de schéma est d’une simplicité enfantine — si simple, si humble, que
personne avant moi n’avait songé i se pencher si bas. Si “bébéte” méme, pour tout dire,
que pendant des années encore et en dépit de I'évidence, pour beaucoup de mes savants
collegues, ¢a faisait vraiment “pas sérieux”!

The very idea of scheme is of infantile simplicity — so simple, so humble, that no one
before me thought of stooping so low. So childish, in short, that for years, despite all the
evidence, for many of my erudite colleagues, it was really “not serious”!

— A. Grothendieck [Gr5, p. P32], translated by C. McLarty [Mc, p. 313]



CHAPTER 3

Toward affine schemes: the underlying set, and
topological space

There is no serious historical question of how Grothendieck found his definition of
schemes. It was in the air. Serre has well said that no one invented schemes... The question
is, what made Grothendieck believe he should use this definition to simplify an 80 page
paper by Serre into some 1000 pages of Elements de Géométrie Algébrique?

— C. McLarty [Mc, p. 313]

3.1 Toward schemes

We are now ready to consider the notion of a scheme, which is the type of geometric
space central to algebraic geometry. We should first think through what we mean
by “geometric space”. You have likely seen the notion of a manifold, and we wish
to abstract this notion so that it can be generalized to other settings, notably so that
we can deal with nonsmooth and arithmetic objects.

The key insight behind this generalization is the following: we can understand
a geometric space (such as a manifold) well by understanding the functions on this
space. More precisely, we will understand it through the sheaf of functions on the
space. If we are interested in differentiable manifolds, we will consider smooth
functions; if we are interested in analytic manifolds, we will consider real analytic
functions; and so on.

Thus we will define a scheme to be the following data

o The set: the points of the scheme

o The topology: the open sets of the scheme

o The structure sheaf: the sheaf of “algebraic functions” (a sheaf of rings) on
the scheme.

Recall that a topological space with a sheaf of rings is called a ringed space (§2.2.13).
We will try to draw pictures throughout. Pictures can help develop geometric
intuition, which can guide the algebraic development (and, eventually, vice versa).
Some people find pictures very helpful, while others are repulsed or confused.
We will try to make all three notions as intuitive as possible. For the set, in
the key example of complex (affine) varieties (roughly, things cut out in C™ by
polynomials), we will see that the points are the “traditional points” (n-tuples of
complex numbers), plus some extra points that will be handy to have around. For
the topology, we will require that “the subset where an algebraic function vanishes
must be closed”, and require nothing else. For the sheaf of algebraic functions (the
structure sheaf), we will expect that in the complex plane, (3x* +y?)/(2x+4xy+1)

95
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should be an algebraic function on the open set consisting of points where the
denominator doesn’t vanish, and this will largely motivate our definition.

3.1.1. Example: Differentiable manifolds. As motivation, we return to our
example of differentiable manifolds, reinterpreting them in this light. We will be
quite informal in this discussion. Suppose X is a differentiable manifold. It is a
topological space, and has a sheaf of smooth (C*°) functions Ox (see §2.1). This gives
X the structure of a ringed space. We have observed that evaluation at a point
p € X gives a surjective map from the stalk to R

ﬁx,p —= R,

so the kernel, the (germs of) functions vanishing at p, is a maximal ideal mx ,, (see
§2.1.1).

We could define a differentiable real manifold as a topological space X with a
sheaf of rings (see Definition 4.3.9). We would require that there is a cover of X
by open sets such that on each open set the ringed space is isomorphic to a ball
around the origin in R™ (with the sheaf of smooth functions on that ball). With this
definition, the ball is the basic patch, and a general manifold is obtained by gluing
these patches together. (Admittedly, a great deal of geometry comes from how
one chooses to patch the balls together!) In the algebraic setting, the basic patch
is the notion of an affine scheme, which we will discuss soon. (In the definition of
manifold, there is an additional requirement that the topological space be Haus-
dorff and second-countable, to avoid pathologies. Schemes are often required to
be “separated” to avoid essentially the same pathologies. Separatedness will be
discussed in Chapter 11.)

Functions are determined by their values at points. This is an obvious statement,
but won't be true for schemes in general. We will see an example in Exercise 3.2.A(a),
and discuss this behavior further in §3.2.12.

Morphisms of manifolds. How can we describe maps of differentiable manifolds
m: X — Y? They are certainly continuous maps — but which ones? We can pull
back functions along continuous maps. Smooth functions pull back to smooth
functions. More formally, we have a map 7t~ ' 0y — Ox. (The inverse image sheaf
7! was defined in §2.7.) Inverse image is left-adjoint to pushforward, so we also
geta map 7*: Oy — m, Ox.

Certainly given a map of differentiable manifolds, smooth functions pull back
to smooth functions. It is less obvious that this is a sufficient condition for a continuous
map to be smooth.

3.1.A. IMPORTANT EXERCISE FOR THOSE WITH A LITTLE EXPERIENCE WITH MANI-
FOLDS. Suppose that: X — Yis a continuous map of differentiable manifolds (as
topological spaces — not a priori smooth). Show that 7t is smooth if smooth func-
tions pull back to smooth functions, i.e., if pullback by 7 gives a map 0y — m, Ox.
(Hint: check this on small patches. Once you figure out what you are trying to
show, you will realize that the result is immediate.)

3.1.B. EXERCISE. = Show that