MATH 210A PROBLEM SET 4

This problem set will be due on Friday, October 15, 2010 by 3 pm in Jeremy Miller’s mailbox. You can hand it in during class as well. Let me know of any typos or errors, so I can warn others.

1. Let V be a finite-dimensional nonzero vector space over a field F. A linear self-map $T : V \to V$ is semisimple if every T-stable subspace of V admits a T-stable complementary subspace. (That is, if $T(W) \subseteq W$, then there exists a decomposition $V = W \oplus W'$ with $T(W') \subseteq W'$.) Keep in mind that such a complement is not unique in general (e.g. consider T to be a scalar multiplication with $\dim V > 1$).

 (a) For each monic irreducible $\pi \in F[t]$, define $V(\pi)$ to be the subspace of V killed by a power of $\pi(T)$. Prove that $V(\pi) \neq 0$ if and only if π divides the minimal polynomial m_T of T, and that $V = \bigoplus \pi | m_T V(\pi)$. (In case F is algebraically closed, these are the generalized eigenspaces of T on V.)

 (b) Use the rational canonical form to prove that T is semisimple if and only if m_T has no repeated irreducible factor over F. (Hint: apply (i) to T-stable subspaces of V to reduce to the case when m_T has one monic irreducible factor.) Deduce that a Jordan block of rank greater than 1 is never semisimple, that m_T is the “square-free part” of χ_T when T is semisimple, and that if $W \subseteq V$ is a T-stable nonzero proper subspace then T is semisimple if and only if the induced endomorphisms $T_W : W \to W$ and $\bar{T} : V/W \to V/W$ are semisimple.

2. Suppose V is a 4-dimensional complex vector space, and T is a linear self-map of V with characteristic polynomial $x(x - 1)^2(x - 2)$. Show that $-T^2 + 2T$ is a projection onto the generalized eigenspace corresponding to 1.

3. Let $V \neq 0$ be a finite-dimensional vector space over a field F, and let $T : V \to V$ be a linear self-map. Let $n = \dim V$.

 (a) Prove the following are equivalent:

 (i) $T^N = 0$ for some $N \geq 1$.

 (ii) $T^n = 0$.

 (iii) With respect to some ordered basis of V, the matrix for T is upper triangular with 0’s on the diagonal.

 (iv) The characteristic polynomial is x^n.

If these conditions hold, we call T nilpotent.

 (b) We say that T is unipotent if $T - 1$ is nilpotent. Formulate characterizations of unipotency analogous to the conditions in (a), and prove that every unipotent T is invertible.

 (c) Assume F is algebraically closed. Using Jordan canonical form, prove that there is a unique expression $T = T_{ss} + T_n$ where T_{ss} and T_n are a pair of commuting endomorphisms of V with T_{ss} semisimple and T_n nilpotent. (This is the additive Jordan decomposition of T.)
Show by example with \(\text{dim } V = 2 \) that uniqueness fails if we drop the “commuting” requirement, and show in general that the characteristic polynomial of \(T \) is the characteristic polynomial of \(T_{ss} \) (so \(T \) is invertible if and only if \(T_{ss} \) is invertible).

4. Verify that \(A \to S^{-1}A \) satisfies the following universal property: \(S^{-1}A \) is initial among \(A \)-algebras \(B \) where every element of \(S \) is sent to a unit in \(B \). (Recall: the data of “an \(A \)-algebra \(B \)” and “a ring map \(A \to B \)” the same.) Translation: any map \(A \to B \) where every element of \(S \) is sent to a unit must factor uniquely through \(A \to S^{-1}A \).

E-mail address: vakil@math.stanford.edu