MATH 216: FOUNDATIONS OF ALGEBRAIC GEOMETRY

June 15, 2010.

© 2010 by Ravi Vakil.

Contents

1.2. Background and conventions 11 Part I. Preliminaries 13 Chapter 2. Some category theory 15 2.1. Motivation 15 2.2. Categories and functors 17 2.3. Universal properties determine an object up to unique isomorphism 22 2.4. Limits and colimits 27 2.5. Adjoints 30 2.6. Kernels, cokernels, and exact sequences: A brief introduction to abelian categories 33 2.7. * Spectral sequences 42 Chapter 3. Sheaves 55 3.1. Motivating example: The sheaf of differentiable functions. 55 3.2. Definition of sheaf and presheaf 57 3.3. Morphisms of presheaves and sheaves 62 3.4. Properties determined at the level of stalks, and sheafification 64 3.5. Sheaves of abelian groups, and \mathcal{O}_X -modules, form abelian categories 68 3.6. The inverse image sheaf 70 3.7. Recovering sheaves from a "sheaf on a base" 72 Part II. Schemes 77	Chapter 1. Introduction 1.1. Goals	9 9
Chapter 2.Some category theory152.1.Motivation152.2.Categories and functors172.3.Universal properties determine an object up to unique isomorphism222.4.Limits and colimits272.5.Adjoints302.6.Kernels, cokernels, and exact sequences: A brief introduction toabelian categories332.7. \star Spectral sequences42Chapter 3.Sheaves553.1.Motivating example: The sheaf of differentiable functions.553.2.Definition of sheaf and presheaf573.3.Morphisms of presheaves and sheaves623.4.Properties determined at the level of stalks, and sheafification643.5.Sheaves of abelian groups, and \mathcal{O}_X -modules, form abelian categories683.6.The inverse image sheaf703.7.Recovering sheaves from a "sheaf on a base"72Part II. Schemes4.1.Toward affine schemes: the underlying set, and the underlying topological space774.2.The underlying set of affine schemes794.3.Visualizing schemes I: generic points884.4.The Zariski topology: The underlying topological space of an affine scheme894.5.A base of the Zariski topology on Spec A: Distinguished open sets 4.6.704.7.The function I(·), taking subsets of Spec A to ideals of A98Chapter 5.The structure sheaf of an affine scheme, and the definition o	1.2. Background and conventions	11
2.1.Motivation152.2.Categories and functors172.3.Universal properties determine an object up to unique isomorphism222.4.Limits and colimits272.5.Adjoints302.6.Kernels, cokernels, and exact sequences: A brief introduction to abelian categories332.7. \star Spectral sequences42Chapter 3.Sheaves553.1.Motivating example: The sheaf of differentiable functions.553.2.Definition of sheaf and presheaf573.3.Morphisms of presheaves and sheaves623.4.Properties determined at the level of stalks, and sheafification643.5.Sheaves of abelian groups, and \mathcal{O}_X -modules, form abelian categories683.6.The inverse image sheaf703.7.Recovering sheaves from a "sheaf on a base"72Part II. Schemes4.1.Toward affine schemes: the underlying set, and the underlying topological space774.2.The underlying set of affine schemes774.3.Visualizing schemes I: generic points884.4.The Zariski topology: The underlying topological space of an affine scheme894.5.A base of the Zariski topology on Spec A: Distinguished open sets 4.6.704.7.The function I(·), taking subsets of Spec A to ideals of A98Chapter 5.Chapter 5.The structure sheaf of an affine scheme, and the definition of </td <td>Part I. Preliminaries</td> <td>13</td>	Part I. Preliminaries	13
2.1.Motivation152.2.Categories and functors172.3.Universal properties determine an object up to unique isomorphism222.4.Limits and colimits272.5.Adjoints302.6.Kernels, cokernels, and exact sequences: A brief introduction to abelian categories332.7. \star Spectral sequences42Chapter 3.Sheaves553.1.Motivating example: The sheaf of differentiable functions.553.2.Definition of sheaf and presheaf573.3.Morphisms of presheaves and sheaves623.4.Properties determined at the level of stalks, and sheafification643.5.Sheaves of abelian groups, and \mathcal{O}_X -modules, form abelian categories683.6.The inverse image sheaf703.7.Recovering sheaves from a "sheaf on a base"72Part II. Schemes4.1.Toward affine schemes: the underlying set, and the underlying topological space774.2.The underlying set of affine schemes774.3.Visualizing schemes I: generic points884.4.The Zariski topology: The underlying topological space of an affine scheme894.5.A base of the Zariski topology on Spec A: Distinguished open sets 4.6.704.7.The function I(·), taking subsets of Spec A to ideals of A98Chapter 5.Chapter 5.The structure sheaf of an affine scheme, and the definition of </td <td>Chapter 2. Some category theory</td> <td>15</td>	Chapter 2. Some category theory	15
2.2.Categories and functors172.3.Universal properties determine an object up to unique isomorphism222.4.Limits and colimits272.5.Adjoints302.6.Kernels, cokernels, and exact sequences: A brief introduction to abelian categories332.7. \star Spectral sequences42Chapter 3.Sheaves553.1.Motivating example: The sheaf of differentiable functions.553.2.Definition of sheaf and presheaf573.3.Morphisms of presheaves and sheaves623.4.Properties determined at the level of stalks, and sheafification643.5.Sheaves of abelian groups, and \mathcal{O}_X -modules, form abelian categories683.6.The inverse image sheaf703.7.Recovering sheaves from a "sheaf on a base"72Part II. Schemes4.1.Toward affine schemes: the underlying set, and the underlying topological space774.1.Toward schemes774.2.The underlying set of affine schemes774.3.Visualizing schemes I: generic points884.4.The Zariski topology: The underlying topological space of an affine scheme894.5.A base of the Zariski topology on Spec A: Distinguished open sets 4.6.704.7.The function I(·), taking subsets of Spec A to ideals of A98Chapter 5.Chapter 5.The structure sheaf of an affine scheme, and the definition of <td>· • • •</td> <td></td>	· • • •	
2.3.Universal properties determine an object up to unique isomorphism222.4.Limits and colimits272.5.Adjoints302.6.Kernels, cokernels, and exact sequences: A brief introduction to abelian categories332.7. \star Spectral sequences42Chapter 3.Sheaves553.1.Motivating example: The sheaf of differentiable functions.553.2.Definition of sheaf and presheaf573.3.Morphisms of presheaves and sheaves623.4.Properties determined at the level of stalks, and sheafification643.5.Sheaves of abelian groups, and \mathcal{O}_X -modules, form abelian categories683.6.The inverse image sheaf703.7.Recovering sheaves from a "sheaf on a base"72Part II. Schemes4.1.Toward affine schemes: the underlying set, and the underlying topological space774.3.Visualizing schemes I: generic points884.4.The Zariski topology: The underlying topological space of an affine scheme894.5.A base of the Zariski topology on Spec A: Distinguished open sets 4.6.704.7.The function I(·), taking subsets of Spec A to ideals of A98Chapter 5.Chapter 5.The structure sheaf of an affine scheme, and the definition of	2.2. Categories and functors	
2.4.Limits and colimits272.5.Adjoints302.6.Kernels, cokernels, and exact sequences: A brief introduction to abelian categories332.7. \star Spectral sequences42Chapter 3.Sheaves553.1.Motivating example: The sheaf of differentiable functions.553.2.Definition of sheaf and presheaf573.3.Morphisms of presheaves and sheaves623.4.Properties determined at the level of stalks, and sheafification643.5.Sheaves of abelian groups, and \mathcal{O}_X -modules, form abelian categories683.6.The inverse image sheaf703.7.Recovering sheaves from a "sheaf on a base"72Part II. Schemes4.1.Toward affine schemes: the underlying set, and the underlying topological space774.3.Visualizing schemes I: generic points884.4.The Zariski topology: The underlying topological space of an affine scheme894.5.A base of the Zariski topology on Spec A: Distinguished open sets 4.6.704.7.The function I(·), taking subsets of Spec A to ideals of A98Chapter 5.The structure sheaf of an affine scheme, and the definition of	0	
2.5. Adjoints302.6. Kernels, cokernels, and exact sequences: A brief introduction to abelian categories332.7. \star Spectral sequences42Chapter 3. Sheaves553.1. Motivating example: The sheaf of differentiable functions.553.2. Definition of sheaf and presheaf573.3. Morphisms of presheaves and sheaves623.4. Properties determined at the level of stalks, and sheafification643.5. Sheaves of abelian groups, and \mathcal{O}_X -modules, form abelian categories683.6. The inverse image sheaf703.7. Recovering sheaves from a "sheaf on a base"72Part II. SchemesChapter 4. Toward affine schemes: the underlying set, and the underlying topological space4.1. Toward schemes774.2. The underlying set of affine schemes794.3. Visualizing schemes I: generic points884.4. The Zariski topology: The underlying topological space of an affine scheme894.5. A base of the Zariski topology on Spec A: Distinguished open sets 4.6. Topological definitions934.7. The function I(·), taking subsets of Spec A to ideals of A98Chapter 5. The structure sheaf of an affine scheme, and the definition of		
2.6.Kernels, cokernels, and exact sequences: A brief introduction to abelian categories33 2.7. \star Spectral sequences33 2.7.2.7. \star Spectral sequences42Chapter 3.Sheaves55 3.1.3.1.Motivating example: The sheaf of differentiable functions.55 3.2.3.2.Definition of sheaf and presheaf57 3.3.3.3.Morphisms of presheaves and sheaves62 3.4.3.4.Properties determined at the level of stalks, and sheafification64 3.5.3.5.Sheaves of abelian groups, and \mathcal{O}_X -modules, form abelian categories68 3.6.3.6.The inverse image sheaf70 3.7.3.7.Recovering sheaves from a "sheaf on a base"72Part II.Schemes4.1.Toward affine schemes: the underlying set, and the underlying topological space4.1.Toward schemes4.2.The underlying set of affine schemes4.3.Visualizing schemes I: generic points4.3.Visualizing schemes I: generic points4.4.The Zariski topology: The underlying topological space of an affine scheme4.5.A base of the Zariski topology on Spec A: Distinguished open sets4.6.Topological definitions934.7.The function I(\cdot), taking subsets of Spec A to ideals of A98Chapter 5.The structure sheaf of an affine scheme, and the def		
abelian categories332.7. \star Spectral sequences42Chapter 3. Sheaves553.1. Motivating example: The sheaf of differentiable functions.553.2. Definition of sheaf and presheaf573.3. Morphisms of presheaves and sheaves623.4. Properties determined at the level of stalks, and sheafification643.5. Sheaves of abelian groups, and \mathcal{O}_X -modules, form abelian categories683.6. The inverse image sheaf703.7. Recovering sheaves from a "sheaf on a base"72Part II. SchemesChapter 4. Toward affine schemes: the underlying set, and the underlying topological space4.1. Toward schemes774.2. The underlying set of affine schemes794.3. Visualizing schemes I: generic points884.4. The Zariski topology: The underlying topological space of an affine scheme894.5. A base of the Zariski topology on Spec A: Distinguished open sets924.6. Topological definitions934.7. The function $I(\cdot)$, taking subsets of Spec A to ideals of A98Chapter 5. The structure sheaf of an affine scheme, and the definition of		
 2.7. * Spectral sequences 42 Chapter 3. Sheaves 3.1. Motivating example: The sheaf of differentiable functions. 3.2. Definition of sheaf and presheaf 3.3. Morphisms of presheaves and sheaves 3.4. Properties determined at the level of stalks, and sheafification 3.5. Sheaves of abelian groups, and O_X-modules, form abelian categories 3.6. The inverse image sheaf 3.7. Recovering sheaves from a "sheaf on a base" 72 Part II. Schemes Chapter 4. Toward affine schemes: the underlying set, and the underlying topological space 4.1. Toward schemes 4.2. The underlying set of affine schemes 4.3. Visualizing schemes I: generic points 4.4. The Zariski topology: The underlying topological space of an affine scheme 4.5. A base of the Zariski topology on Spec A: Distinguished open sets 4.6. Topological definitions 4.7. The function I(·), taking subsets of Spec A to ideals of A 98 Chapter 5. The structure sheaf of an affine scheme, and the definition of 		33
Chapter 3. Sheaves553.1. Motivating example: The sheaf of differentiable functions.553.2. Definition of sheaf and presheaf573.3. Morphisms of presheaves and sheaves623.4. Properties determined at the level of stalks, and sheafification643.5. Sheaves of abelian groups, and \mathcal{O}_X -modules, form abelian categories683.6. The inverse image sheaf703.7. Recovering sheaves from a "sheaf on a base"72Part II. Schemes75Chapter 4. Toward affine schemes: the underlying set, and the underlying topological space774.1. Toward schemes794.3. Visualizing schemes I: generic points884.4. The Zariski topology: The underlying topological space of an affine scheme894.5. A base of the Zariski topology on Spec A: Distinguished open sets924.6. Topological definitions934.7. The function I(·), taking subsets of Spec A to ideals of A98Chapter 5. The structure sheaf of an affine scheme, and the definition of		
3.1.Motivating example: The sheaf of differentiable functions.553.2.Definition of sheaf and presheaf573.3.Morphisms of presheaves and sheaves623.4.Properties determined at the level of stalks, and sheafification643.5.Sheaves of abelian groups, and \mathcal{O}_X -modules, form abelian categories683.6.The inverse image sheaf703.7.Recovering sheaves from a "sheaf on a base"72Part II. SchemesChapter 4.Toward affine schemes: the underlying set, and the underlying topological space4.1.Toward schemes774.2.The underlying set of affine schemes794.3.Visualizing schemes I: generic points884.4.The Zariski topology: The underlying topological space of an affine scheme894.5.A base of the Zariski topology on Spec A: Distinguished open sets934.7.The function I(·), taking subsets of Spec A to ideals of A98Chapter 5.The structure sheaf of an affine scheme, and the definition of		
3.2.Definition of sheaf and presheaf573.3.Morphisms of presheaves and sheaves623.4.Properties determined at the level of stalks, and sheafification643.5.Sheaves of abelian groups, and \mathcal{O}_X -modules, form abelian categories683.6.The inverse image sheaf703.7.Recovering sheaves from a "sheaf on a base"72Part II. SchemesChapter 4.Toward affine schemes: the underlying set, and the underlying topological space4.1.Toward schemes774.2.The underlying set of affine schemes794.3.Visualizing schemes I: generic points884.4.The Zariski topology: The underlying topological space of an affine scheme894.5.A base of the Zariski topology on Spec A: Distinguished open sets924.6.Topological definitions934.7.The function I(·), taking subsets of Spec A to ideals of A98Chapter 5.The structure sheaf of an affine scheme, and the definition of		
3.3.Morphisms of presheaves and sheaves623.4.Properties determined at the level of stalks, and sheafification643.5.Sheaves of abelian groups, and \mathcal{O}_X -modules, form abelian categories683.6.The inverse image sheaf703.7.Recovering sheaves from a "sheaf on a base"72Part II.Schemes75Chapter 4.Toward affine schemes: the underlying set, and the underlying topological space774.1.Toward schemes774.2.The underlying set of affine schemes794.3.Visualizing schemes I: generic points884.4.The Zariski topology: The underlying topological space of an affine scheme894.5.A base of the Zariski topology on Spec A: Distinguished open sets924.6.Topological definitions934.7.The function $I(\cdot)$, taking subsets of Spec A to ideals of A98Chapter 5.The structure sheaf of an affine scheme, and the definition of	ů i	
3.4.Properties determined at the level of stalks, and sheafification643.5.Sheaves of abelian groups, and \mathcal{O}_X -modules, form abelian categories683.6.The inverse image sheaf703.7.Recovering sheaves from a "sheaf on a base"72Part II. SchemesChapter 4.Toward affine schemes: the underlying set, and the underlying topological space4.1.Toward schemes774.2.The underlying set of affine schemes794.3.Visualizing schemes I: generic points884.4.The Zariski topology: The underlying topological space of an affine scheme894.5.A base of the Zariski topology on Spec A: Distinguished open sets924.6.Topological definitions934.7.The function $I(\cdot)$, taking subsets of Spec A to ideals of A98Chapter 5.The structure sheaf of an affine scheme, and the definition of	1	
3.5.Sheaves of abelian groups, and \mathcal{O}_X -modules, form abelian categories683.6.The inverse image sheaf703.7.Recovering sheaves from a "sheaf on a base"72Part II.Schemes75Chapter 4.Toward affine schemes: the underlying set, and the underlying topological space774.1.Toward schemes774.2.The underlying set of affine schemes794.3.Visualizing schemes I: generic points884.4.The Zariski topology: The underlying topological space of an affine scheme894.5.A base of the Zariski topology on Spec A: Distinguished open sets924.6.Topological definitions934.7.The function I(·), taking subsets of Spec A to ideals of A98Chapter 5.The structure sheaf of an affine scheme, and the definition of88	1 1	
3.6. The inverse image sheaf703.7. Recovering sheaves from a "sheaf on a base"72Part II. Schemes75Chapter 4. Toward affine schemes: the underlying set, and the underlying topological space774.1. Toward schemes774.2. The underlying set of affine schemes794.3. Visualizing schemes I: generic points884.4. The Zariski topology: The underlying topological space of an affine scheme894.5. A base of the Zariski topology on Spec A: Distinguished open sets 4.6. Topological definitions934.7. The function I(·), taking subsets of Spec A to ideals of A98Chapter 5. The structure sheaf of an affine scheme, and the definition of80	1	
3.7. Recovering sheaves from a "sheaf on a base"72Part II. Schemes75Chapter 4. Toward affine schemes: the underlying set, and the underlying topological space774.1. Toward schemes774.2. The underlying set of affine schemes794.3. Visualizing schemes I: generic points884.4. The Zariski topology: The underlying topological space of an affine scheme894.5. A base of the Zariski topology on Spec A: Distinguished open sets 4.6. Topological definitions934.7. The function I(·), taking subsets of Spec A to ideals of A98Chapter 5. The structure sheaf of an affine scheme, and the definition of72		
Part II. Schemes75Chapter 4. Toward affine schemes: the underlying set, and the underlying topological space774.1. Toward schemes774.2. The underlying set of affine schemes794.3. Visualizing schemes I: generic points884.4. The Zariski topology: The underlying topological space of an affine scheme894.5. A base of the Zariski topology on Spec A: Distinguished open sets 4.6. Topological definitions934.7. The function I(·), taking subsets of Spec A to ideals of A98Chapter 5. The structure sheaf of an affine scheme, and the definition of100		
Chapter 4. Toward affine schemes: the underlying set, and the underlying topological space774.1. Toward schemes774.2. The underlying set of affine schemes794.3. Visualizing schemes I: generic points884.4. The Zariski topology: The underlying topological space of an affine scheme894.5. A base of the Zariski topology on Spec A: Distinguished open sets924.6. Topological definitions934.7. The function $I(\cdot)$, taking subsets of Spec A to ideals of A98Chapter 5. The structure sheaf of an affine scheme, and the definition of93	3.7. Recovering sheaves from a "sheaf on a base"	72
topological space774.1. Toward schemes774.2. The underlying set of affine schemes794.3. Visualizing schemes I: generic points884.4. The Zariski topology: The underlying topological space of an affine scheme894.5. A base of the Zariski topology on Spec A: Distinguished open sets924.6. Topological definitions934.7. The function $I(\cdot)$, taking subsets of Spec A to ideals of A98Chapter 5. The structure sheaf of an affine scheme, and the definition of93	Part II. Schemes	75
topological space774.1. Toward schemes774.2. The underlying set of affine schemes794.3. Visualizing schemes I: generic points884.4. The Zariski topology: The underlying topological space of an affine scheme894.5. A base of the Zariski topology on Spec A: Distinguished open sets924.6. Topological definitions934.7. The function $I(\cdot)$, taking subsets of Spec A to ideals of A98Chapter 5. The structure sheaf of an affine scheme, and the definition of93	Chapter 4 Toward affine schemes: the underlying set and the underlying	
4.1.Toward schemes774.2.The underlying set of affine schemes794.3.Visualizing schemes I: generic points884.4.The Zariski topology: The underlying topological space of an affine scheme894.5.A base of the Zariski topology on Spec A: Distinguished open sets924.6.Topological definitions934.7.The function $I(\cdot)$, taking subsets of Spec A to ideals of A98Chapter 5.The structure sheaf of an affine scheme, and the definition of		77
 4.2. The underlying set of affine schemes 4.3. Visualizing schemes I: generic points 4.4. The Zariski topology: The underlying topological space of an affine scheme 4.5. A base of the Zariski topology on Spec A: Distinguished open sets 4.6. Topological definitions 4.7. The function I(·), taking subsets of Spec A to ideals of A 98 Chapter 5. The structure sheaf of an affine scheme, and the definition of 	1 0 1	
 4.3. Visualizing schemes I: generic points 4.4. The Zariski topology: The underlying topological space of an affine scheme 4.5. A base of the Zariski topology on Spec A: Distinguished open sets 4.6. Topological definitions 4.7. The function I(·), taking subsets of Spec A to ideals of A 98 Chapter 5. The structure sheaf of an affine scheme, and the definition of 		
 4.4. The Zariski topology: The underlying topological space of an affine scheme 4.5. A base of the Zariski topology on Spec A: Distinguished open sets 4.6. Topological definitions 4.7. The function I(·), taking subsets of Spec A to ideals of A 98 Chapter 5. The structure sheaf of an affine scheme, and the definition of 	5 0	
scheme89 $4.5.$ A base of the Zariski topology on Spec A: Distinguished open sets92 $4.6.$ Topological definitions93 $4.7.$ The function I(·), taking subsets of Spec A to ideals of A98Chapter 5. The structure sheaf of an affine scheme, and the definition of		00
4.5. A base of the Zariski topology on Spec A: Distinguished open sets924.6. Topological definitions934.7. The function $I(\cdot)$, taking subsets of Spec A to ideals of A98Chapter 5. The structure sheaf of an affine scheme, and the definition of		89
4.6. Topological definitions934.7. The function I(·), taking subsets of Spec A to ideals of A98Chapter 5. The structure sheaf of an affine scheme, and the definition of		
4.7. The function $I(\cdot)$, taking subsets of Spec A to ideals of A98Chapter 5. The structure sheaf of an affine scheme, and the definition of		
•		
•	Chapter 5 The structure sheaf of an affine scheme and the definition of	
	schemes in general	101

5.1.	The structure sheaf of an affine scheme	101
5.2.	Visualizing schemes II: nilpotents	103
5.3.	Definition of schemes	105
5.4.	Three examples	108
5.5.	Projective schemes	114
Chapter	6. Some properties of schemes	121
6.1.	Topological properties	121
6.2.	Reducedness and integrality	122
6.3.	Properties of schemes that can be checked "affine-locally"	124
6.4.	Normality and factoriality	128
6.5.	* Associated points of (locally Noetherian) schemes, and drawing	
fuzzy	pictures	131
Part III.	Morphisms of schemes	137
Chapter	7. Morphisms of schemes	139
7.1.	Introduction	139
7.2.	Morphisms of ringed spaces	140
7.3.	From local-ringed spaces to morphisms of schemes	142
7.4.	Maps of graded rings and maps of projective schemes	146
7.5.	Rational maps from integral schemes	148
7.6.	** Representable functors and group schemes	153
7.7.	** The Grassmannian	156
Chapter	8. Useful classes of morphisms of schemes	159
-	Open immersions	159
8.2.	Algebraic interlude: Integral morphisms, the Going-Up theorem,	
and N	Jakayama's lemma	160
8.3.	Finiteness conditions on morphisms	164
8.4.	Images of morphisms: Chevalley's theorem and elimination theory	171
Chapter	9. Closed immersions and related notions	177
9.1.	Closed immersions and closed subschemes	177
9.2.	Closed immersions of projective schemes, and more projective	
geom	etry	181
9.3.	Constructions related to "smallest closed subschemes": scheme-	
theor	etic image, scheme-theoretic closure, induced reduced subscheme,	
and t	he reduction of a scheme	186
Chapter	10. Fibered products of schemes	191
10.1.	They exist	191
10.2.	Computing fibered products in practice	196
10.3.	Pulling back families and fibers of morphisms	199
10.4.	Properties preserved by base change	201
10.5.	Products of projective schemes: The Segre embedding	203
10.6.	Normalization	205
Chapter 11. Separated and proper morphisms, and (finally!) varieties 2		
11.1.	Separated morphisms (and quasiseparatedness done properly)	211

11.2.	Rational maps to separated schemes	221
11.3.	Proper morphisms	223
Part IV.	Harder properties of schemes	227
Chapter	12. Dimension	229
12.1.		229
12.2.		232
12.3.	ě	
Algeb	raic Hartogs' Lemma	235
12.4.		240
		• • •
Chapter	0	243
13.1.	0 1	243
13.2.	The local dimension is at most the dimension of the tangent space,	0.47
	onsingularity	247
13.3.	Discrete valuation rings: Dimension 1 Noetherian regular local	051
rings	Valuative within for concretedness and pronormess	251 257
13.4. 13.5.	Valuative criteria for separatedness and properness	257 260
13.3.	* Completions	200
Part V.	Quasicoherent sheaves	263
Chapter	14. Quasicoherent and coherent sheaves	265
14.1.	Vector bundles and locally free sheaves	265
14.2.	Quasicoherent sheaves	269
14.3.		271
14.4.	Quasicoherent sheaves form an abelian category	274
14.5.		276
14.6.	Finiteness conditions on quasicoherent sheaves: finite type	
quasic	oherent sheaves, and coherent sheaves	279
14.7.	** Coherent modules over non-Noetherian rings	282
14.8.	Pleasant properties of finite type and coherent sheaves	284
Chapter	15. Invertible sheaves (line bundles) and divisors	287
15.1.	Some line bundles on projective space	287
15.2.	Invertible sheaves and Weil divisors	289
15.3.	* Effective Cartier divisors "=" invertible ideal sheaves	296
10101		_/ 0
Chapter	16. Quasicoherent sheaves on projective A-schemes and graded modules	299
16.1.	The quasicoherent sheaf corresponding to a graded module	299
16.2.	Invertible sheaves (line bundles) on projective A-schemes	300
16.3.	(Finite) global generation of quasicoherent sheaves, and Serre's	
Theor		301
16.4.	** Every quasicoherent sheaf on a projective A-scheme arises from	
a grad	ed module	303
Chapter	17. Pushforwards and pullbacks of quasicoherent sheaves	307
Chapter 17.1.	Introduction	307
1/.1.	macadat	501

 17.2. Pushforwards of quasicoherent sheaves 17.3. Pullback of quasicoherent sheaves 17.4. Invertible sheaves and maps to projective schemes 17.5. Extending maps to projective schemes over smooth codimension one points: the Curve-to-projective Extension Theorem 	307 308 312 316
 Chapter 18. Relative Spec and Proj, and projective morphisms 18.1. Relative Spec of a (quasicoherent) sheaf of algebras 18.2. Relative Proj of a sheaf of graded algebras 18.3. Projective morphisms 18.4. Applications to curves 	319 319 321 323 325
 Chapter 19. * Blowing up a scheme along a closed subscheme 19.1. Motivating example: blowing up the origin in the plane 19.2. Blowing up, by universal property 19.3. The blow-up exists, and is projective 19.4. Explicit computations 	331 331 332 336 339
 Chapter 20. Cech cohomology of quasicoherent sheaves 20.1. (Desired) properties of cohomology 20.2. Definitions and proofs of key properties 20.3. Cohomology of line bundles on projective space 20.4. Applications of cohomology: Riemann-Roch, degrees of lines bundles and coherent sheaves, arithmetic genus, and a first meeting with 	341 341 345 350
Serre duality 20.5. Another application: Hilbert polynomials, genus, and Hilbert functions 20.6. Yet another application: Intersection theory on a nonsingular	352 355
 projective surface 20.7. Higher direct image sheaves 20.8. * Higher pushforwards of coherent sheaves under proper morphisms are coherent, and Chow's lemma 	360 362 365
 Chapter 21. Curves 21.1. A criterion for a morphism to be a closed immersion 21.2. A series of crucial observations 21.3. Curves of genus 0 21.4. Hyperelliptic curves 21.5. Curves of genus 2 21.6. Curves of genus 3 21.7. Curves of genus 4 and 5 21.8. Curves of genus 1 21.9. Classical geometry involving elliptic curves 21.10. Counterexamples and pathologies from elliptic curves 	369 372 374 375 379 380 381 384 392 392
 Chapter 22. Differentials 22.1. Motivation and game plan 22.2. The affine case: three definitions 22.3. Examples 22.4. Differentials, nonsingularity, and k-smoothness 	395 395 396 407 411

22.5. The Riemann-Hurwitz Formula	415
22.6. Bertini's theorem	418
22.7. The conormal exact sequence for nonsingular varieties, and useful	
applications	422
Part VI. More	425
	720
Chapter 23. Derived functors	427
23.1. The Tor functors	427
23.2. Derived functors in general	430
23.3. Fun with spectral sequences and derived functors	432
23.4. \star Cohomology of \mathcal{O} -modules	434
23.5. * Cech cohomology and derived functor cohomology agree	435
Chapter 24. Flatness	441
24.1. Introduction	441
24.2. Easy facts	442
24.3. Flatness through Tor	446
24.4. Ideal-theoretic criteria for flatness	448
24.5. Flatness implies constant Euler characteristic	452
24.6. Statements and applications of cohomology and base change	
theorems	456
24.7. \star Universally computing cohomology of flat sheaves using a	
complex of vector bundles, and proofs of cohomology and base change	
theorems	458
24.8. ** Fancy flatness facts	464
Chapter 25. Smooth, étale, unramified	467
25.1. Some motivation	467
25.2. Definitions and easy consequences	468
25.3. Harder facts: Left-exactness of the relative cotangent and conorma	1
sequences in the presence of smoothness	471
25.4. Generic smoothness results	472
25.5. ** Formally unramified, smooth, and étale	475
Chapter 26. Proof of Serre duality	477
26.1. Introduction	477
26.2. Proving Serre duality for projective space over a field	478
26.3. Ext groups and Ext sheaves	479
26.4. Serre duality for projective k-schemes	482
26.5. Strong Serre duality for particularly nice projective k-schemes	483
26.6. The adjunction formula for the dualizing sheaf, and $\omega_X = \det \Omega_X$	
for smooth X	484
Bibliography	487

CHAPTER 1

Introduction

I can illustrate the approach with the ... image of a nut to be opened. The first analogy that came to my mind is of immersing the nut in some softening liquid, and why not simply water? From time to time you rub so the liquid penetrates better, and otherwise you left time pass. The shell becomes more flexible through weeks and months — when the time is ripe, hand pressure is enough, the shell opens like a perfectly ripened avocado!

A different image came to me a few weeks ago. The unknown thing to be known appeared to me as some stretch of earth or hard marl, resisting penetration ... the sea advances insensibly in silence, nothing seems to happen, nothing moves, the water is so far off you hardly hear it ... yet finally it surrounds the resistant substance.

— Grothendieck, Récoltes et Semailles p. 552-3, translation by Colin McLarty

1.1 Goals

These will hopefully eventually be complete notes intended to accompany a hard year-long class taught at Stanford in 2009-2010. In any class, choices must be made as to what the course is about, and who it is for — there is a finite amount of time, and any addition of material or explanation or philosophy requires a corresponding subtraction. So these notes are highly inappropriate for most people and most classes. Here are my goals. (I do not claim that these goals are achieved; but they motivate the choices made.)

These notes have a very particular audience in mind: Stanford Ph.D. students, postdocs and faculty in a variety of fields, who may want to use algebraic geometry in a sophisticated way. This includes algebraic and arithmetic geometers, but also topologists, number theorists, symplectic geometers, and others.

The notes deal purely with the algebraic side of the subject, and completely neglect analytic aspects.

They assume little prior background (see §1.2), and indeed most students have little prior background. Readers with less background will necessarily have to work harder. It would be great if the reader had seen varieties before, but many students haven't, and the course does not assume it — and similarly for category theory, homological algebra, more advanced commutative algebra, differential geometry, Surprisingly often, what we need can be developed quickly from scratch. The cost is that the course is much denser; the benefit is that more people can follow it; they don't reach a point where they get thrown. (On the other hand, people who already have some familiarity with algebraic geometry, but want to understand the foundations more completely should not be bored, and will focus on more subtle issues.)

The notes seek to cover everything that one should see in a first course in the subject, including theorems, proofs, and examples.

They seek to be complete, and not leave important results as black boxes pulled from other references.

There are lots of exercises. I've found that unless I have some problems I can think through, ideas don't get fixed in my mind. Some are trivial — that's okay, and even desirable. As few necessary ones as possible should be hard, but the reader should have the background to deal with them — they are not just an excuse to push material out of the text.

There are optional (starred \star) sections of topics worth knowing on a second or third (but not first) reading. You should not read double-starred sections ($\star\star$) unless you really really want to, but you should be aware of their existence.

The notes are intended to be readable, even if not easy reading.

In short, after a year of hard work, students should have a broad familiarity with the foundations of the subject, and be ready to attend seminars, and learn more advanced material. They should not just have a vague intuitive understanding of the ideas of the subject; they should know interesting examples, know why they are interesting, and be able to prove interesting facts about them.

I have greatly enjoyed thinking through these notes, and teaching the corresponding classes, in a way I did not expect. I have had the chance to think through the structure of algebraic geometry from scratch, not blindly accepting the choices made by others. (Why do we need this notion? Aha, this forces us to consider this other notion earlier, and now I see why this third notion is so relevant...) I have repeatedly realized that ideas developed in Paris in the 1960's are simpler than I initially believed, once they are suitably digested.

1.1.1. Implications. We will work with as much generality as we need for most readers, and no more. In particular, we try to have hypotheses that are as general as possible without making proofs harder. The right hypotheses can make a proof easier, not harder, because one can remember how they get used. As an inflammatory example, the notion of quasiseparated comes up early and often. The cost is that one extra word has to be remembered, on top of an overwhelming number of other words. But once that is done, it is not hard to remember that essentially every scheme anyone cares about is quasiseparated. Furthermore, whenever the hypotheses "quasicompact and quasiseparated" turn up, the reader will likely immediately see a key idea of the proof.

Similarly, there is no need to work over an algebraically closed field, or even a field. Geometers needn't be afraid of arithmetic examples or of algebraic examples; a central insight of algebraic geometry is that the same formalism applies without change.

1.1.2. Costs. Choosing these priorities requires that others be shortchanged, and it is best to be up front about these. Because of our goal is to be comprehensive, and to understand everything one should know after a first course, it will necessarily take longer to get to interesting sample applications. You may be misled into thinking that one has to work this hard to get to these applications — it is not true!

1.2 Background and conventions

All rings are assumed to be commutative unless explicitly stated otherwise. All rings are assumed to contain a unit, denoted 1. Maps of rings must send 1 to 1. We don't require that $0 \neq 1$; in other words, the "0-ring" (with one element) is a ring. (There is a ring map from any ring to the 0-ring; the 0-ring only maps to itself. The 0-ring is the final object in the category of rings.) We accept the axiom of choice. In particular, any proper ideal in a ring is contained in a maximal ideal. (The axiom of choice also arises in the argument that the category of A-modules has enough injectives, see Exercise 23.2.E.)

The reader should be familiar with some basic notions in commutative ring theory, in particular the notion of ideals (including prime and maximal ideals) and localization. For example, the reader should be able to show that if S is a multiplicative set of a ring A, then the primes of $S^{-1}A$ are in natural bijection with those primes of A not meeting S (§4.2.6). The notion of tensor products and exact sequences of A-modules will be important. We will use the notation (A, m) or (A, m, k) for local rings — A is the ring, m its maximal ideal, and k = A/m its residue field. We will use (in Proposition 14.6.4) the structure theorem for finitely generated modules over a principal ideal domain A: any such module can be written as the direct sum of principal modules A/(a).

We will not concern ourselves with subtle foundational issues (set-theoretic issues involving universes, etc.). It is true that some people should be careful about these issues. But is that really how you want to spend your life?

1.2.1. *Further background.* It may be helpful to have books on other subjects handy that you can dip into for specific facts, rather than reading them in advance. In commutative algebra, Eisenbud [E] is good for this. Other popular choices are Atiyah-Macdonald [AM] and Matsumura [M-CRT]. For homological algebra, Weibel [W] is simultaneously detailed and readable.

Background from other parts of mathematics (topology, geometry, complex analysis) will of course be helpful for developing intuition.

Finally, it may help to keep the following quote in mind.

Algebraic geometry seems to have acquired the reputation of being esoteric, exclusive, and very abstract, with adherents who are secretly plotting to take over all the rest of mathematics. In one respect this last point is accurate.

— David Mumford