
Phase portraits in two dimensions

18.03, Spring, 1999

It is convenient to represent the solutions to an autonomous system ~x′ = ~f(~x) (where

~x =

[
x
y

]
) by means of a phase portrait. The x, y plane is called the phase plane

(because a point in it represents the state or phase of a system). The phase portrait is
a representative sampling of trajectories of the system. A trajectory is the path traced
out by a solution. It does not include information about the time at which solutions
pass through various points (this will depend upon when the clock was set), nor does it
display the speed at which the solution passes through the point. Still, it conveys essential
information about the qualititative behavior of solutions of the system of equations.

The building blocks for the phase portrait of a general system will be the phase
portraits of homogeneous linear constant coefficient systems: ~x′ = A~x, where A is a
constant square matrix. Notice that this equation is autonomous!

The phase portraits of these linear systems display a startling variety of shapes. We’ll
want names for them, and the names I’ll use differ slightly from the names used in the
book and also from the names used in the notes. Hence this handout.

One thing that can be read off from the phase portrait is the stability properties of the
system. A linear autonomous system is unstable if most of its solutions tend to infinity
with time. (The meaning of “most” will become clearer below.) It is asymptotically
stable if all of its solutions tend to 0 as t goes to∞. This is the condition we were calling
“stable” earlier in the course. Finally, it is neutrally stable if none of its solutions tend to
infinity with time but most of them do not tend to zero either. It is an interesting fact
that any linear autonomous system exhibits one of these three behaviors.

Recall that the general solution to a system ~x′ = A~x is usually of the form c1e
λ1t~α1 +

c2e
λ2t~α2, where λ1, λ2 are the eigenvalues of the matrix A and ~α1, ~α2 are corresponding

nonzero eigenvectors. There are two caveats. First, this is not necessarily the case if the
eigenvalues coincide. In two dimensions, when the eigenvalues coincide one of two things

happens. (1) The complete case. Then A =

[
λ1 0
0 λ2

]
, every vector is an eigenvector

(for the eigenvalue λ1 = λ2), and the general solution is eλ1t~α where ~α is any vector.
(2) The incomplete case. Then there is (up to multiple) only one eigenvector, ~α1, and
the general solution is ~x = eλ1t(c1~α1 + c2(t~α1 + ~α2)), where ~α2 is a vector such that
(A− λ1I)~α2 = ~α1. (Such a vector ~α2 always exists in this situation, and is unique up to
addition of a multiple of ~α1.)

The second caveat is that the eigenvalues may be non-real. They will then form a
complex conjugate pair. The eigenvectors will also be non-real, and if ~α1 is an eigenvector
for λ1 then ~α2 = ~α1 is an eigenvector for λ2 = λ1. Independent real solutions may be
obtained by taking the real and imaginary parts of either eλ1t~α1 or eλ2t~α2. (These two
have the same real parts and their imaginary parts differ only in sign.) This will give
solutions of the general form eat times a vector whose coordinates are linear combinations
of cos(ωt) and sin(ωt), where λ1 = a+ iω.
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Structural stability

The two major classes of phase portraits here are: (1) Eigenvalues real and not equal
(that is, proper nodes or saddle points), and (2) Eigenvalues neither real nor purely
imaginary. This is because these are the “stucturally stable” examples.

This means the following. If we have a system which is modeled by the differential
equation ~x′ = A~x, we probably don’t know the coefficients of A with perfect accuracy.
If we happen to have a matrix whose eigenvalues coincide, a very slight perturbation of
the coefficients will result in a matrix whose eigenvalues are distinct. (By moving the
coefficients in different directions, one can arrange that they become distinct and real or
non-real complex conjugates with small imaginary parts.)

This means that in real life we probably will never get a system which exhibits a
star node, an improper node, or either of the last two degenerate subcases—these have
equal eigenvalues. By changing the matrix slightly a star node will deform into a proper
node (with λ1/λ2 very near to 1) or (deforming in a different way) into a spiral (with
very small frequency—arches looking very straight in medium scale, very tightly wound
around the origin and showing huge arches on larger scale). Similarly, an improper node
can deform into either a spiral or a proper node.

The degenerate cases with λ1 = λ2 = 0 are similar. These can deform into proper
nodes, saddle points, or spirals (because the eigenvalues can deform into a pair of real
eigenvalues with the same sign, a pair of real eigenvalues with opposite sign, or a pair of
non-real complex conjugate eigenvalues).

Nor is it likely that the eigenvalues will have zero real part. If the eigenvalues are
purely imaginary and not zero—so we get a center—they deform into a pair of complex
conjugate nonreal eigenvalues—a spiral.

In the same way, if one of the eigenvalues happens to be zero, a very slight perturbation
of the coefficients results in a matrix with nonzero distinct real eigenvalues—so the comb
deforms into a proper node or a saddle point. None of the degenerate cases is structurally
stable.

The portrait gallery

Now for the dictionary of phase portraits. In the pictures which accompany these
descriptions some elements are necessarily chosen at random. These elements will of
course be determined by the specific problem at hand. For one thing, most of the time
there will be two independent eigendirections (i.e., lines through the origin made up of

eigenvectors). Below, if these are real they will be the lines through ~α1 =

[
1
1

]
and

~α2 =

[
1
0

]
. If there is only one eigendirection (this only happens if λ1 = λ2 and is then

called the “incomplete case”) it will be the line through ~α1 =

[
1
1

]
. If they are not real

there are definitely two but the problem of how they influence the phase portrait is more
complex and will not be addressed.
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Case 1: λ1, λ2 real and of the same sign
Node
Unstable if λ1, λ2 > 0, asymptotically stable if λ1, λ2 < 0

I’ll draw the case of λ1, λ2 > 0.

Subcase 1a: λ1 6= λ2

Proper node

Say λ1 > λ2. The solutions lie along curves of the form u~α1 + v~α2, where u = cvλ1/λ2

(where c is constant). If λ1/λ2 = 2 for example these will be parabolas which have been
skewed so the axes become the eigendirections. If λ1/λ2 is larger, the curves will have
more of a “shoulder” and seem to merge with the ~α2 eigenline. If λ1/λ2 < 2 the curves
will have sharper bases. In any case, the curves become tangent at 0 to the eigenline
whose eigenvalue has smaller absolute value.

Example: A =

[
2 −1
0 1

]

Subcase 1b: λ1 = λ2, complete
Star node

Example: A =

[
1 0
0 1

]

Subcase 1c: λ1 = λ2, incomplete
Improper node

Example: A =

[
2 −1
1 0

]
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Case 2: λ1, λ2 real and of opposite sign
Saddle point
Unstable

Example: A =

[
1 −2
0 −1

]

Case 3: λ1, λ2 purely imaginary
Center
Neutrally stable

The direction of travel may be obtained by computing ~x′ = A~x at a single point, such as[
1
0

]
. This is easy since A

[
1
0

]
is the first column of A.

Example: A =

[
2 −3
2 −2

]

Case 4: λ1, λ2 neither real nor purely imaginary
Spiral
Asymptotically stable if Re λ1 < 0, Unstable if Re λ1 > 0

The direction of travel may be obtained as above. The spirals move out from the origin
if Re λ1 > 0, into the origin if Re λ1 < 0. I’ll draw the case of Re λ1 > 0.

Example: A =

[
−2 5
−2 4

]
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Case 5: λ1 = 0
Degenerate

Subcase 5a: λ2 6= 0
Comb
Neutrally stable if λ2 < 0, Unstable if λ2 > 0

Example: A =

[
0 1
0 1

]

Subcase 5b: λ2 = 0, complete
All solutions constant
Neutrally stable

The matrix is necessarily A =

[
0 0
0 0

]
; the equation is ẋ = 0, ẏ = 0; every vector is an

eigenvector and a constant solution.

A =

[
0 0
0 0

]

Subcase 5c: λ2 = 0, incomplete
Parallel lines
Unstable

In this case most solutions tend to infinity but linearly and not exponentially as they do
when at least one eigenvalue has positive real part.

Example: A =

[
1 −1
1 −1

]
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