Contents

Chapter 1. Introduction 9
 1.1. Goals 9
 1.2. Background and conventions 11

Part I. Preliminaries 13

Chapter 2. Some category theory 15
 2.1. Motivation 15
 2.2. Categories and functors 17
 2.3. Universal properties determine an object up to unique isomorphism 22
 2.4. Limits and colimits 27
 2.5. Adoints 30
 2.6. Kernels, cokernels, and exact sequences: A brief introduction to abelian categories 33
 2.7. * Spectral sequences 42

Chapter 3. Sheaves 55
 3.1. Motivating example: The sheaf of differentiable functions. 55
 3.2. Definition of sheaf and presheaf 57
 3.3. Morphisms of presheaves and sheaves 62
 3.4. Properties determined at the level of stalks, and sheafification 64
 3.5. Sheaves of abelian groups, and O_X-modules, form abelian categories 68
 3.6. The inverse image sheaf 70
 3.7. Recovering sheaves from a “sheaf on a base” 72

Part II. Schemes 75

Chapter 4. Toward affine schemes: the underlying set, and the underlying topological space 77
 4.1. Toward schemes 77
 4.2. The underlying set of affine schemes 79
 4.3. Visualizing schemes I: generic points 88
 4.4. The Zariski topology: The underlying topological space of an affine scheme 89
 4.5. A base of the Zariski topology on Spec A: Distinguished open sets 92
 4.6. Topological definitions 93
 4.7. The function $I(\cdot)$, taking subsets of Spec A to ideals of A 98

Chapter 5. The structure sheaf of an affine scheme, and the definition of schemes in general 101
5.1. The structure sheaf of an affine scheme 101
5.2. Visualizing schemes II: nilpotents 103
5.3. Definition of schemes 105
5.4. Three examples 108
5.5. Projective schemes 114

Chapter 6. Some properties of schemes 121
6.1. Topological properties 121
6.2. Reducedness and integrality 122
6.3. Properties of schemes that can be checked “affine-locally” 124
6.4. Normality and factoriality 128
6.5. Associated points of (locally Noetherian) schemes, and drawing fuzzy pictures 131

Part III. Morphisms of schemes 137

Chapter 7. Morphisms of schemes 139
7.1. Introduction 139
7.2. Morphisms of ringed spaces 140
7.3. From local-ringed spaces to morphisms of schemes 142
7.4. Maps of graded rings and maps of projective schemes 146
7.5. Rational maps from integral schemes 148
7.6. ** Representable functors and group schemes 153
7.7. ** The Grassmannian 156

Chapter 8. Useful classes of morphisms of schemes 159
8.1. Open immersions 159
8.2. Algebraic interlude: Integral morphisms, the Going-Up theorem, and Nakayama’s lemma 160
8.3. Finiteness conditions on morphisms 164
8.4. Images of morphisms: Chevalley’s theorem and elimination theory 171

Chapter 9. Closed immersions and related notions 177
9.1. Closed immersions and closed subschemes 177
9.2. Closed immersions of projective schemes, and more projective geometry 181
9.3. Constructions related to “smallest closed subschemes”: scheme-theoretic image, scheme-theoretic closure, induced reduced subscheme, and the reduction of a scheme 186

Chapter 10. Fibered products of schemes 191
10.1. They exist 191
10.2. Computing fibered products in practice 196
10.3. Pulling back families and fibers of morphisms 199
10.4. Properties preserved by base change 201
10.5. Products of projective schemes: The Segre embedding 203
10.6. Normalization 205

Chapter 11. Separated and proper morphisms, and (finally!) varieties 211
11.1. Separated morphisms (and quasiseparatedness done properly) 211
11.2. Rational maps to separated schemes 221
11.3. Proper morphisms 223

Part IV. Harder properties of schemes 227

Chapter 12. Dimension 229
12.1. Dimension and codimension 229
12.2. Dimension and transcendence degree 232
12.3. Fun in codimension one: Krull’s Principal Ideal Theorem and Algebraic Hartogs’ Lemma 235
12.4. ** Proof of Krull’s Principal Ideal Theorem 12.3.3 240

Chapter 13. Nonsingularity (“smoothness”) of Noetherian schemes 243
13.1. The Zariski tangent space 243
13.2. The local dimension is at most the dimension of the tangent space, and nonsingularity 247
13.3. Discrete valuation rings: Dimension 1 Noetherian regular local rings 251
13.4. Valuative criteria for separatedness and properness 257
13.5. * Completions 260

Part V. Quasicoherent sheaves 263

Chapter 14. Quasicoherent and coherent sheaves 265
14.1. Vector bundles and locally free sheaves 265
14.2. Quasicoherent sheaves 269
14.3. Characterizing quasicoherence using the distinguished affine base 271
14.4. Quasicoherent sheaves form an abelian category 274
14.5. Module-like constructions 276
14.6. Finiteness conditions on quasicoherent sheaves: finite type quasicoherent sheaves, and coherent sheaves 279
14.7. ** Coherent modules over non-Noetherian rings 282
14.8. Pleasant properties of finite type and coherent sheaves 284

Chapter 15. Invertible sheaves (line bundles) and divisors 287
15.1. Some line bundles on projective space 287
15.2. Invertible sheaves and Weil divisors 289
15.3. * Effective Cartier divisors “=” invertible ideal sheaves 296

Chapter 16. Quasicoherent sheaves on projective A-schemes and graded modules 299
16.1. The quasicoherent sheaf corresponding to a graded module 299
16.2. Invertible sheaves (line bundles) on projective A-schemes 300
16.3. (Finite) global generation of quasicoherent sheaves, and Serre’s Theorem 301
16.4. ** Every quasicoherent sheaf on a projective A-scheme arises from a graded module 303

Chapter 17. Pushforwards and pullbacks of quasicoherent sheaves 307
17.1. Introduction 307
CHAPTER 1

Introduction

I can illustrate the approach with the ... image of a nut to be opened. The first analogy that came to my mind is of immersing the nut in some softening liquid, and why not simply water? From time to time you rub so the liquid penetrates better, and otherwise you let time pass. The shell becomes more flexible through weeks and months — when the time is ripe, hand pressure is enough, the shell opens like a perfectly ripened avocado!

A different image came to me a few weeks ago. The unknown thing to be known appeared to me as some stretch of earth or hard marl, resisting penetration ... the sea advances insensibly in silence, nothing seems to happen, nothing moves, the water is so far off you hardly hear it ... yet finally it surrounds the resistant substance.

— Grothendieck, Récoltes et Semailles p. 552-3, translation by Colin McLarty

1.1 Goals

These will hopefully eventually be complete notes intended to accompany a hard year-long class taught at Stanford in 2009-2010. In any class, choices must be made as to what the course is about, and who it is for — there is a finite amount of time, and any addition of material or explanation or philosophy requires a corresponding subtraction. So these notes are highly inappropriate for most people and most classes. Here are my goals. (I do not claim that these goals are achieved; but they motivate the choices made.)

These notes have a very particular audience in mind: Stanford Ph.D. students, postdocs and faculty in a variety of fields, who may want to use algebraic geometry in a sophisticated way. This includes algebraic and arithmetic geometers, but also topologists, number theorists, symplectic geometers, and others.

The notes deal purely with the algebraic side of the subject, and completely neglect analytic aspects.

They assume little prior background (see §1.2), and indeed most students have little prior background. Readers with less background will necessarily have to work harder. It would be great if the reader had seen varieties before, but many students haven’t, and the course does not assume it — and similarly for category theory, homological algebra, more advanced commutative algebra, differential geometry, Surprisingly often, what we need can be developed quickly from scratch. The cost is that the course is much denser; the benefit is that more people can follow it; they don’t reach a point where they get thrown. (On the other hand, people who already have some familiarity with algebraic geometry, but want to understand the foundations more completely should not be bored, and will focus on more subtle issues.)
The notes seek to cover everything that one should see in a first course in the subject, including theorems, proofs, and examples. They seek to be complete, and not leave important results as black boxes pulled from other references.

There are lots of exercises. I’ve found that unless I have some problems I can think through, ideas don’t get fixed in my mind. Some are trivial — that’s okay, and even desirable. As few necessary ones as possible should be hard, but the reader should have the background to deal with them — they are not just an excuse to push material out of the text.

There are optional (starred ⋆) sections of topics worth knowing on a second or third (but not first) reading. You should not read double-starred sections (★★) unless you really really want to, but you should be aware of their existence.

The notes are intended to be readable, even if not easy reading.

In short, after a year of hard work, students should have a broad familiarity with the foundations of the subject, and be ready to attend seminars, and learn more advanced material. They should not just have a vague intuitive understanding of the ideas of the subject; they should know interesting examples, know why they are interesting, and be able to prove interesting facts about them.

I have greatly enjoyed thinking through these notes, and teaching the corresponding classes, in a way I did not expect. I have had the chance to think through the structure of algebraic geometry from scratch, not blindly accepting the choices made by others. (Why do we need this notion? Aha, this forces us to consider this other notion earlier, and now I see why this third notion is so relevant...) I have repeatedly realized that ideas developed in Paris in the 1960’s are simpler than I initially believed, once they are suitably digested.

1.1.1. Implications. We will work with as much generality as we need for most readers, and no more. In particular, we try to have hypotheses that are as general as possible without making proofs harder. The right hypotheses can make a proof easier, not harder, because one can remember how they get used. As an inflammatory example, the notion of quasiseparated comes up early and often. The cost is that one extra word has to be remembered, on top of an overwhelming number of other words. But once that is done, it is not hard to remember that essentially every scheme anyone cares about is quasiseparated. Furthermore, whenever the hypotheses “quasicompact and quasiseparated” turn up, the reader will likely immediately see a key idea of the proof.

Similarly, there is no need to work over an algebraically closed field, or even a field. Geometers needn’t be afraid of arithmetic examples or of algebraic examples; a central insight of algebraic geometry is that the same formalism applies without change.

1.1.2. Costs. Choosing these priorities requires that others be shortchanged, and it is best to be up front about these. Because of our goal is to be comprehensive, and to understand everything one should know after a first course, it will necessarily take longer to get to interesting sample applications. You may be misled into thinking that one has to work this hard to get to these applications — it is not true!
1.2 Background and conventions

All rings are assumed to be commutative unless explicitly stated otherwise. All rings are assumed to contain a unit, denoted 1. Maps of rings must send 1 to 1. We don’t require that 0 ≠ 1; in other words, the “0-ring” (with one element) is a ring. (There is a ring map from any ring to the 0-ring; the 0-ring only maps to itself. The 0-ring is the final object in the category of rings.) We accept the axiom of choice. In particular, any proper ideal in a ring is contained in a maximal ideal. (The axiom of choice also arises in the argument that the category of \(A\)-modules has enough injectives, see Exercise 23.2.E.)

The reader should be familiar with some basic notions in commutative ring theory, in particular the notion of ideals (including prime and maximal ideals) and localization. For example, the reader should be able to show that if \(S\) is a multiplicative set of a ring \(A\), then the primes of \(S^{-1}A\) are in natural bijection with those primes of \(A\) not meeting \(S\) (§4.2.6). The notion of tensor products and exact sequences of \(A\)-modules will be important. We will use the notation \((A, m)\) or \((A, m, k)\) for local rings — \(A\) is the ring, \(m\) its maximal ideal, and \(k = A/m\) its residue field. We will use (in Proposition 14.6.4) the structure theorem for finitely generated modules over a principal ideal domain \(A\): any such module can be written as the direct sum of principal modules \(A/(a)\).

We will not concern ourselves with subtle foundational issues (set-theoretic issues involving universes, etc.). It is true that some people should be careful about these issues. But is that really how you want to spend your life?

1.2.1. Further background. It may be helpful to have books on other subjects handy that you can dip into for specific facts, rather than reading them in advance. In commutative algebra, Eisenbud [E] is good for this. Other popular choices are Atiyah-Macdonald [AM] and Matsumura [M-CRT]. For homological algebra, Weibel [W] is simultaneously detailed and readable.

Background from other parts of mathematics (topology, geometry, complex analysis) will of course be helpful for developing intuition.

Finally, it may help to keep the following quote in mind.

Algebraic geometry seems to have acquired the reputation of being esoteric, exclusive, and very abstract, with adherents who are secretly plotting to take over all the rest of mathematics. In one respect this last point is accurate.

— David Mumford