This problem set will be due on Friday, October 1, 2010 by 3 pm in Jeremy Miller’s mailbox. You can hand it in during class as well. Let me know of any typos or errors, so I can warn others.

1. Suppose \(R \) is an integral domain. Show that \(R[[x]] \) is an integral domain. (Here \(R[[x]] \) is the ring of formal power series over \(R \), see Lang p. 205 or Dummit and Foote p. 238.)

2. Suppose \(p \) is a prime ideal of \(R \). Give a bijection between the prime ideals of \(R \) containing \(p \), and the prime ideals of \(R/p \).

3. Suppose \(\omega \) is a primitive cube root of 1. Show that \(\mathbb{Z}[[\omega]] \) is a unique factorization domain. (Possible hint: look up the proof that \(\mathbb{Z}[[i]] \) is a euclidean domain in Dummit and Foote 8.1.) Factor into primes in \(\mathbb{Z}[[\omega]]: 2, 3, 5, 7 \).

4. (essentially Dummit and Foote Exercises 8.1.9 and 9.4.9 respectively) Let \(R = \mathbb{Z}[\sqrt{2}] \).
 (a) Show that \(\mathbb{Z}[\sqrt{2}] \) is a Euclidean domain, using the norm \(N(a + b\sqrt{2}) = |a^2 - 2b^2| \).
 (b) Prove that \(x^2 - \sqrt{2} \) is irreducible in \(R[x] \).

5. Suppose \(R \) is a unique factorization domain. Show that any localization of \(S \) is a unique factorization domain.

 (Localization of a ring in full generality) A multiplicative subset \(S \) of a ring \(R \) is a subset closed under multiplication containing 1. We define a ring \(S^{-1}R \). The elements of \(S^{-1}R \) are of the form \(a/s \) where \(a \in R \) and \(s \in S \), where \(a_1/s_1 = a_2/s_2 \) if for some \(s \in S \), \(s(s_2a_1 - s_1a_2) = 0 \). (This implies that \(S^{-1}R \) is the \(0 \)-ring if \(0 \in S \)) We define \((a_1/s_1) \times (a_2/s_2) = (a_1a_2)/(s_1s_2)\), and \((a_1/s_1) + (a_2/s_2) = (s_2a_1 + s_1a_2)/(s_1s_2)\). You should convince yourself that this construction is well-defined, and indeed defines a ring. We have a canonical map \(R \to S^{-1}R \) given by \(a \mapsto a/1 \).

6. Show that \(R \to S^{-1}R \) is injective if and only if \(S \) contains no zero-divisors. (A zero-divisor of a ring \(R \) is an element \(a \) such that there is a non-zero element \(b \) with \(ab = 0 \). The other elements of \(R \) are called non-zero-divisors. For example, a unit is never a zero-divisor.)

7. Describe a bijection between the primes of \(S^{-1}R \) and those primes of \(R \) not meeting \(S \).

8. Suppose \(R \) is a ring, with a prime \(p \) and a multiplicative set \(S \). (a) Is there a bijection between those maximal ideals of \(R \) which \(p \) and the maximal ideals of \(R/p \)?
 (b) Is there a bijection between those maximal ideals of \(R \) which don’t meet \(S \) and the maximal ideals of \(S^{-1}R \)? (Hint: what if \(R \) is an integral domain, and \(S = R \setminus \{0\} \))
 (In each case, justify your answer with an argument or counterexample.)

E-mail address: vakil@math.stanford.edu

Date: September 28, 2010 revision.