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CHAPTER 1

Introduction

I can illustrate the ... approach with the ... image of a nut to be opened. The first
analogy that came to my mind is of immersing the nut in some softening liquid, and why
not simply water? From time to time you rub so the liquid penetrates better, and otherwise
you let time pass. The shell becomes more flexible through weeks and months — when the
time is ripe, hand pressure is enough, the shell opens like a perfectly ripened avocado!

A different image came to me a few weeks ago. The unknown thing to be known
appeared to me as some stretch of earth or hard marl, resisting penetration ... the sea
advances insensibly in silence, nothing seems to happen, nothing moves, the water is so
far off you hardly hear it ... yet finally it surrounds the resistant substance.

— Alexander Grothendieck, Récoltes et Semailles p. 552-3, translation by Colin
McLarty

1.1 Goals

These are an updated version of notes accompanying a hard year-long class
taught at Stanford in 2009-2010. I am currently editing them and adding a few
more sections, and I hope to post a reasonably complete (if somewhat rough) ver-
sion over the 2010-11 academic year at the site http://math216 .wordpress.com/.

In any class, choices must be made as to what the course is about, and who it
is for — there is a finite amount of time, and any addition of material or explana-
tion or philosophy requires a corresponding subtraction. So these notes are highly
inappropriate for most people and most classes. Here are my goals. (I do not claim
that these goals are achieved; but they motivate the choices made.)

These notes currently have a very particular audience in mind: Stanford Ph.D.
students, postdocs and faculty in a variety of fields, who may want to use alge-
braic geometry in a sophisticated way. This includes algebraic and arithmetic ge-
ometers, but also topologists, number theorists, symplectic geometers, and others.

The notes deal purely with the algebraic side of the subject, and completely
neglect analytic aspects.

They assume little prior background (see §1.2), and indeed most students have
little prior background. Readers with less background will necessarily have to
work harder. It would be great if the reader had seen varieties before, but many
students haven’t, and the course does not assume it — and similarly for category
theory, homological algebra, more advanced commutative algebra, differential ge-
ometry, .... Surprisingly often, what we need can be developed quickly from
scratch. The cost is that the course is much denser; the benefit is that more people
can follow it; they don’t reach a point where they get thrown. (On the other hand,
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10 Math 216: Foundations of Algebraic Geometry

people who already have some familiarity with algebraic geometry, but want to
understand the foundations more completely should not be bored, and will focus
on more subtle issues.)

The notes seek to cover everything that one should see in a first course in the
subject, including theorems, proofs, and examples.

They seek to be complete, and not leave important results as black boxes
pulled from other references.

There are lots of exercises. I have found that unless I have some problems I
can think through, ideas don’t get fixed in my mind. Some are trivial — that’s
okay, and even desirable. A very few necessary ones may be hard, but the reader
should have the background to deal with them — they are not just an excuse to
push material out of the text.

There are optional starred () sections of topics worth knowing on a second
or third (but not first) reading. You should not read double-starred sections (xx)
unless you really really want to, but you should be aware of their existence.

The notes are intended to be readable, although certainly not easy reading.

In short, after a year of hard work, students should have a broad familiarity
with the foundations of the subject, and be ready to attend seminars, and learn
more advanced material. They should not just have a vague intuitive understand-
ing of the ideas of the subject; they should know interesting examples, know why
they are interesting, and be able to prove interesting facts about them.

I have greatly enjoyed thinking through these notes, and teaching the corre-
sponding classes, in a way I did not expect. I have had the chance to think through
the structure of algebraic geometry from scratch, not blindly accepting the choices
made by others. (Why do we need this notion? Aha, this forces us to consider this
other notion earlier, and now I see why this third notion is so relevant...) I have
repeatedly realized that ideas developed in Paris in the 1960’s are simpler than I
initially believed, once they are suitably digested.

1.1.1. Implications. We will work with as much generality as we need for most
readers, and no more. In particular, we try to have hypotheses that are as general
as possible without making proofs harder. The right hypotheses can make a proof
easier, not harder, because one can remember how they get used. As an inflamma-
tory example, the notion of quasiseparated comes up early and often. The cost is
that one extra word has to be remembered, on top of an overwhelming number
of other words. But once that is done, it is not hard to remember that essentially
every scheme anyone cares about is quasiseparated. Furthermore, whenever the
hypotheses “quasicompact and quasiseparated” turn up, the reader will likely im-
mediately see a key idea of the proof.

Similarly, there is no need to work over an algebraically closed field, or even a
field. Geometers needn’t be afraid of arithmetic examples or of algebraic examples;
a central insight of algebraic geometry is that the same formalism applies without
change.

1.1.2. Costs. Choosing these priorities requires that others be shortchanged, and
it is best to be up front about these. Because of our goal is to be comprehensive,
and to understand everything one should know after a first course, it will neces-
sarily take longer to get to interesting sample applications. You may be misled
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into thinking that one has to work this hard to get to these applications — it is not
true!

1.2 Background and conventions

All rings are assumed to be commutative unless explicitly stated otherwise.
All rings are assumed to contain a unit, denoted 1. Maps of rings must send 1 to
1. We don’t require that 0 # 1; in other words, the “0-ring” (with one element)
is a ring. (There is a ring map from any ring to the O-ring; the 0-ring only maps
to itself. The O-ring is the final object in the category of rings.) The definition
of “integral domain” includes 1 # 0, so the O-ring is not an integral domain. We
accept the axiom of choice. In particular, any proper ideal in a ring is contained in
a maximal ideal. (The axiom of choice also arises in the argument that the category
of A-modules has enough injectives, see Exercise 2Z.2.F)

The reader should be familiar with some basic notions in commutative ring
theory, in particular the notion of ideals (including prime and maximal ideals)
and localization. For example, the reader should be able to show that if S is a
multiplicative set of a ring A (which we assume to contain 1), then the primes of
S~ A are in natural bijection with those primes of A not meeting S (§4.2.6). Tensor
products and exact sequences of A-modules will be important. We will use the
notation (A, m) or (A, m, k) for local rings (rings with a unique maximal ideal) —
A is the ring, m its maximal ideal, and k = A/m its residue field. We will use
(in Proposition the structure theorem for finitely generated modules over
a principal ideal domain A: any such module can be written as the direct sum of
principal modules A/(a).

Algebra is the offer made by the devil to the mathematician ... All you need to do is
give me your soul: give up geometry.
— Michael Atiyah

1.2.1. Caution about foundational issues. We will not concern ourselves with subtle
foundational issues (set-theoretic issues, universes, etc.). It is true that some peo-
ple should be careful about these issues. But is that really how you want to live
your life? (If you are one of these rare people, a good start is [KS, §1.1].)

1.2.2. Further background. It may be helpful to have books on other subjects
handy that you can dip into for specific facts, rather than reading them in ad-
vance. In commutative algebra, Eisenbud [E] is good for this. Other popular
choices are Atiyah-Macdonald [AM] and Matsumura [M-CRT]. For homological
algebra, Weibel [W] is simultaneously detailed and readable.

Background from other parts of mathematics (topology, geometry, complex
analysis) will of course be helpful for developing intuition.

Finally, it may help to keep the following quote in mind.

[Algebraic geometry] seems to have acquired the reputation of being esoteric, exclusive,
and very abstract, with adherents who are secretly plotting to take over all the rest of
mathematics! In one respect this last point is accurate ...

— David Mumford, 1975 [M-Red2, p. 227]
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CHAPTER 2

Some category theory

That which does not kill me, makes me stronger. — Nietzsche

2.1 Motivation

Before we get to any interesting geometry, we need to develop a language
to discuss things cleanly and effectively. ~ This is best done in the language of
categories. There is not much to know about categories to get started; it is just
a very useful language. Like all mathematical languages, category theory comes
with an embedded logic, which allows us to abstract intuitions in settings we know
well to far more general situations.

Our motivation is as follows. We will be creating some new mathematical
objects (such as schemes, and certain kinds of sheaves), and we expect them to
act like objects we have seen before. We could try to nail down precisely what
we mean by “act like”, and what minimal set of things we have to check in order
to verify that they act the way we expect. Fortunately, we don’t have to — other
people have done this before us, by defining key notions, such as abelian categories,
which behave like modules over a ring.

Our general approach will be as follows. I will try to tell what you need to
know, and no more. (This I promise: if I use the word “topoi”, you can shoot me.) I
will begin by telling you things you already know, and describing what is essential
about the examples, in a way that we can abstract a more general definition. We
will then see this definition in less familiar settings, and get comfortable with using
it to solve problems and prove theorems.

For example, we will define the notion of product of schemes. We could just
give a definition of product, but then you should want to know why this precise
definition deserves the name of “product”. As a motivation, we revisit the notion
of product in a situation we know well: (the category of) sets. One way to define
the product of sets U and V is as the set of ordered pairs {(u,v) : ue U,ve V]
But someone from a different mathematical culture might reasonably define it as
the set of symbols {v : u € U,v € V}. These notions are “obviously the same”.
Better: there is “an obvious bijection between the two”.

This can be made precise by giving a better definition of product, in terms of a
universal property. Given two sets M and N, a product is a set P, along with maps
u:P — Mand~v:P — N, such that for any set P’ with maps ' : P' — M and
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16 Math 216: Foundations of Algebraic Geometry

v’ : P’ — N, these maps must factor uniquely through P:

(2.1.0.1)

(The symbol 3 means “there exists”, and the symbol ! here means “unique”.) Thus
a product is a diagram

P—>N

.

and not just a set P, although the maps p and v are often left implicit.

This definition agrees with the traditional definition, with one twist: there
isn’t just a single product; but any two products come with a unique isomorphism
between them. In other words, the product is unique up to unique isomorphism.
Here is why: if you have a product

P1L>N

g

M
and I have a product

P, 2N

Hzi
M

then by the universal property of my product (letting (P2, 12,v;) play the role of
(P,u,v), and (P1, n1,v1) play the role of (P’,u’,v’) in @.1.0.0)), there is a unique
map f : Py — P, making the appropriate diagram commute (i.e. iy = p, o f and
v1 =z of). Similarly by the universal property of your product, there is a unique
map g : P, — P; making the appropriate diagram commute. Now consider the
universal property of my product, this time letting (P>, p2,v2) play the role of both
(P,u,v) and (P’,n',v') in (Z1.0.T). There is a unique map h : P, — P, such that

P>
\ V2
H2 P> T> N
\LHZ
M

commutes. However, I can name two such maps: the identity map idp,, and g o f.
Thus g o f = idp,. Similarly, f o g = idp,. Thus the maps f and g arising from
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the universal property are bijections. In short, there is a unique bijection between
P; and P; preserving the “product structure” (the maps to M and N). This gives
us the right to name any such product M x N, since any two such products are
uniquely identified.

This definition has the advantage that it works in many circumstances, and
once we define categories, we will soon see that the above argument applies ver-
batim in any category to show that products, if they exist, are unique up to unique
isomorphism. Even if you haven’t seen the definition of category before, you can
verify that this agrees with your notion of product in some category that you have
seen before (such as the category of vector spaces, where the maps are taken to be
linear maps; or the category of smooth manifolds, where the maps are taken to be
submersions, i.e. differentiable maps whose differential is everywhere surjective).

This is handy even in cases that you understand. For example, one way of
defining the product of two manifolds M and N is to cut them both up into charts,
then take products of charts, then glue them together. But if I cut up the manifolds
in one way, and you cut them up in another, how do we know our resulting mani-
folds are the “same”? We could wave our hands, or make an annoying argument
about refining covers, but instead, we should just show that they are “categorical
products” and hence canonically the “same” (i.e. isomorphic). We will formalize
this argument in §2.3]

Another set of notions we will abstract are categories that “behave like mod-
ules”. We will want to define kernels and cokernels for new notions, and we
should make sure that these notions behave the way we expect them to. This
leads us to the definition of abelian categories, first defined by Grothendieck in his
Tohoku paper [Gx.

In this chapter, we will give an informal introduction to these and related no-
tions, in the hope of giving just enough familiarity to comfortably use them in
practice.

2.2 Categories and functors

We begin with an informal definition of categories and functors.

2.2.1. Categories.

A category consists of a collection of objects, and for each pair of objects, a set
of maps, or morphisms (or arrows), between them. (For experts: technically, this
is the definition of a locally small category. In the correct definition, the morphisms
need only form a class, not necessarily a set, but see Caution [[.2.1]) The collection
of objects of a category ¢ are often denoted obj(%), but we will usually denote
the collection also by €. If A,B € %, then the set of morphisms from A to B is
denoted Mor(A, B). A morphism is often written f : A — B, and A is said to be
the source of f, and B the target of f. (Of course, Mor(A, B) is taken to be disjoint
from Mor(A’,B’) unless A = A’ and B =B’.)

Morphisms compose as expected: there is a composition Mor (B, C) xMor(A,B) —
Mor(A, C), and if f € Mor(A, B) and g € Mor(B, C), then their composition is de-
noted g o f. Composition is associative: if f € Mor(A,B), g € Mor(B,C), and
h € Mor(C,D), thenho (gof) = (hog)of. Foreach object A € €, there is always
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an identity morphismida : A — A, such that when you (left- or right-)compose a
morphism with the identity, you get the same morphism. More precisely, for any
morphisms f : A - Band g : B — C, idg of = f and g o idg = g. (If you wish,
you may check that “identity morphisms are unique”: there is only one morphism
deserving the name id 4 .) This ends the definition of a category.

We have a notion of isomorphism between two objects of a category (a mor-
phism f : A — B such that there exists some — necessarily unique — morphism
g: B — A, where f o g and g o f are the identity on B and A respectively), and a
notion of automorphism of an object (an isomorphism of the object with itself).

2.2.2. Example. The prototypical example to keep in mind is the category of sets,
denoted Sets. The objects are sets, and the morphisms are maps of sets. (Because
Russell’s paradox shows that there is no set of all sets, we did not say earlier that
there is a set of all objects. But as stated in §1.2] we are deliberately omitting all
set-theoretic issues.)

2.2.3. Example. Another good example is the category Vecy of vector spaces over
a given field k. The objects are k-vector spaces, and the morphisms are linear
transformations. (What are the isomorphisms?)

2.2.A. UNIMPORTANT EXERCISE. A category in which each morphism is an iso-
morphism is called a groupoid. (This notion is not important in these notes. The
point of this exercise is to give you some practice with categories, by relating them
to an object you know well.)

(a) A perverse definition of a group is: a groupoid with one object. Make sense of
this.

(b) Describe a groupoid that is not a group.

2.2.B. EXERCISE. If A is an object in a category ¢, show that the invertible ele-
ments of Mor(A, A) form a group (called the automorphism group of A, denoted
Aut(A)). What are the automorphism groups of the objects in Examples 2.2.2]
and Show that two isomorphic objects have isomorphic automorphism
groups. (For readers with a topological background: if X is a topological space,
then the fundamental groupoid is the category where the objects are points of X,
and the morphisms x — y are paths from x to y, up to homotopy. Then the auto-
morphism group of x, is the (pointed) fundamental group 71 (X, xo). In the case
where X is connected, and 711 (X) is not abelian, this illustrates the fact that for
a connected groupoid — whose definition you can guess — the automorphism
groups of the objects are all isomorphic, but not canonically isomorphic.)

2.2.4. Example: abelian groups. The abelian groups, along with group homomor-
phisms, form a category Ab.

2.2.5. Important example: modules over aring. If A is aring, then the A-modules form
a category Mod a. (This category has additional structure; it will be the prototypi-
cal example of an abelian category, see §2.61) Taking A = k, we obtain Example2.2.3}
taking A = Z, we obtain Example[2.2.4]

2.2.6. Example: rings. There is a category Rings, where the objects are rings, and the
morphisms are morphisms of rings (which send 1 to 1 by our conventions, §1.2).
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2.2.7. Example: topological spaces. The topological spaces, along with continuous
maps, form a category Top. The isomorphisms are homeomorphisms.

In all of the above examples, the objects of the categories were in obvious
ways sets with additional structure (a concrete category, although we won't use
this terminology). This needn’t be the case, as the next example shows.

2.2.8. Example: partially ordered sets. A partially ordered set, or poset, is a set S
along with a binary relation > on S satisfying;:
(i) x > x (reflexivity),
(if) x > yand y > z imply x > z (transitivity), and
(iii) if x >yandy > x then x = y.
A partially ordered set (S, >) can be interpreted as a category whose objects are
the elements of S, and with a single morphism from x to y if and only if x > y (and
no morphism otherwise).
A trivial example is (S, >) where x > y if and only if x = y. Another example
is

(2.2.8.1)

oe<—-90

o —>

Here there are three objects. The identity morphisms are omitted for convenience,
and the two non-identity morphisms are depicted. A third example is

(2.2.8.2)

R

oe<——20
o<—-9

R

Here the “obvious” morphisms are again omitted: the identity morphisms, and
the morphism from the upper left to the lower right. Similarly,

depicts a partially ordered set, where again, only the “generating morphisms” are
depicted.

2.2.9. Example: the category of subsets of a set, and the category of open sets in a topo-
logical space. If X is a set, then the subsets form a partially ordered set, where
the order is given by inclusion. Informally, if U C V, then we have exactly one
more morphism U — V in the category (and otherwise none). Similarly, if X is a
topological space, then the open sets form a partially ordered set, where the order
is given by inclusion.

2.2.10. Definition. A subcategory <7 of a category % has as its objects some of the
objects of %, and some of the morphisms, such that the morphisms of . include
the identity morphisms of the objects of ./, and are closed under composition.
(For example, is in an obvious way a subcategory of (2.2.8.2). Also, we
have an obvious “inclusion functor” i: &/ — 4.)

2.2.11. Functors.
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A covariant functor F from a category </ to a category %, denoted F : &/ — %,
is the following data. It is a map of objects F : obj(./) — obj(#), and for each
Aj, Az € &/, and morphism m : A; — A, a morphism F(m) : F(A;) — F(A;) in
2. We require that F preserves identity morphisms (for A € o7, F(ida) = id¢(a)),
and that F preserves composition (F(mz o m;) = F(m;) o F(my)). (You may wish
to verify that covariant functors send isomorphisms to isomorphisms.) A trivial
example is the identity functor id : &/ — </, whose definition you can guess.
Here are some less trivial examples.

2.2.12. Example: a forgetful functor. Consider the functor from the category of
vector spaces (over a field k) Vecy to Sets, that associates to each vector space its
underlying set. The functor sends a linear transformation to its underlying map of
sets. This is an example of a forgetful functor, where some additional structure is
forgotten. Another example of a forgetful functor is Mod A — Ab from A-modules
to abelian groups, remembering only the abelian group structure of the A-module.

2.2.13. Topological examples. Examples of covariant functors include the funda-
mental group functor 77, which sends a topological space X with choice of a point
xo € X to a group 77 (X, xo) (what are the objects and morphisms of the source cat-
egory?), and the ith homology functor Top — Ab, which sends a topological space
X to its ith homology group Hi (X, Z). The covariance corresponds to the fact that
a (continuous) morphism of pointed topological spaces f : X — Y with f(xo) = o
induces a map of fundamental groups 71 (X,xo) — 71(Y,yo), and similarly for
homology groups.

2.2.14. Example. Suppose A is an object in a category ¥. Then there is a func-
tor h* : 4 — Sets sending B € 4 to Mor(A, B), and sending f : By — B; to
Mor(A,B1) — Mor(A, B,) described by

[g:A—Byl—[fog:A — By — Bsl.

This seemingly silly functor ends up surprisingly being an important concept, and
will come up repeatedly for us.

2.2.15. Definitions. If F: &/ — % and G : 4 — € are covariant functors, then we
define a functor G o F: & — % (the composition of ¢ and .%) in the obvious way.
Composition of functors is associative in an evident sense.

A covariant functor F : &/ — 2 is faithful if for all A|A’ € <, the map
Mor (A, A’) — Morg(F(A),F(A’)) is injective, and full if it is surjective. A func-
tor that is full and faithful is fully faithful. A subcategory i : &/ — £ is a full
subcategory if i is full. Thus a subcategory &/’ of <7 is full if and only if for all
A,B € obj(«/’), Mor/(A,B) = Mor (A, B). For example, the forgetful functor
Vecy, — Sets is faithful, but not full; and if A is a ring, the category of finitely
generated A-modules is a full subcategory of the category Mod A of A-modules.

2.2.16. Definition. A contravariant functor is defined in the same way as a covari-
ant functor, except the arrows switch directions: in the above language, F(A; —
A>) is now an arrow from F(A;) to F(A;). (Thus % (m; o my) = % (my) o F(my),
not #(my) o F(my).)
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It is wise to state whether a functor is covariant or contravariant, unless the
context makes it very clear. If it is not stated (and the context does not make it
clear), the functor is often assumed to be covariant.

(Sometimes people describe a contravariant functor ¥ — & as a covariant
functor €°PP — &, where €°FPP is the same category as ¢ except that the arrows
go in the opposite direction. Here €°PP is said to be the opposite category to €.)
One can define fullness, etc. for contravariant functors, and you should do so.

2.2.17. Linear algebra example. If Vecy is the category of k-vector spaces (intro-
duced in Example 22.3), then taking duals gives a contravariant functor ()" :
Vecy, — Vecy. Indeed, to each linear transformation f : V. — W, we have a dual
transformation f¥ : WY — VY, and (fo g)¥ = g¥ o fV.

2.2.18. Topological example (cf. Example[2.2.13) for those who have seen cohomology. The
ith cohomology functor H'(-,Z) : Top — Ab is a contravariant functor.

2.2.19. Example. There is a contravariant functor Top — Rings taking a topological
space X to the ring of real-valued continuous functions on X. A morphism of
topological spaces X — Y (a continuous map) induces the pullback map from
functions on Y to maps on X.

2.2.20. Example (the functor of points, cf. Example 2.2.14). Suppose A is an object
of a category €. Then there is a contravariant functor ha : € — Sets sending
B € ¥ to Mor(B, A), and sending the morphism f : By — B, to the morphism
Mor(B>,A) — Mor(B1, A) via

[g:Bz—)A]l—)[gonB1—>Bz—>A].

This example initially looks weird and different, but Examples and
may be interpreted as special cases; do you see how? What is A in each case?
This functor might reasonably be called the functor of maps (to A), but is actually
known as the functor of points. We will meet this functor again (in the category
of schemes) in Definition

2.2.21. * Natural transformations (and natural isomorphisms) of covariant func-
tors, and equivalences of categories.

(This notion won’t come up in an essential way until at least Chapter[7] so you
shouldn’t read this section until then.) Suppose F and G are two covariant functors
from &/ to Z. A natural transformation of covariant functors F — G is the data
of a morphism ma : F(A) — G(A) for each A € &/ such that for each f : A — A’
in o7, the diagram

FA) — L Fan
G(A) 5= G(A)

commutes. A natural isomorphism of functors is a natural transformation such
that each ma is an isomorphism. (We make analogous definitions when F and G
are both contravariant.)
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The data of functors F: &/ — # and F' : ## — &/ such that F o F is naturally
isomorphic to the identity functor Iz on % and F’ o F is naturally isomorphic to
I is said to be an equivalence of categories. “Equivalence of categories” is an
equivalence relation on categories. The right notion of when two categories are
“essentially the same” is not isomorphism (a functor giving bijections of objects and
morphisms) but equivalence. Exercises 2.2.C and 22D might give you some vague
sense of this. Later exercises (for example, that “rings” and “affine schemes” are
essentially the same, once arrows are reversed, Exercise may help too.

Two examples might make this strange concept more comprehensible. The
double dual of a finite-dimensional vector space V is not V, but we learn early to
say that it is canonically isomorphic to V. We can make that precise as follows. Let
f.d.Vec, be the category of finite-dimensional vector spaces over k. Note that this
category contains oodles of vector spaces of each dimension.

2.2.C. EXERCISE. Let (-)VVY : fd.Vec, — f.d.Vec, be the double dual functor from
the category of finite-dimensional vector spaces over k to itself. Show that (-)VV
is naturally isomorphic to the identity functor on f.d.Vec,. (Without the finite-
dimensional hypothesis, we only get a natural transformation of functors from
idto (1)VV.)

Let ¥ be the category whose objects are the k-vector spaces k™ for each n > 0
(there is one vector space for each n), and whose morphisms are linear transfor-
mations. This latter space can be thought of as vector spaces with bases, and the
morphisms as matrices. There is an obvious functor ¥* — f.d.Vec, , as each k™ is a
finite-dimensional vector space.

2.2.D. EXERCISE. ~ Show that ¥ — f.d.Vec, gives an equivalence of categories,
by describing an “inverse” functor. (Recall that we are being cavalier about set-
theoretic assumptions, see Caution [L.2.1] so feel free to simultaneously choose
bases for each vector space in f.d.Vec, . To make this precise, you will need to use
Godel-Bernays set theory or else replace f.d.Vec, with a very similar small category,
but we won’t worry about this.)

2.2.22. %* Aside for experts. Your argument for Exercise 2.2.Dlwill show that (mod-
ulo set-theoretic issues) this definition of equivalence of categories is the same as
another one commonly given: a covariant functor F : &/ — & is an equivalence
of categories if it is fully faithful and every object of # is isomorphic to an object
of the form F(a) for some a € 7 (F is essentially surjective). Indeed, one can show
that such a functor has a quasiinverse, i.e., a functor G : ## — o/ (necessarily also
an equivalence and unique up to unique isomorphism) for which GoF = ida and
Fo G = idg, and conversely, any functor that has a quasiinverse is an equivalence.

2.3 Universal properties determine an object up to unique
isomorphism

Given some category that we come up with, we often will have ways of pro-
ducing new objects from old. In good circumstances, such a definition can be
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made using the notion of a universal property. Informally, we wish that there were
an object with some property. We first show that if it exists, then it is essentially
unique, or more precisely, is unique up to unique isomorphism. Then we go about
constructing an example of such an object to show existence.

Explicit constructions are sometimes easier to work with than universal prop-
erties, but with a little practice, universal properties are useful in proving things
quickly and slickly. Indeed, when learning the subject, people often find explicit
constructions more appealing, and use them more often in proofs, but as they be-
come more experienced, they find universal property arguments more elegant and
insightful.

2.3.1. Products were defined by universal property. We have seen one important
example of a universal property argument already in §2.1f products. You should
go back and verify that our discussion there gives a notion of product in any cate-
gory, and shows that products, if they exist, are unique up to unique isomorphism.

2.3.2. Initial, final, and zero objects. Here are some simple but useful concepts
that will give you practice with universal property arguments. An object of a
category ¢ is an initial object if it has precisely one map to every object. It is a
final object if it has precisely one map from every object. It is a zero object if it is
both an initial object and a final object.

2.3.A. EXERCISE. Show that any two initial objects are uniquely isomorphic. Show
that any two final objects are uniquely isomorphic.

In other words, if an initial object exists, it is unique up to unique isomorphism,
and similarly for final objects. This (partially) justifies the phrase “the initial object”
rather than “an initial object”, and similarly for “the final object” and “the zero
object”.

2.3.B. EXERCISE. What are the initial and final objects in Sets, Rings, and Top (if
they exist)? How about in the two examples of §2.2.9¢

2.3.3. Localization of rings and modules. Another important example of a defi-
nition by universal property is the notion of localization of a ring. We first review a
constructive definition, and then reinterpret the notion in terms of universal prop-
erty. A multiplicative subset S of a ring A is a subset closed under multiplication
containing 1. We define a ring S~'A. The elements of S~'A are of the form a/s
where a € A and s € S, and where a;/s; = a,/s; if (and only if) for some s € S,
s(spa; —sjaz) = 0. We define (a;/s1) + (az/s2) = (s2a7 + s1az)/(s1s2), and
(a1/s1) x (az/sz2) = (araz)/(s1s2). (If you wish, you may check that this equal-
ity of fractions really is an equivalence relation and the two binary operations on
fractions are well-defined on equivalence classes and make S~'A into a ring.) We
have a canonical ring map

(2.3.3.1) A—=STTA

given by a — a/1. Note thatif 0 € S, ST A is the O-ring.

There are two particularly important flavors of multiplicative subsets. The
first is {1,f,f2,...}, where f € A. This localization is denoted A. The second is
A — p, where p is a prime ideal. This localization S~'A is denoted A,. (Notational
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warning: If p is a prime ideal, then A, means you're allowed to divide by elements
not in p. However, if f € A, A¢ means you're allowed to divide by f. This can be
confusing. For example, if (f) is a prime ideal, then A¢ # A ¢).)

Warning: sometimes localization is first introduced in the special case where A
is an integral domain and 0 ¢ S. In that case, A — S—TA, but this isn’t always true,
as shown by the following exercise. (But we will see that noninjective localizations
needn’t be pathological, and we can sometimes understand them geometrically,

see Exercise £.2.K])

2.3.C. EXERCISE. Show that A — S™'A is injective if and only if S contains no
zerodivisors. (A zerodivisor of a ring A is an element a such that there is a non-
zero element b with ab = 0. The other elements of A are called non-zerodivisors.
For example, a unit is never a zerodivisor. Counter-intuitively, 0 is a zerodivisor
in every ring but the 0-ring.)

If A is an integral domain and S = A—{0}, then S~ 1A is called the fraction field
of A, which we denote K(A). The previous exercise shows that A is a subring of its
fraction field K(A). We now return to the case where A is a general (commutative)
ring.

2.3.D. EXERCISE. Verify that A — S~ A satisfies the following universal property:
S~TA is initial among A-algebras B where every element of S is sent to a unit
in B. (Recall: the data of “an A-algebra B” and “a ring map A — B” are the
same.) Translation: any map A — B where every element of S is sent to a unit
must factor uniquely through A — S~'A. Another translation: a ring map out of
S~TA is the same thing as a ring map from A that sends every element of S to a
unit. Furthermore, an S~'A-module is the same thing as an A-module for which
s X - : M — M is an A-module isomorphism for all s € S.

In fact, it is cleaner to define A — S~'A by the universal property, and to
show that it exists, and to use the universal property to check various properties
S~TA has. Let’s get some practice with this by defining localizations of modules
by universal property. Suppose M is an A-module. We define the A-module map
¢ : M — S~ "M as being initial among A-module maps M — N such that elements
of S are invertible in N (s x - : N — N is an isomorphism for all s € S). More
precisely, any such map o : M — N factors uniquely through ¢:

M;¢>S*1

\3!
x s

\i
N

(Translation: M — S~'M is universal (initial) among A-module maps from M to
modules that are actually S~'A-modules. Can you make this precise by defining
clearly the objects and morphisms in this category?)

Notice: (i) this determines ¢ : M — S™'M up to unique isomorphism (you
should think through what this means); (ii) we are defining not only S™'M, but
also the map ¢ at the same time; and (iii) essentially by definition the A-module
structure on S~'M extends to an S~! A-module structure.
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2.3.E. EXERCISE. Show that ¢ : M — S™'M exists, by constructing something
satisfying the universal property. Hint: define elements of S~'M to be of the form
m/s where m € M and s € S, and my/s; = ma/s; if and only if for some s € S,
s(spmy—symy) = 0. Define the additive structure by (m;/s1)+(mz/s2) = (samq+
s1m2)/(s1s2), and the S~ A-module structure (and hence the A-module structure)
is given by (a1 /s1) o (m2/s2) = (a1m2)/(s152).

2.3.F. EXERCISE. Show that localization commutes with finite products. In other
words, if My, ..., My, are A-modules, describe an isomorphism (of A-modules,
and of S~TA-modules) S~ (M; x --- x M) = S™'M; x --- x S"TM,,. Show that
“localization does not necessarily commute with infinite products”: the obvious
map S~ ([T, Mi) — []; S~"M; induced by the universal property of localization
is not always an isomorphism. (Hint: (1,1/2,1/3,1/4,...) e Q@ xQ x ---))

2.3.4. Remark. Localization does not necessarily commute with Hom, see Exam-
ple2.6.8 But Exercise[2.6.Glwill show that in good situations (if the first argument
of Hom is finitely presented), localization does commute with Hom.

2.3.5. Tensor products. Another important example of a universal property con-
struction is the notion of a tensor product of A-modules

QA : obj(Mod ) x obj(Moda) — obj(Moda )

(MUN)—— > M®®a N

The subscript A is often suppressed when it is clear from context. The tensor prod-
uct is often defined as follows. Suppose you have two A-modules M and N. Then
elements of the tensor product M®a N are finite A-linear combinations of symbols
ma@n(m e M, n € N), subject to relations (m; + mz) @n =m; n+m; n,
me M +n) =men;+meny, amen) = (am)®n =mq® (an) (wherea € A,
my, my € M, ny,n, € N). More formally, M ®a N is the free A-module generated
by M x N, quotiented by the submodule generated by (m; + mz,n) — (m;,n) —
(ma,m), (m,ngy+ny)—(m,nq)—(m,nyz), a(m,n)—(am,n),and a(m,n)—(m, an)
fora € A, m,my;,my € M, n,ny,n, € N. The image of (m,n) in this quotient is
men.
If A is a field k, we recover the tensor product of vector spaces.

2.3.G. EXERCISE (IF YOU HAVEN’T SEEN TENSOR PRODUCTS BEFORE). Show that
Z/(10) ®z Z/(12) = Z/(2). (This exercise is intended to give some hands-on prac-
tice with tensor products.)

2.3.H. IMPORTANT EXERCISE: RIGHT-EXACTNESS OF (-) ®a N. Show that (-)®a N
gives a covariant functor Moda — Moda. Show that (-) ®a N is a right-exact
functor, i.e. if

M ->M-M"=0

is an exact sequence of A-modules (which means f : M — M is surjective, and
M surjects onto the kernel of f; see §2.6), then the induced sequence

M'@AN MR aN-M"@aN =0
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is also exact. This exercise is repeated in Exercise 2.6.F| but you may get a lot out of
doing it now. (You will be reminded of the definition of right-exactness in §2.6.5])

7

The constructive definition ® is a weird definition, and really the “wrong’
definition. To motivate a better one: notice that there is a natural A-bilinear map
MxN —= M®a N. If M,N,P € Moda, amap f: M x N — P is A-bilinear if
f(mi; + ma,n) = f(my,n) + f(my,n), f(m,ny + nz2) = f(m,ny) + f(m,n>), and
flam,n) = f(m, an) = af(m,n).) Any A-bilinear map M x N — P factors through
the tensor product uniquely: M x N - M ®a N — P. (Think this through!)

We can take this as the definition of the tensor product as follows. It is an A-
module T along with an A-bilinear map t : M x N — T, such that given any
A-bilinear map t' : M x N — T/, there is a unique A-linear map f : T — T’ such
thatt' =fot.

t

M x N

\ // 3if

T/

T

2.3.I. EXERCISE. Show that (T, t: M xN — T) is unique up to unique isomorphism.
Hint: first figure out what “unique up to unique isomorphism” means for such
pairs, using a category of pairs (T, t). Then follow the analogous argument for the
product.

In short: given M and N, there is an A-bilinear mapt: M x N — M ®a N,
unique up to unique isomorphism, defined by the following universal property:
for any A-bilinear map t’ : M x N — T’ there is a unique A-linear map f: M ®a
N — T’ such thatt’ =fot.

As with all universal property arguments, this argument shows uniqueness
assuming existence. To show existence, we need an explicit construction.

2.3.J. EXERCISE. Show that the construction of §2.3.5]satisfies the universal prop-
erty of tensor product.

The two exercises below are some useful facts about tensor products with
which you should be familiar.

2.3.K. IMPORTANT EXERCISE. (a)If M is an A-module and A — B is a morphism
of rings, give B ®a M the structure of a B-module (this is part of the exercise).
Show that this describes a functor Mod o — Modg.

(b) If further A — C is another morphism of rings, show that B ® o C has a natural
structure of a ring. Hint: multiplication will be given by (b ® ¢1)(b2 ® ¢2) =
(bi1b2) ® (cic2). (Exercise 2.3.TIwill interpret this construction as a fibered coprod-
uct.)

2.3.L. IMPORTANT EXERCISE. If S is a multiplicative subset of A and M is an A-
module, describe a natural isomorphism (STTA)®aM = S~ "M (as S A-modules
and as A-modules).

2.3.6. Essential Example: Fibered products. Suppose we have morphisms f :
X — Zand g : Y — Z (in any category). Then the fibered product is an object
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X xz Y along with morphisms mx : X xz Y — Xand 7ty : X Xz Y — Y, where the
two compositions f o 7tx, g o 7y : X xz Y — Z agree, such that given any object W
with maps to X and Y (whose compositions to Z agree), these maps factor through
some unique W — X xz Y:

(Warning: the definition of the fibered product depends on f and g, even though
they are omitted from the notation X x 7z Y.)

By the usual universal property argument, if it exists, it is unique up to unique
isomorphism. (You should think this through until it is clear to you.) Thus the use
of the phrase “the fibered product” (rather than “a fibered product”) is reasonable,
and we should reasonably be allowed to give it the name X x z Y. We know what
maps to it are: they are precisely maps to X and maps to Y that agree as maps to Z.

Depending on your religion, the diagram

XXZY?Y

PRt

X—" o7

is called a fibered/pullback/Cartesian diagram/square (six possibilities).
The right way to interpret the notion of fibered product is first to think about
what it means in the category of sets.

2.3.M. EXERCISE. Show that in Sets,
XxzY={(xy) € XxY : f(x) =g(y)}

More precisely, show that the right side, equipped with its evident maps to X and
Y, satisfies the universal property of the fibered product. (This will help you build
intuition for fibered products.)

2.3.N. EXERCISE. If X is a topological space, show that fibered products always
exist in the category of open sets of X, by describing what a fibered product is.
(Hint: it has a one-word description.)

2.3.0. EXERCISE. If Z is the final object in a category ¥, and X,Y € ¢, show that
“XxzY =XxY" “the” fibered product over Z is uniquely isomorphic to “the”
product. Assume all relevant (fibered) products exist. (This is an exercise about
unwinding the definition.)

2.3.P. USEFUL EXERCISE: TOWERS OF FIBER DIAGRAMS ARE FIBER DIAGRAMS. If
the two squares in the following commutative diagram are fiber diagrams, show
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that the “outside rectangle” (involving U, V, Y, and Z) is also a fiber diagram.

Uu—m—mVv

!
%

2.3.Q. EXERCISE. Given morphisms X1 — Y, X; — Y, and Y — Z, show that
there is a natural morphism X; xy X — X; xz X, assuming that both fibered
products exist. (This is trivial once you figure out what it is saying. The point of
this exercise is to see why it is trivial.)

R

N<—X=<—

_

2.3.R. USEFUL EXERCISE: THE MAGIC DIAGRAM. Suppose we are given mor-
phisms X;,X; — Yand Y — Z. Show that the following diagram is a fibered
square.

Xy xy X —= X1 xz X2

l |

Y——YXxzY

Assume all relevant (fibered) products exist. This diagram is surprisingly useful
— so useful that we will call it the magic diagram.

2.3.7. Coproducts. Define coproduct in a category by reversing all the arrows in
the definition of product. Define fibered coproduct in a category by reversing all
the arrows in the definition of fibered product.

2.3.S. EXERCISE. Show that coproduct for Sets is disjoint union. This is why we
use the notation [ | for disjoint union.

2.3.T. EXERCISE. Suppose A — B and A — C are two ring morphisms, so in
particular B and C are A-modules. Recall (Exercise 2.3.K) that B ®a C has a ring
structure. Show that there is a natural morphism B — B®a C givenby b — b ® 1.
(This is not necessarily an inclusion; see Exercise[2.3.Gl) Similarly, there is a natural
morphism C — B ®a C. Show that this gives a fibered coproduct on rings, i.e. that

Ba C=——C
B A

satisfies the universal property of fibered coproduct.
2.3.8. Monomorphisms and epimorphisms.

2.3.9. Definition. A morphism f : X — Y is a monomorphism if any two mor-
phisms g7 : Z — Xand g» : Z — X such that f o g1 = f o g, must satisfy g1 = g».
In other words, there is at most one way of filling in the dotted arrow so that the
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diagram

commutes — for any object Z, the natural map Hom(Z,X) — Hom(Z,Y) is an
injection. Intuitively, it is the categorical version of an injective map, and indeed
this notion generalizes the familiar notion of injective maps of sets. (The reason
we don’t use the word “injective” is that in some contexts, “injective” will have an
intuitive meaning which may not agree with “monomorphism”. One example: in
the category of divisible groups, the map Q — Q/Z is a monomorphism but not
injective. This is also the case with “epimorphism” vs. “surjective”.)

2.3.U. EXERCISE. Show that the composition of two monomorphisms is a monomor-
phism.

2.3.V. EXERCISE. Prove that a morphism X — Y is a monomorphism if and only
if the fibered product X xy X exists, and the induced morphism X — X xy X
is an isomorphism. We may then take this as the definition of monomorphism.
(Monomorphisms aren’t central to future discussions, although they will come up
again. This exercise is just good practice.)

2.3.W. EASY EXERCISE. We use the notation of Exercise Show thatif Y — Z
is a monomorphism, then the morphism X; xy X; — X3 xz X, you described in
Exercise[2.3.Q]is an isomorphism. We will use this later when talking about fibered
products. (Hint: for any object V, give a natural bijection between maps from V
to the first and maps from V to the second. It is also possible to use the magic

diagram, Exercise 23.R})

The notion of an epimorphism is “dual” to the definition of monomorphism,
where all the arrows are reversed. This concept will not be central for us, although
it turns up in the definition of an abelian category. Intuitively, it is the categor-
ical version of a surjective map. (But be careful when working with categories
of objects that are sets with additional structure, as epimorphisms need not be
surjective. Example: in the category Rings, Z — Q is an epimorphism, but not
surjective.)

2.3.10. Representable functors and Yoneda’s lemma. Much of our discussion
about universal properties can be cleanly expressed in terms of representable func-
tors, under the rubric of “Yoneda’s Lemma”. Yoneda’s lemma is an easy fact stated
in a complicated way. Informally speaking, you can essentially recover an object
in a category by knowing the maps into it. For example, we have seen that the
data of maps to X x Y are naturally (canonically) the data of maps to X and to Y.
Indeed, we have now taken this as the definition of X x Y.

Recall Example Suppose A is an object of category €. For any object
C € €, we have a set of morphisms Mor(C, A). If we have a morphism f : B — C,
we get a map of sets

(2.3.10.1) Mor(C,A) — Mor(B,A),
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by composition: given a map from C to A, we get a map from B to A by precom-
posing with f : B — C. Hence this gives a contravariant functor ha : € — Sets.
Yoneda’s Lemma states that the functor ha determines A up to unique isomor-
phism. More precisely:

2.3.X. IMPORTANT EXERCISE THAT YOU SHOULD DO ONCE IN YOUR LIFE (YONEDA'S
LEMMA). (a) Suppose you have two objects A and A’ in a category %, and mor-
phisms

(2.3.10.2) ic : Mor(C,A) — Mor(C,A’)

that commute with the maps (2.3.10.T). Show that ic is induced from a unique
morphism g : A — A’. More precisely, show that there is a unique morphism
g:A — A’suchthatforall C € €, ic isu — g ou. (b) If furthermore the ic are
all bijections, show that the resulting g is an isomorphism. (Hint for both: This is
much easier than it looks. This statement is so general that there are really only a
couple of things that you could possibly try. For example, if you're hoping to find
amorphism A — A’, where will you find it? Well, you are looking for an element
Mor(A,A’). Sojust plug in C = A to (2.3.10.2), and see where the identity goes.)

There is an analogous statement with the arrows reversed, where instead of
maps into A, you think of maps from A. The role of the contravariant functor ha
of Example[2.2.20lis played by the covariant functor h* of Example[2.2.74] Because
the proof is the same (with the arrows reversed), you needn’t think it through.

The phrase “Yoneda’s lemma” properly refers to a more general statement.
Although it looks more complicated, it is no harder to prove.

2.3.Y. x EXERCISE.

(a) Suppose A and B are objects in a category €. Give a bijection between the nat-
ural transformations h* — h® of covariant functors ¥ — Sets (see Example 2.2.14]
for the definition) and the morphisms B — A.

(b) State and prove the corresponding fact for contravariant functors ha (see Ex-
ample 2.2.20). Remark: A contravariant functor F from ¢ to Sets is said to be
representable if there is a natural isomorphism

&:F——=ha.

Thus the representing object A is determined up to unique isomorphism by the
pair (F, &). There is a similar definition for covariant functors. (We will revisit
this in §7.6] and this problem will appear again as Exercise The element
£ 1(ida) € F(A) is often called the “universal object”; do you see why?)

(c) Yoneda’s lemma. Suppose F is a covariant functor ¥ — Sefs, and A € .
Give a bijection between the natural transformations h* — F and F(A). (The
corresponding fact for contravariant functors is essentially Exercise [10.1.Cl)

In fancy terms, Yoneda’s lemma states the following. Given a category ¢, we
can produce a new category, called the functor category of €, where the objects are
contravariant functors ¥ — Sets, and the morphisms are natural transformations
of such functors. We have a functor (which we can usefully call h) from ¥ to its
functor category, which sends A to ha. Yoneda’s Lemma states that this is a fully
faithful functor, called the Yoneda embedding. (Fully faithful functors were defined
in §2.2.151)
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2.4 Limits and colimits

Limits and colimits are two important definitions determined by universal
properties. They generalize a number of familiar constructions. I will give the def-
inition first, and then show you why it is familiar. For example, fractions will be
motivating examples of colimits (Exercise 2.4.B(a)), and the p-adic integers (Exam-
ple2.4.3) will be motivating examples of limits.

2.4.1. Limits. We say that a category is a small category if the objects and the mor-
phisms are sets. (This is a technical condition intended only for experts.) Suppose
# is any small category, and ¢ is any category. Then a functor F : .# — € (i.e.
with an object A; € ¢ for each element i € .#, and appropriate commuting mor-
phisms dictated by .#) is said to be a diagram indexed by .#. We call .# an index
category. Our index categories will be partially ordered sets (Example 2.2.8), in
which in particular there is at most one morphism between any two objects. (But
other examples are sometimes useful.) For example, if O is the category

R

oe<———0
o<—"29

_

and 7 is a category, then a functor 00 — & is precisely the data of a commuting
square in <.

Then the limit is an object lim  A; of 4" along with morphisms f; : lim = A; —
A; for each j € .#, such thatif m : j — k is a morphism in .#, then

(2.4.1.1) Jim  A;

commutes, and this object and maps to each A; are universal (final) with respect to
this property. More precisely, given any other object W along with maps g; : W —
Ai commuting with the F(m) (if m : j — kisa morphismin .#, then gx = F(m)og;j),
then there is a unique map g : W — %Ll’l P A so that g; = f; o g for all i. (In some
cases, the limit is sometimes called the inverse limit or projective limit. We won’t
use this language.) By the usual universal property argument, if the limit exists, it
is unique up to unique isomorphism.

2.4.2. Examples: products. For example, if .7 is the partially ordered set

we obtain the fibered product.
If 7 is

we obtain the product.
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If .7 is a set (i.e. the only morphisms are the identity maps), then the limit is
called the product of the A;, and is denoted [ [; Ai. The special case where .# has
two elements is the example of the previous paragraph.

If .# has an initial object e, then A, is the limit, and in particular the limit
always exists.

2.4.3. Unimportant Example: the p-adic integers. For a prime number p, the p-adic
integers (or more informally, p-adics), Z,, are often described informally (and
somewhat unnaturally) as being of the form Z, = ap + a1p + azp? + - -+ (where
0 < ai < p). They are an example of a limit in the category of rings:

Ly

=

o ——7L/p> ——=7/p* —=7L/p.

(Warning: Z, is sometimes is used to denote the integers modulo p, but Z/(p) or
Z/pZ is better to use for this, to avoid confusion. Worse: by §2.3.3] Z,, also denotes
those rationals whose denominators are a power of p. Hopefully the meaning of
Z,, will be clear from the context.)

Limits do not always exist for any index category .#. However, you can often
easily check that limits exist if the objects of your category can be interpreted as
sets with additional structure, and arbitrary products exist (respecting the set-like
structure).

2.4.A. IMPORTANT EXERCISE. Show that in the category Sets,
{(ai)iey € HAi :F(m)(aj) = ax forall m € Mor » (j, k) € Mor(ﬂ)} ,

along with the obvious projection maps to each A, is the limit Jim _ A;.

This clearly also works in the category Mod o of A-modules (in particular Vecy
and Ab), as well as Rings.

From this point of view, 2 + 3p + 2p? + - € Z, can be understood as the
sequence (2,2 +3p,2+ 3p + 2p?,...).

2.4.4. Colimits. More immediately relevant for us will be the dual (arrow-
reversed version) of the notion of limit (or inverse limit). We just flip the arrows
fi in 241]), and get the notion of a colimit, which is denoted hL)n sAi. (You
should draw the corresponding diagram.) Again, if it exists, it is unique up to
unique isomorphism. (In some cases, the colimit is sometimes called the direct
limit, inductive limit, or injective limit. We won’t use this language. I prefer us-
ing limit/colimit in analogy with kernel/cokernel and product/coproduct. This
is more than analogy, as kernels and products may be interpreted as limits, and
similarly with cokernels and coproducts. Also, I remember that kernels “map to”,
and cokernels are “mapped to”, which reminds me that a limit maps to all the ob-
jects in the big commutative diagram indexed by .#; and a colimit has a map from
all the objects.)
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Even though we have just flipped the arrows, colimits behave quite differently
from limits.

2.4.5. Example. The set 5~*°Z of rational numbers whose denominators are powers
of 5 is a colimit lim 57'Z. More precisely, 5~ *Z is the colimit of the diagram

7——>5172—>527—>...

The colimit over an index set I is called the coproduct, denoted [ [; A;, and is
the dual (arrow-reversed) notion to the product.

2.4.B. EXERCISE. (a) Interpret the statement “Q = h_n} %Z (b) Interpret the
union of some subsets of a given set as a colimit. (Dually, the intersection can be
interpreted as a limit.) The objects of the category in question are the subsets of
the given set.

Colimits don’t always exist, but there are two useful large classes of examples
for which they do.

2.4.6. Definition. A nonempty partially ordered set (S, >) is filtered (or is said to
be a filtered set) if for each x,y € S, there is a z such that x > zand y > z. More
generally, a nonempty category .# is filtered if:

(i) foreachx,y € .#, thereisaz € .# and arrows x — zand y — z, and
(ii) for every two arrows u,v : x — y, there is an arrow w : y — z such that
wou=wov.

(Other terminologies are also commonly used, such as “directed partially ordered
set” and “filtered index category”, respectively.)

2.4.C. EXERCISE. Suppose .7 is filtered. (We will almost exclusively use the case
where .7 is a filtered set.) Show that any diagram in Sets indexed by .# has the
following, with the obvious maps to it, as a colimit:

(ai) € H A, (ai, i) ~ (aj,j) if and only if there are f: A; — Ay and
v = ' g: Aj — Ay in the diagram for which f(a;) = g(a;) in Ag

(You will see that the “.# filtered” hypothesis is there is to ensure that ~ is an
equivalence relation.)

For example, in Example each element of the colimit is an element of
something upstairs, but you can’t say in advance what it is an element of. For
example, 17/125 is an element of the 5737 (or 5-7Z, or later ones), but not 5 2Z.

This idea applies to many categories whose objects can be interpreted as sets
with additional structure (such as abelian groups, A-modules, groups, etc.). For
example, the colimit lim M in the category of A-modules Moda can be described
as follows. The set underlying lim M is defined as in Exercise To add the
elements m; € M; and my € M;, choose an { € .# with arrows u : i — { and
v :j — {, and then define the sum of m; and m; to be F(u)(my) + F(v)(m;) € M,.
The element m; € M; is 0 if and only if there is some arrow u : i — k for which
F(u)(my) =0, i.e. if it becomes 0 “later in the diagram”. Last, multiplication by an
element of A is defined in the obvious way. (You can now reinterpret Example 2.4.5]
as a colimit of groups, not just of sets.)
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2.4.D. EXERCISE.  Verify that the A-module described above is indeed the col-
imit. (Make sure you verify that addition is well-defined, i.e. is independent of the
choice of representatives m; and m;, the choice of {, and the choice of arrows u
and v. Similarly, make sure that scalar multiplication is well-defined.)

2.4.E. USEFUL EXERCISE (LOCALIZATION AS A COLIMIT). Generalize Exercise2.4.B(a)
to interpret localization of an integral domain as a colimit over a filtered set: sup-
pose S is a multiplicative set of A, and interpret S~'A = 11_1’1)1 %A where the limit is
over s € S, and in the category of A-modules. (Aside: Can you make some version

of this work even if A isn’t an integral domain, e.g. S™'A = lim A? This will work

in the category of A-algebras.)

A variant of this construction works without the filtered condition, if you have
another means of “connecting elements in different objects of your diagram”. For
example:

2.4.F. EXERCISE: COLIMITS OF A-MODULES WITHOUT THE FILTERED CONDITION.
Suppose you are given a diagram of A-modules indexed by .#: F : . — Moda,
where we let M; := F(i). Show that the colimit is ®ic_»M; modulo the relations
my—F(n)(my) foreveryn :i — jin .# (i.e. for every arrow in the diagram). (Some-
what more precisely: “modulo” means “quotiented by the submodule generated

by//.)

2.4.7. Summary. One useful thing to informally keep in mind is the following. In
a category where the objects are “set-like”, an element of a limit can be thought of
as an element in each object in the diagram, that are “compatible” (Exercise 2.4.A).
And an element of a colimit can be thought of (“has a representative that is”) an ele-
ment of a single object in the diagram (Exercise 2.4.C). Even though the definitions
of limit and colimit are the same, just with arrows reversed, these interpretations
are quite different.

2.4.8. Small remark. In fact, colimits exist in the category of sets for all reasonable
(“small”) index categories, but that won’t matter to us.

2.4.9. Joke. A comathematician is a device for turning cotheorems into ffee.

2.5 Adjoints

We next come to a very useful construction closely related to universal prop-
erties. Just as a universal property “essentially” (up to unique isomorphism) de-
termines an object in a category (assuming such an object exists), “adjoints” es-
sentially determine a functor (again, assuming it exists). Two covariant functors
F:of — B and G: & — o are adjoint if there is a natural bijection for all A € &
and B € #

(2.5.0.1) Tag : Morg(F(A),B) — Mor (A, G(B)).

We say that (F, G) form an adjoint pair, and that F is left-adjoint to G (and G is
right-adjoint to F). By “natural” we mean the following. Forall f : A — A’ in <7,
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we require

(2.5.0.2) Mor(F(A'),B) — > Mor(F(A), B)

iTA/B lTAB

Mor.(A’, G(B)) ——> Mor.,(A, G(B))

to commute, and for all g : B — B’ in & we want a similar commutative diagram
to commute. (Here f* is the map induced by f : A — A’, and Ff* is the map
induced by Ff : F(A) — F(A').)

2.5.A. EXERCISE. Write down what this diagram should be.

2.5.B. EXERCISE. Show that the map tag (2.5.0.J) has the following properties.
For each A there is a map na : A — GF(A) so that for any g : F(A) — B, the
corresponding Tag(g) : A — G(B) is given by the composition

A 25 GF(A) 2~ G(B).
Similarly, there is a map eg : FG(B) — B for each B so that for any f : A — G(B),
the corresponding map 7, (f) : F(A) — B is given by the composition

Ff €B
_—

F(A) FG(B) —— B.

Here is a key example of an adjoint pair.

2.5.C. EXERCISE.  Suppose M, N, and P are A-modules. Describe a bijection
Homa (M ®a N,P) <& Homa (M,Homa (N, P)). (Hint: try to use the universal
property of ®.)

2.5.D. EXERCISE. Show that (-) ® A N and Homa (N, -) are adjoint functors.

2.5.1.  Fancier remarks we won’t use. You can check that the left adjoint determines
the right adjoint up to natural isomorphism, and vice versa. The maps na and
ep of Exercise are called the unit and counit of the adjunction. This leads
to a different characterization of adjunction. Suppose functors F : &/ — 2 and
G : # — o are given, along with natural transformationsn : id,y — GFand € :
FG — idg with the property that Ge oG = id¢ (for each B € 4, the composition
of ng(s) : G(B) — GFG(B) and G(eg) : GFG(B) — G(B) is the identity) and
eFoFn = id¢. Then you can check that F is left adjoint to G. These facts aren’t hard
to check, so if you want to use them, you should verify everything for yourself.

2.5.2. Examples from other fields. ~For those familiar with representation theory:
Frobenius reciprocity may be understood in terms of adjoints. Suppose V is a
finite-dimensional representation of a finite group G, and W is a representation of
asubgroup H < G. Then induction and restriction are an adjoint pair (Ind, Res)
between the category of G-modules and the category of H-modules.

Topologists” favorite adjoint pair may be the suspension functor and the loop
space functor.

2.5.3. Example: groupification of abelian semigroups. Here is another motivat-
ing example: getting an abelian group from an abelian semigroup. (An abelian
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semigroup is just like an abelian group, except you don’t require an identity or
an inverse. Morphisms of abelian semigroups are maps of sets preserving the
binary operation. One example is the non-negative integers 0, 1,2, ... under addi-
tion. Another is the positive integers 1,2, ... under multiplication. You may enjoy
groupifying both.) From an abelian semigroup, you can create an abelian group.
Here is a formalization of that notion. A groupification of a semigroup S is a map
of abelian semigroups 7 : S — G such that G is an abelian group, and any map of
abelian semigroups from S to an abelian group G’ factors uniquely through G:

S—">G

\%

G /
(Perhaps “abelian groupification” is better than “groupification”.)

2.5.E. EXERCISE (A GROUP IS GROUPIFIED BY ITSELF). Show that if a semigroup
is already a group then the identity morphism is the groupification. (More correct:
the identity morphism is a groupification.) Note that you don’t need to construct
groupification (or even know that it exists in general) to solve this exercise.

2.5.F. EXERCISE.  Construct groupification H from the category of nonempty
abelian semigroups to the category of abelian groups. (One possible construction:
given an abelian semigroup S, the elements of its groupification H(S) are ordered
pairs (a,b) € S x S, which you may think of as a — b, with the equivalence that
(a,b) ~ (c,d)ifa+d+e = Db+ c+ e for some e € S. Describe addition in
this group, and show that it satisfies the properties of an abelian group. Describe
the semigroup map S — H(S).) Let F be the forgetful functor from the category
of abelian groups Ab to the category of abelian semigroups. Show that H is left-
adjoint to F.

(Here is the general idea for experts: We have a full subcategory of a category.
We want to “project” from the category to the subcategory. We have

Morcategory(sa H) = Morsubcategory(G) H)

automatically; thus we are describing the left adjoint to the forgetful functor. How
the argument worked: we constructed something which was in the smaller cate-
gory, which automatically satisfies the universal property.)

2.5.G. EXERCISE. The purpose of this exercise is to give you more practice with
“adjoints of forgetful functors”, the means by which we get groups from semi-
groups, and sheaves from presheaves. Suppose A is a ring, and S is a multiplica-
tive subset. Then S~' A-modules are a fully faithful subcategory (§2.2.15) of the cat-
egory of A-modules (via the obvious inclusion Mods-1 5 < Moda). Then Moda —
Modgs-1 5 can be interpreted as an adjoint to the forgetful functor Mods-1, —
Mod 5. Figure out the correct statement, and prove that it holds.

(Here is the larger story. Every S~!A-module is an A-module, and this is an
injective map, so we have a covariant forgetful functor F : Modg—1 4 — Moda. In
fact this is a fully faithful functor: it is injective on objects, and the morphisms
between any two S~! A-modules as A-modules are just the same when they are con-
sidered as S~' A-modules. Then there is a functor G : Mods — Mods 1 5, which
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might reasonably be called “localization with respect to S”, which is left-adjoint
to the forgetful functor. Translation: If M is an A-module, and N is an S~'A-
module, then Mor(GM, N) (morphisms as S~' A-modules, which are the same as
morphisms as A-modules) are in natural bijection with Mor(M, FN) (morphisms
as A-modules).)

Here is a table of adjoints that will come up for us.

situation category category left-adjoint | right-adjoint
o B Frod =B | G: B — o

A-modules (Ex.[2.5.D) () ®a N Homa (N, )

ring maps (()®A B forgetful

A — B (e.g. Ex.25.G) | Moda Modg (extension (restriction

of scalars) of scalars)

(pre)sheaves on a presheaves sheaves on X

topological space on X sheafification forgetful

X (Ex.B4AI)

(semi)groups (§2.5.3) | semigroups | groups groupification | forgetful

sheaves, sheavesonY | sheaves on X T f.

f: X — Y (Ex.B.6B)

sheaves of abelian

groups or 0-modules, | sheaveson U | sheaveson Y fi !

open embeddings

f:U <Y (Ex.B6G)

quasicoherent sheaves, | quasicoherent | quasicoherent * fy

f:X — Y (Prop.[Z3.5) | sheavesonY | sheaves on X

Other examples will also come up, such as the adjoint pair (~,T,) between
graded modules over a graded ring, and quasicoherent sheaves on the correspond-
ing projective scheme (§16.4).

2.5.4. Useful comment for experts. One last comment only for people who have seen
adjoints before: If (F, G) is an adjoint pair of functors, then F commutes with col-
imits, and G commutes with limits. Also, limits commute with limits and colimits
commute with colimits. We will prove these facts (and a little more) in §2.6.12

2.6 (Co)kernels, and exact sequences (an introduction to abelian
categories)

The introduction of the digit O or the group concept was general nonsense too, and
mathematics was more or less stagnating for thousands of years because nobody was
around to take such childish steps...

— Alexander Grothendieck

Since learning linear algebra, you have been familiar with the notions and be-
haviors of kernels, cokernels, etc. Later in your life you saw them in the category of
abelian groups, and later still in the category of A-modules. Each of these notions
generalizes the previous one.



38 Math 216: Foundations of Algebraic Geometry

We will soon define some new categories (certain sheaves) that will have familiar-
looking behavior, reminiscent of that of modules over a ring. The notions of ker-
nels, cokernels, images, and more will make sense, and they will behave “the way
we expect” from our experience with modules. This can be made precise through
the notion of an abelian category. Abelian categories are the right general setting
in which one can do “homological algebra”, in which notions of kernel, cokernel,
and so on are used, and one can work with complexes and exact sequences.

We will see enough to motivate the definitions that we will see in general:
monomorphism (and subobject), epimorphism, kernel, cokernel, and image. But
in these notes we will avoid having to show that they behave “the way we expect”
in a general abelian category because the examples we will see are directly inter-
pretable in terms of modules over rings. In particular, it is not worth memorizing
the definition of abelian category.

Two central examples of an abelian category are the category Ab of abelian
groups, and the category Moda of A-modules. The first is a special case of the
second (just take A = Z). As we give the definitions, you should verify that Mod o
is an abelian category.

We first define the notion of additive category. We will use it only as a stepping
stone to the notion of an abelian category. Two examples you can keep in mind
while reading the definition: the category of free A-modules (where A is a ring),
and real (or complex) Banach spaces.

2.6.1. Definition. A category ¥ is said to be additive if it satisfies the following
properties.

Ad1. For each A, B € €, Mor(A, B) is an abelian group, such that composition
of morphisms distributes over addition. (You should think about what
this means — it translates to two distinct statements).

Ad2. € has a zero object, denoted 0. (This is an object that is simultaneously
an initial object and a final object, Definition 2.3.21)

Ad3. It has products of two objects (a product A x B for any pair of objects),
and hence by induction, products of any finite number of objects.

In an additive category, the morphisms are often called homomorphisms, and
Mor is denoted by Hom. In fact, this notation Hom is a good indication that you're
working in an additive category. A functor between additive categories preserving
the additive structure of Hom, is called an additive functor.

2.6.2. Remarks. It is a consequence of the definition of additive category that finite
direct products are also finite direct sums (coproducts) — the details don’t matter
to us. The symbol @ is used for this notion. Also, it is quick to show that additive
functors send zero objects to zero objects (show that a is a 0-object if and only if
idq = 04; additive functors preserve both id and 0), and preserve products.

One motivation for the name O-object is that the 0-morphism in the abelian
group Hom(A, B) is the composition A — 0 — B. (We also remark that the notion
of 0-morphism thus makes sense in any category with a 0-object.)

The category of A-modules Modx is clearly an additive category, but it has
even more structure, which we now formalize as an example of an abelian category.
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2.6.3. Definition. Let ¢ be a category with a 0-object (and thus 0-morphisms). A
kernel of a morphism f: B — Cisamapi: A — Bsuch thatfoi =0, and thatis
universal with respect to this property. Diagramatically:

(Note that the kernel is not just an object; it is a morphism of an object to B.) Hence
it is unique up to unique isomorphism by universal property nonsense. The kernel
is written kery — B. A cokernel (denoted cokery¢) is defined dually by reversing
the arrows — do this yourself. The kernel of f : B — C is the limit (§2.4) of the
diagram

(2.63.1) 0

N

B——=C

and similarly the cokernel is a colimit (see (3.5.0.2)).

Ifi: A — B is a monomorphism, then we say that A is a subobject of B, where
the map 1 is implicit. Dually, there is the notion of quotient object, defined dually
to subobject.

An abelian category is an additive category satisfying three additional prop-
erties.

(1) Every map has a kernel and cokernel.
(2) Every monomorphism is the kernel of its cokernel.
(3) Every epimorphism is the cokernel of its kernel.

It is a nonobvious (and imprecisely stated) fact that every property you want
to be true about kernels, cokernels, etc. follows from these three. (Warning: in
part of the literature, additional hypotheses are imposed as part of the definition.)

The image of a morphism f : A — B is defined as im(f) = ker(coker f). The
morphism f : A — B factors uniquely through imf — B, and A — imf is an
epimorphism, and is a cokernel of kerf — A. The reader may want to verify
this as an exercise. The cokernel of a monomorphism is called the quotient. The
quotient of a monomorphism A — B is often denoted B/A (with the map from B
implicit).

We will leave the foundations of abelian categories untouched. The key thing
to remember is that if you understand kernels, cokernels, images and so on in
the category of modules over a ring Mod, you can manipulate objects in any
abelian category. This is made precise by Freyd-Mitchell Embedding Theorem
(Remark 2.6.4).

However, the abelian categories we will come across will obviously be related
to modules, and our intuition will clearly carry over, so we needn’t invoke a the-
orem whose proof we haven’t read. For example, we will show that sheaves of
abelian groups on a topological space X form an abelian category (§8.5), and the
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interpretation in terms of “compatible germs” will connect notions of kernels, cok-
ernels etc. of sheaves of abelian groups to the corresponding notions of abelian
groups.

2.6.4. Small remark on chasing diagrams. It is useful to prove facts (and solve
exercises) about abelian categories by chasing elements. This can be justified by
the Freyd-Mitchell Embedding Theorem: If </ is an abelian category such that
Hom(a,a’) is a set for all a,a’ € <7, then there is a ring A and an exact, fully
faithful functor from <7 into Mod A, which embeds <7 as a full subcategory. A proof
is sketched in [W], §1.6], and references to a complete proof are given there. A proof
is also given in [KS) §9.7]. The upshot is that to prove something about a diagram
in some abelian category, we may assume that it is a diagram of modules over
some ring, and we may then “diagram-chase” elements. Moreover, any fact about
kernels, cokernels, and so on that holds in Mod o holds in any abelian category.)

If invoking a theorem whose proof you haven’t read bothers you, a short al-
ternative is Mac Lane’s “elementary rules for chasing diagrams”, [Mac, Thm. 3,
p- 200]; [Mac, Lemma. 4, p. 201] gives a proof of the Five Lemma (Exercise
as an example.

But in any case, do what you have to do to put your mind at ease, so you can
move forward. Do as little as your conscience will allow.

2.6.5. Complexes, exactness, and homology.
We say a sequence

f [¢]

(2.6.5.1) . A B C

is a complex at B if g o f = 0, and is exact at B if ker g = im f. A sequence is a com-
plex if it is a complex at each (internal) term. (For example: 0 —— A ——0

is exact if and only if A = 0; 0 ——= A —' > B is exact if and only if f is a
f

monomorphism; and 0 A B 0 is exact if and only if f is an
isomorphism.) An exact sequence with five terms, the first and last of which

are 0, is a short exact sequence. Note that A L. B C 0 being ex-
act is equivalent to describing C as a cokernel of f (with a similar statement for

0 A B—2-0C).

If you would like practice in playing with these notions before thinking about
homology, you can prove the Snake Lemma (stated in Example with a stronger
version in Exercise 2.7B), or the Five Lemma (stated in Example with a
stronger version in Exercise 2.7.0). (I would do this in the category of A-modules,
but see [KS| Lem. 12.1.1, Lem. 8.3.13] for proofs in general.)

If 2.6.5.7) is a complex, then its homology (often denoted H) is ker g /im f. We
say that the ker g are the cycles, and im f are the boundaries (so homology is “cy-
cles mod boundaries”). If the complex is indexed in decreasing order, the indices
are often written as subscripts, and H; is the homology at Ai11 — Ay — Ay If
the complex is indexed in increasing order, the indices are often written as super-
scripts, and the homology H' at A1~! — A" — A1 is often called cohomology.
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An exact sequence

] fi*T fi ] fi+1

(2.652)  A*: - AL~ Al AL+

can be “factored” into short exact sequences

0——=kerftl — = At — s kerfit! — =0

which is helpful in proving facts about long exact sequences by reducing them to
facts about short exact sequences.

More generally, if (2.6.5.7) is assumed only to be a complex, then it can be
“factored” into short exact sequences.

(2.6.5.3) 0 ker ft Al im i 0

0 ——=imf-! — > kerft — = H'(A®) ——=0

2.6.A. EXERCISE. Describe exact sequences

(2.6.5.4) 0 ———=imf? AT coker ft —= 0

0 — H*(A*) — coker fi~! im ! 0

(These are somehow dual to (2.6.5.3). In fact in some mirror universe this might
have been given as the standard definition of homology.)

2.6.B. EXERCISE. Suppose

dO

O A] d] o dn71 AT‘L an 0
is a complex of finite-dimensional k-vector spaces (often called A* for short). Show
that 5 (—1)'dim A' = 5 (—1)'h*(A®). (Recall that hi(A®) = dimH!(A®).) In
particular, if A® is exact, then ) (—1)'dim A" = 0. (If you haven’t dealt much with
cohomology, this will give you some practice.)

2.6.C. IMPORTANT EXERCISE. Suppose % is an abelian category. Define the cate-
gory Comy as follows. The objects are infinite complexes

A*: P LA S AL AR B
in ¢, and the morphisms A®* — B*® are commuting diagrams
. i1 . i . it
(2.6.5.5) A .. A1 f Al f A+l f
B\L : e Bi—1? 9" Bi g Bi+! gttt

Show that Coms is an abelian category. (Feel free to deal with the special case
Mod A')

Essentially the same argument shows that the functor category ¢’ is an abelian
category for any small category .# and any abelian category ¢". This immediately
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implies that the category of presheaves on a topological space X with values in an
abelian category ¢ is automatically an abelian category.

2.6.D. IMPORTANT EXERCISE. Show that (2.6.5.5) induces a map of homology
H(A®) — HY(B*). (Again, feel free to deal with the special case Mod A .)

We will later define when two maps of complexes are homotopic (§24.1), and
show that homotopic maps induce isomorphisms on cohomology (Exercise ZZT.A]),
but we won’t need that any time soon.

2.6.6. Theorem (Long exact sequence). — A short exact sequence of complexes

0°: 0 0 0
A. Al*] fi71 A‘L fi A1+1 _f;i+1
B. Bli] 9171 Bl gl B1+1 gi+1
e . Ci_] hi—! ci ht CiJr] hit!
0°: 0 0 0
induces a long exact sequence in cohomology
Hi—T (C')

HY(A®) — H{(B*) — H'(C*) —

Hi+1(A.)—>~~~

(This requires a definition of the connecting homomorphism H*=1(C®) — HY(A®),
which is natural in an appropriate sense.) For a concise proof in the case of com-
plexes of modules, and a discussion of how to show this in general, see [W), §1.3]. It
will also come out of our discussion of spectral sequences as well (again, in the cat-
egory of modules over a ring), see Exercise 2.Z.F, but this is a somewhat perverse
way of proving it. For a proof in general, see [KS| Theorem 12.3.3].

2.6.7. Exactness of functors. If F: o/ — 98 is a covariant additive functor from one
abelian category to another, we say that F is right-exact if the exactness of

A’ A A’ 0,

in &/ implies that
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is also exact. Dually, we say that T is left-exact if the exactness of

0 A’ A A" implies
0 F(A') F(A) F(A") is exact.
A contravariant functor is left-exact if the exactness of
A’ A A" 0 implies
0 F(A") F(A) ——=F(A') is exact.

The reader should be able to deduce what it means for a contravariant functor to
be right-exact.

A covariant or contravariant functor is exact if it is both left-exact and right-
exact.

2.6.E. EXERCISE. Suppose F is an exact functor. Show that applying F to an exact
sequence preserves exactness. For example, if F is covariant, and A’ — A — A"
is exact, then FA’ — FA — FA” is exact. (This will be generalized in Exer-

cise 2.6.Hic).)

2.6.F. EXERCISE. Suppose A is aring, S C A is a multiplicative subset, and M is
an A-module.

(a) Show that localization of A-modules Modx — Mods-1 4 is an exact covariant
functor.

(b) Show that (-) ® A M is a right-exact covariant functor Mods — Moda. (This is a
repeat of Exercise 2.3.Hl)

(c) Show that Hom(M, -) is a left-exact covariant functor Mod s — Moda. If € is
any abelian category, and C € ¥, show that Hom(C,-) is a left-exact covariant
functor ¥ — Ab.

(d) Show that Hom(-, M) is a left-exact contravariant functor Modx — Moda. If €
is any abelian category, and C € €, show that Hom(-, C) is a left-exact contravari-
ant functor ¥ — Ab.

2.6.G. EXERCISE. Suppose M is a finitely presented A-module: M has a finite
number of generators, and with these generators it has a finite number of relations;
or usefully equivalently, fits in an exact sequence

(2.6.7.1) A%Pd 5 AP 3 M — 0
Use (2.6.7.]) and the left-exactness of Hom to describe an isomorphism
S~"Homa (M, N) = Homg-14(S™'M, STTN).

(You might be able to interpret this in light of a variant of Exercise 2.6.Hbelow, for
left-exact contravariant functors rather than right-exact covariant functors.)

2.6.8. Example: Hom doesn’t always commute with localization. In the language of
Exercise2.6.G take A=N=7Z, M =Q,and S =Z\ {0.

2.6.9. x Two useful facts in homological algebra.
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We now come to two (sets of) facts I wish I had learned as a child, as they
would have saved me lots of grief. They encapsulate what is best and worst of
abstract nonsense. The statements are so general as to be nonintuitive. The proofs
are very short. They generalize some specific behavior it is easy to prove on an
ad hoc basis. Once they are second nature to you, many subtle facts will become
obvious to you as special cases. And you will see that they will get used (implicitly
or explicitly) repeatedly.

2.6.10. x Interaction of homology and (right/left-)exact functors.
You might wait to prove this until you learn about cohomology in Chapter 20}
when it will first be used in a serious way.

2.6.H. IMPORTANT EXERCISE (THE FHHF THEOREM). This result can take you
far, and perhaps for that reason it has sometimes been called the Fernbahnhof
(FernbaHnHoF) Theorem. Suppose F : &/ — 2 is a covariant functor of abelian
categories, and C* is a complex in 7.

(a) (F right-exact yields FH® —— H°®F ) If F is right-exact, describe a natu-
ral morphism FH®* — H°®F. (More precisely, for each i, the left side is F
applied to the cohomology at piece i of C*®, while the right side is the
cohomology at piece i of FC*.)

(b) (Fleft-exact yields FH®* <—— H*F ) If F is left-exact, describe a natural mor-
phism H*F — FH*.

(c) (F exact yields FH® <—— H*F ) If F is exact, show that the morphisms of
(a) and (b) are inverses and thus isomorphisms.

di

Hint for (a): use C! ci+! cokerd' —— 0 to give an isomorphism
Fcoker d' = coker Fd'. Then use the first line of (2.6.5.4) to give a epimorphism
Fim d* ——= im Fd' . Then use the second line of (2.6.5.4) to give the desired map
FH'C®* ——= H'FC® . While you are at it, you may as well describe a map for the
fourth member of the quartet {ker, coker,im, H}: Fkerd' ——= kerFd' .

2.6.11. If this makes your head spin, you may prefer to think of it in the following
specific case, where both &7 and # are the category of A-modules, and Fis (-) ® N
for some fixed N-module. Your argument in this case will translate without change
to yield a solution to Exercise 2.6.H(a) and (c) in general. If ®N is exact, then N is
called a flat A-module. (The notion of flatness will turn out to be very important,
and is discussed in detail in Chapter 25])

For example, localization is exact (Exercise2.6.F(a)), so S™' A is a flat A-algebra
for all multiplicative sets S. Thus taking cohomology of a complex of A-modules
commutes with localization — something you could verify directly.

2.6.12. * Interaction of adjoints, (co)limits, and (left- and right-) exactness.

A surprising number of arguments boil down to the statement:

Limits commute with limits and right-adjoints. In particular, in an abelian category,
because kernels are limits, both right-adjoints and limits are left exact.

as well as its dual:

Colimits commute with colimits and left-adjoints. In particular, because cokernels are
colimits, both left-adjoints and colimits are right exact.
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These statements were promised in §2.5.4] The latter has a useful extension:

In an abelian category, colimits over filtered index categories are exact.

(“Filtered” was defined in §2.4.6]) If you want to use these statements (for
example, later in these notes), you will have to prove them. Let’s now make them
precise.

2.6.1. EXERCISE (KERNELS COMMUTE WITH LIMITS). Suppose % is an abelian
category,and a : . — ¥ and b : & — ¥ are two diagrams in ¥ indexed by .#.
For convenience, let A; = a(i) and B; = b(i) be the objects in those two diagrams.
Let h; : Ay — Bj be maps commuting with the maps in the diagram. (Translation:
h is a natural transformation of functors a — b, see §2.2.211) Then the kerh;
form another diagram in ¢ indexed by .#. Describe a canonical isomorphism
@kerhi = kerQiLnAi — lim By).

2.6.J. EXERCISE. Make sense of the statement that “limits commute with limits” in
a general category, and prove it. (Hint: recall that kernels are limits. The previous
exercise should be a corollary of this one.)

2.6.13. Proposition (right-adjoints commute with limits). — Suppose (F : € —
92,G : P — €) is a pair of adjoint functors. If A = lim Ay is a limit in 7 of a diagram
indexed by 1, then GA = lim GA; (with the corresponding maps GA — GA4) is a limit
ine.

Proof. We must show that GA — GA; satisfies the universal property of limits.
Suppose we have maps W — GA; commuting with the maps of .#. We wish to
show that there exists a unique W — GA extending the W — GA;. By adjointness
of F and G, we can restate this as: Suppose we have maps FW — A; commuting
with the maps of .#. We wish to show that there exists a unique FW — A extending
the FW — A;. But this is precisely the universal property of the limit. O

Of course, the dual statements to Exercise and Proposition [2.6.13 hold by
the dual arguments.

If F and G are additive functors between abelian categories, and (F, G) is an
adjoint pair, then (as kernels are limits and cokernels are colimits) G is left-exact
and F is right-exact.

2.6.K. EXERCISE. Show that in Mod 4, colimits over filtered index categories are
exact. (Your argument will apply without change to any abelian category whose
objects can be interpreted as “sets with additional structure”.) Right-exactness
follows from the above discussion, so the issue is left-exactness. (Possible hint:
After you show that localization is exact, Exercise[2.6.F(a), or sheafification is exact,
Exercise[3.5.D} in a hands-on way, you will be easily able to prove this. Conversely,
if you do this exercise, those two will be easy:.)

2.6.L. EXERCISE. Show that filtered colimits commute with homology in Mod A .
Hint: use the FHHF Theorem (Exercise 2.6.H)), and the previous Exercise.

In light of Exercise 2.6.1] you may want to think about how limits (and colim-
its) commute with homology in general, and which way maps go. The statement
of the FHHF Theorem should suggest the answer. (Are limits analogous to left-
exact functors, or right-exact functors?) We won't directly use this insight.
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2.6.14. x Dreaming of derived functors. When you see a left-exact functor, you
should always dream that you are seeing the end of a long exact sequence. If

0-M -M-M"=0

is an exact sequence in abelian category <7, and F : &/ — 4 is a left-exact functor,
then
0= FM = FM = FM”

is exact, and you should always dream that it should continue in some natural
way. For example, the next term should depend only on M/, call it R"FM’, and if it
is zero, then FM — FM"” is an epimorphism. This remark holds true for left-exact
and contravariant functors too. In good cases, such a continuation exists, and is
incredibly useful. We will discuss this in Chapter

2.7 x Spectral sequences

Spectral sequences are a powerful book-keeping tool for proving things in-
volving complicated commutative diagrams. They were introduced by Leray in
the 1940’s at the same time as he introduced sheaves. They have a reputation for
being abstruse and difficult. It has been suggested that the name ‘spectral” was
given because, like spectres, spectral sequences are terrifying, evil, and danger-
ous. I have heard no one disagree with this interpretation, which is perhaps not
surprising since I just made it up.

Nonetheless, the goal of this section is to tell you enough that you can use
spectral sequences without hesitation or fear, and why you shouldn’t be frightened
when they come up in a seminar. What is perhaps different in this presentation is
that we will use spectral sequences to prove things that you may have already
seen, and that you can prove easily in other ways. This will allow you to get
some hands-on experience for how to use them. We will also see them only in the
special case of double complexes (which is the version by far the most often used
in algebraic geometry), and not in the general form usually presented (filtered
complexes, exact couples, etc.). See [W] Ch. 5] for more detailed information if
you wish.

You should not read this section when you are reading the rest of Chapter
Instead, you should read it just before you need it for the first time. When you
finally do read this section, you must do the exercises.

For concreteness, we work in the category Moda of module over a ring A.
However, everything we say will apply in any abelian category. (And if it helps
you feel secure, work instead in the category Vecy of vector spaces over a field k.)

2.7.1. Double complexes.

A double complex is a collection of A-modules EP-9 (p,q € Z), and “right-
ward” morphisms d*;4 : EP9 — EP*19 and “upward” morphisms df*¢ : EP9 —
EP-9*1. In the superscript, the first entry denotes the column number (the “x-
coordinate”), and the second entry denotes the column number (the “y-coordinate”).
(Warning: this is opposite to the convention for matrices.) The subscript is meant
to suggest the direction of the arrows. We will always write these as d_, and d;
and ignore the superscripts. We require that d_, and d; satisfy (a) d%, = 0, (b)
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d? = 0, and one more condition: (c) either d_,d; = dyd_, (all the squares com-
mute) or d_, d; + dyd_, = 0 (they all anticommute). Both come up in nature, and
you can switch from one to the other by replacing d?‘q with (—1)4 d?’q. So I will
assume that all the squares anticommute, but that you know how to turn the com-
muting case into this one. (You will see that there is no difference in the recipe,
basically because the image and kernel of a homomorphism f equal the image and
kernel respectively of —f.)

dg,‘J#»]
Ep.a+1 Ep+1,a+1
ap anticommutes apat!
ar,d
EP.d EP.a+1

There are variations on this definition, where for example the vertical arrows
go downwards, or some different subset of the EP>9 are required to be zero, but I
will leave these straightforward variations to you.

From the double complex we construct a corresponding (single) complex E*®
with E* = &{Eb*!, with d = d_, + d;. In other words, when there is a single
superscript k, we mean a sum of the kth antidiagonal of the double complex. The
single complex is sometimes called the total complex. Note that d? = (d_, +d;)? =
d2, +(dd; +dd,) + df =0, s0 E* is indeed a complex.

The cohomology of the single complex is sometimes called the hypercoho-
mology of the double complex. We will instead use the phrase “cohomology of
the double complex”.

Our initial goal will be to find the cohomology of the double complex. You
will see later that we secretly also have other goals.

A spectral sequence is a recipe for computing some information about the
cohomology of the double complex. I won't yet give the full recipe. Surprisingly,
this fragmentary bit of information is sufficent to prove lots of things.

2.7.2. Approximate Definition. A spectral sequence with rightward orientation
is a sequence of tables or pages , E5'9, JEV'Y, ED'Y, .. .(p, q € Z), where L, EJ'T =
EP-9, along with a differential

\q . , —r+1,q+7
_)dfq._,Efq—)_,Ef a

with ,d?% o a2 ™9""1 = 0, and with an isomorphism of the cohomology of
_dyat ,EP9 (e ker ,dP9/im _, d? "9 ") with SEDS.

The orientation indicates that our Oth differential is the rightward one: dg =
d_,. The left subscript “—" is usually omitted.
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The order of the morphisms is best understood visually:

(2.7.2.1) .

\\i

e —do> e

(the morphisms each apply to different pages). Notice that the map always is
“degree 1” in terms of the grading of the single complex E*. (You should figure
out what this informal statement really means.)

The actual definition describes what E?'* and d}'® really are, in terms of E*°.
We will describe do, dq, and d, below, and you should for now take on faith that
this sequence continues in some natural way.

Note that EF'9 is always a subquotient of the corresponding term on the Oth
page Ef°9 = EP 9. In particular, if EP9 = 0, then EY’Y = 0 for all v, so EY'9 = 0
unless p, q € Z=°.

Suppose now that E** is a first quadrant double complex, i.e. E?*9 = 0forp <
0 or g < 0. Then for any fixed p, g, once r is sufficiently large, E7}9 is computed
from (Ep*, d.) using the complex

0

P,q
dr

P,q
E:

p—r+1,q+7
dT

and thus we have canonical isomorphisms

EPO=ERS =ERS =
We denote this module EX;9. The same idea works in other circumstances, for
example if the double complex is only nonzero in a finite number of rows — EP>94 =
0 unless qo < q < q1. This will come up for example in the long exact sequence
and mapping cone discussion (Exercises 2.7.F and 2.7 E|below).
We now describe the first few pages of the spectral sequence explicitly. As
stated above, the differential dp on EJ'®* = E** is defined to be d_,. The rows are
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complexes:

e ———>0 —> 0
The Oth page Eo: e

o ——=0 —> 0

and so E; is just the table of cohomologies of the rows. You should check that
there are now vertical maps d?'¢ : E?'% — ED9* of the row cohomology groups,
induced by dy, and that these make the columns into complexes. (This is essen-
tially the fact that a map of complexes induces a map on homology.) We have
“used up the horizontal morphisms”, but “the vertical differentials live on”.

The 1st page E;:

o————>0 —> 0
o —0 ——> 0
o—0 —> 0

We take cohomology of d; on E4, giving us a new table, EE '9_ Tt turns out that
there are natural morphisms from each entry to the entry two above and one to the
left, and that the composition of these two is 0. (It is a very worthwhile exercise
to work out how this natural morphism d, should be defined. Your argument
may be reminiscent of the connecting homomorphism in the Snake Lemma
or in the long exact sequence in cohomology arising from a short exact sequence
of complexes, Exercise This is no coincidence.)

[ ] [ ] [ ]
The 2nd page E»: o\o\.
[ ] [ ] [ ]

This is the beginning of a pattern.

Then it is a theorem that there is a filtration of H*(E*®) by EX;9 where p + q = k.
(We can't yet state it as an official Theorem because we haven’t precisely defined
the pages and differentials in the spectral sequence.) More precisely, there is a
filtration

1,k—1 E2.k—2

Ek,O
(2.7.2.2) pok 0 ST B k(e

where the quotients are displayed above each inclusion. (Here is a tip for remem-
ber which way the quotients are supposed to go. The later differentials point
deeper and deeper into the filtration. Thus the entries in the direction of the later
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arrowheads are the subobjects, and the entries in the direction of the later “arrow-
tails” are quotients. This tip has the advantage of being independent of the details
of the spectral sequence, e.g. the “quadrant” or the orientation.)

We say that the spectral sequence _, E3'® converges to H*(E®). We often say
that _,ES'® (or any other page) abuts to H*(E®).

Although the filtration gives only partial information about H®(E®), some-
times one can find H*(E®) precisely. One example is if all ELk1 are zero, or if
all but one of them are zero (e.g. if Ep>* has precisely one non-zero row or col-
umn, in which case one says that the spectral sequence collapses at the rth step,
although we will not use this term). Another example is in the category of vector
spaces over a field, in which case we can find the dimension of H*(E®). Also, in
lucky circumstances, E;, (or some other small page) already equals E.

2.7.A. EXERCISE: INFORMATION FROM THE SECOND PAGE. Show that H°(E®) =
E%0 = ESC and

d],O
0 EQ! H'(E*) E}0 —>EQ2 H2(E®).

2.7.3. The other orientation.

You may have observed that we could as well have done everything in the
opposite direction, i.e. reversing the roles of horizontal and vertical morphisms.
Then the sequences of arrows giving the spectral sequence would look like this

(compare to (2.7.2.7)).
2.7.3.1)

/-

This spectral sequence is denoted E;** (“with the upwards orientation”). Then
we would again get pieces of a filtration of H*(E®) (where we have to be a bit
careful with the order with which {EX;9 corresponds to the subquotients — it in
the opposite order to that of (2.7.2.2) for _,E};9). Warning: in general there is no
isomorphism between _, EE;9 and {EF;9.

In fact, this observation that we can start with either the horizontal or vertical
maps was our secret goal all along. Both algorithms compute information about
the same thing (H*(E®)), and usually we don’t care about the final answer — we
often care about the answer we get in one way, and we get at it by doing the
spectral sequence in the other way.

2.7.4. Examples.

We are now ready to see how this is useful. The moral of these examples is
the following. In the past, you may have proved various facts involving various
sorts of diagrams, by chasing elements around. Now, you will just plug them into
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a spectral sequence, and let the spectral sequence machinery do your chasing for
you.

2.7.5. Example: Proving the Snake Lemma. Consider the diagram

0—>D—>E—>F— >0
1o
0 >A—>B—>C—>0

where the rows are exact in the middle (at B, C, D, G, H, I) and the squares com-
mute. (Normally the Snake Lemma is described with the vertical arrows pointing
downwards, but I want to fit this into my spectral sequence conventions.) We wish
to show that there is an exact sequence

(2.7.5.1) 0 — ker o« — ker 3 — kery — coker o« — coker 3 — cokery — 0.

We plug this into our spectral sequence machinery. We first compute the co-
homology using the rightwards orientation, i.e. using the order (2.Z2.1). Then be-
cause the rows are exact, E}"? = 0, so the spectral sequence has already converged:
ER,9 =0.

We next compute this “0” in another way, by computing the spectral sequence
using the upwards orientation. Then +E$® (with its differentials) is:

0 —— coker «x —— coker  —— cokery ——= 0

0 ker o ker kery 0.
Then +E$* is of the form:
0 0

\\ S

0 \\?\\?\ O

\\O\ 0

We see that after ;E;, all the terms will stabilize except for the double-question-

marks — all maps to and from the single question marks are to and from O-entries.

And after {E3, even these two double-question-mark terms will stabilize. But in

the end our complex must be the 0 complex. This means that in  E;, all the entries

must be zero, except for the two double-question-marks, and these two must be

isomorphic. This means that 0 — ker « — ker p — kery and coker «« — coker 3 —

cokery — 0 are both exact (that comes from the vanishing of the single-question-

marks), and

coker(ker 3 — kery) = ker(coker & — coker 3)

is an isomorphism (that comes from the equality of the double-question-marks).
Taken together, we have proved the exactness of (2.7.5.1), and hence the Snake
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Lemma! (Notice: in the end we didn’t really care about the double complex. We
just used it as a prop to prove the snake lemma.)

Spectral sequences make it easy to see how to generalize results further. For
example, if A — B is no longer assumed to be injective, how would the conclusion
change?

2.7.B. UNIMPORTANT EXERCISE (GRAFTING EXACT SEQUENCES, A WEAKER VER-
SION OF THE SNAKE LEMMA). Extend the snake lemma as follows. Suppose we
have a commuting diagram

0 X’ Y’ z' A’
o ]
w X Y Z 0.

where the top and bottom rows are exact. Show that the top and bottom rows can
be “grafted together” to an exact sequence

w kera kerb ———=kerc

—— cokera —— cokerb —— cokerc ——= A’ —— ...

2.7.6. Example: the Five Lemma. Suppose

(2.7.6.1) F G H I ]
I N R
A B C D E

where the rows are exact and the squares commute.
Suppose «, 3, §, € are isomorphisms. We will show that y is an isomorphism.
We first compute the cohomology of the total complex using the rightwards
orientation 2.Z.2.1). We choose this because we see that we will get lots of zeros.
Then _, E}* looks like this:

REN

Then _, E; looks similar, and the sequence will converge by E,, as we will never get
any arrows between two non-zero entries in a table thereafter. We can’t conclude
that the cohomology of the total complex vanishes, but we can note that it van-
ishes in all but four degrees — and most important, it vanishes in the two degrees
corresponding to the entries C and H (the source and target of ).

We next compute this using the upwards orientation (2.Z.3.1). Then ;E; looks
like this:

0 0 ? 0 0
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and the spectral sequence converges at this step. We wish to show that those two
question marks are zero. But they are precisely the cohomology groups of the total
complex that we just showed were zero — so we are done!

The best way to become comfortable with this sort of argument is to try it out
yourself several times, and realize that it really is easy. So you should do the fol-
lowing exercises! Many can readily be done directly, but you should deliberately
try to use this spectral sequence machinery in order to get practice and develop
confidence.

2.7.C. EXERCISE: THE SUBTLE FIVE LEMMA. By looking at the spectral sequence
proof of the Five Lemma above, prove a subtler version of the Five Lemma, where
one of the isomorphisms can instead just be required to be an injection, and an-
other can instead just be required to be a surjection. (I am deliberately not telling
you which ones, so you can see how the spectral sequence is telling you how to
improve the result.)

2.7.D. EXERCISE. If § and 6 (in (2.7.6.1)) are injective, and « is surjective, show
that v is injective. Give the dual statement (whose proof is of course essentially
the same).

2.7.E. EXERCISE (THE MAPPING CONE). Suppose i : A®* — B® is a morphism of
complexes. Suppose C* is the single complex associated to the double complex
A® — B°®. (C* is called the mapping cone of n.) Show that there is a long exact
sequence of complexes:

.- 5 HY(C®) = HY(A®) = HY(B®) — HY(C®) - HT(A®) — -+ .

(There is a slight notational ambiguity here; depending on how you index your
double complex, your long exact sequence might look slightly different.) In partic-
ular, we will use the fact that p induces an isomorphism on cohomology if and only
if the mapping cone is exact. (We won’t use it until the proof of Theorem 20.2.4])

2.7.F. EXERCISE. Use spectral sequences to show that a short exact sequence of
complexes gives a long exact sequence in cohomology (Exercise 2.6.C). (This is a
generalization of Exercise )

The Grothendieck (or composition of functor) spectral sequence (Exercise 24.3.D))
will be an important example of a spectral sequence that specializes in a number
of useful ways.

You are now ready to go out into the world and use spectral sequences to your
heart’s content!

2.7.7. »x Complete definition of the spectral sequence, and proof.

You should most definitely not read this section any time soon after reading
the introduction to spectral sequences above. Instead, flip quickly through it to
convince yourself that nothing fancy is involved.

We consider the rightwards orientation. The upwards orientation is of course
a trivial variation of this.

2.7.8. Goals. We wish to describe the pages and differentials of the spectral se-
quence explicitly, and prove that they behave the way we said they did. More
precisely, we wish to:



54 Math 216: Foundations of Algebraic Geometry

(a) describe EY' (and verify that E}'? is indeed EP-9),
(b) verify that H*(E®) is filtered by ER;* P as in (ZZ2.2),
(c) describe d, and verify that d2 = 0, and

(d) verify that E}:9 is given by cohomology using d..

Before tackling these goals, you can impress your friends by giving this short
description of the pages and differentials of the spectral sequence. We say that
an element of E**® is a (p, q)-strip if it is an element of ®1>oEP L9 7! (see Fig. 2.7).
Its non-zero entries lie on an “upper-leftwards” semi-infinite antidiagonal starting
with position (p, q). We say that the (p, q)-entry (the projection to EP-9) is the

leading term of the (p, q)-strip. Let | SP*9 | C E** be the submodule of all the (p, q)-
strips. Clearly SP°9 C EPT9, and S*0 = EX.

0 0 0 0
0 xP=2.0+2 0 0 0
0 0 4P Tha+1 0 0
0 0 0 4Pd 0
0 0 0 0 op+1ha-]

FIGURE 2.1. A (p, q)-strip (in SP9 C EPT9). Clearly S®* = EX.

Note that the differential d = d; +d_, sends a (p, q)-strip x toa (p + 1, q)-strip
dx. If dx is furthermore a (p—1+1, g+7)-strip (v € Z=°), we say that x is an r-closed
(p, q)-strip — “the differential knocks x at least r terms deeper into the filtration”.

We denote the set of r-closed (p, q)-strips (so for example S§'9 =SP4, and

S5° = E¥). An element of S}’ may be depicted as:

|

«P—2,4+2 >0

|

¥p—latl o

|

*Pd — =0
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2.7.9. Preliminary definition of EY'9. We are now ready to give a first definition of
EY'9, which by construction should be a subquotient of EP*4 = EJ*9. We describe
it as such by describing two submodules Y'Y ¢ X}*9 C EP'9, and defining E}' =
XP /Y29, Let XP 9 be those elements of EP9 that are the leading terms of T-closed
(p, q)-strips. Note that by definition, d sends (r—1)-closed (p+(r—1)—1, q—(r—1))-
strips to (p, q)-strips. Let YF'9 be the leading ((p, q))-terms of the differential d of
(r—1)-closed (p+(r—1)—1,q—(r—1))-strips (where the differential is considered
as a (p, q)-strip).

2.7.G. EXERCISE (REALITY CHECK). Verify that E}'? is (canonically isomorphic to)
EP-9,

We next give the definition of the differential d, of such an element x € X?*9.
We take any r-closed (p, q)-strip with leading term x. Its differential disa (p —r +
1,q + r)-strip, and we take its leading term. The choice of the r-closed (p, q)-strip
means that this is not a well-defined element of EP>9. But it is well-defined modulo
the differentials of the (r — 1)-closed (p + 1, q + 1)-strips, and hence gives a map
Ef‘q - Ef_r+1 ‘q+r.

This definition is fairly short, but not much fun to work with, so we will forget
it, and instead dive into a snakes’ nest of subscripts and superscripts.

We begin with making some quick but important observations about (p, q)-
strips.

2.7.H. EXERCISE (NOT HARD). Verify the following.

(a) §p,a — gp—1,q+1 @ EP-9,

(b) (Any closed (p, q)-strip is r-closed for all r.) Any element x of SP9 = SP4
that is a cycle (i.e. dx = 0) is automatically in S¥°¢ for all r. For example,
this holds when x is a boundary (i.e. of the form dy).

(c) Show that for fixed p, q,

P,d P.q .q
Syt oSyt DSPI D

stabilizes for r > 0 (i.e. S} = SP;% = --.). Denote the stabilized mod-
ule SE;9. Show S%:9 is the set of closed (p, q)-strips (those (p, q)-strips
annihilated by d, i.e. the cycles). In particular, SO;* is the set of cycles in

EX.

2.7.10. Defining EY4.
Define X£'9 .= S?“*/Sf’j'qH and YP'9 .= de:(rq)71’(‘7“7”/8?:: att
Then Y24 c X?'9 by Exercise ZZ.H(b). We define

Xp,q Sfﬂ

(2.7.10.1) EPd =0 - —

P.d —1)—1,q—(r—T -
Yk deL(T )=T,q—(r )+Sf,11’q+1

We have completed Goal2.7.8(a).

You are welcome to verify that these definitions of X}'9 and Y and hence
EP9 agree with the earlier ones of §2.7.9|(and in particular X}*9 and Y9 are both
submodules of EP>9), but we won’t need this fact.

2.7.1. EXERCISE: EX;*~P GIVES SUBQUOTIENTS OF H*(E®). By Exercise 2.Z.Hc),

EP9 stabilizes as v — oo. For r >> 0, interpret Sf'q/deﬂT*”*]‘qf(r*]’ as the



56 Math 216: Foundations of Algebraic Geometry

cycles in SB;9 C EPT9 modulo those boundary elements of dEP*9~! contained in
S, 4. Finally, show that H*(E®) is indeed filtered as described in (Z.Z.2.2).

We have completed Goal 2.Z.8(b).
2.7.11. Definition of d..
We shall see that the map d, : EY'Y — EpTHhatT g just induced by our

differential d. Notice that d sends r-closed (p, q)-strips SF'9 to (p — v+ 1,4 + 7)-

strips SP~"T14%T by the definition “r-closed”. By Exercise Z.Z.HIb), the image lies
in S]TgfrJr] ,q+r.

2.7.J. EXERCISE. Verify that d sends
dsfir](rfl)fl,q (r— +Sp 1,q+1 _)dsp T+1)+(r—1)—1,(g+1)—(r— +Sp T4+1)— 1(q+1—]+1.

(The first term on the left goes to 0 from d? = 0, and the second term on the left
goes to the first term on the right.)

Thus we may define

P.q
Sy

CEP
dr: B30 = dsprir=1-Ta-(r- _|_Sp 1,q+1

Spfr+1 ,q+r
r — Eprtlatr
T

dSp?]'qu] +Sp T,q+r+1
r—

and clearly dZ = 0 (as we may interpret it as taking an element of S¥'9 and apply-
ing d twice).
We have accomplished Goal 2.7.8|c).

2.7.12. Verifying that the cohomology of d. at EY'9 is EV:%.  We are left with the
unpleasant job of verifying that the cohomology of

gptr—Tl,a—r d, SP ,q
v
(2‘7‘12'1) dSEj]Zr73,q72r+1+Sl:i»]r72,q7r+1 ds'p+r 2,9— r+1+sr ]1 ,qa+1
dr SE—r+1,q+r

p—1,q+1 p—r,q+r+1
dSr71 +ST‘71

is naturally identified with
.4
ST
ds}]?Jr'rf],q T + 31371,q+1

and this will conclude our final Goal 2.7.8(d).

We begin by understanding the kernel of the right map of (2.Z.12.1). Suppose
a € $P'9 is mapped to 0. This means that da = db + ¢, where b € SP~9*1 If
u=a—>b,thenu e SP9, whiledu=ce S’} ATl - gpTat Tl from whlchu
is (r + 1)-closed, i.e. u € SP4 Thusa—b—l—ue sv! q“ +SP

T+1°
aeSPTITT 4 sP satisfies

da € dsp 1q+1 +dsp C dsp 1q+1 —I-Sp T,q+71+1

74 Conversely, any
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(using ST} C Sh 9t and Exercise ZZH(b)) so any such a is indeed in the

kernel of
Sp7r+1 ,q+r

SPd—

dSp 1 ,q+1 + Sp r ,q+r+1°
Hence the kernel of the right map of (m

Sp 1,q+1 +SP

r+1
ker = s 2q P s Tai1”

Next, the image of the left map of 2.7.12.T)) is immediately

dsp+r 1,q— r+d3p+r 2,q—r+1 +Sp 1,9+1 dsp+r 1,q—7r +S‘p 1,9+1
im =
2 1 1 1 2 1 1 1
ds‘p+r ,q—r+ +Sp ,d+ dSerr ,q—r+ _I_Sp ,d+
(as ST 19T contains Sff{_z’q_rﬂ ).

Thus the cohomology of (]m is

: _ r+ —
ker/lm - dsEJrr 1 ,q—r + 55711 ,q+1 SP

Sr—H
(dSE+T 1,9— T+SE:11,q+1)

r+1

where the equality on the right uses the fact that dS?™"" 97" ¢ S”.9 and an
isomorphism theorem. We thus must show

sP
However,
s

+r—1,q—r P 1Q+1 _ +r—1,q—r —1,q+1
P A (dSPHTaT 4 g7 ) = dSPHTTaT 4 gp—Tlal

p+r—1,9-r p—1,a+1y _ gqp+r—1,q—7 1q+1
T+1 N (dS? +S7 ) =dS? Sr+1 ﬂS

and S N S‘D+1 9= consists of (p—1, g+ 1)-strips whose differential vanishes up
to row p + T, from which SP;9 N SP™ 1 at1 _ gp—1.a+1 o5 Jesired.

This completes the explanatlon of how spectral sequences work for a first-
quadrant double complex. The argument applies without significant change to

more general situations, including filtered complexes.






CHAPTER 3

Sheaves

It is perhaps surprising that geometric spaces are often best understood in
terms of (nice) functions on them. For example, a differentiable manifold that is
a subset of R™ can be studied in terms of its differentiable functions. Because
“geometric spaces” can have few (everywhere-defined) functions, a more precise
version of this insight is that the structure of the space can be well understood
by considering all functions on all open subsets of the space. This information
is encoded in something called a sheaf. Sheaves were introduced by Leray in the
1940’s, and Serre introduced them to algebraic geometry. (The reason for the name
will be somewhat explained in Remark[3.4.4l) We will define sheaves and describe
useful facts about them. We will begin with a motivating example to convince you
that the notion is not so foreign.

One reason sheaves are slippery to work with is that they keep track of a huge
amount of information, and there are some subtle local-to-global issues. There are
also three different ways of getting a hold of them:

e in terms of open sets (the definition §3.2) — intuitive but in some ways
the least helpful;

e in terms of stalks (see §3.4.1); and

e in terms of a base of a topology (§8.7).

Knowing which to use requires experience, so it is essential to do a number of
exercises on different aspects of sheaves in order to truly understand the concept.
(Some people strongly prefer the espace étalé interpretation, §3.2.11] as well.)

3.1 Motivating example: The sheaf of differentiable functions.

Consider differentiable functions on the topological space X = R™ (or more
generally on a smooth manifold X). The sheaf of differentiable functions on X is
the data of all differentiable functions on all open subsets on X. We will see how
to manage this data, and observe some of its properties. On each open set U C X,
we have a ring of differentiable functions. We denote this ring of functions &'(U).

Given a differentiable function on an open set, you can restrict it to a smaller
open set, obtaining a differentiable function there. In other words, if U C V is an
inclusion of open sets, we have a “restriction map” resy,y : (V) — O(U).

Take a differentiable function on a big open set, and restrict it to a medium
open set, and then restrict that to a small open set. The result is the same as if you
restrict the differentiable function on the big open set directly to the small open set.

59
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In other words, if U < V <— W, then the following diagram commutes:

o(W) WY (V)

Next take two differentiable functions f; and f, on a big open set U, and an
open cover of U by some {U;}. Suppose that f; and f, agree on each of these U;.
Then they must have been the same function to begin with. In other words, if
{Ui}ier isa cover of U, and f1, f, € 0(U), and resy u, f1 = resu, u, f2, then f; = f,.
Thus we can identify functions on an open set by looking at them on a covering by
small open sets.

Finally, suppose you are given the same U and cover {U;}, take a differentiable
function on each of the U; — a function f; on U4, a function f, on U;, and so
on — and assume they agree on the pairwise overlaps. Then they can be “glued
together” to make one differentiable function on all of L. In other words, given
fi € O(U;) for all i, such that resy, u;nu; fi = resu; u;nu; fj for all i and j, then
there is some f € &(U) such that resy u, f = f; for all i.

The entire example above would have worked just as well with continuous
functions, or smooth functions, or just plain functions. Thus all of these classes
of “nice” functions share some common properties. We will soon formalize these
properties in the notion of a sheaf.

3.1.1. The germ of a differentiable function. Before we do, we first give another
definition, that of the germ of a differentiable function at a point p € X. Intuitively,
it is a “shred” of a differentiable function at p. Germs are objects of the form
{(f,openlU) : p € U,f € O(U)} modulo the relation that (f, U) ~ (g, V) if there is
some open set W C U, V containing p where flw = glw (i.e., resy,w f = resy,w g).
In other words, two functions that are the same in a neighborhood of p (but may
differ elsewhere) have the same germ. We call this set of germs the stalk at p,
and denote it &},. Notice that the stalk is a ring: you can add two germs, and get
another germ: if you have a function f defined on U, and a function g defined on
V, then f + g is defined on U N V. Moreover, f + g is well-defined: if f’ has the
same germ as f, meaning that there is some open set W containing p on which
they agree, and g’ has the same germ as g, meaning they agree on some open W'
containing p, then f’ + g’ is the same functionas f+ gonUNV AW N W',

Notice also that if p € U, you get a map &(U) — &,. Experts may already see
that we are talking about germs as colimits.

We can see that &), is a local ring as follows. Consider those germs vanishing
at p, which we denote m,, C &),. They certainly form an ideal: m,, is closed under
addition, and when you multiply something vanishing at p by any function, the
result also vanishes at p. We check that this ideal is maximal by showing that the
quotient ring is a field:

(3.1.1.1) 0 —— m, = ideal of germs vanishing at p Op R 0

3.1.A. EXERCISE. Show that this is the only maximal ideal of ;. (Hint: show that
every element of &y, \ m is invertible.)



December 20, 2011 draft 61

Note that we can interpret the value of a function at a point, or the value of
a germ at a point, as an element of the local ring modulo the maximal ideal. (We
will see that this doesn’t work for more general sheaves, but does work for things
behaving like sheaves of functions. This will be formalized in the notion of a locally
ringed space, which we will see, briefly, in §7.3])

3.1.2. Aside. Notice that m/m? is a module over Op/m = R, i.e. it is a real vector
space. It turns out to be naturally (whatever that means) the cotangent space to
the manifold at p. This insight will prove handy later, when we define tangent and
cotangent spaces of schemes.

3.1.B. x EXERCISE FOR THOSE WITH DIFFERENTIAL GEOMETRIC BACKGROUND.
Prove this. (Rhetorical question for experts: what goes wrong if the sheaf of con-
tinuous functions is substituted for the sheaf of differentiable functions?)

3.2 Definition of sheaf and presheaf

We now formalize these notions, by defining presheaves and sheaves. Presheaves
are simpler to define, and notions such as kernel and cokernel are straightforward.
Sheaves are more complicated to define, and some notions such as cokernel re-
quire more thought. But sheaves are more useful because they are in some vague
sense more geometric; you can get information about a sheaf locally.

3.2.1. Definition of sheaf and presheaf on a topological space X.

To be concrete, we will define sheaves of sets. However, in the definition the
category Sets can be replaced by any category, and other important examples are
abelian groups Ab, k-vector spaces Vecy, rings Rings, modules over a ring Moda,
and more. (You may have to think more when dealing with a category of objects
that aren’t “sets with additional structure”, but there aren’t any new complications.
In any case, this won't be relevant for us, although people who want to do this
should start by solving Exercise[3.2.C]) Sheaves (and presheaves) are often written
in calligraphic font. The fact that .# is a sheaf on a topological space X is often
written as

)

X

3.2.2. Definition: Presheaf. A presheaf .7 on a topological space X is the
following data.

e To each open set U C X, we have a set . (U) (e.g. the set of differentiable
functions in our motivating example). (Notational warning: Several notations are
in use, for various good reasons: .# (U) = I'(U,.#) = H°(U, .%). We will use them
all.) The elements of .%(U) are called sections of .# over U. (§3.2.11] combined
with Exercise gives a motivation for this terminology, although this isn’t so
important for us.)

e For each inclusion U — V of open sets, we have a restriction map resy y :
F(V) = Z(U) (just as we did for differentiable functions).
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The data is required to satisfy the following two conditions.

e The map resy y is the identity: resy y = idz(u)-

e If U — V — W are inclusions of open sets, then the restriction maps com-
mute, i.e.

F (W) WY Z(V)
F(U)

commutes.

3.2.A. EXERCISE FOR CATEGORY-LOVERS: “A PRESHEAF IS THE SAME AS A CON-
TRAVARIANT FUNCTOR”. Given any topological space X, we have a “category
of open sets” (Example 2.2.9), where the objects are the open sets and the mor-
phisms are inclusions. Verify that the data of a presheaf is precisely the data of a
contravariant functor from the category of open sets of X to the category of sets.
(This interpretation is surprisingly useful.)

3.2.3. Definition: Stalks and germs. We define the stalk of a presheaf at a point
in two equivalent ways. One will be hands-on, and the other will be as a colimit.

3.2.4. Define the stalk of a presheaf .# at a point p to be the set of germs of & at p,
denoted .%,,, as in the example of §3.1.T1l Germs correspond to sections over some
open set containing p, and two of these sections are considered the same if they
agree on some smaller open set. More precisely: the stalk is

{(f,openU) : peU,fe.ZF(U)

modulo the relation that (f, U) ~ (g, V) if there is some open set W C U,V where
p € Wand resy,w f =resy,w g.

3.2.5. A useful equivalent definition of a stalk is as a colimit of all .# (Ll) over all
open sets U containing p:
Fp = lim .7 (U).

The index category is a directed set (given any two such open sets, there is a third
such set contained in both), so these two definitions are the same by Exercise
Hence we can define stalks for sheaves of sets, groups, rings, and other things for
which colimits exist for directed sets. It is very helpful to simultaneously keep
both definitions of stalk in mind at the same time.

Ifp € U, and f € #(U), then the image of f in .%,, is called the germ of f at p.
(Warning: unlike the example of in general, the value of a section at a point
doesn’t make sense.)

3.2.6. Definition: Sheaf. A presheaf is a sheaf if it satisfies two more axioms.
Notice that these axioms use the additional information of when some open sets
cover another.

Identity axiom. If {U;}ic1 is an open cover of U, and f;,f, € #(U), and
resy,u, f1 =resy,u, fz for alli, then f; = f,.

(A presheaf satisfying the identity axiom is called a separated presheaf, but
we will not use that notation in any essential way:.)
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Gluability axiom. If {U; }i<1 is a open cover of U, then given f; € % (Ll;) for all
i, such that resy, u,nu; fi = resu; u,nu; fj for all i,j, then there is some f € .7 (U)
such that resy y, f = f; forall i.

In mathematics, definitions often come paired: “at most one” and “at least
one”. In this case, identity means there is at most one way to glue, and gluability
means that there is at least one way to glue.

(For experts and scholars of the empty set only: an additional axiom some-
times included is that F(@) is a one-element set, and in general, for a sheaf with
values in a category, F(@) is required to be the final object in the category. This
actually follows from the above definitions, assuming that the empty product is
appropriately defined as the final object.)

Example. If U and V are disjoint, then # (LU V) = #(U) x .% (V). Here we use
the fact that F() is the final object.

The stalk of a sheaf at a point is just its stalk as a presheaf — the same defini-
tion applies — and similarly for the germs of a section of a sheaf.

3.2.B. UNIMPORTANT EXERCISE: PRESHEAVES THAT ARE NOT SHEAVES. Show
that the following are presheaves on C (with the classical topology), but not sheaves:
(a) bounded functions, (b) holomorphic functions admitting a holomorphic square
root.

Both of the presheaves in the previous Exercise satisfy the identity axiom. A
“natural” example failing even the identity axiom is implicit in Remark 8.7.4l
We now make a couple of points intended only for category-lovers.

3.2.7. Interpretation in terms of the equalizer exact sequence. The two axioms for a
presheaf to be a sheaf can be interpreted as “exactness” of the “equalizer exact

sequence”: - —— F(U) —— [[F (W) —= ][ Z# (Ui N U;). Identity is exact-
ness at % (U), and gluability is exactness at [ [.% (U;). I won’t make this precise,
or even explain what the double right arrow means. (What is an exact sequence of
sets?!) But you may be able to figure it out from the context.

3.2.C. EXERCISE. The identity and gluability axioms may be interpreted as saying
that .% (Uic1U;) is a certain limit. What is that limit?

Here are a number of examples of sheaves.

3.2.D. EXERCISE. (a) Verify that the examples of §3.Tlare indeed sheaves (of differ-
entiable functions, or continuous functions, or smooth functions, or functions on
a manifold or R™).

(b) Show that real-valued continuous functions on (open sets of) a topological
space X form a sheaf.

3.2.8. Important Example: Restriction of a sheaf. Suppose # is a sheaf on X, and U
is an open subset of X. Define the restriction of .# to U, denoted .#|y, to be the
collection Z |y (V) = % (V) for all open subsets V C U. Clearly this is a sheaf on
U. (Unimportant but fun fact: §3.6] will tell us how to restrict sheaves to arbitrary
subsets.)
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3.2.9. Important Example: skyscraper sheaf. Suppose X is a topological space, with
p € X,and Sis aset. Leti, : p — Xbe the inclusion. Then i, .S defined by

S ifpel, and

tp+S(U) = {{e} ifpegUu

forms a sheaf. Here {e} is any one-element set. (Check this if it isn’t clear to you
— what are the restriction maps?) This is called a skyscraper sheaf, because the
informal picture of it looks like a skyscraper at p. (Mild caution: this informal
picture suggests that the only nontrivial stalk of a skyscraper sheaf is at p, which
isn't the case. Exercise [[4.2.Alb) gives an example, although it isn’t certainly isn’t
the simplest one.) There is an analogous definition for sheaves of abelian groups,
except ip «(S)(U) = {0} if p ¢ U; and for sheaves with values in a category more
generally, i, .S(U) should be a final object.

(This notation is admittedly hideous, and the alternative (i, ).S is equally bad.
§8.2.12lexplains this notation.)

3.2.10. Constant presheaves and constant sheaves. Let X be a topological space, and
S a set. Define SP™(U) = S for all open sets U. You will readily verify that SP"®
forms a presheaf (with restriction maps the identity). This is called the constant
presheaf associated to S. This isn’t (in general) a sheaf. (It may be distracting to
say why. Lovers of the empty set will insist that the sheaf axioms force the sections
over the empty set to be the final object in the category, i.e. a one-element set. But
even if we patch the definition by setting SP"¢(&) = {e}, if S has more than one
element, and X is the two-point space with the discrete topology, i.e. where every
subset is open, you can check that SP"° fails gluability.)

3.2.E. EXERCISE (CONSTANT SHEAVES). Now let .# (Ul) be the maps to S that are
locally constant, i.e. for any point x in U, there is a neighborhood of x where the
function is constant. Show that this is a sheaf. (A better description is this: endow
S with the discrete topology, and let .% (Ul) be the continuous maps U — S.) This
is called the constant sheaf (associated to S); do not confuse it with the constant
presheaf. We denote this sheaf S.

3.2.F. EXERCISE (“MORPHISMS GLUE”). Suppose Y is a topological space. Show
that “continuous maps to Y” form a sheaf of sets on X. More precisely, to each
open set U of X, we associate the set of continuous maps of U to Y. Show that this
forms a sheaf. (Exercise B.2.D(b), with Y = R, and Exercise B.2.E] with Y = S with
the discrete topology, are both special cases.)

3.2.G. EXERCISE. This is a fancier version of the previous exercise.

(a) (sheaf of sections of a map) Suppose we are given a continuous map f: Y — X.
Show that “sections of f” form a sheaf. More precisely, to each open set U of X,
associate the set of continuous maps s : U — Y such that f o s = id|y. Show that
this forms a sheaf. (For those who have heard of vector bundles, these are a good
example.) This is motivation for the phrase “section of a sheaf”.

(b) (This exercise is for those who know what a topological group is. If you don’t
know what a topological group is, you might be able to guess.) Suppose that Y
is a topological group. Show that continuous maps to Y form a sheaf of groups.
(Example[3B.2.D(b), with Y = R, is a special case.)
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3.2.11. % The space of sections (espace étalé) of a (pre)sheaf. Depending on your back-
ground, you may prefer the following perspective on sheaves, which we will not
discuss further. Suppose % is a presheaf (e.g. a sheaf) on a topological space X.
Construct a topological space Y along with a continuous map 7 : Y — X as fol-
lows: as a set, Y is the disjoint union of all the stalks of .%#. This also describes a
natural set map 7 : Y — X. We topologize Y as follows. Each section s of .% over
an open set U determines a subset {(x,syx) : x € U} of Y. The topology on Y is the
weakest topology such that these subsets are open. (These subsets form a base of
the topology. For each y € Y, there is a neighborhood V of y and a neighborhood
U of 7t(y) such that 7ty is a homeomorphism from V to U. Do you see why these
facts are true?) The topological space Y could be thought of as the “space of sec-
tions” of # (and in french is called the espace étalé of .7). The reader may wish to
show that (a) if .# is a sheaf, then the sheaf of sections of Y — X (see the previous
exercise 3.2.Gla)) can be naturally identified with the sheaf .7 itself. (b) Moreover,
if .# is a presheaf, the sheaf of sections of Y — X is the shedfification of .#, to be
defined in Definition (see Remark [3.4.8). Example B.2Z.El may be interpreted
as an example of this construction.

3.2.H. IMPORTANT EXERCISE: THE PUSHFORWARD SHEAF OR DIRECT IMAGE SHEAF.
Suppose f : X — Y is a continuous map, and .# is a presheaf on X. Then define

f«# by f.#(V) = F(f~1(V)), where V is an open subset of Y. Show that f,.# is a

presheaf on Y, and is a sheaf if .# is. This is called the direct image or pushforward

of .#. More precisely, f..# is called the pushforward of .% by f.

3.2.12. As the notation suggests, the skyscraper sheaf (Example [3.2.9) can be inter-
preted as the pushforward of the constant sheaf S on a one-point space p, under
the inclusion morphism i : {p} — X.

Once we realize that sheaves form a category, we will see that the pushforward
is a functor from sheaves on X to sheaves on Y (Exercise B.3.B).

3.2.1. EXERCISE (PUSHFORWARD INDUCES MAPS OF STALKS). Suppose f : X — Yis
a continuous map, and .% is a sheaf of sets (or rings or A-modules) on X. If f(x) =
y, describe the natural morphism of stalks (f..#), — .#«. (You can use the explicit
definition of stalk using representatives, §3.2.4} or the universal property, §3.2.5] If
you prefer one way, you should try the other) Once we define the category of
sheaves of sets on a topological space in §3.3.] you will see that your construction
will make the following diagram commute:

fu
Setsy — Setsy

|

Sets ——— Sets

3.2.13. Important Example: Ringed spaces, and &x-modules. Suppose O is a
sheaf of rings on a topological space X (i.e. a sheaf on X with values in the category
of Rings). Then (X, ) is called a ringed space. The sheaf of rings is often denoted
by Ox, pronounced “oh-X". This sheaf is called the structure sheaf of the ringed
space. (Note: the stalk of Ox at a point is written “Ox «”, because this looks less
hideous than “0x,”.)
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