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CHAPTER 1

Introduction

I can illustrate the .... approach with the ... image of a nut to be opened. The first
analogy that came to my mind is of immersing the nut in some softening liquid, and why
not simply water? From time to time you rub so the liquid penetrates better, and otherwise
you let time pass. The shell becomes more flexible through weeks and months — when the
time is ripe, hand pressure is enough, the shell opens like a perfectly ripened avocado!

A different image came to me a few weeks ago. The unknown thing to be known
appeared to me as some stretch of earth or hard marl, resisting penetration ... the sea
advances insensibly in silence, nothing seems to happen, nothing moves, the water is so
far off you hardly hear it ... yet finally it surrounds the resistant substance.

— Grothendieck, Récoltes et Semailles p. 552-3, translation by Colin McLarty

1.1 Goals

These are an updated version of notes accompanying a hard year-long class
taught at Stanford in 2009-2010. I am currently editing them and adding a few
more sections, and I hope a reasonably complete (if somewhat rough) version over
the 2010-11 academic year at the site http://math216.wordpress.com/.

In any class, choices must be made as to what the course is about, and who it
is for — there is a finite amount of time, and any addition of material or explana-
tion or philosophy requires a corresponding subtraction. So these notes are highly
inappropriate for most people and most classes. Here are my goals. (I do not claim
that these goals are achieved; but they motivate the choices made.)

These notes currently have a very particular audience in mind: Stanford Ph.D.
students, postdocs and faculty in a variety of fields, who may want to use alge-
braic geometry in a sophisticated way. This includes algebraic and arithmetic ge-
ometers, but also topologists, number theorists, symplectic geometers, and others.

The notes deal purely with the algebraic side of the subject, and completely
neglect analytic aspects.

They assume little prior background (see §1.2), and indeed most students have
little prior background. Readers with less background will necessarily have to
work harder. It would be great if the reader had seen varieties before, but many
students haven’t, and the course does not assume it — and similarly for category
theory, homological algebra, more advanced commutative algebra, differential ge-
ometry, . . . . Surprisingly often, what we need can be developed quickly from
scratch. The cost is that the course is much denser; the benefit is that more people
can follow it; they don’t reach a point where they get thrown. (On the other hand,
people who already have some familiarity with algebraic geometry, but want to
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10 Math 216: Foundations of Algebraic Geometry

understand the foundations more completely should not be bored, and will focus
on more subtle issues.)

The notes seek to cover everything that one should see in a first course in the
subject, including theorems, proofs, and examples.

They seek to be complete, and not leave important results as black boxes
pulled from other references.

There are lots of exercises. I have found that unless I have some problems I
can think through, ideas don’t get fixed in my mind. Some are trivial — that’s
okay, and even desirable. As few necessary ones as possible should be hard, but
the reader should have the background to deal with them — they are not just an
excuse to push material out of the text.

There are optional (starred !) sections of topics worth knowing on a second
or third (but not first) reading. You should not read double-starred sections (!!)
unless you really really want to, but you should be aware of their existence.

The notes are intended to be readable, although certainly not easy reading.
In short, after a year of hard work, students should have a broad familiarity

with the foundations of the subject, and be ready to attend seminars, and learn
more advanced material. They should not just have a vague intuitive understand-
ing of the ideas of the subject; they should know interesting examples, know why
they are interesting, and be able to prove interesting facts about them.

I have greatly enjoyed thinking through these notes, and teaching the corre-
sponding classes, in a way I did not expect. I have had the chance to think through
the structure of algebraic geometry from scratch, not blindly accepting the choices
made by others. (Why do we need this notion? Aha, this forces us to consider this
other notion earlier, and now I see why this third notion is so relevant...) I have
repeatedly realized that ideas developed in Paris in the 1960’s are simpler than I
initially believed, once they are suitably digested.

1.1.1. Implications. We will work with as much generality as we need for most
readers, and no more. In particular, we try to have hypotheses that are as general
as possible without making proofs harder. The right hypotheses can make a proof
easier, not harder, because one can remember how they get used. As an inflamma-
tory example, the notion of quasiseparated comes up early and often. The cost is
that one extra word has to be remembered, on top of an overwhelming number
of other words. But once that is done, it is not hard to remember that essentially
every scheme anyone cares about is quasiseparated. Furthermore, whenever the
hypotheses “quasicompact and quasiseparated” turn up, the reader will likely im-
mediately see a key idea of the proof.

Similarly, there is no need to work over an algebraically closed field, or even a
field. Geometers needn’t be afraid of arithmetic examples or of algebraic examples;
a central insight of algebraic geometry is that the same formalism applies without
change.

1.1.2. Costs. Choosing these priorities requires that others be shortchanged, and
it is best to be up front about these. Because of our goal is to be comprehensive,
and to understand everything one should know after a first course, it will neces-
sarily take longer to get to interesting sample applications. You may be misled
into thinking that one has to work this hard to get to these applications — it is not
true!
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1.2 Background and conventions

All rings are assumed to be commutative unless explicitly stated otherwise.
All rings are assumed to contain a unit, denoted 1. Maps of rings must send 1 to
1. We don’t require that 0 != 1; in other words, the “0-ring” (with one element) is
a ring. (There is a ring map from any ring to the 0-ring; the 0-ring only maps to
itself. The 0-ring is the final object in the category of rings.) We accept the axiom
of choice. In particular, any proper ideal in a ring is contained in a maximal ideal.
(The axiom of choice also arises in the argument that the category of A-modules
has enough injectives, see Exercise 23.2.E.)

The reader should be familiar with some basic notions in commutative ring
theory, in particular the notion of ideals (including prime and maximal ideals)
and localization. For example, the reader should be able to show that if S is a
multiplicative set of a ring A (which we assume to contain 1), then the primes of
S−1A are in natural bijection with those primes of A not meeting S (§4.2.6). Tensor
products and exact sequences of A-modules will be important. We will use the
notation (A,m) or (A,m, k) for local rings — A is the ring, m its maximal ideal,
and k = A/m its residue field. We will use (in Proposition 14.7.1) the structure
theorem for finitely generated modules over a principal ideal domain A: any such
module can be written as the direct sum of principal modules A/(a).

We will not concern ourselves with subtle foundational issues (set-theoretic
issues involving universes, etc.). It is true that some people should be careful
about these issues. But is that really how you want to spend your life? (If so, a
good start is [KS, §1.1].)

1.2.1. Further background. It may be helpful to have books on other subjects
handy that you can dip into for specific facts, rather than reading them in ad-
vance. In commutative algebra, Eisenbud [E] is good for this. Other popular
choices are Atiyah-Macdonald [AM] and Matsumura [M-CRT]. For homological
algebra, Weibel [W] is simultaneously detailed and readable.

Background from other parts of mathematics (topology, geometry, complex
analysis) will of course be helpful for developing intuition.

Finally, it may help to keep the following quote in mind.

Algebraic geometry seems to have acquired the reputation of being esoteric, exclusive,
and very abstract, with adherents who are secretly plotting to take over all the rest of
mathematics. In one respect this last point is accurate.

— David Mumford
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CHAPTER 2

Some category theory

That which does not kill me, makes me stronger. — Nietzsche

2.1 Motivation

Before we get to any interesting geometry, we need to develop a language
to discuss things cleanly and effectively. This is best done in the language of
categories. There is not much to know about categories to get started; it is just
a very useful language. Like all mathematical languages, category theory comes
with an embedded logic, which allows us to abstract intuitions in settings we know
well to far more general situations.

Our motivation is as follows. We will be creating some new mathematical
objects (such as schemes, and certain kinds of sheaves), and we expect them to
act like objects we have seen before. We could try to nail down precisely what
we mean by “act like”, and what minimal set of things we have to check in order
to verify that they act the way we expect. Fortunately, we don’t have to — other
people have done this before us, by defining key notions, such as abelian categories,
which behave like modules over a ring.

Our general approach will be as follows. I will try to tell what you need to
know, and no more. (This I promise: if I use the word “topoi”, you can shoot me.) I
will begin by telling you things you already know, and describing what is essential
about the examples, in a way that we can abstract a more general definition. We
will then see this definition in less familiar settings, and get comfortable with using
it to solve problems and prove theorems.

For example, we will define the notion of product of schemes. We could just
give a definition of product, but then you should want to know why this precise
definition deserves the name of “product”. As a motivation, we revisit the notion
of product in a situation we know well: (the category of) sets. One way to define
the product of sets U and V is as the set of ordered pairs {(u, v) : u ∈ U, v ∈ V}.
But someone from a different mathematical culture might reasonably define it as
the set of symbols {

u
v : u ∈ U, v ∈ V}. These notions are “obviously the same”.

Better: there is “an obvious bijection between the two”.
This can be made precise by giving a better definition of product, in terms of a

universal property. Given two sets M and N, a product is a set P, along with maps
µ : P → M and ν : P → N, such that for any set P ′ with maps µ ′ : P ′ → M and

15



16 Math 216: Foundations of Algebraic Geometry

ν ′ : P ′ → N, these maps must factor uniquely through P:

(2.1.0.1) P ′

∃!

!!

ν ′

""!!!!!!!!!!!!!!!

µ ′

##"
"
"
"
"
"
"
"
"
"
"
"
"
"

P ν
$$

µ

%%

N

M

Thus a product is a diagram

P
ν $$

µ

%%

N

M

and not just a set P, although the maps µ and ν are often left implicit.
This definition agrees with the traditional definition, with one twist: there

isn’t just a single product; but any two products come with a unique isomorphism
between them. In other words, the product is unique up to unique isomorphism.
Here is why: if you have a product

P1
ν1 $$

µ1

%%

N

M

and I have a product

P2
ν2 $$

µ2

%%

N

M

then by the universal property of my product (letting (P2, µ2, ν2) play the role of
(P, µ, ν), and (P1, µ1, ν1) play the role of (P ′, µ ′, ν ′) in (2.1.0.1)), there is a unique
map f : P1 → P2 making the appropriate diagram commute (i.e. µ1 = µ2 ◦ f and
ν1 = ν2 ◦ f). Similarly by the universal property of your product, there is a unique
map g : P2 → P1 making the appropriate diagram commute. Now consider the
universal property of my product, this time letting (P2, µ2, ν2) play the role of both
(P, µ, ν) and (P ′, µ ′, ν ′) in (2.1.0.1). There is a unique map h : P2 → P2 such that

P2

h

!!#
#

#
#

#
#

#
ν2

&&!!!!!!!!!!!!!!!

µ2

##"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

P2 ν2

$$

µ2

%%

N

M

commutes. However, I can name two such maps: the identity map idP2
, and g ◦ f.

Thus g ◦ f = idP2
. Similarly, f ◦ g = idP1

. Thus the maps f and g arising from
the universal property are bijections. In short, there is a unique bijection between
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P1 and P2 preserving the “product structure” (the maps to M and N). This gives
us the right to name any such product M × N, since any two such products are
uniquely identified.

This definition has the advantage that it works in many circumstances, and
once we define categories, we will soon see that the above argument applies ver-
batim in any category to show that products, if they exist, are unique up to unique
isomorphism. Even if you haven’t seen the definition of category before, you can
verify that this agrees with your notion of product in some category that you have
seen before (such as the category of vector spaces, where the maps are taken to be
linear maps; or the category of smooth manifolds, where the maps are taken to be
smooth maps).

This is handy even in cases that you understand. For example, one way of
defining the product of two manifolds M and N is to cut them both up into charts,
then take products of charts, then glue them together. But if I cut up the manifolds
in one way, and you cut them up in another, how do we know our resulting mani-
folds are the “same”? We could wave our hands, or make an annoying argument
about refining covers, but instead, we should just show that they are “categorical
products” and hence canonically the “same” (i.e. isomorphic). We will formalize
this argument in §2.3.

Another set of notions we will abstract are categories that “behave like mod-
ules”. We will want to define kernels and cokernels for new notions, and we
should make sure that these notions behave the way we expect them to. This
leads us to the definition of abelian categories, first defined by Grothendieck in his
Tôhoku paper [Gr].

In this chapter, we’ll give an informal introduction to these and related notions,
in the hope of giving just enough familiarity to comfortably use them in practice.

2.2 Categories and functors

We begin with an informal definition of categories and functors.

2.2.1. Categories.
A category consists of a collection of objects, and for each pair of objects, a set

of maps, or morphisms (or arrows or maps), between them. The collection of ob-
jects of a category C are often denoted obj(C), but we will usually denote the collec-
tion also by C. If A,B ∈ C, then the morphisms from A to B are denoted Mor(A,B).
A morphism is often written f : A → B, and A is said to be the source of f, and
B the target of f. (Of course, Mor(A,B) is taken to be disjoint from Mor(A ′, B ′)
unless A = A ′ and B = B ′.)

Morphisms compose as expected: there is a composition Mor(A,B)×Mor(B,C) →
Mor(A,C), and if f ∈ Mor(A,B) and g ∈ Mor(B,C), then their composition is de-
noted g ◦ f. Composition is associative: if f ∈ Mor(A,B), g ∈ Mor(B,C), and
h ∈ Mor(C,D), then h ◦ (g ◦ f) = (h ◦ g) ◦ f. For each object A ∈ C, there is always
an identity morphism idA : A → A, such that when you (left- or right-)compose
a morphism with the identity, you get the same morphism. More precisely, if
f : A → B is a morphism, then f ◦ idA = f = idB ◦f. (If you wish, you may check
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that “identity morphisms are unique”: there is only on morphism deserving the
name idA.)

If we have a category, then we have a notion of isomorphism between two
objects (a morphism f : A → B such that there exists some — necessarily unique —
morphism g : B → A, where f◦g and g◦f are the identity on B and A respectively),
and a notion of automorphism of an object (an isomorphism of the object with
itself).

2.2.2. Example. The prototypical example to keep in mind is the category of sets,
denoted Sets. The objects are sets, and the morphisms are maps of sets. (Because
Russell’s paradox shows that there is no set of all sets, we did not say earlier that
there is a set of all objects. But as stated in §1.2, we are deliberately omitting all
set-theoretic issues.)

2.2.3. Example. Another good example is the category Veck of vector spaces over
a given field k. The objects are k-vector spaces, and the morphisms are linear
transformations. (What are the isomorphisms?)

2.2.A. UNIMPORTANT EXERCISE. A category in which each morphism is an iso-
morphism is called a groupoid. (This notion is not important in these notes. The
point of this exercise is to give you some practice with categories, by relating them
to an object you know well.)
(a) A perverse definition of a group is: a groupoid with one object. Make sense of
this.
(b) Describe a groupoid that is not a group.

2.2.B. EXERCISE. If A is an object in a category C, show that the invertible ele-
ments of Mor(A,A) form a group (called the automorphism group of A, denoted
Aut(A)). What are the automorphism groups of the objects in Examples 2.2.2
and 2.2.3? Show that two isomorphic objects have isomorphic automorphism
groups. (For readers with a topological background: if X is a topological space,
then the fundamental groupoid is the category where the objects are points of x,
and the morphisms x → y are paths from x to y, up to homotopy. Then the auto-
morphism group of x0 is the (pointed) fundamental group π1(X, x0). In the case
where X is connected, and π1(X) is not abelian, this illustrates the fact that for
a connected groupoid — whose definition you can guess — the automorphism
groups of the objects are all isomorphic, but not canonically isomorphic.)

2.2.4. Example: abelian groups. The abelian groups, along with group homomor-
phisms, form a category Ab.

2.2.5. Important example: modules over a ring. If A is a ring, then the A-modules form
a category ModA. (This category has additional structure; it will be the prototypi-
cal example of an abelian category, see §2.6.) Taking A = k, we obtain Example 2.2.3;
taking A = Z, we obtain Example 2.2.4.

2.2.6. Example: rings. There is a category Rings, where the objects are rings, and the
morphisms are morphisms of rings (which send 1 to 1 by our conventions, §1.2).

2.2.7. Example: topological spaces. The topological spaces, along with continuous
maps, form a category Top. The isomorphisms are homeomorphisms.
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In all of the above examples, the objects of the categories were in obvious ways
sets with additional structure. This needn’t be the case, as the next example shows.

2.2.8. Example: partially ordered sets. A partially ordered set, or poset, is a set S
along with a binary relation ≥ on S satisfying:

(i) x ≥ x (reflexivity),
(ii) x ≥ y and y ≥ z imply x ≥ z (transitivity), and

(iii) if x ≥ y and y ≥ x then x = y.

A partially ordered set (S,≥) can be interpreted as a category whose objects are
the elements of S, and with a single morphism from x to y if and only if x ≥ y (and
no morphism otherwise).

A trivial example is (S,≥) where x ≥ y if and only if x = y. Another example
is

(2.2.8.1) •

%%
• $$ •

Here there are three objects. The identity morphisms are omitted for convenience,
and the two non-identity morphisms are depicted. A third example is

(2.2.8.2) •

%%

$$ •

%%
• $$ •

Here the “obvious” morphisms are again omitted: the identity morphisms, and
the morphism from the upper left to the lower right. Similarly,

· · · $$ • $$ • $$ •

depicts a partially ordered set, where again, only the “generating morphisms” are
depicted.

2.2.9. Example: the category of subsets of a set, and the category of open sets in a topo-
logical space. If X is a set, then the subsets form a partially ordered set, where the
order is given by inclusion. Similarly, if X is a topological space, then the open sets
form a partially ordered set, where the order is given by inclusion.

2.2.10. Example. A subcategory A of a category B has as its objects some of the
objects of B, and some of the morphisms, such that the morphisms of A include
the identity morphisms of the objects of A, and are closed under composition. (For
example, (2.2.8.1) is in an obvious way a subcategory of (2.2.8.2).)

2.2.11. Functors.
A covariant functor F from a category A to a category B, denoted F : A → B,

is the following data. It is a map of objects F : obj(A) → obj(B), and for each A1,
A2 ∈ A, and morphism m : A1 → A2, a morphism F(m) : F(A1) → F(A2) in B. We
require that F preserves identity morphisms (for A ∈ A, F(idA) = idF(A)), and that
F preserves composition (F(m1 ◦ m2) = F(m1) ◦ F(m2)). (You may wish to verify
that covariant functors send isomorphisms to isomorphisms.)
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If F : A → B and G : B → C are covariant functors, then we define a functor
G ◦ F : A → C in the obvious way. Composition of functors is associative in an
evident sense.

2.2.12. Example: a forgetful functor. Consider the functor from the category of
vector spaces (over a field k) Veck to Sets, that associates to each vector space its
underlying set. The functor sends a linear transformation to its underlying map of
sets. This is an example of a forgetful functor, where some additional structure is
forgotten. Another example of a forgetful functor is ModA → Ab from A-modules
to abelian groups, remembering only the abelian group structure of the A-module.

2.2.13. Topological examples. Examples of covariant functors include the funda-
mental group functor π1, which sends a topological space X with choice of a point
x0 ∈ X to a group π1(X, x0) (what are the objects and morphisms of the source cat-
egory?), and the ith homology functor Top → Ab, which sends a topological space
X to its ith homology group Hi(X, Z). The covariance corresponds to the fact that
a (continuous) morphism of pointed topological spaces f : X → Y with f(x0) = y0

induces a map of fundamental groups π1(X, x0) → π1(Y, y0), and similarly for
homology groups.

2.2.14. Example. Suppose A is an object in a category C. Then there is a functor hA :
C → Sets sending B ∈ C to Mor(A,B), and sending f : B1 → B2 to Mor(A,B1) →
Mor(A,B2) described by

[g : A → B1] &→ [f ◦ g : A → B1 → B2].

This seemingly silly functor ends up surprisingly being an important concept.

2.2.15. Full and faithful functors. A covariant functor F : A → B is faithful if for
all A,A ′ ∈ A, the map MorA(A,A ′) → MorB(F(A), F(A ′)) is injective, and full if
it is surjective. A functor that is full and faithful is fully faithful. A subcategory
i : A → B is a full subcategory if i is full. Thus a subcategory A ′ of A is full if and
only if for all A,B ∈ obj(A ′), MorA ′(A,B) = MorA(A,B).

2.2.16. Definition. A contravariant functor is defined in the same way as a covari-
ant functor, except the arrows switch directions: in the above language, F(A1 →
A2) is now an arrow from F(A2) to F(A1). (Thus F(m2 ◦ m1)F(m1) ◦ F(m2), not
the other way around.)

It is wise to always state whether a functor is covariant or contravariant. If it
is not stated, the functor is often assumed to be covariant.

(Sometimes people describe a contravariant functor C → D as a covariant func-
tor Copp → D, where Copp is the same category as C except that the arrows go in
the opposite direction. Here Copp is said to be the opposite category to C.)

2.2.17. Linear algebra example. If Veck is the category of k-vector spaces (introduced
in Example 2.2.12), then taking duals gives a contravariant functor ·∨ : Veck →
Veck. Indeed, to each linear transformation f : V → W, we have a dual transforma-
tion f∨ : W∨ → V∨, and (f ◦ g)∨ = g∨ ◦ f∨.

2.2.18. Topological example (cf. Example 2.2.13). The the ith cohomology functor
Hi(·, Z) : Top → Ab is a contravariant functor.
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2.2.19. Example. There is a contravariant functor Top → Rings taking a topological
space X to the real-valued continuous functions on X. A morphism of topological
spaces X → Y (a continuous map) induces the pullback map from functions on Y
to maps on X.

2.2.20. Example (cf. Example 2.2.14). Suppose A is an object of a category C. Then
there is a contravariant functor hA : C → Sets sending B ∈ C to Mor(B,A), and
sending the morphism f : B1 → B2 to the morphism Mor(B2, A) → Mor(B1, A)
via

[g : B2 → A] &→ [g ◦ f : B2 → B1 → A].

This example initially looks weird and different, but Examples 2.2.17 and 2.2.19
may be interpreted as special cases; do you see how? What is A in each case?

2.2.21. ! Natural transformations (and natural isomorphisms) of functors, and
equivalences of categories.

(This notion won’t come up in an essential away until at least Chapter 7, so
you shouldn’t read this section until then.) Suppose F and G are two functors from
A to B. A natural transformation of functors F → G is the data of a morphism
ma : F(a) → G(a) for each a ∈ A such that for each f : a → a ′ in A, the diagram

F(a)
F(f) $$

ma

%%

F(a ′)

ma ′

%%
G(a)

G(f)
$$ G(a ′)

commutes. A natural isomorphism of functors is a natural transformation such
that each ma is an isomorphism. The data of functors F : A → B and F ′ : B → A
such that F ◦ F ′ is naturally isomorphic to the identity functor IB on B and F ′ ◦ F is
naturally isomorphic to IA is said to be an equivalence of categories. This is the
“right” notion of isomorphism of categories.

Two examples might make this strange concept more comprehensible. The
double dual of a finite-dimensional vector space V is not V , but we learn early to
say that it is canonically isomorphic to V . We make can that precise as follows. Let
f.d.Veck be the category of finite-dimensional vector spaces over k. Note that this
category contains oodles of vector spaces of each dimension.

2.2.C. EXERCISE. Let ·∨∨ : f.d.Veck → f.d.Veck be the double dual functor from the
category of vector spaces over k to itself. Show that ·∨∨ is naturally isomorphic
to the identity functor on f.d.Veck. (Without the finite-dimensional hypothesis, we
only get a natural transformation of functors from id to ·∨∨.)

Let V be the category whose objects are kn for each n (there is one vector space
for each n), and whose morphisms are linear transformations. This latter space can
be thought of as vector spaces with bases, and the morphisms are honest matrices.
There is an obvious functor V → f.d.Veck, as each kn is a finite-dimensional vector
space.

2.2.D. EXERCISE. Show that V → f.d.Veck gives an equivalence of categories,
by describing an “inverse” functor. (We are assuming any needed version of the
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axiom of choice, §1.2, so feel free to simultaneously choose bases for each vector
space in f.d.Veck.)

2.2.22. !! Aside for experts. One may show that this definition is equivalent to
another one commonly given: a covariant functor F : A → B is an equivalence of
categories if it is fully faithful and every object of B is isomorphic to an object of
the form F(a) (F is essentially surjective). One can show that such a functor has a
quasiinverse, i.e., that there is a functor G : B → A, which is also an equivalence,
and for which there exist natural isomorphisms G(F(A)) ∼= A and F(G(B)) ∼= B.
Thus “equivalence of categories” is an equivalence relation. The notion of “equiv-
alence of categories” is the right notion of what one thinks of as “isomorphism
of categories” (I informally think of it as “essentially the same category”), but the
reason for this would take too long to go into here.

2.3 Universal properties determine an object up to unique
isomorphism

Given some category that we come up with, we often will have ways of pro-
ducing new objects from old. In good circumstances, such a definition can be
made using the notion of a universal property. Informally, we wish that there were
an object with some property. We first show that if it exists, then it is essentially
unique, or more precisely, is unique up to unique isomorphism. Then we go about
constructing an example of such an object to show existence.

Explicit constructions are sometimes easier to work with than universal prop-
erties, but with a little practice, universal properties are useful in proving things
quickly and slickly. Indeed, when learning the subject, people often find explicit
construction more appealing, and use them more often in proofs, but as they be-
come more experienced, find universal property arguments more elegant and in-
sightful.

We have seen one important example of a universal property argument al-
ready in §2.1: products. You should go back and verify that our discussion there
gives a notion of product in any category, and shows that products, if they exist, are
unique up to unique isomorphism.

2.3.1. Localization. A second example of universal property is the notion of
localization of a ring. We first review a constructive definition, and then reinterpret
the notion in terms of universal property. A multiplicative subset S of a ring A
is a subset closed under multiplication containing 1. We define a ring S−1A. The
elements of S−1A are of the form a/s where a ∈ A and s ∈ S, and define (a1/s1)×
(a2/s2) = (a1a2)/(s1s2), and (a1/s1) + (a2/s2) = (s2a1 + s1a2)/(s1s2). We say
that a1/s1 = a2/s2 if for some s ∈ S, s(s2a1 − s1a2) = 0. (This implies that
S−1A is 0 if 0 ∈ S.) We have a canonical map A → S−1A given by a &→ a/1. If
S = {fn : n ∈ Z≥0}, where f ∈ A, we define Af := S−1A.

2.3.A. EXERCISE. Verify that S−1A satisfies the following universal property:
S−1A is initial among A-algebras B where every element of S is sent to a unit
in B. (Recall: the data of “an A-algebra B” and “a ring map A → B” the the same.)
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Warning: sometimes localization is first introduced in the special case where
A is an integral domain. In that case, A ↪→ S−1A, but this isn’t always true, as
shown by the following result.

2.3.B. EXERCISE. Show that A → S−1A is injective if and only if S contains no
zero-divisors. (A zero-divisor of a ring A is an element a such that there is a non-
zero element b with ab = 0. The other elements of A are called non-zero-divisors.
For example, a unit is never a zero-divisor. Counter-intuitively, 0 is a zero-divisor
in a ring A if and only if A is not the 0-ring.)

In fact, it is cleaner to define S−1A by this universal property, and to show that
it exists, and to use the universal property to check various properties S−1A has.
Let’s get some practice with this by defining localizations of modules by universal
property. Suppose M is an A-module. Define S−1M as being initial among A-
modules N for which s × · : N → N is an isomorphism for all s ∈ S.

2.3.C. EXERCISE. Show that if S−1M exists, then (a) there is a natural map M →
S−1M (here “natural” is meant informally as “obvious” — you know it if you see
it), and (b) the A-module structure on S−1M extends to an S−1A-module structure.

2.3.D. EXERCISE. Show that S−1M exists, by constructing something satisfying
the universal property. Hint: define elements of S−1M to be of the form m/s
where m ∈ M and s ∈ S, and m1/s1 = m2/s2 if and only if for some s ∈ S,
s(s2m1−s1m2) = 0. Define the additive structure by (m1/s1)+(m2/s2) = (s2m1+
s1m2)/(s1s2), and the S−1A-module structure (and hence the A-module structure)
is given by (a1/s1) ◦ (m2/s2) = (a1m2)/(s1s2).

2.3.E. EXERCISE. Show that localization commutes with finite products. In other
words, if M1, . . . , Mn are A-modules, describe an isomorphism S−1(M1 × · · · ×
Mn) → S−1M1 × · · · × S−1Mn.

2.3.2. Tensor products. Another important example of a universal property con-
struction is the notion of a tensor product of A-modules

⊗A : obj(ModA) × obj(ModA) $$ obj(ModA)

(M,N) $ $$ M ⊗A N

The subscript A is often suppressed when it is clear from context. The tensor prod-
uct is often defined as follows. Suppose you have two A-modules M and N. Then
elements of the tensor product M⊗AN are finite A-linear combinations of symbols
m ⊗ n (m ∈ M, n ∈ N), subject to relations (m1 + m2) ⊗ n = m1 ⊗ n + m2 ⊗ n,
m ⊗ (n1 + n2) = m ⊗ n1 + m ⊗ n2, a(m ⊗ n) = (am) ⊗ n = m ⊗ (an) (where
a ∈ A, m1,m2 ∈ M, n2, n2 ∈ N). More formally, M ⊗A N is the free A-module
genreated by M×N, quotiented by the submodule generated by (m1 +m2)⊗n−
m1 ⊗ n − m2 ⊗ n, m ⊗ (n1 + n2) − m ⊗ n1 − m ⊗ n2, a(m ⊗ n) − (am) ⊗ n, and
a(m ⊗ n) − m ⊗⊗(an) for a ∈ A, m,m1,m2 ∈ M, n,n1, n2 ∈ N.

If A is a field k, we recover the tensor product of vector spaces.
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2.3.F. EXERCISE (IF YOU HAVEN’T SEEN TENSOR PRODUCTS BEFORE). Calculate
Z/(10) ⊗Z Z/(12). (This exercise is intended to give some hands-on practice with
tensor products.)

2.3.G. IMPORTANT EXERCISE: RIGHT-EXACTNESS OF · ⊗A N. Show that · ⊗A N
gives a covariant functor ModA → ModA. Show that ·⊗AN is a right-exact functor,
i.e. if

M ′ → M → M ′′ → 0

is an exact sequence of A-modules (which means f : M → M ′′ is surjective, and
M ′ surjects onto the kernel of f; see §2.6), then the induced sequence

M ′ ⊗A N → M ⊗A N → M ′′ ⊗A N → 0

is also exact. (This exercise is repeated in Exercise 2.6.F, but you may get a lot
out of doing it now.) (You will be reminded of the definition of right-exactness in
§2.6.4.)

The constructive definition ⊗ is a weird definition, and really the “wrong”
definition. To motivate a better one: notice that there is a natural A-bilinear map
M × N → M ⊗A N. (If M,N, P ∈ ModA, a map f : M × N → P is A-bilinear
if f(m1 + n2, n) = f(m1, n) + f(m2, n), f(m,n1 + n2) = f(m,n1) + f(m,n2), and
f(am,n) = f(m,an) = af(m,n).) Any A-bilinear map M×N → C factors through
the tensor product uniquely: M × N → M ⊗A N → C. (Think this through!)

We can take this as the definition of the tensor product as follows. It is an A-
module T along with an A-bilinear map t : M × N → T , such that given any
A-bilinear map t ′ : M × N → T ′, there is a unique A-linear map f : T → T ′ such
that t ′ = f ◦ t.

M × N
t $$

t ′

''%%
%%

%%
%%

% T

∃!f((
T ′

2.3.H. EXERCISE. Show that (T, t : M × N → T) is unique up to unique isomor-
phism. Hint: first figure out what “unique up to unique isomorphism” means for
such pairs. Then follow the analogous argument for the product.

In short: given M and N, there is an A-bilinear map t : M × N → M ⊗A N,
unique up to unique isomorphism, defined by the following universal property:
for any A-bilinear map t ′ : M × N → T ′ there is a unique A-linear map f : M ⊗A

N → T ′ such that t ′ = f ◦ t.
Note that this argument shows uniqueness assuming existence. We need to

still show the existence of such a tensor product. This forces us to do something
constructive. Fortunately, we already have:

2.3.I. EXERCISE. Show that the construction of §2.3.2 satisfies the universal prop-
erty of tensor product.

The uniqueness of tensor product is our second example of the proof of unique-
ness (up to unique isomorphism) by a universal property. If you have never seen
this sort of argument before, then you might think you get it, but you should think
over it some more. We will be using such arguments repeatedly in the future.
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The two exercises below are some useful facts about tensor products with
which you should be familiar. The first exercise deals with localization, so here
is a brief introduction in case you haven’t seen it before.

2.3.J. IMPORTANT EXERCISE. (a) If M is an A-module and A → B is a morphism
of rings, show that B⊗A M naturally has the structure of a B-module. (In fact this
describes a functor ModA → ModB, but you needn’t show this unless you want
to.)
(b) If further A → C is a morphism of rings, show that B⊗A C has the structure of
a ring. Hint: multiplication will be given by (b1 ⊗ c1)(b2 ⊗ c2) = (b1b2) ⊗ (c1c2).
(Exercise 2.3.Y will interpret this construction as a coproduct.)

2.3.K. IMPORTANT EXERCISE. If S is a multiplicative subset of A and M is an A-
module, describe a natural isomorphism (S−1A)⊗AM ∼= S−1M (as S−1A-modules
and as A-modules).

Here is another exercise involving a universal property.

2.3.3. Definition. An object of a category C is an initial object if it has precisely
one map to every object. It is a final object if it has precisely one map from every
object. It is a zero object if it is both an initial object and a final object.

2.3.L. EXERCISE. Show that any two initial objects are uniquely isomorphic. Show
that any two final objects are uniquely isomorphic.

This (partially) justifies the phrase “the initial object” rather than “an initial
object”, and similarly for “the final object” and “the zero object”.

2.3.M. EXERCISE. What are the initial and final objects are in Sets, Rings, and Top
(if they exist)? How about the two examples of §2.2.9?

2.3.N. ! EXERCISE. Prove Yoneda’s Lemma.

2.3.4. Important Example: Fibered products. (This notion will be essential later.)
Suppose we have morphisms f : X → z and g : Y → Z (in any category). Then
the fibered product is an object X ×Z Y along with morphisms πX : X ×Z Y → X
and πY : X ×Z Y → Y, where the two compositions f ◦ πX, g ◦ πY : X ×Z Y → Z
agree, such that given any object W with maps to X and Y (whose compositions to
Z agree), these maps factor through some unique W → X ×Z Y:

W

∃!

''

))&
&

&
&

&
&

&
&

&
&

&
&

&
&

&
&

**'''''''''''''''''''

X ×Z Y

πX

%%

πY

$$ Y

g

%%
X

f $$ Z

(Warning: the definition of the fibered product depends on f and g, even though
they are omitted from the notation X ×Z Y.)

By the usual universal property argument, if it exists, it is unique up to unique
isomorphism. (You should think this through until it is clear to you.) Thus the use
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of the phrase “the fibered product” (rather than “a fibered product”) is reasonable,
and we should reasonably be allowed to give it the name X ×Z Y. We know what
maps to it are: they are precisely maps to X and maps to Y that agree as maps to Z.

Depending on your religion, the diagram

X ×Z Y

πX

%%

πY

$$ Y

g

%%
X

f $$ Z

is called a fibered/pullback/Cartesian diagram/square (six possibilities).
The right way to interpret the notion of fibered product is first to think about

what it means in the category of sets.

2.3.O. EXERCISE. Show that in Sets,

X ×Z Y = {(x ∈ X, y ∈ Y) : f(x) = g(y)}.

More precisely, show that the right side, equipped with its evident maps to X and
Y, satisfies the universal property of the fibered product. (This will help you build
intuition for fibered products.)

2.3.P. EXERCISE. If X is a topological space, show that fibered products always
exist in the category of open sets of X, by describing what a fibered product is.
(Hint: it has a one-word description.)

2.3.Q. EXERCISE. If Z is the final object in a category C, and X, Y ∈ C, show that
“X ×Z Y = X × Y”: “the” fibered product over Z is uniquely isomorphic to “the”
product. (This is an exercise about unwinding the definition.)

2.3.R. USEFUL EXERCISE: TOWERS OF FIBER DIAGRAMS ARE FIBER DIAGRAMS. If
the two squares in the following commutative diagram are fiber diagrams, show
that the “outside rectangle” (involving U, V , Y, and Z) is also a fiber diagram.

U $$

%%

V

%%
W $$

%%

X

%%
Y $$ Z

2.3.S. EXERCISE. Given X → Y → Z, show that there is a natural morphism
X ×Y X → X ×Z X, assuming that both fibered products exist. (This is trivial once
you figure out what it is saying. The point of this exercise is to see why it is trivial.)

2.3.T. USEFUL EXERCISE: THE MAGIC DIAGRAM. Suppose we are given mor-
phisms X1, X2 → Y and Y → Z. Describe the natural morphism X1 ×Y X2 →
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X1 ×Z X2. Show that the following diagram is a fibered square.

X1 ×Y X2
$$

%%

X1 ×Z X2

%%
Y $$ Y ×Z Y

This diagram is surprisingly incredibly useful — so useful that we will call it the
magic diagram.

2.3.5. Monomorphisms and epimorphisms.

2.3.6. Definition. A morphism f : X → Y is a monomorphism if any two mor-
phisms g1, g2 : Z → X such that f ◦ g1 = f ◦ g2 must satisfy g1 = g2. In other
words, for any other object Z, the natural map Hom(Z,X) → Hom(Z, Y) is an
injection. This a generalization of an injection of sets. In other words, there is a
unique way of filling in the dotted arrow so that the following diagram commutes.

Z

≤1

%% ++(
(

(
(

(
(

(

X
f

$$ Y.

Intuitively, it is the categorical version of an injective map, and indeed this notion
generalizes the familiar notion of injective maps of sets. (The reason we don’t use
the word “injective” is that in some contexts, “injective” will have an intuitive
meaning which may not agree with “monomorphism”. This is also the case with
“epimorphism” vs. “surjective”.)

2.3.U. EXERCISE. Show that the composition of two monomorphisms is a monomor-
phism.

2.3.V. EXERCISE. Prove a morphism X → Y is a monomorphism if and only if
the induced morphism X → X ×Y X is an isomorphism. We may then take this
as the definition of monomorphism. (Monomorphisms aren’t central to future
discussions, although they will come up again. This exercise is just good practice.)

2.3.W. EXERCISE. Suppose Y → Z is a monomorphism, and X1, X2 → Y are two
morphisms. Show that X1×Y X2 and X1×Z X2 are canonically isomorphic. We will
use this later when talking about fibered products. (Hint: for any object V , give a
natural bijection between maps from V to the first and maps from V to the second.
It is also possible to use the magic diagram, Exercise 2.3.T)

The notion of an epimorphism is “dual” to the definition of monomorphism,
where all the arrows are reversed. This concept will not be central for us, although
it is necessary for the definition of an abelian category. Intuitively, it is the categor-
ical version of a surjective map.

2.3.7. Coproducts.
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2.3.X. EXERCISE. Define coproduct in a category by reversing all the arrows in the
definition of product. Show that coproduct for Sets is disjoint union. (This is why
we use the notation

∐
for disjoint union.)

2.3.Y. EXERCISE. Suppose A → B,C are two ring morphisms, so in particular B
and C are A-modules. Recall (Exercise 2.3.J) that B⊗A C has a ring structure. Show
that there is a natural morphism B → B ⊗A C given by b &→ b ⊗ 1. (This is not
necessarily an inclusion, see Exercise 2.3.F.) Similarly, there is a natural morphism
C → B ⊗A C. Show that this gives a fibered coproduct on rings, i.e. that

B ⊗A C C,,

B

--

A,,

--

satisfies the universal property of fibered coproduct.

2.3.Z. ! EXERCISE (REPRESENTABLE FUNCTORS). Much of our discussion about
universal properties can be cleanly expressed in terms of representable functors.
(a) Suppose A and B are objects in a category C. Give a bijection between the nat-
ural transformations hA → hB of covariant functors C → Sets (see Exercise 2.2.14
for the definition) and the morphisms B → A.
(b) State the corresponding fact for contravariant functors hA (see Exercise 2.2.20).
Remark: a contravariant functor F from C to sets is said to be representable if there is

a natural isomorphism ξ : F
∼ $$ hA . This exercise shows that the representing

object A is determined up to unique isomorphism by the pair (F, ξ). There is a sim-
ilar definition for covariant functors. (We will revisit this in §7.6, and this problem
will appear again as Exercise 7.6.B.)
(c) Yoneda’s lemma. Suppose F is a covariant functor C → Sets, and A ∈ C. Give
a bijection between the natural transformations hA → F and F(A). State the corre-
sponding fact for contravariant functors.

2.4 Limits and colimits

Limits and colimits provide two important examples defined by universal
properties. They generalize a number of familiar constructions. I’ll give the defi-
nition first, and then show you why it is familiar. For example, fractions will be
motivating examples of colimits (Exercise 2.4.B(a)), and the p-adic numbers (Ex-
ample 2.4.3) will be motivating examples of limits.

2.4.1. Limits. We say that a category is a small category if the objects and the
morphisms are sets. (This is a technical condition intended only for experts.) Sup-
pose I is any small category, and C is any category. Then a functor F : I → C (i.e.
with an object Ai ∈ C for each element i ∈ I, and appropriate commuting mor-
phisms dictated by I) is said to be a diagram indexed by I. We call I an index
category. Our index categories will be partially ordered sets (Example 2.2.8), in
which in particular there is at most one morphism between any two objects. (But
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other examples are sometimes useful.) For example, if ! is the category

•

%%

$$ •

%%
• $$ •

and A is a category, then a functor ! → A is precisely the data of a commuting
square in A.

Then the limit is an object lim←−I
Ai of C along with morphisms fj : lim←−I

Ai →
Aj such that if m : j → k is a morphism in I, then

lim←−I
Ai

fj

%%

fk

''))
))

))
))

)

Aj
F(m) $$ Ak

commutes, and this object and maps to each Ai is universal (final) respect to this
property. More precisely, given any other object W along with maps gi : W → Ai

commuting with the F(m) (if m : i → j is a morphism in I, then gj = F(m) ◦ gj),
then there is a unique map g : W → lim←−I

Ai so that gi = fi ◦ g for all i. (In some
cases, the limit is sometimes called the inverse limit or projective limit. We won’t
use this language.) By the usual universal property argument, if the limit exists, it
is unique up to unique isomorphism.

2.4.2. Examples: products. For example, if I is the partially ordered set

•

%%
• $$ •

we obtain the fibered product.
If I is

• •
we obtain the product.

If I is a set (i.e. the only morphisms are the identity maps), then the limit is
called the product of the Ai, and is denoted

∏
i Ai. The special case where I has

two elements is the example of the previous paragraph.
If I has an initial object e, then Ae is the limit, and in particular the limit

always exists.

2.4.3. Example: the p-adic numbers. The p-adic numbers, Zp, are often described
informally (and somewhat unnaturally) as being of the form Zp = ? + ?p + ?p2 +
?p3 + · · · . They are an example of a limit in the category of rings:

Zp

..**
**

**
**

**+++++++++++++++++

//,,,,,,,,,,,,,,,,,,,,,,,,,,,

· · · $$ Z/p3 $$ Z/p2 $$ Z/p

Limits do not always exist for any index category I. However, you can often
easily check that limits exist if the objects of your category can be interpreted as
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sets with additional structure, and arbitrary products exist (respecting the set-like
structure).

2.4.A. IMPORTANT EXERCISE. Show that in the category Sets,
{

(ai)i∈I ∈
∏

i

Ai : F(m)(ai) = aj for all m ∈ MorI(i, j) ∈ Mor(I)

}

,

along with the obvious projection maps to each Ai, is the limit lim←−I
Ai.

This clearly also works in the category ModA of A-modules, and its specializa-
tions such as Veck and Ab.

From this point of view, 2 + 3p + 2p2 + · · · ∈ Zp can be understood as the
sequence (2, 2 + 3p, 2 + 3p + 2p2, . . . ).

2.4.4. Colimits. More immediately relevant for us will be the dual (arrow-
reversed version) of the notion of limit (or inverse limit). We just flip all the arrows
in that definition, and get the notion of a colimit. Again, if it exists, it is unique up
to unique isomorphism. (In some cases, the colimit is sometimes called the direct
limit, inductive limit, or injective limit. We won’t use this language. I prefer us-
ing limit/colimit in analogy with kernel/cokernel and product/coproduct. This
is more than analogy, as kernels and products may be interpreted as limits, and
similarly with cokernels and coproducts. Also, I remember that kernels “map to”,
and cokernels are “mapped to”, which reminds me that a limit maps to all the ob-
jects in the big commutative diagram indexed by I; and a colimit has a map from
all the objects.)

Even though we have just flipped the arrows, colimits behave quite differently
from limits.

2.4.5. Example. The ring 5−∞ Z of rational numbers whose denominators are
powers of 5 is a colimit lim−→ 5−iZ. More precisely, 5∞ Z is the colimit of

Z $$ 5−1Z $$ 5−2Z $$ · · ·

The colimit over an index set I is called the coproduct, denoted
∐

i Ai, and is
the dual (arrow-reversed) notion to the product.

2.4.B. EXERCISE. (a) Interpret the statement “Q = lim−→
1
nZ”. (b) Interpret the

union of the some subsets of a given set as a colimit. (Dually, the intersection can
be interpreted as a limit.) The objects of the category in question are the subsets of
the given set.

Colimits don’t always exist, but there are two useful large classes of examples
for which they do.

2.4.6. Definition. A partially ordered set (S,≥) is filtered (or is said to be a filtered
set) if for each x, y ∈ S, there is a z such that x ≥ z and y ≥ z. More generally, a
category I is filtered if:

(i) for each x, y ∈ I, there is a z ∈ I and arrows x → z and y → z, and
(ii) for every two arrows u, v : x → y, there is an arrow w : y → z such that

w ◦ u = w ◦ v.
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2.4.C. EXERCISE. Suppose I is filtered. (We will be almost exclusively using the
case where I is a filtered set.) Show that any diagram in Sets indexed by I has the
following as a colimit:

{

a ∈
∐

i∈I

Ai

}

/ (ai ∈ Ai) ∼ f(ai) ∈ Aj for every f : Ai → Aj in the diagram.

This idea applies to many categories whose objects can be interpreted as sets
with additional structure (such as abelian groups, A-modules, groups, etc.). For
example, in Example 2.4.5, each element of the colimit is an element of something
upstairs, but you can’t say in advance what it is an element of. For example, 17/125
is an element of the 5−3Z (or 5−4Z, or later ones), but not 5−2Z. More generally,
in the category of A-modules ModA, each element a of the colimit lim−→ Ai can be
interpreted as an element of some a ∈ Ai. The element a ∈ lim−→Ai is 0 if there is
some m : i → j such that F(m)(a) = 0 (i.e. if it becomes 0 “later in the diagram”).
Furthermore, two elements interpreted as ai ∈ Ai and aj ∈ Aj are the same if
there are some arrows m : i → k and n : j → k such that F(m)(ai) = F(n)(aj), i.e.
if they become the same “later in the diagram”. To add two elements interpreted
as ai ∈ Ai and aj ∈ Aj, we choose arrows m : i → k and n : j → k, and then
interpret their sum as F(m)(ai) + F(n)(aj).

2.4.D. EXERCISE. Verify that the A-module described above is indeed the colimit.

2.4.E. USEFUL EXERCISE (LOCALIZATION AS COLIMIT). Generalize Exercise 2.4.B(a)
to interpret localization of a ring as a colimit over a filtered set: suppose S is a mul-
tiplicative set of A, and interpret S−1A = lim−→

1
sA where the limit is over s ∈ S.

A variant of this construction works without the filtered condition, if you have
another means of “connecting elements in different objects of your diagram”. For
example:

2.4.F. EXERCISE: COLIMITS OF A-MODULES WITHOUT THE FILTERED CONDITION.
Suppose you are given a diagram of A-modules indexed by I: F : I → ModA,
where we let Ai := F(i). Show that the colimit is ⊕i∈IAi modulo the relations
aj − F(m)(ai) for every m : i → j in I (i.e. for every arrow in the diagram).

The following exercise shows that you have to be careful to remember which
category you are working in.

2.4.G. UNIMPORTANT EXERCISE. Consider the filtered set of abelian groups
p−nZp/Zp. Show that this system has colimit Qp/Zp in the category of abelian
groups, and the colimit 0 in the category of finite abelian groups. Here Qp is the
fraction field of Zp, which can be interpreted as ∪p−nZp.

2.4.7. Summary. One useful thing to informally keep in mind is the following. In
a category where the objects are “set-like”, an element of a limit can be thought of
as an element in each object in the diagram, that are “compatible” (Exercise 2.4.A).
And an element of a colimit can be thought of (“has a representative that is”) an ele-
ment of a single object in the diagram (Exercise 2.4.C). Even though the definitions
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of limit and colimit are the same, just with arrows reversed, these interpretations
are quite different.

2.5 Adjoints

We next come to an very useful construction closely related to universal prop-
erties. Just as a universal property “essentially” (up to unique isomorphism) de-
termines an object in a category (assuming such an object exists), “adjoints” es-
sentially determine a functor (again, assuming it exists). Two covariant functors
F : A → B and G : B → A are adjoint if there is a natural bijection for all A ∈ A
and B ∈ B
(2.5.0.1) τAB : MorB(F(A), B) → MorA(A,G(B)).

We say that (F,G) form an adjoint pair, and that F is left-adjoint to G (and G is
right-adjoint to F). By “natural” we mean the following. For all f : A → A ′ in A,
we require

(2.5.0.2) MorB(F(A ′), B)
Ff∗

$$

τA ′B

%%

MorB(F(A), B)

τAB

%%
MorA(A ′, G(B))

f∗
$$ MorA(A,G(B))

to commute, and for all g : B → B ′ in B we want a similar commutative diagram to
commute. (Here f∗ is the map induced by f : A → A ′, and Ff∗ is the map induced
by Ff : L(A) → L(A ′).)

2.5.A. EXERCISE. Write down what this diagram should be. (Hint: do it by
extending diagram (2.5.0.2) above.)

2.5.B. EXERCISE. Show that the map τAB (2.5.0.1) is given as follows. For each A
there is a map ηA : A → GF(A) so that for any g : F(a) → B, the corresponding
f : A → G(B) is given by the composition

A
ηA $$ GF(A)

Gg $$ G(B).

Similarly, there is a map εB : B → FG(B) for each B so that for any f : A → G(B),
the corresponding map g : F(A) → B is given by the composition

F(A)
Ff $$ FG(B)

εB $$ B.

Here is an example of an adjoint pair.

2.5.C. EXERCISE. Suppose M, N, and P are A-modules. Describe a bijection
MorA(M⊗A N,P) ↔ MorA(M, MorA(N,P)). (Hint: try to use the universal prop-
erty.)

2.5.D. EXERCISE. Show that · ⊗A N and MorA(N, ·) are adjoint functors.

2.5.1. ! Fancier remarks we won’t use. You can check that the left adjoint deter-
mines the right adjoint up to unique natural isomorphism, and vice versa, by a
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universal property argument. The maps ηA and εB of Exercise 2.5.B are called
the unit and counit of the adjunction. This leads to a different characterization of
adjunction. Suppose functors F : A → B and G : B → A are given, along with
natural transformations ε : FG → id and η : id → GF with the property that
Gε ◦ ηG = idG (for each B ∈ G, the composition of ηG(B) : G(B) → GFG(B) and
G(ηB) : GFG(B) → G(B) is the identity) and ηF ◦ Fε = idF. Then you can check
that F is left adjoint to G. These facts aren’t hard to check, so if you want to use
them, you should verify everything for yourself.

2.5.2. Examples from other fields. For those familiar with representation theory:
Frobenius reciprocity may be understood in terms of adjoints. Suppose V is a
finite-dimensional representation of a finite group G, and W is a representation of

a subgroup H < G. Then induction and restriction are an adjoint pair (IndG
H, ResG

H)
between the category of G-modules and the category of H-modules.

Topologists’ favorite adjoint pair may be the suspension functor and the loop
space functor.

2.5.3. Example: groupification. Here is another motivating example: getting
an abelian group from an abelian semigroup. An abelian semigroup is just like
an abelian group, except you don’t require an inverse. One example is the non-
negative integers 0, 1, 2, . . . under addition. Another is the positive integers un-
der multiplication 1, 2, . . . . From an abelian semigroup, you can create an abelian
group. Here is a formalization of that notion. If S is a semigroup, then its groupi-
fication is a map of semigroups π : S → G such that G is a group, and any other
map of semigroups from S to a group G ′ factors uniquely through G.

S $$

π

!!-
--

--
--

- G

∃!

%%
G ′

2.5.E. EXERCISE. Construct groupification H from the category of abelian semi-
groups to the category of abelian groups. (One possibility of a construction: given
an abelian semigroup S, the elements of its groupification H(S) are (a, b), which
you may think of as a − b, with the equivalence that (a, b) ∼ (c, d) if a + d + e =
b + c + e for some e ∈ S. Describe addition in this group, and show that it satisfies
the properties of an abelian group. Describe the semigroup map S → H(S).) Let F
be the forgetful morphism from the category of abelian groups Ab to the category
of abelian semigroups. Show that H is left-adjoint to F.

(Here is the general idea for experts: We have a full subcategory of a category;
this is called a “reflective subcategory”. We want to “project” from the category to
the subcategory. We have

Morcategory(S,H) = Morsubcategory(G,H)

automatically; thus we are describing the left adjoint to the forgetful functor. How
the argument worked: we constructed something which was in the smaller cate-
gory, which automatically satisfies the universal property.)

2.5.F. EXERCISE. Show that if a semigroup is already a group then groupification
is the identity morphism, by the universal property.
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2.5.G. EXERCISE. The purpose of this exercise is to give you some practice with
“adjoints of forgetful functors”, the means by which we get groups from semi-
groups, and sheaves from presheaves. Suppose A is a ring, and S is a multiplica-
tive subset. Then S−1A-modules are a fully faithful subcategory of the category
of A-modules (meaning: the objects of the first category are a subset of the ob-
jects of the second; and the morphisms between any two objects of the second
that are secretly objects of the first are just the morphisms from the first). Then
M → S−1M satisfies a universal property. Figure out what the universal property
is, and check that it holds. In other words, describe the universal property enjoyed
by M → S−1M, and prove that it holds.

(Here is the larger story. Every S−1A-module is an A-module, and this is an
injective map, so we have a covariant forgetful functor F : ModS−1A → ModA. In
fact this is a fully faithful functor: it is injective on objects, and the morphisms
between any two S−1A-modules as A-modules are just the same when they are con-
sidered as S−1A-modules. Then there is a functor G : ModA → ModS−1A, which
might reasonably be called “localization with respect to S”, which is left-adjoint
to the forgetful functor. Translation: If M is an A-module, and N is an S−1A-
module, then Mor(GM,N) (morphisms as S−1A-modules, which are the same as
morphisms as A-modules) are in natural bijection with Mor(M,FN) (morphisms
as A-modules).)

Here is a table of adjoints that will come up for us.

situation category category left-adjoint right-adjoint
A B F : A → B G : B → A

A-modules · ⊗A N HomA(N, ·)
ring maps A → B ModA ModB ·AB forgetful

(extension of scalars) (restriction of scalars)
(pre)sheaves on a presheaves sheaves on X sheafification forgetful
topological space X on X

(semi)groups semigroups groups groupification forgetful
sheaves, f : X → Y sheaves on Y sheaves on X f−1 f∗
sheaves of abelian
groups or O-modules, sheaves on U sheaves on Y f! f−1

open immersions
f : U ↪→ Y

quasicoherent quasicoherent quasicoherent f∗ f∗
sheaves, f : X → Y sheaves on Y sheaves on X

2.5.4. Useful comment for experts. One last comment only for people who have seen
adjoints before: If (F,G) is an adjoint pair of functors, then F commutes with col-
imits, and G commutes with limits. Also, limits commute with limits and colimits
commute with colimits. We will prove these facts (and a little more) in §2.6.10.

2.6 Kernels, cokernels, and exact sequences: A brief introduction
to abelian categories
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Since learning linear algebra, you have been familiar with the notions and be-
haviors of kernels, cokernels, etc. Later in your life you saw them in the category of
abelian groups, and later still in the category of A-modules. Each of these notions
generalizes the previous one.

We will soon define some new categories (certain sheaves) that will have familiar-
looking behavior, reminiscent of that of modules over a ring. The notions of ker-
nels, cokernels, images, and more will make sense, and they will behave “the way
we expect” from our experience with modules. This can be made precise through
the notion of an abelian category. Abelian categories are the right general setting
in which one can do “homological algebra”, in which notions of kernel, cokernel,
and so on are used, and one can work with complexes and exact sequences.

We will see enough to motivate the definitions that we will see in general:
monomorphism (and subobject), epimorphism, kernel, cokernel, and image. But
in these notes we will avoid having to show that they behave “the way we expect”
in a general abelian category because the examples we will see are directly inter-
pretable in terms of modules over rings. In particular, it is not worth memorizing
the definition of abelian category.

Two central examples of an abelian category are the category Ab of abelian
groups, and the category ModA of A-modules. The first is a special case of the
second (just take A = Z). As we give the definitions, you should verify that ModA

is an abelian category.
We first define the notion of additive category. We will use it only as a stepping

stone to the notion of an abelian category.

2.6.1. Definition. A category C is said to be additive if it satisfies the following
properties.

Ad1. For each A,B ∈ C, Mor(A,B) is an abelian group, such that composition
of morphisms distributes over addition. (You should think about what
this means — it translates to two distinct statements).

Ad2. C has a zero object, denoted 0. (This is an object that is simultaneously an
initial object and a final object, Defn. 2.3.3.)

Ad3. It has products of two objects (a product A × B for any pair of objects),
and hence by induction, products of any finite number of objects.

In an additive category, the morphisms are often called homomorphisms, and
Mor is denoted by Hom. In fact, this notation Hom is a good indication that you’re
working in an additive category. A functor between additive categories preserving
the additive structure of Hom, is called an additive functor.

2.6.2. Remarks. It is a consequence of the definition of additive category that finite
direct products are also finite direct sums (coproducts) — the details don’t matter
to us. The symbol ⊕ is used for this notion. Also, it is quick to show that additive
functors send zero objects to zero objects (show that a is a 0-object if and only if
ida = 0a; additive functors preserve both id and 0), and preserves products.

One motivation for the name 0-object is that the 0-morphism in the abelian
group Hom(A,B) is the composition A → 0 → B.

Real (or complex) Banach spaces are an example of an additive category. The
category of free A-modules is another. The category ModA of A-modules is also an
example, but it has even more structure, which we now formalize as an example
of an abelian category.
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2.6.3. Definition. Let C be an additive category. A kernel of a morphism
f : B → C is a map i : A → B such that f ◦ i = 0, and that is universal with respect
to this property. Diagramatically:

Z

++(
(

(
(

(
(

(

0

&&..............

∃!

%%
A

i $$

0

00B
f $$ C

(Note that the kernel is not just an object; it is a morphism of an object to B.) Hence
it is unique up to unique isomorphism by universal property nonsense. A coker-
nel is defined dually by reversing the arrows — do this yourself. The kernel of
f : B → C is the limit (§2.4) of the diagram

0

%%
B

f $$ C

and similarly the cokernel is a colimit.
A morphism i : A → B in C is monic if for all g : C → A such that i ◦ g = 0, we

have g = 0:
C

∴g=0

%%

0

++(
(

(
(

(
(

(

A
i $$ B

(Once we know what an abelian category is, you may check that a monic mor-
phism in an abelian category is a monomorphism.) If i : A → B is monic, then
we say that A is a subobject of B, where the map i is implicit. Dually, there is the
notion of epi — reverse the arrows to find out what that is. The notion of quotient
object is defined dually to subobject.

An abelian category is an additive category satisfying three additional prop-
erties.

(1) Every map has a kernel and cokernel.
(2) Every monic morphism is the kernel of its cokernel.
(3) Every epi morphism is the cokernel of its kernel.

It is a non-obvious (and imprecisely stated) fact that every property you want
to be true about kernels, cokernels, etc. follows from these three.

The image of a morphism f : A → B is defined as im(f) = ker(coker f). It is
the unique factorization

A
epi

$$ im(f)
monic $$ B

It is the cokernel of the kernel, and the kernel of the cokernel. The reader may
want to verify this as an exercise. It is unique up to unique isomorphism.

We will leave the foundations of abelian categories untouched. The key thing
to remember is that if you understand kernels, cokernels, images and so on in
the category of modules over a ring ModA, you can manipulate objects in any
abelian category. This is made precise by Freyd-Mitchell Embedding Theorem.
(The Freyd-Mitchell Embedding Theorem: If A is an abelian category such that
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Hom(a, a ′) is a set for all a, a ′ ∈ A, then there is a ring A and an exact, full faith-
ful functor from A into ModA, which embeds A as a full subcategory. A proof
is sketched in [W, §1.6], and references to a complete proof are given there. The
moral is that to prove something about a diagram in some abelian category, we
may pretend that it is a diagram of modules over some ring, and we may then
“diagram-chase” elements. Moreover, any fact about kernels, cokernels, and so
on that holds in ModA holds in any abelian category.) However, the abelian cate-
gories we’ll come across will obviously be related to modules, and our intuition
will clearly carry over, so we needn’t invoke a theorem whose proof we haven’t
read. For example, we’ll show that sheaves of abelian groups on a topological
space X form an abelian category (§3.5), and the interpretation in terms of “com-
patible germs” will connect notions of kernels, cokernels etc. of sheaves of abelian
groups to the corresponding notions of abelian groups.

2.6.4. Complexes, exactness, and homology.
We say a sequence

(2.6.4.1) A
f $$ B

g $$ C

is a complex if g ◦ f = 0, and is exact if ker g = im f. An exact sequence with
five terms, the first and last of which are 0, is a short exact sequence. Note that

A
f $$ B $$ C $$ 0 being exact is equivalent to describing C as a cokernel

of f (with a similar statement for 0 $$ A $$ B
g $$ C ).

If (2.6.4.1) is a complex, then its homology (often denoted H) is ker g / im f. We
say that the ker g are the cycles, and im f are the boundaries (so homology is “cy-
cles mod boundaries”). If the complex is indexed in decreasing order, the indices
are often written as subscripts, and Hi is the homology at Ai+1 → Ai → Ai−1. If
the complex is indexed in increasing order, the indices are often written as super-
scripts, and the homology Hi at Ai−1 → Ai → Ai+1 is often called cohomology.

An exact sequence

(2.6.4.2) A• : · · · $$ Ai−1
fi−1

$$ Ai
fi

$$ Ai+1
fi+1

$$ · · ·

can be “factored” into short exact sequences

0 $$ ker fi $$ Ai $$ ker fi+1 $$ 0

which is helpful in proving facts about long exact sequences by reducing them to
facts about short exact sequences.

More generally, if (2.6.4.2) is assumed only to be a complex, then it can be
“factored” into short exact sequences.

(2.6.4.3) 0 $$ ker fi $$ Ai $$ im fi $$ 0

0 $$ im fi−1 $$ ker fi $$ Hi(A•) $$ 0
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2.6.A. EXERCISE. Describe exact sequences

(2.6.4.4) 0 $$ im fi $$ Ai+1 $$ coker fi $$ 0

0 $$ Hi(A•) $$ coker fi−1 $$ im fi $$ 0

(These are somehow dual to (2.6.4.3). In fact in some mirror universe this might
have been given as the standard definition of homology.)

2.6.B. EXERCISE. Suppose

0
d0

$$ A1
d1

$$ · · · dn−1
$$ An dn

$$$$ 0

is a complex of finite-dimensional k-vector spaces (often called A• for short). Show
that

∑
(−1)i dim Ai =

∑
(−1)ihi(A•). (Recall that hi(A•) = dim ker(di)/ im(di−1).)

In particular, if A• is exact, then
∑

(−1)i dim Ai = 0. (If you haven’t dealt much
with cohomology, this will give you some practice.)

2.6.C. IMPORTANT EXERCISE. Suppose C is an abelian category. Define the cate-
gory ComC as follows. The objects are infinite complexes

A• : · · · $$ Ai−1
fi−1

$$ Ai
fi

$$ Ai+1
fi+1

$$ · · ·

in C, and the morphisms A• → B• are commuting diagrams

(2.6.4.5) A• :

%%

· · · $$ Ai−1

%%

fi−1
$$ Ai

fi
$$

%%

Ai+1
fi+1

$$

%%

· · ·

B• : · · · $$ Bi−1
gi−1

$$ Bi
gi

$$ Bi+1
gi+1

$$ · · ·

Show that ComC is an abelian category. (Feel free to deal with the special case
ModA.)

2.6.D. IMPORTANT EXERCISE. Show that (2.6.4.5) induces a map of homology
H(Ai) → H(Bi). (Again, feel free to deal with the special case ModA.)

We will later define when two maps of complexes are homotopic (§23.1), and
show that homotopic maps induce isomorphisms on cohomology (Exercise 23.1.A),
but we won’t need that any time soon.
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2.6.5. Theorem (Long exact sequence). — A short exact sequence of complexes

0• :

%%

· · · $$ 0 $$

%%

0 $$

%%

0 $$

%%

· · ·

A• :

%%

· · · $$ Ai−1

%%

fi−1
$$ Ai

fi
$$

%%

Ai+1
fi+1

$$

%%

· · ·

B• :

%%

· · · $$ Bi−1

%%

gi−1

$$ Bi
gi

$$

%%

Bi+1
gi+1

$$

%%

· · ·

C• :

%%

· · · $$ Ci−1
hi−1

$$

%%

Ci
hi

$$

%%

Ci+1
hi+1

$$

%%

· · ·

0• : · · · $$ 0 $$ 0 $$ 0 $$ · · ·

induces a long exact sequence in cohomology

. . . $$ Hi−1(C•) $$

Hi(A•) $$ Hi(B•) $$ Hi(C•) $$

Hi+1(A•) $$ · · ·

(This requires a definition of the connecting homomorphism Hi−1(C•) → Hi(A•),
which is natural in an appropriate sense.) For a concise proof in the case of com-
plexes of modules, and a discussion of how to show this in general, see [W, §1.3]. It
will also come out of our discussion of spectral sequences as well (again, in the cat-
egory of modules over a ring), see Exercise 2.7.E, but this is a somewhat perverse
way of proving it.

2.6.6. Exactness of functors. If F : A → B is a covariant additive functor from one
abelian category to another, we say that F is right-exact if the exactness of

A ′ $$ A $$ A ′′ $$ 0,

in A implies that

F(A ′) $$ F(A) $$ F(A ′′) $$ 0

is also exact. Dually, we say that F is left-exact if the exactness of

0 $$ A ′ $$ A $$ A ′′ implies

0 $$ F(A ′) $$ F(A) $$ F(A ′′) is exact.
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A contravariant functor is left-exact if the exactness of

A ′ $$ A $$ A ′′ $$ 0 implies

0 $$ F(A ′′) $$ F(A) $$ F(A ′) is exact.

The reader should be able to deduce what it means for a contravariant functor to
be right-exact.

A covariant or contravariant functor is exact if it is both left-exact and right-
exact.

2.6.E. EXERCISE. Suppose F is an exact functor. Show that applying F to an exact
sequence preserves exactness. For example, if F is covariant, and A ′ → A → A ′′

is exact, then FA ′ → FA → FA ′′ is exact. (This will be generalized in Exer-
cise 2.6.H(c).)

2.6.F. EXERCISE. Suppose A is a ring, S ⊂ A is a multiplicative subset, and M is
an A-module.
(a) Show that localization of A-modules ModA → ModS−1A is an exact covariant
functor.
(b) Show that · ⊗ M is a right-exact covariant functor ModA → ModA. (This is a
repeat of Exercise 2.3.G.)
(c) Show that Hom(M, ·) is a left-exact covariant functor ModA → ModA.
(d) Show that Hom(·,M) is a left-exact contravariant functor ModA → ModA.

2.6.G. EXERCISE. Suppose M is a finitely presented A-module: M has a finite
number of generators, and with these generators it has a finite number of relations;
or usefully equivalently, fits in an exact sequence

(2.6.6.1) A⊕q → A⊕p → M → 0

Use (2.6.6.1) and the left-exactness of Hom to describe an isomorphism

S−1 HomA(M,N) ∼= HomS−1A(S−1M,S−1N).

(You might be able to interpret this in light of a variant of Exercise 2.6.H below, for
left-exact contravariant functors rather than right-exact covariant functors.)

2.6.7. ! Two useful facts in homological algebra.
We now come to two (sets of) facts I wish I had learned as a child, as they

would have saved me lots of grief. They encapsulate what is best and worst of
abstract nonsense. The statements are so general as to be nonintuitive. The proofs
are very short. They generalize some specific behavior it is easy to prove in an
ad hoc basis. Once they are second nature to you, many subtle facts will be come
obvious to you as special cases. And you will see that they will get used (implicitly
or explicitly) repeatedly.

2.6.8. ! Interaction of homology and (right/left-)exact functors.
You might wait to prove this until you learn about cohomology in Chapter 20,

when it will first be used in a serious way.
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2.6.H. IMPORTANT EXERCISE (THE FHHF THEOREM). This result can take you far,
and perhaps for that reason it has sometimes been called the fernbahnhof (Fern-
baHnHoF) theorem, [N, Ex. 2.6.H]. Suppose F : A → B is a covariant functor of
abelian categories. Suppose C• is a complex in A.

(a) (F right-exact yields FH• $$ H• ) If F is right-exact, describe a natural
morphism FH• → H•F. (More precisely, for each i, the left side is F ap-
plied to the cohomology at piece i of C•, while the right side is the coho-
mology at piece i of FC•.)

(b) (F left-exact yields FH• H•,, ) If F is right-exact, describe a natural
morphism FH• → H•F. (More precisely, for each i, the left side is F ap-
plied to the cohomology at piece i of C•, while the right side is the coho-
mology at piece i of FC•.)

(c) (F exact yields FH• ,, $$ H• ) If F is exact, show that the morphisms of (a)
and (b) are inverses and thus isomorphisms.

Hint for (a): use Cp dp
$$ Cp+1 $$ coker dp $$ 0 to give an isomorphism

F coker dp ∼= coker Fdp. Then use the first line of (2.6.4.4) to give a surjection

F im dp $$ $$ im Fdp . Then use the second line of (2.6.4.4) to give the desired

map FHpC• $$ HpFC• . While you are at it, you may as well describe a map

for the fourth member of the quartet {ker, coker, im, H, }: F ker dp $$ ker Fdp .

2.6.9. If this makes your head spin, you may prefer to think of it in the following
specific case, where both A and B are the category of A-modules, and F is ·⊗N for
some fixed N-module. Your argument in this case will translate without change
to yield a solution to Exercise 2.6.H(a) and (c) in general. If ⊗N is exact, then N is
called a flat A-module. (The notion of flatness will turn out to be very important,
and is discussed in detail in Chapter 24.)

For example, localization is exact, so S−1A is a flat A-algebra for all multiplica-
tive sets S. Thus taking cohomology of a complex of A-modules commutes with
localization — something you could verify directly.

2.6.10. ! Interaction of adjoints, (co)limits, and (left- and right-) exactness.
A surprising number of arguments boil down the statement:
Limits (e.g. kernels) commute with limits and right-adjoints. In particular, both right-

adjoints and limits are left exact.
as well as its dual:
Colimits (e.g. cokernels) commute with colimits and left-adjoints. In particular, both

left-adjoints and colimits are left exact.
These statements were promised in §2.5.4. The latter has a useful extension:
In an abelian category, colimits over filtered index categories are exact.
(“Filtered” was defined in §2.4.6.) If you want to use these statements (for

example, later in these notes), you will have to prove them. Let’s now make them
precise.

2.6.I. EXERCISE (KERNELS COMMUTE WITH LIMITS). Suppose C is an abelian
category, and a : I → C and b : I → C are two diagrams in C indexed by I. For
convenience, let Ai = a(i) and Bi = b(i) be the objects in those two diagrams. Let
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hi : Ai → Bi be maps commuting with the maps in the diagram. (Translation: h
is a natural transformation of functors a → b, see §2.2.21.) Then the ker hi form
another diagram in I indexed by I. Describe a natural isomorphism lim←−ker hi

∼=
ker(lim←−Ai → lim←−Bi).

2.6.J. EXERCISE. Make sense of the statement that “limits commute with limits” in
a general category, and prove it. (Hint: recall that kernels are limits. The previous
exercise should be a corollary of this one.)

2.6.11. Proposition (right-adjoints commute with limits). — Suppose (F : C →
D, G : D → C) is a pair of adjoint functors. If A = lim←−Ai is a limit in D of a diagram
indexed by I, then GA = lim←−GAi (with the corresponding maps GA → GAi) is a limit
in C.

Proof. We must show that GA → GAi satisfies the universal property of limits.
Suppose we have maps W → GAi commuting with the maps of I. We wish to
show that there exists a unique W → GA extending the W → GAi. By adjointness
of F and G, we can restate this as: Suppose we have maps FW → Ai commuting
with the maps of I. We wish to show that there exists a unique FW → A extending
the FW → Ai. But this is precisely the universal property of the limit. !

Of course, the dual statements to Exercise 2.6.J and Proposition 2.6.11 hold by
the dual arguments.

If F and G are additive functors between abelian categories, then (as kernels
are limits and cokernels are colimits) G is left-exact and F is right-exact.

2.6.K. EXERCISE. Show that in an abelian category, colimits over filtered index
categories are exact. Right-exactness follows from the above discussion, so the
issue is left-exactness. (Possible hint: After you show that localization is exact,
Exercise 2.6.F(a), or sheafification is exact, Exercise 3.5.D, in a hands on way, you
will be easily able to prove this. Conversely, this exercise will quickly imply those
two.)

2.6.L. EXERCISE. Show that filtered colimits commute with homology. Hint: use
the FHHF Theorem (Exercise 2.6.H), and the previous Exercise.

2.6.12. ! Dreaming of derived functors. When you see a left-exact functor, you
should always dream that you are seeing the end of a long exact sequence. If

0 → M ′ → M → M ′′ → 0

is an exact sequence in abelian category A, and F : A → B is a left-exact functor,
then

0 → FM ′ → FM → FM ′′

is exact, and you should always dream that it should continue in some natural
way. For example, the next term should depend only on M ′, call it R1FM ′, and if it
is zero, then FM → FM ′′ is an epimorphism. This remark holds true for left-exact
and contravariant functors too. In good cases, such a continuation exists, and is
incredibly useful. We will discuss this in Chapter 23.
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2.7 ! Spectral sequences

Spectral sequences are a powerful book-keeping tool for proving things in-
volving complicated commutative diagrams. They were introduced by Leray in
the 1940’s at the same time as he introduced sheaves. They have a reputation for
being abstruse and difficult. It has been suggested that the name ‘spectral’ was
given because, like spectres, spectral sequences are terrifying, evil, and danger-
ous. I have heard no one disagree with this interpretation, which is perhaps not
surprising since I just made it up.

Nonetheless, the goal of this section is to tell you enough that you can use
spectral sequences without hesitation or fear, and why you shouldn’t be frightened
when they come up in a seminar. What is perhaps different in this presentation
is that we will use spectral sequence to prove things that you may have already
seen, and that you can prove easily in other ways. This will allow you to get
some hands-on experience for how to use them. We will also see them only in the
special case of double complexes (which is the version by far the most often used
in algebraic geometry), and not in the general form usually presented (filtered
complexes, exact couples, etc.). See [W, Ch. 5] for more detailed information if
you wish.

You should not read this section when you are reading the rest of Chapter 2.
Instead, you should read it just before you need it for the first time. When you
finally do read this section, you must do the exercises.

For concreteness, we work in the category Veck of vector spaces over a field
k. However, everything we say will apply in any abelian category, such as the
category ModA of A-modules.

2.7.1. Double complexes.
A double complex is a collection of vector spaces Ep,q (p, q ∈ Z), and “right-

ward” morphisms dp,q
→ : Ep,q → Ep,q+1 and “upward” morphisms dp,q

↑ : Ep,q →
Ep+1,q. In the superscript, the first entry denotes the row number, and the second
entry denotes the column number, in keeping with the convention for matrices,
but opposite to how the (x, y)-plane is labeled. The subscript is meant to suggest
the direction of the arrows. We will always write these as d→ and d↑ and ignore
the superscripts. We require that d→ and d↑ satisfying (a) d2

→ = 0, (b) d2
↑ = 0,

and one more condition: (c) either d→d↑ = d↑d→ (all the squares commute) or
d→d↑ + d↑d→ = 0 (they all anticommute). Both come up in nature, and you can
switch from one to the other by replacing dp,q

↑ with (−1)qdp,q
↑ . So I will assume

that all the squares anticommute, but that you know how to turn the commuting
case into this one. (You will see that there is no difference in the recipe, basically
because the image and kernel of a homomorphism f equal the image and kernel
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respectively of −f.)

Ep+1,q
dp+1,q

→ $$ Ep+1,q+1

anticommutes

Ep,q

dp,q

↑

--

dp,q
→ $$ Ep,q+1

dp,q+1

↑

--

There are variations on this definition, where for example the vertical arrows
go downwards, or some different subset of the Ep,q are required to be zero, but I
will leave these straightforward variations to you.

From the double complex we construct a corresponding (single) complex E•

with Ek = ⊕iE
i,k−i, with d = d→ + d↑ . In other words, when there is a single

superscript k, we mean a sum of the kth antidiagonal of the double complex. The
single complex is sometimes called the total complex. Note that d2 = (d→ +d↑)

2 =
d2

→ + (d→d↑ + d↑d→ ) + d2
↑ = 0, so E• is indeed a complex.

The cohomology of the single complex is sometimes called the hypercoho-
mology of the double complex. We will instead use the phrase “cohomology of
the double complex”.

Our initial goal will be to find the cohomology of the double complex. You
will see later that we secretly also have other goals.

A spectral sequence is a recipe for computing some information about the
cohomology of the double complex. I won’t yet give the full recipe. Surprisingly,
this fragmentary bit of information is sufficent to prove lots of things.

2.7.2. Approximate Definition. A spectral sequence with rightward orientation
is a sequence of tables or pages →Ep,q

0 , →Ep,q
1 , →Ep,q

2 , . . . (p, q ∈ Z), where →Ep,q
0 =

Ep,q, along with a differential

→dp,q
r : →Ep,q

r → →Ep+r,q−r+1

with →dp,q
r ◦ →dp,q

r = 0, and with an isomorphism of the cohomology of →dr at

→Ep,q (i.e. ker →dp,q
r / im →dp−r,q+r−1

r ) with →Ep,q
r+1.

The orientation indicates that our 0th differential is the rightward one: d0 =
d→ . The left subscript “→” is usually omitted.

The order of the morphisms is best understood visually:

(2.7.2.1) •

•

•

•
d0

$$

d1

--
d2

11/
/
/
/
/
/
/
/
/
/
/
/
/
/

d3

22&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&

•
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(the morphisms each apply to different pages). Notice that the map always is
“degree 1” in the grading of the single complex E•.

The actual definition describes what E•,•
r and d•,•

r really are, in terms of E•,•.
We will describe d0, d1, and d2 below, and you should for now take on faith that
this sequence continues in some natural way.

Note that Ep,q
r is always a subquotient of the corresponding term on the 0th

page Ep,q
0 = Ep,q. In particular, if Ep,q = 0, then Ep,q

r = 0 for all r, so Ep,q
r = 0

unless p, q ∈ Z≥0.
Suppose now that E•,• is a first quadrant double complex, i.e. Ep,q = 0 for p <

0 or q < 0. Then for any fixed p, q, once r is sufficiently large, Ep,q
r+1 is computed

from (E•,•
r , dr) using the complex

0

Ep,q
r

dp,q
r

330
0
0
0
0
0
0
0
0
0
0
0
0

0

dp+r,q−r−1
r

330
0
0
0
0
0
0
0
0
0
0
0
0

and thus we have canonical isomorphisms

Ep,q
r

∼= Ep,q
r+1

∼= Ep,q
r+2

∼= · · ·

We denote this module Ep,q
∞ . The same idea works in other circumstances, for

example if the double complex is only nonzero in a finite number of rows — Ep,q =
0 unless p0 < p < pq. This will come up for example in the long exact sequence
and mapping cone discussion (Exercises 2.7.E and 2.7.F below).

We now describe the first few pages of the spectral sequence explicitly. As
stated above, the differential d0 on E•,•

0 = E•,• is defined to be d→ . The rows are
complexes:

• $$ • $$ •

The 0th page E0: • $$ • $$ •

• $$ • $$ •

and so E1 is just the table of cohomologies of the rows. You should check that

there are now vertical maps dp,q
1 : Ep,q

1 → Ep+1,q
1 of the row cohomology groups,

induced by d↑ , and that these make the columns into complexes. (This is essen-
tially the fact that a map of complexes induces a map on homology.) We have
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“used up the horizontal morphisms”, but “the vertical differentials live on”.

• • •

The 1st page E1: •

--

•

--

•

--

•

--

•

--

•

--

We take cohomology of d1 on E1, giving us a new table, Ep,q
2 . It turns out that

there are natural morphisms from each entry to the entry two above and one to the
left, and that the composition of these two is 0. (It is a very worthwhile exercise
to work out how this natural morphism d2 should be defined. Your argument
may be reminiscent of the connecting homomorphism in the Snake Lemma 2.7.5
or in the long exact sequence in cohomology arising from a short exact sequence
of complexes, Exercise 2.6.C. This is no coincidence.)

• • •

The 2nd page E2: • • •

• •

111
1
1
1
1
1
1
1
1
1
1
1
1
1
1

•

111
1
1
1
1
1
1
1
1
1
1
1
1
1
1

This is the beginning of a pattern.
Then it is a theorem that there is a filtration of Hk(E•) by Ep,q

∞ where p+q = k.
(We can’t yet state it as an official Theorem because we haven’t precisely defined
the pages and differentials in the spectral sequence.) More precisely, there is a
filtration

(2.7.2.2) E0,k
∞

! "E
1,k−1
∞ $$ ?

! "E
2,k−2
∞ $$ · · · ! " E0,k

$$ Hk(E•)

where the quotients are displayed above each inclusion. (I always forget which
way the quotients are supposed to go, i.e. whether Ek,0 or E0,k is the subobject.
One way of remembering it is by having some idea of how the result is proved.)

We say that the spectral sequence →E•,•
• converges to H•(E•). We often say

that →E•,•
2 (or any other page) abuts to H•(E•).

Although the filtration gives only partial information about H•(E•), some-
times one can find H•(E•) precisely. One example is if all Ei,k−i

∞ are zero, or if
all but one of them are zero (e.g. if Ei,k−i

r has precisely one non-zero row or col-
umn, in which case one says that the spectral sequence collapses at the rth step,
although we will not use this term). Another example is in the category of vector
spaces over a field, in which case we can find the dimension of Hk(E•). Also, in
lucky circumstances, E2 (or some other small page) already equals E∞ .

2.7.A. EXERCISE: INFORMATION FROM THE SECOND PAGE. Show that H0(E•) =
E0,0

∞ = E0,0
2 and

0 $$ E0,1
2

$$ H1(E•) $$ E1,0
2

d1,0
2 $$ E0,2

2
$$ H2(E•).
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2.7.3. The other orientation.
You may have observed that we could as well have done everything in the

opposite direction, i.e. reversing the roles of horizontal and vertical morphisms.
Then the sequences of arrows giving the spectral sequence would look like this
(compare to (2.7.2.1)).

(2.7.3.1) •

•

--

$$

&&..............

4422222222222222222222222 •

•

•
This spectral sequence is denoted ↑E

•,•
• (“with the upwards orientation”). Then

we would again get pieces of a filtration of H•(E•) (where we have to be a bit
careful with the order with which ↑E

p,q
∞ corresponds to the subquotients — it in

the opposite order to that of (2.7.2.2) for →Ep,q
∞ ). Warning: in general there is no

isomorphism between →Ep,q
∞ and ↑E

p,q
∞ .

In fact, this observation that we can start with either the horizontal or vertical
maps was our secret goal all along. Both algorithms compute information about
the same thing (H•(E•)), and usually we don’t care about the final answer — we
often care about the answer we get in one way, and we get at it by doing the
spectral sequence in the other way.

2.7.4. Examples.
We are now ready to see how this is useful. The moral of these examples is

the following. In the past, you may have proved various facts involving various
sorts of diagrams, by chasing elements around. Now, you will just plug them into
a spectral sequence, and let the spectral sequence machinery do your chasing for
you.

2.7.5. Example: Proving the Snake Lemma. Consider the diagram

0 $$ D $$ E $$ F $$ 0

0 $$ A $$

α

--

B $$

β

--

C

γ

--

$$ 0

where the rows are exact in the middle (at B, C, D, G, H, I) and the squares com-
mute. (Normally the Snake Lemma is described with the vertical arrows pointing
downwards, but I want to fit this into my spectral sequence conventions.) We wish
to show that there is an exact sequence

(2.7.5.1) 0 → kerα→ kerβ→ kerγ→ cokerα→ cokerβ→ cokerγ→ 0.

We plug this into our spectral sequence machinery. We first compute the co-
homology using the rightwards orientation, i.e. using the order (2.7.2.1). Then be-
cause the rows are exact, Ep,q

1 = 0, so the spectral sequence has already converged:
Ep,q

∞ = 0.
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We next compute this “0” in another way, by computing the spectral sequence
using the upwards orientation. Then ↑E

•,•
1 (with its differentials) is:

0 $$ cokerα $$ cokerβ $$ cokerγ $$ 0

0 $$ kerα $$ kerβ $$ kerγ $$ 0.

Then ↑E
•,•
2 is of the form:

0

&&33333333333333 0

&&..............

0

&&.............. ??

&&33333333333333 ?

&&.............. ? 0

0 ? ?

&&.............. ??

&&33333333333333 0

0 0

We see that after ↑E2, all the terms will stabilize except for the double-question-
marks — all maps to and from the single question marks are to and from 0-entries.
And after ↑E3, even these two double-quesion-mark terms will stabilize. But in
the end our complex must be the 0 complex. This means that in ↑E2, all the entries
must be zero, except for the two double-question-marks, and these two must be
isomorphic. This means that 0 → kerα→ kerβ→ kerγ and cokerα→ cokerβ→
cokerγ → 0 are both exact (that comes from the vanishing of the single-question-
marks), and

coker(kerβ→ kerγ) ∼= ker(cokerα→ cokerβ)

is an isomorphism (that comes from the equality of the double-question-marks).
Taken together, we have proved the exactness of (2.7.5.1), and hence the Snake
Lemma! (Notice: in the end we didn’t really care about the double complex. We
just used it as a prop to prove the snake lemma.)

Spectral sequences make it easy to see how to generalize results further. For
example, if A → B is no longer assumed to be injective, how would the conclusion
change?

2.7.B. UNIMPORTANT EXERCISE (GRAFTING EXACT SEQUENCES, A WEAKER VER-
SION OF THE SNAKE LEMMA). Extend the snake lemma as follows. Suppose we
have a commuting diagram

0 $$ X ′ $$ Y ′ $$ Z ′ $$ A ′ $$ · · ·

· · · $$ W $$

--

X $$

a

--

Y $$

b

--

Z $$

c

--

0.

--
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where the top and bottom rows are exact. Show that the top and bottom rows can
be ”grafted together” to an exact sequence

· · · $$ W $$ ker a $$ ker b $$ ker c

$$ coker a $$ coker b $$ coker c $$ A ′ $$ · · · .

2.7.6. Example: the Five Lemma. Suppose

(2.7.6.1) F $$ G $$ H $$ I $$ J

A $$

α

--

B $$

β

--

C

γ

--

$$ D $$

δ

--

E

ε

--

where the rows are exact and the squares commute.
Suppose α, β, δ, ε are isomorphisms. We will show that γ is an isomorphism.
We first compute the cohomology of the total complex using the rightwards

orientation (2.7.2.1). We choose this because we see that we will get lots of zeros.
Then →E•,•

1 looks like this:

? 0 0 0 ?

?

--

0

--

0

--

0

--

?

--

Then →E2 looks similar, and the sequence will converge by E2, as we will never get
any arrows between two non-zero entries in a table thereafter. We can’t conclude
that the cohomology of the total complex vanishes, but we can note that it van-
ishes in all but four degrees — and most important, it vanishes in the two degrees
corresponding to the entries C and H (the source and target of γ).

We next compute this using the upwards orientation (2.7.3.1). Then ↑E1 looks
like this:

0 $$ 0 $$ ? $$ 0 $$ 0

0 $$ 0 $$ ? $$ 0 $$ 0

and the spectral sequence converges at this step. We wish to show that those two
question marks are zero. But they are precisely the cohomology groups of the total
complex that we just showed were zero — so we’re done!

The best way to become comfortable with this sort of argument is to try it
out yourself several times, and realize that it really is easy. So you should do the
following exercises!

2.7.C. EXERCISE: THE SUBTLE FIVE LEMMA. By looking at the spectral sequence
proof of the Five Lemma above, prove a subtler version of the Five Lemma, where
one of the isomorphisms can instead just be required to be an injection, and an-
other can instead just be required to be a surjection. (I am deliberately not telling
you which ones, so you can see how the spectral sequence is telling you how to
improve the result.)
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2.7.D. EXERCISE. If β and δ (in (2.7.6.1)) are injective, and α is surjective, show
that γ is injective. Give the dual statement (whose proof is of course essentially
the same).

2.7.E. EXERCISE. Use spectral sequences to show that a short exact sequence of
complexes gives a long exact sequence in cohomology (Exercise 2.6.C).

2.7.F. EXERCISE (THE MAPPING CONE). Suppose µ : A• → B• is a morphism of
complexes. Suppose C• is the single complex associated to the double complex
A• → B•. (C• is called the mapping cone of µ.) Show that there is a long exact
sequence of complexes:

· · · → Hi−1(C•) → Hi(A•) → Hi(B•) → Hi(C•) → Hi+1(A•) → · · · .

(There is a slight notational ambiguity here; depending on how you index your
double complex, your long exact sequence might look slightly different.) In partic-
ular, we will use the fact that µ induces an isomorphism on cohomology if and only
if the mapping cone is exact. (We won’t use it until the proof of Theorem 20.2.4.)

The Grothendieck (or composition of functor) spectral sequence (Exercise 23.3.D)
will be an important example of a spectral sequence that specializes in a number
of useful ways.

You are now ready to go out into the world and use spectral sequences to your
heart’s content!

2.7.7. !! Complete definition of the spectral sequence, and proof.
You should most definitely not read this section any time soon after reading

the introduction to spectral sequences above. Instead, flip quickly through it to
convince yourself that nothing fancy is involved.

We consider the rightwards orientation. The upwards orientation is of course
a trivial variation of this.

2.7.8. Goals. We wish to describe the pages and differentials of the spectral se-
quence explicitly, and prove that they behave the way we said they did. More
precisely, we wish to:

(a) describe Ep,q
r ,

(b) verify that Hk(E•) is filtered by Ep,k−p
∞ as in (2.7.2.2),

(c) describe dr and verify that d2
r = 0, and

(d) verify that Ep,q
r+1 is given by cohomology using dr.

Before tacking these goals, you can impress your friends by giving this short
description of the pages and differentials of the spectral sequence. We say that
an element of E•,• is a (p, q)-strip if it is an element of ⊕l≥0Ep+l,q−l (see Fig. 2.1).
Its non-zero entries lie on a semi-infinite antidiagonal starting with position (p, q).
We say that the (p, q)-entry (the projection to Ep,q) is the leading term of the (p, q)-

strip. Let Sp,q ⊂ E•,• be the submodule of all the (p, q)-strips. Clearly Sp,q ⊂
Ep+q, and S0,k = Ek.

Note that the differential d = d↑ +d→ sends a (p, q)-strip x to a (p, q+ 1)-strip
dx. If dx is furthermore a (p + r, q + r + 1)-strip (r ∈ Z≥0), we say that x is an

r-closed (p, q)-strip. We denote the set of such Sp,q
r (so for example Sp,q

0 = Sp,q,
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. . . 0 0 0 0

0 ∗p+2,q−2 0 0 0

0 0 ∗p+1,q−1 0 0

0 0 0 ∗p,q 0

0 0 0 0 0p−1,q+1

FIGURE 2.1. A (p, q)-strip (in Sp,q ⊂ Ep+q). Clearly S0,k = Ek.

and S0,k
0 = Ek). An element of Sp,q

r may be depicted as:

. . .
$$ ?

∗p+2,q−2

--

$$ 0

∗p+1,q−1

--

$$ 0

∗p,q $$

--

0

2.7.9. Preliminary definition of Ep,q
r . We are now ready to give a first definition of

Ep,q
r , which by construction should be a subquotient of Ep,q = Ep,q

0 . We describe
it as such by describing two submodules Yp,q

r ⊂ Xp,q
r ⊂ Ep,q, and defining Ep,q

r =
Xp,q

r /Yp,q
r . Let Xp,q

r be those elements of Ep,q that are the leading terms of r-closed
(p, q)-strips. Note that by definition, d sends (r − 1)-closed Sp−(r−1),q+(r−1)−1-
strips to (p, q)-strips. Let Yp,q

r be the leading ((p, q))-terms of the differential d of
(r−1)-closed (p−(r−1), q+(r−1)−1)-strips (where the differential is considered
as a (p, q)-strip).

We next give the definition of the differential dr of such an element x ∈ Xp,q
r .

We take any r-closed (p, q)-strip with leading term x. Its differential d is a (p +
r, q−r+1)-strip, and we take its leading term. The choice of the r-closed (p, q)-strip
means that this is not a well-defined element of Ep,q. But it is well-defined modulo
the (r − 1)-closed (p + 1, r + 1)-strips, and hence gives a map Ep,q

r → Ep+r,q−r+1
r .

This definition is fairly short, but not much fun to work with, so we will forget
it, and instead dive into a snakes’ nest of subscripts and superscripts.
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We begin with making some quick but important observations about (p, q)-
strips.

2.7.G. EXERCISE. Verify the following.

(a) Sp,q = Sp+1,q−1 ⊕ Ep,q.
(b) (Any closed (p, q)-strip is r-closed for all r.) Any element x of Sp,q = Sp,q

0

that is a cycle (i.e. dx = 0) is automatically in Sp,q
r for all r. For example,

this holds when x is a boundary (i.e. of the form dy).
(c) Show that for fixed p, q,

Sp,q
0 ⊃ Sp,q

1 ⊃ · · · ⊃ Sp,q
r ⊃ · · ·

stabilizes for r . 0 (i.e. Sp,q
r = Sp,q

r+1 = · · · ). Denote the stabilized mod-
ule Sp,q

∞ . Show Sp,q
∞ is the set of closed (p, q)-strips (those (p, q)-strips

annihilated by d, i.e. the cycles). In particular, S0,k
r is the set of cycles in

Ek.

2.7.10. Defining Ep,q
r .

Define Xp,q
r := Sp,q

r /Sp+1,q−1
r−1 and Y := dS

p−(r−1),q+(r−1)−1
r−1 /Sp+1,q−1

r−1 .
Then Yp,q

r ⊂ Xp,q
r by Exercise 2.7.G(b). We define

(2.7.10.1) Ep,q
r =

Xp,q
r

Yp,q
r

=
Sp,q

r

dS
p−(r−1),q+(r−1)−1
r−1 + Sp+1,q−1

r−1

We have completed Goal 2.7.8(a).
You are welcome to verify that these definitions of Xp,q

r and Yp,q
r and hence

Ep,q
r agree with the earlier ones of §2.7.9 (and in particular Xp,q

r and Yp,q
r are both

submodules of Ep,q), but we won’t need this fact.

2.7.H. EXERCISE: Ep,k−p
∞ GIVES SUBQUOTIENTS OF Hk(E•). By Exercise 2.7.G(c),

Ep,q
r stabilizes as r → ∞. For r . 0, interpret Sp,q

r /dS
p−(r−1),q+(r−1)−1
r−1 as the

cycles in Sp,q
∞ ⊂ Ep+q modulo those boundary elements of dEp+q−1 contained in

Sp,q
∞ . Finally, show that Hk(E•) is indeed filtered as described in (2.7.2.2).

We have completed Goal 2.7.8(b).

2.7.11. Definition of dr.
We shall see that the map dr : Ep,q

r → Ep+r,q−r+1 is just induced by our
differential d. Notice that d sends r-closed (p, q)-strips Sp,q

r to (p + r, q − r + 1)-
strips Sp+r,q−r+1, by the definition “r-closed”. By Exercise 2.7.G(b), the image lies

in Sp+r,q−r+1
r .

2.7.I. EXERCISE. Verify that d sends

dS
p−(r−1),q+(r−1)−1
r−1 +Sp+1,q−1

r−1 → dS
(p+r)−(r−1),(q−r+1)+(r−1)−1
r−1 +S

(p+r)+1,(q−r+1)−1
r−1 .

(The first term on the left goes to 0 from d2 = 0, and the second term on the left
goes to the first term on the right.)
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Thus we may define

dr : Ep,q
r =

Sp,q
r

dS
p−(r−1),q+(r−1)−1
r−1 + Sp+1,q−1

r−1

→

Sp+r,q−r+1
r

dSp+1,q−1
r−1 + Sp+r+1,q−r

r−1

= Ep+r,q−r+1
r

and clearly d2
r = 0 (as we may interpret it as taking an element of Sp,q

r and apply-
ing d twice).

We have accomplished Goal 2.7.8(c).

2.7.12. Verifying that the cohomology of dr at Ep,q
r is Ep,q

r+1. We are left with the
unpleasant job of verifying that the cohomology of

(2.7.12.1)
Sp−r,q+r−1

r

dSp−2r+1,q−3
r−1 +Sp−r+1,q+r−2

r−1

dr $$ Sp,q
r

dSp−r+1,q+r−2
r−1 +Sp+1,q−1

r−1

dr $$ Sp+r,q−r+1
r

dSp+1,q−1
r−1 +Sp+r+1,q−r

r−1

is naturally identified with

Sp,q
r+1

dSp−r,q+r−1
r + Sp+1,q−1

r

and this will conclude our final Goal 2.7.8(d).
We begin by understanding the kernel of the right map of (2.7.12.1). Suppose

a ∈ Sp,q
r is mapped to 0. This means that da = db + c, where b ∈ Sp+1,q−1

r−1 .

If u = a − b, then u ∈ Sp,q, while du = c ∈ Sp+r+1,q−r
r−1 ⊂ Sp+r+1,q−r, from

which u is r-closed, i.e. u ∈ Sp,q
r+1. Hence a = b + u + x where dx = 0, from

which a − x = b + c ∈ Sp+1,q−1
r−1 + Sp,q

r+1. However, x ∈ Sp,q, so x ∈ Sp,q
r+1 by

Exercise 2.7.G(b). Thus a ∈ Sp+1,q−1
r−1 +Sp,q

r+1. Conversely, any a ∈ Sp+1,q−1
r−1 +Sp,q

r+1

satisfies
da ∈ dSp+r,q−r+1

r−1 + dSp,q
r+1 ⊂ dSp+r,q−r+1

r−1 + Sp+r+1,q−r
r−1

(using dSp,q
r+1 ⊂ Sp+r+1,q−r

0 and Exercise 2.7.G(b)) so any such a is indeed in the
kernel of

Sp,q
r →

Sp+r,q−r+1
r

dSp+1,q−1
r−1 + Sp+r+1,q−r

r−1

.

Hence the kernel of the right map of (2.7.12.1) is

ker =
Sp+1,q−1

r−1 + Sp,q
r+1

dSp−r+1,q+r−2
r−1 + Sp+1,q−1

r−1

.

Next, the image of the left map of (2.7.12.1) is immediately

im =
dSp−r,q+r−1

r + dSp−r+1,q+r−2
r−1 + Sp+1,q−1

r−1

dSp−r+1,q+r−2
r−1 + Sp+1,q−1

r−1

=
dSp−r,q+r−1

r + Sp+1,q−1
r−1

dSp−r+1,q+r−2
r−1 + Sp+1,q−1

r−1

(as Sp−r,q−r+1
r contains Sp−r+1,q+r−1

r−1 ).
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Thus the cohomology of (2.7.12.1) is

ker / im =
Sp+1,q−1

r−1 + Sp,q
r+1

dSp−r,q+r−1
r + Sp+1,q−1

r−1

=
Sp,q

r+1

Sp,q
r+1 ∩ (dSp−r,q+r−1

r + Sp+1,q−1
r−1 )

where the equality on the right uses the fact that dSp−r,q+r+1
r ⊂ Sp,q

r+1 and an
isomorphism theorem. We thus must show

Sp,q
r+1 ∩ (dSp−r,q+r−1

r + Sp+1,q−1
r−1 ) = dSp−r,q+r−1

r + Sp+1,q−1
r .

However,

Sp,q
r+1 ∩ (dSp−r,q+r−1

r + Sp+1,q−1
r−1 ) = dSp−r,q+r−1

r + Sp,q
r+1 ∩ Sp+1,q−1

r−1

and Sp,q
r+1 ∩ Sp+1,q−1

r−1 consists of (p, q)-strips whose differential vanishes up to row

p + r, from which Sp,q
r+1 ∩ Sp+1,q−1

r−1 = Sp,q
r as desired.

This completes the explanation of how spectral sequences work for a first-
quadrant double complex. The argument applies without significant change to
more general situations, including filtered complexes.



CHAPTER 3

Sheaves

It is perhaps suprising that geometric spaces are often best understood in
terms of (nice) functions on them. For example, a differentiable manifold that
is a subset of Rn can be studied in terms of its differentiable functions. Because
“geometric spaces” can have few (everywhere-defined) functions, a more precise
version of this insight is that the structure of the space can be well understood
by considering all functions on all open subsets of the space. This information
is encoded in something called a sheaf. Sheaves were introduced by Leray in the
1940’s. (The reason for the name is will be somewhat explained in Remark 3.4.2.)
We will define sheaves and describe useful facts about them. We will begin with a
motivating example to convince you that the notion is not so foreign.

One reason sheaves are slippery to work with is that they keep track of a huge
amount of information, and there are some subtle local-to-global issues. There are
also three different ways of getting a hold of them.

• in terms of open sets (the definition §3.2) — intuitive but in some way the
least helpful

• in terms of stalks (see §3.4)
• in terms of a base of a topology (§3.7).

Knowing which to use requires experience, so it is essential to do a number of
exercises on different aspects of sheaves in order to truly understand the concept.

3.1 Motivating example: The sheaf of differentiable functions.

Consider differentiable functions on the topological space X = Rn (or more
generally on a smooth manifold X). The sheaf of differentiable functions on X is
the data of all differentiable functions on all open subsets on X. We will see how
to manage this data, and observe some of its properties. On each open set U ⊂ X,
we have a ring of differentiable functions. We denote this ring of functions O(U).

Given a differentiable function on an open set, you can restrict it to a smaller
open set, obtaining a differentiable function there. In other words, if U ⊂ V is an
inclusion of open sets, we have a “restriction map” resV,U : O(V) → O(U).

Take a differentiable function on a big open set, and restrict it to a medium
open set, and then restrict that to a small open set. The result is the same as if you
restrict the differentiable function on the big open set directly to the small open set.

55
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In other words, if U ↪→ V ↪→ W, then the following diagram commutes:

O(W)
resW,V $$

resW,U ''44
44

44
44

4
O(V)

resV,U5555
55

55
55

5

O(U)

Next take two differentiable functions f1 and f2 on a big open set U, and an
open cover of U by some {Ui}. Suppose that f1 and f2 agree on each of these Ui.
Then they must have been the same function to begin with. In other words, if
{Ui}i∈I is a cover of U, and f1, f2 ∈ O(U), and resU,Ui

f1 = resU,Ui
f2, then f1 = f2.

Thus we can identify functions on an open set by looking at them on a covering by
small open sets.

Finally, given the same U and cover {Ui}, take a differentiable function on
each of the Ui — a function f1 on U1, a function f2 on U2, and so on — and they
agree on the pairwise overlaps. Then they can be “glued together” to make one
differentiable function on all of U. In other words, given fi ∈ O(Ui) for all i, such
that resUi,Ui∩Uj

fi = resUj,Ui∩Uj
fj for all i and j, then there is some f ∈ O(U)

such that resU,Ui
f = fi for all i.

The entire example above would have worked just as well with continuous
function, or smooth functions, or just plain functions. Thus all of these classes
of “nice” functions share some common properties. We will soon formalize these
properties in the notion of a sheaf.

3.1.1. The germ of a differentiable function. Before we do, we first give another
definition, that of the germ of a differentiable function at a point p ∈ X. Intuitively,
it is a “shred” of a differentiable function at p. Germs are objects of the form
{(f, open U) : p ∈ U, f ∈ O(U)} modulo the relation that (f,U) ∼ (g, V) if there is
some open set W ⊂ U,V containing p where f|W = g|W (i.e., resU,W f = resV,W g).
In other words, two functions that are the same in a neighborhood of p (but may
differ elsewhere) have the same germ. We call this set of germs the stalk at p, and
denote it Op. Notice that the stalk is a ring: you can add two germs, and get
another germ: if you have a function f defined on U, and a function g defined on
V , then f + g is defined on U ∩ V . Moreover, f + g is well-defined: if f ′ has the
same germ as f, meaning that there is some open set W containing p on which
they agree, and g ′ has the same germ as g, meaning they agree on some open W ′

containing p, then f ′ + g ′ is the same function as f + g on U ∩ V ∩ W ∩ W ′.
Notice also that if p ∈ U, you get a map O(U) → Ox. Experts may already see

that we are talking about germs as colimits.
We can see that Op is a local ring as follows. Consider those germs vanishing

at p, which we denote mp ⊂ Op. They certainly form an ideal: mp is closed under
addition, and when you multiply something vanishing at p by any other function,
the result also vanishes at p. We check that this ideal is maximal by showing that
the quotient map is a field:

(3.1.1.1) 0 $$ m := ideal of germs vanishing at p $$ Op
f)→f(p)$$ R $$ 0

3.1.A. EXERCISE. Show that this is the only maximal ideal of Op. (Hint: show that
every element of Op \ m is invertible.)
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Note that we can interpret the value of a function at a point, or the value of
a germ at a point, as an element of the local ring modulo the maximal ideal. (We
will see that this doesn’t work for more general sheaves, but does work for things
behaving like sheaves of functions. This will be formalized in the notion of a local-
ringed space, which we will see, briefly, in §7.3.

3.1.2. Aside. Notice that m/m2 is a module over Op/m ∼= R, i.e. it is a real vector
space. It turns out to be naturally (whatever that means) the cotangent space to
the manifold at p. This insight will prove handy later, when we define tangent and
cotangent spaces of schemes.

3.1.B. EXERCISE FOR THOSE WITH DIFFERENTIAL GEOMETRIC BACKGROUND. Prove
this.

3.2 Definition of sheaf and presheaf

We now formalize these notions, by defining presheaves and sheaves. Presheaves
are simpler to define, and notions such as kernel and cokernel are straightforward.
Sheaves are more complicated to define, and some notions such as cokernel re-
quire more thought. But sheaves are more useful because they are in some vague
sense more geometric; you can get information about a sheaf locally.

3.2.1. Definition of sheaf and presheaf on a topological space X.
To be concrete, we will define sheaves of sets. However, Sets can be replaced

by any category, and other important examples are abelian groups Ab, k-vector
spaces Veck, rings Rings, modules over a ring ModA, and more. (You may have
to think more when dealing with a category of objects that aren’t “sets with addi-
tional structure”, but there aren’t any new complications. In any case, this won’t
be relevant for us. ) Sheaves (and presheaves) are often written in calligraphic
font, or with an underline. The fact that F is a sheaf on a topological space X is
often written as

F

X

3.2.2. Definition: Presheaf. A presheaf F on a topological space X is the follow-
ing data.

• To each open set U ⊂ X, we have a set F(U) (e.g. the set of differentiable
functions in our motivating example). (Notational warning: Several notations are
in use, for various good reasons: F(U) = Γ(U,F) = H0(U,F). We will use them
all.) The elements of F(U) are called sections of F over U.

• For each inclusion U ↪→ V of open sets, we have a restriction map resV,U :
F(V) → F(U) (just as we did for differentiable functions).

The data is required to satisfy the following two conditions.
• The map resU,U is the identity: resU,U = idF(U).
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Frobenius morphism, 375
full functor, 20
function field K(·), 123
function field, 123, 132, 235
functions on a scheme, 79, 106
functor, 19
functor of points, 145

Gaussian integers mathbbZ[i], 260
Gaussian integers mathbbZ[i], 254
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generalization, 94
generated by global sections, 306
generated in degree 1, 116, 183
generic point, 121
generic fiber, 200
generic point, 94
generically separable morphism, 421
generization, 121
geometric fiber, 204
geometric fiber, 203
geometric point, 204
geometrically connected, 204
geometrically

connected/irreducible/integral/reduced
fibers, 203

geometrically integral, 204
geometrically irreducible, 204
geometrically nonsingular fibers, 475
geometrically reduced, 204
germ, 58
germ of function near a point, 107
globally generated, 306
gluability axiom, 58
gluing along closed subschemes, 461
Going-Up theorem, 161
graded ring, 116
graded ring over A, 116
graph morphism, 220
graph of rational map, 190
Grassmannian, 119, 157, 416
Grothendieck topology, 474
Grothendieck topology, 278
group scheme, 155
group schemes, 154
groupoid, 18

Hartogs’ Theorem, 272
Hausdorff, 213, 213, 215
height, 232
higher direct image sheaf, 368, 369
higher pushforward sheaf, 369
Hilbert polynomial, 362
Hilbert basis theorem, 95
Hilbert function, 362
Hilbert scheme, 460
Hironaka’s example, 462
Hodge bundle, 464
Hodge theory, 420
Hom, 35
homogeneous ideal, 115
homogeneous space, 480
homogeneous ideal, 116
homology, 37
homotopic maps of complexes, 434
Hopf algebra, 156
hypercohomology, 44
hyperplane, 182, 183
hyperplane class, 296

hypersurface, 182, 233

ideal denominators, 242
ideal of denominators, 129
ideal sheaf, 177
identity axiom, 58
immersion, 473
index category, 28
induced reduced subscheme structure, 189
induced reduced subscheme structure, 189
infinite-dimensional Noetherian ring, 233
initial object, 25
injective limit, 30
injective object in an abelian category, 437
integral, 123, 160
integral closure, 207
integral extension of rings, 160
integral morphism, 169
integral morphism of rings, 160
intersection number, 367
inverse image, 71
inverse image ideal sheaf, 200
inverse image scheme, 200
inverse image sheaf, 70
inverse limit, 29
invertible ideal sheaf, 179
invertible sheaf, 270, 273
irreducible, 93, 121
irreducible (Weil) divisor, 293
irreducible component, 96
irreducible components, 121
irregularity, 421
irrelevant ideal, 116
isomorphism, 18
isomorphism of schemes, 106

Jacobian, 404
Jacobian matrix, 476
Jacobian criterion, 250
Jacobson radical, 163

K3 surfaces, 429
kernel, 36
knotted plane, 260
Kodaira vanishing, 349
Krull, 239
Krull dimension, 231
Krull dimension, 231
Krull’s Principal Ideal Theorem, 239

Lüroth’s theorem, 424
left-adjoint, 32
left-exact, 40
left-exactness of global section functor, 70
Leibniz rule, 402
length, 367
Leray spectral sequence, 348
limit, 29
line, 183
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line bundle, 269
linear space, 182
linear series, 318
linear system, 318
local complete intersection, 428
local criterion for flatness, 457
local ringed space, 107
local-ringed space, 142
locally ringed spaces, 142
locally closed immersion, 180
locally constant sheaf, 60
locally free sheaf, 270
locally free sheaf, 269, 273
locally integral (temp.), 254
locally Noetherian scheme, 126
locally of finite type A-scheme, 126
locally of finite presentation, 170
locally of finite type, 169
locally principal subscheme, 179
locally principal Weil divisor, 295
long exact sequence, 39
long exact sequence of higher pushforward

sheaves, 369

magic diagram, 27
mapping cone, 50, 354
minimal prime, 93, 96
module of Kähler differentials, 402
module of relative differentials, 402
moduli space, 384, 392
monic morphism, 36
monomorphism, 27
Mordell’s conjecture, 385
morphism, 17
morphism of (pre)sheaves, 62
morphism of (pre)sheaves, 62
morphism of ringed spaces, 140
morphism of ringed spaces, 140
morphism of schemes, 143
multiplicity of a singularity, 346

Nagata, 233, 299
Nagata’s Lemma, 299
Nakayama’s Lemma, 162, 163, 173
nilpotents, 88, 122
nilradical, 88, 88, 91
node, 208, 253
Noetherian induction, 97
Noetherian ring, 95, 95
Noetherian rings, important facts about, 95
Noetherian scheme, 121, 126
Noetherian topological space, 93, 95
non-archimedean, 258
non-archimedean analytic geometry, 278, 288
non-degenerate, 319
non-zero-divisor, 23
nonsingular, 247, 251
nonsingularity, 247
normal, 109, 128

normal = R1+S2, 260
normal exact sequence, 428
normal sheaf, 408
normalization, 206
Nullstellensatz, 83, 127
number field, 209

object, 17
octic, 182
Oka’s theorem, 285, 288
open immersion of ringed spaces, 140
open subscheme, 106
open immersion, 159, 159
open subscheme, 159
opposite category, 20
orientation of spectral sequence, 44

page of spectral sequence, 44
partially ordered set, 19
partition of unity, 353
Picard group, 272
plane, 183
points, A-valued, 145
points, S-valued, 145
pole, 259
poset, 19
presheaf, 57
presheaf cokernel, 63
presheaf kernel, 63
primary ideal, 134
prime avoidance (temp. notation), 239
principal divisor, 296
principal Weil divisor, 295
product, 22, 191
Proj, 116
projection formula, 370
projective coordinates, 115
projective space, 112
projective A-scheme, 116
projective X-scheme, 329
projective and quasifinite implies finite, 331
projective cone, 186
projective coordinates, 112
projective distinguished open set, 117
projective line, 111
projective module, 436
projective morphism, 329
projective object in an abelian category, 436
projective space, 118
projective variety, 126
projectivization of a locally free sheaf, 329
proper, 226
proper non-projective surface, 460
proper transform, 338, 339
Puisseux series, 258
pullback diagram, 200
pullback for [locally?] ringed spaces, 316
pure dimension, 231
pushforward sheaf, 60
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pushforward of coherent sheaves, 371
pushforward of quasicoherent sheaves, 311
pushforward sheaf, 60

quadric, 182
quadric surface, 235
quadric surface, 185
quartic, 182
quasicoherent sheaf, 269
quasicoherent sheaf, 103, 273
quasicoherent sheaves: product, direct sum,

∧, Sym, cokernel, image, ⊗, 281
quasicompact, 121
quasicompact morphism, 164
quasicompact topological space, 93
quasifinite, 170
quasiisomorphism, 352
quasiprojective morphism, 355
quasiprojective scheme, 119
quasiprojective is separated, 219
quasiseparated, 218
quasiseparated morphism, 164
quasiseparated scheme, 121
quintic, 182
quotient object, 36
quotient sheaf, 67

radical, 90
radical ideal, 87
radical ideal, 91
ramification point, 382
ramification divisor, 422
ramification locus, 418
rank of locally free sheaf, 273
rank of coherent sheaf on curve, 361
rank of finite type quasicoherent sheaf, 287
rank of quadratic, 130
rational map, 148
rational function, 132
rational normal curve, 319
rational normal curve, 184
rational normal curve take 1, 94
rational section of invertible sheaf, 272
reduced, 123, 126
reduced ring, 88
reduced scheme, 122
reducedness is stalk-local, 123
reduction, 190
Rees algebra, 338
reflexive sheaf, 408
regular, 247
regular scheme, 251
regular function, 132
regular local ring, 251
regular point, 247
regular section of invertible sheaf, 272
relative (co)tangent sheaf, 411
relative (co)tangent vectors, 401
representable functor, 153

residue field, 106
residue field at a point, 107
Residue theorem, 335, 359
resolution of singularities, 338
restriction map, 57
restriction of a quasicoherent sheaf, 312
restriction of sheaf to open set, 63
resultant, 172
Riemann-Roch for coherent sheaves on a

curve, 361
Riemann-Roch for surfaces, 368
right exact, 24
right-adjoint, 32
right-exact, 40
ring scheme, 155
ring of integers in a number field, 209
ring scheme, 156
ringed space, 61, 77
rulings on the quadric surface, 185

S2, 260
Sard’s theorem, 479
saturated module, 309
saturation map, 308
scheme over A, 126
scheme, definition of, 106
scheme-theoretic inverse image, 200
scheme-theoretic pullback, 200
Schubert cell, 157
sections over an open set, 57
Segre embedding, 205, 320
Segre product, 205
Segre variety, 205
separable morphism, 421
separated, 110, 215
separated over A, 215
separated presheaf, 58
separatedness, 106
septic, 182
Serre duality, 349
Serre duality (strong form), 484
Serre vanishing, 349
Serre’s criterion for normality, 260
Serre’s criterion for affineness, 369
sextic, 182
sheaf, 57
sheaf Hom (Hom underline), 63
sheaf Hom (Hom underline) of quasicoherent

sheaves, 285
sheaf Hom (underline), 63
sheaf determined by sheaf on base, 276
sheaf of ideals, 177
sheaf of relative differentials, 401
sheaf on a base, 72, 73
sheaf on a base determines sheaf, 73
sheaf on affine base, 275
sheafification, 64, 66
singular, 247, 251
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site, 278
skyscraper sheaf, 59
smooth, 247, 473, 475
smooth quadric surface, 130
specialization, 94, 121
spectral sequence, 43
spectrum, 79
stack, 74, 278
stalk, 58
stalk-local, 123, 125
strict transform, 339
strong Serre duality, 484
structure morphism, 144
structure sheaf, 77
structure sheaf (of ringed space), 61
structure sheaf on Spec A, 101
submersion, 473
subobject, 36
subscheme cut out by a section of a locally

free sheaf, 272
subsheaf, 67
support, 286
support of a sheaf, 72
support of a Weil divisor, 293
surface, 232
surjective morphism, 202
symbolic power of an ideal, 244
symmetric algebra, 281

tacnode, 208, 253
tame ramification, 423
tangent line, 394
tangent sheaf, 411
tangent space, 247
tangent vector, 247
tautological bundle, 327
tensor algebra T∗

A(M), 281
tensor product, 23, 24
tensor product of O-modules, 70
tensor product of sheaves, 70
topos, 278
torsion-free, 282
total fraction ring, 132
total space of locally free sheaf, 327
total transform, 339
trace map, 483
transcendence basis/degree, 234
transition functions, 270
transitive group action, 480
trigonal curve, 387
twisted cubic, 182
twisted cubic, 235
twisted cubic curve, 94
twisting by a line bundle, 305
two-plane example, 261

ultrafilter, 98
underline S, 60
underline Spre, 60

uniformizer, 256
unit of adjunction, 33
universal property, 15
universal property of blowing up, 339
universally, 225
universally closed, 225
unramified, 473, 475
uppersemicontinuity of rank of finite type

sheaf, 287

valuation, 258
valuation ring, 258
valuative criterion for separatedness, 261
value of a function, 79
value of a quasicoherent sheaf at a point, 287
value of function, 106
value of function at a point, 107
vanishing set, 90
vanishing theorems, 358
vanishing scheme, 179
variety, 213, 217
vector bundle, 327
Veronese, 319
Veronese embedding, 320
Veronese subring, 147
Veronese embedding, 184, 319, 363–365, 377,

384, 425
Veronese surface, 184
vertical (co)tangent vectors, 401

Weierstrass normal form, 395
weighted projective space, 185
Weil divisor, 293
wild ramification, 423

Yoneda’s lemma, 195
Yoneda’s lemma, 28

Zariski (co)tangent space, 247
Zariski tangent space, 247
Zariski topology, 90, 90
zero ring, 11
zero object, 25, 35
zero-divisor, 23
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