
PROPERTIES OF GEOMETRIC FIBERS

1. INTRODUCTION

This is an addendum to the discussion in Math 216 in November 2009 on properties of
geometric fibers. It was motivated by discussions with Greg Brumfiel, and was massively
improved by Brian Conrad. The discussion doesn’t naturally fit into the course, as it
is of interest to a smaller than usual minority of those present, and involves different
methods. But the arguments are worth thinking through, because (i) many expositions in
the literature for historical reasons require quoting old commutative algebra texts, and (ii)
the actual arguments are fun, and introduce useful tricks turning questions about general
schemes over a field to questions about finite type schemes.

For something to consult (in general), I recommend [Stacks]. If you are interested in a
particular fact, and want to know why it is true, without having to read hundreds of pages
in advance, I find that you can do this with [Stacks], much as you can in commutative
algebra with Eisenbud’s book.

If K is a field, then XK will denote a scheme over K. If K/k is a field extension, XK

will denote Xk ×k K (where as usual, K sometimes sloppily denotes SpecK). Recall that
a k-scheme Xk is geometrically connected (resp. geometrically irreducible, geometrically inte-
gral, geometrically reduced) if for every algebraically closed K/k, XK is connected (resp.
irreducible, integral, reduced).

The facts I wish to prove are Corollary 3.5 on connectedness, Proposition 4.4 on irre-
ducibility, Proposition 5.5 on reducedness, and Theorem 6.1 on varieties.

This discussion is intended to be self-contained within the context of where we are in
Math 216, except for the following. I assume you’ve seen some commutative algebra
background facts. If you prefer, replace “separably closed” and “perfect” with “alge-
braically closed” throughout; you will lose little. There is one fact I won’t prove, that
could reasonably be proved here:

1.1. Proposition. — Suppose SpecA and SpecB are finite type k-algebras. Then SpecA ⊗k

SpecB → SpecB is an open map.

We will later prove that any flat morphism locally of finite type is open. You could
prove this by hand, but I’d rather you not worry about this now. (Here is the beginning
of a sketch. It suffices to show that the image of a distinguished open D(f), where f ∈
A⊗kB, is open in SpecB. Reduce to the caseA = k[a1, . . . , am] (ifA = k[a1, . . . , am]/I, lift
f ∈ B[a1, . . . , an]/IB to B[a1, . . . , am]). Write B = k[x1, . . . , xn]/J, and lift f to an element
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of k[a1, . . . , am][x1, . . . , xn]. Interpret f as a family of polynomials in the xj with variable
coefficients. Show that the condition for f to lie in J is an algebraic condition on the
coefficients of the monomials in the xi. Interpret this as the desired result. This idea may
be easier to complete after reading this entire discussion.)

1.2. Unrelated remark from Brian Conrad. Here is a sign that things like “geometrically
irreducible fibers” is a good property. Show that a polynomial over Z which is irreducible
over Q is irreducible over Fp for all but finitely many p, but that this isn’t the case if Fp

is replaced by Fp. (More generally, if for a flat morphism locally of finite presentation,
the locus of points in the target where the geometric fibers are reduced is open, and sim-
ilarly with “reduced” is replaced by “integral”, see EGA IV3.12.1.1. Many other similar
properties hold too.)

2. PRELIMINARY DISCUSSION

2.1. Lemma [Stacks, 0383]. — Suppose X is a k-scheme. Then X → Speck is universally open,
i.e. remains open after any base change.

Proof. If S is an arbitrary k-scheme, we wish to show that XS → S is open. It suffices to
consider the case X = SpecA and S = SpecB. To show that φ : SpecA ⊗k B → SpecB is
open, it suffices to show that the image of a distinguished open set D(f) (f ∈ A ⊗k B) is
open.

We come to a trick we will use repeatedly, which I’ll call the tensor-finiteness trick.
Write f =

∑
ai ⊗ bi, where the sum is finite. It suffices to replace A by the subring

generated by the ai. (Reason: if this ring is A ′, then factor φ through SpecA ′ ⊗k B.) Thus
we may assume A is finitely generated over k. Then use Theorem 1.1. �

2.2. Lemma. — Suppose E/F is purely inseparable (i.e. any a ∈ E has minimal polynomial over
F with only one root, perhaps with multiplicity). Suppose X is any F-scheme. Then φ : XE → X is
a homeomorphism.

Proof. The morphism φ is a bijection, so we may identify the points of X and XE. (Reason:
for any point p ∈ X, the scheme-theoretic fiber φ−1(p) is a single point, by the definition
of pure inseparability.) The morphism φ is continuous (so opens in X are open in XE), and
by Lemma 2.1, φ is open (so opens in X are open in XE). �

2.3. Exercise. Suppose E/F is a purely inseparable extension. Show that pr2 : SpecE ⊗F

E → SpecE is a homeomorphism. (Hint: show it is a bijection, then argue as in Lemma 2.2.)
Hence the diagonal map δ : SpecE → SpecE⊗FE, which is a section of pr2, is also a home-
omorphism.
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3. CONNECTEDNESS

Recall that a connected component of a topological space is a maximal connected sub-
set. (Then one can easily check that every point is contained in a connected component,
and connected components are always closed [Stacks, 004T].)

3.1. Topological exercise. Suppose φ : X → Y is open, and has non-empty connected
fibers. Then φ induces a bijection of connected components.

3.2. Lemma. — Suppose X is geometrically connected over k. Then for any scheme Y/k, X×kY →
Y induces a bijection of connected components.

Proof. Combine Lemma 2.1 and Exercise 3.1. �

3.3. Exercise. Show that a scheme X is disconnected if and only if there exists a function
e ∈ Γ(X,OX) that is an idempotent (e2 = e) distinct from 0 and 1. (Hint: if X is the
disjoint union of two open sets X0 and X1, let e be the function that is 0 on X0 and 1 on X1.
Conversely, given such an idempotent, define X0 = V(e) and X1 = V(1− e).)

3.4. Proposition. — Suppose k is separably closed, and A is an k-algebra with SpecA connected.
Then SpecA is geometrically connected over k.

Proof. We wish to show that SpecA⊗kK is connected for any field extensionK/k. It suffices
to assume that K is algebraically closed (as SpecA ⊗k K → SpecA ⊗k K is surjective). By
choosing an embedding k ↪→ K and considering the diagram

SpecA⊗k K //

��

SpecA⊗k k

��

homeo.

by Lem. 2.2
// SpecA

��
SpecA // Speck // Speck

it suffices to assume k is algebraically closed.

If SpecA ⊗k K is disconnected, then A ⊗k K contains an idempotent e 6= 0, 1 (by Ex-
ercise 3.3). By the tensor-finiteness trick, we may assume that A is a finitely generated
algebra over k, and K is a finitely generated field extension. Write K = FF(B) for an inte-
gral domain B of finite type over k. Then by the tensor-finiteness trick, by considering the
finite number of denominators appearing in a representative of e as a sum of decompos-
able tensors, e ∈ A⊗kB[1/b] for some nonzero b ∈ B, so SpecA⊗kB[1/b] is disconnected,
say with disjoint opens U and V with U

∐
V = SpecA⊗k B[1/b].

Now φ : SpecA⊗kB[1/b] → SpecB[1/b] is an open map (Proposition 1.1), so φ(U) and
φ(V) are nonempty open sets. As SpecB[1/b] is connected, the intersection φ(U) ∩ φ(V)

is a nonempty open set, which has a closed point p (with residue field k, as k = k). But
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then φ−1(p) ∼= SpecA, and we have covered SpecA with two disjoint open sets, yielding
a contradiction. �

3.5. Corollary. — If k is separably closed, and Y is a connected k-scheme, then Y is geometrically
connected.

Proof. We wish to show that for any field extension K/k, YK is connected. By Propo-
sition 3.4, SpecK is geometrically connected over k. Then apply Lemma 3.2 with X =
SpecK. �

4. IRREDUCIBILITY

4.1. Proposition. — Suppose k is separably closed, A is a k-algebra with SpecA irreducible, and
K/k is a field extension. Then SpecA⊗k K is irreducible.

Proof. We follow the philosophy of the proof of Proposition 3.4. As in the first paragraph
of that proof, it suffices to assume that K and k are algebraically closed. If A ⊗k K is not
irreducible, then we can find x and y with V(x), V(y) 6= SpecA ⊗k K and V(x) ∪ V(y) =
SpecA⊗k K. As in the second paragraph of the proof of Proposition 3.4, we may assume
that A is a finitely generated algebra over k, and K = FF(B) for an integral domain B
of finite type over k, and x, y ∈ A ⊗k B[1/b] for some nonzero b ∈ B. Then D(x) and
D(y) are nonempty open subsets of SpecA ⊗k B[1/b], whose image in SpecB[1/b] are
nonempty opens, and thus their intersection is nonempty and contains a closed point p.
But then φ−1(p) ∼= SpecA, and we have covered SpecA with two proper closed sets (the
restrictions of V(x) and V(y)), yielding a contradiction. �

4.2. Exercise. Suppose k is separably closed, andA and B are k-algebras, both irreducible
(with irreducible Spec, i.e. with one minimal prime). Show that A⊗k B is irreducible too.
(Hint: reduce to the case where A and B are finite type over k. Extend the proof of the
previous proposition.)

4.3. Easy exercise. Show that a scheme X is irreducible if and only if there exists an open
cover X = ∪Ui with Ui irreducible for all i, and Ui ∩Uj 6= ∅ for all i, j.

4.4. Proposition. — Suppose K/k is a field extension of a separably closed field and Xk is irre-
ducible. Then XK is irreducible.

Proof. Take X = ∪Ui irreducible as in Exercise 4.3. The base change of each Ui to K
is irreducible by Proposition 4.1, and pairwise intersect. The result then follows from
Exercise 4.3. �
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5. REDUCEDNESS

We recall the following fact from field theory.

5.1. Algebraic fact. — Suppose E/F is a finitely generated extension of a perfect field. Then it can
be factored into a finite separable part and a purely transcendent part: E/F(t1, ..., tn)/F.

5.2. Proposition [Stacks, 034N]. — Suppose B is a geometrically reduced k-algbra, and A is a
reduced k-algebra. Then A⊗k B is reduced.

Proof. Reduce to the case where A is finitely generated over k using the tensor-finiteness
trick. (Suppose we have x ∈ A⊗kBwith xn = 0. Then x =

∑
ai⊗bi. LetA ′ be the finitely

generated subring of A generated by the ai. Then A ′ ⊗k B is a subring of A⊗k B. Replace
A by A ′.) Then A is a subring of the product

∏
Ki of the function fields of its irreducible

components (from our discussion on associated points). So it suffices to prove it for A a
product of fields. Then it suffices to prove it when A is a field. But then we are done, by
the definition of geometric reducedness. �

5.3. Propostion. — Suppose A is a reduced k-algebra. Then:
(a) A⊗k k(t) is reduced.
(b) If E/k is a finite separable extension, then A⊗k E is reduced.

Proof. (a) Clearly A ⊗ k[t] is reduced, and localization preserves reducedness (as re-
ducedess is stalk-local).

(b) Working inductively, we can assume E is generated by a single element, with mini-
mal polynomial p(t). By the tenor-finiteness trick, we can assume A is finitely generated
over k. Then by the same trick as in the proof of Proposition 5.2, we can replace A by the
product of its function fields of its components, and then we can assume A is a field. But
then A[t]/p(t) is reduced by the definition of separability of p. �

5.4. Lemma [Stacks, 00I4 part 1]. — Suppose E/k is a field extension of a perfect field, and A is
a reduced k-algebra. Then A⊗k E is reduced.

Proof. By the tensor product finiteness trick, we may assume E is finitely generated over k.
By Algebraic Lemma 5.1, we can factor E/k into extensions of the forms of Proposition 5.3
(a) and (b). We then apply Proposition 5.3. �

5.5. Proposition. — Suppose E/k is an extension of a perfect field, and X is a k-scheme. Then XE

is reduced.

Proof. Reduce to the case where X is affine. Use Lemma 5.4. �
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5.6. Corollary [Stacks, 00I4 part 2]. — Suppose k is perfect, andA and B are reduced k-algebras.
The A⊗k B is reduced.

Proof. By Lemma 5.4, A is a geometrically reduced k-algebra. Then apply Lemma 5.2. �

6. VARIETIES

Recall that I defined varieties to be finite type separated reduced schemes over k.

6.1. Theorem. — (a) If k is perfect, the product of k-varieties (over Speck) is a k-variety.
(b) If k is algebraically closed, the product of irreducible k-varieties is an irreducible k-variety.
(c) If k is separably closed, the product of connected k-varieties is a connected k-variety.

Proof. (a) The finite type and separated statements are done in the course notes (the first
is easy). For reducedness, reduce to the affine case, then use Corollary 5.6. �

(b) It only remains to show irreducibility. Reduce to the affine case using Exercise 4.3
(as in the proof of Proposition 4.4). Then use Proposition 4.2.

(c) This follows from Corollary 3.5. �
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