
SPECTRAL SEQUENCES: FRIEND OR FOE?

RAVI VAKIL

Spectral sequences are a powerful book-keeping tool for proving things involving com-
plicated commutative diagrams. They were introduced by Leray in the 1940’s at the same
time as he introduced sheaves. They have a reputation for being abstruse and difficult.
It has been suggested that the name ‘spectral’ was given because, like spectres, spectral
sequences are terrifying, evil, and dangerous. I have heard no one disagree with this
interpretation, which is perhaps not surprising since I just made it up.

Nonetheless, the goal of this note is to tell you enough that you can use spectral se-
quences without hesitation or fear, and why you shouldn’t be frightened when they come
up in a seminar. What is different in this presentation is that we will use spectral sequence
to prove things that you may have already seen, and that you can prove easily in other
ways. This will allow you to get some hands-on experience for how to use them. We
will also see them only in a “special case” of double complexes (which is the version
by far the most often used in algebraic geometry), and not in the general form usually
presented (filtered complexes, exact couples, etc.). See chapter 5 of Weibel’s marvelous
book for more detailed information if you wish. If you want to become comfortable with
spectral sequences, you must try the exercises.

For concreteness, we work in the category vector spaces over a given field. However,
everything we say will apply in any abelian category, such as the category ModA of A-
modules.

0.1. Double complexes.

A first-quadrant double complex is a collection of vector spaces Ep,q (p, q ∈ Z), which
are zero unless p, q ≥ 0, and “rightward” morphisms d

p,q
> : Ep,q

→ Ep,q+1 and “upward”
morphisms d

p,q
∧

: Ep,q
→ Ep+1,q. In the superscript, the first entry denotes the row number,

and the second entry denotes the column number, in keeping with the convention for
matrices, but opposite to how the (x, y)-plane is labeled. The subscript is meant to suggest
the direction of the arrows. We will always write these as d> and d∧ and ignore the
superscripts. We require that d> and d∧ satisfying (a) d2

> = 0, (b) d2
∧

= 0, and one more
condition: (c) either d>d∧ = d∧d> (all the squares commute) or d>d∧ + d∧d> = 0 (they
all anticommute). Both come up in nature, and you can switch from one to the other by
replacing d

p,q
∧

with d
p
∧
(−1)q. So I’ll assume that all the squares anticommute, but that

you know how to turn the commuting case into this one. (You will see that there is no
difference in the recipe, basically because the image and kernel of a homomorphism f

equal the image and kernel respectively of −f.)
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Ep+1,q
d

p+1,q
> // Ep+1,q+1

anticommutes

Ep,q

d
p,q

∧

OO

d
p,q
> // Ep,q+1

d
p,q+1
∧

OO

There are variations on this definition, where for example the vertical arrows go down-
wards, or some different subset of the Ep,q are required to be zero, but I’ll leave these
straightforward variations to you.

From the double complex we construct a corresponding (single) complex E• with Ek =

⊕iE
i,k−i, with d = d> + d∧. In other words, when there is a single superscript k, we mean

a sum of the kth antidiagonal of the double complex. The single complex is somtimes
called the total complex. Note that d2 = (d> + d∧)2 = d2

> + (d>d∧ + d∧d>) + d2
∧

= 0, so
E• is indeed a complex.

The cohomology of the single complex is sometimes called the hypercohomology of
the double complex. We will instead use the phrase “cohomology of the double complex”.

Our initial goal will be to find the cohomology of the double complex. You will see
later that we secretly also have other goals.

A spectral sequence is a recipe for computing some information about the cohomology
of the double complex. I won’t yet give the full recipe. Surprisingly, this fragmentary bit
of information is sufficent to prove lots of things.

0.2. Approximate Definition. A spectral sequence with rightward orientation is a
sequence of tables or pages >E

p,q
0 , >E

p,q
1 , >E

p,q
2 , . . . (p, q ∈ Z), where >E

p,q
0 = Ep,q, along

with a differential

>dp,q
r : >Ep,q

r → >Ep+r,q−r+1

with >dp,q
r ◦ >dp,q

r = 0, along with an isomorphism of the cohomology of >dr at >Ep,q (i.e.
ker >dp,q

r / im >dp−r,q+r−1
r ) with >E

p,q
r+1.

The orientation indicates that our 0th differential is the rightward one: d0 = d>. The
left subscript “>” is usually omitted.
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The order of the morphisms is best understood visually:
(1) •

•

•

•
d0

//

d1

OO
d2

WW/
/

/

/

/

/

/

/

/

/

/

/

/

/

d3

ZZ5
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

•

(the morphisms each apply to different pages). Notice that the map always is “degree 1”
in the grading of the single complex E•.

The actual definition describes what E•,•
r and d•,•

r actually are, in terms of E•,•. We will
describe d0, d1, and d2 below, and you should for now take on faith that this sequence
continues in some natural way.

Note that Ep,q
r is always a subquotient of the corresponding term on the 0th page E

p,q
0 =

Ep,q. In particular, if Ep,q = 0, then Ep,q
r = 0 for all r, so Ep,q

r = 0 unless p, q ∈ Z
≥0. Notice

also that for any fixed p, q, once r is sufficiently large, E
p,q
r+1 is computed from (E•,•

r , dr)

using the complex
0

Ep,q
r

d
p,q
r

YY3
3

3

3

3

3

3

3

3

3

3

3

3

0

d
p+r,q−r−1
r

YY3
3

3

3

3

3

3

3

3

3

3

3

3

and thus we have canonical isomorphisms
Ep,q

r
∼= E

p,q
r+1

∼= E
p,q
r+2

∼= · · ·

We denote this module Ep,q
∞

.

We now describe the first few pages of the spectral sequence explicitly. As stated above,
the differential d0 on E•,•

0 = E•,• is defined to be d>. The rows are complexes:
• // • // •

The 0th page E0: • // • // •

• // • // •
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and so E1 is just the table of cohomologies of the rows. You should check that there
are now vertical maps d

p,q
1 : E

p,q
1 → E

p+1,q
1 of the row cohomology groups, induced by

d∧, and that these make the columns into complexes. (We have “used up the horizontal
morphisms”, but “the vertical differentials live on”.)

• • •

The 1st page E1: •

OO

•

OO

•

OO

•

OO

•

OO

•

OO

We take cohomology of d1 on E1, giving us a new table, E
p,q
2 . It turns out that there

are natural morphisms from each entry to the entry two above and one to the left, and
that the composition of these two is 0. (It is a very worthwhile exercise to work out
how this natural morphism d2 should be defined. Your argument may be reminiscent of
the connecting homomorphism in the Snake Lemma 0.5 or in the long exact sequence in
cohomology arising from a short exact sequence of complexes, Exercise 0.D. This is no
coincidence.)

• • •

The 2nd page E2: • • •

• •

VV.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

•

VV.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

This is the beginning of a pattern.

Then it is a theorem that there is a filtration of Hk(E•) by Ep,q
∞

where p + q = k. (We
can’t yet state it as an official Theorem because we haven’t precisely defined the pages
and differentials in the spectral sequence.) More precisely, there is a filtration

(2) E0,k
∞

�

�E1,k−1
∞ // ?

�

�E2,k−2
∞ // · · · �

� Ek,0
// Hk(E•)

where the quotients are displayed above each inclusion. (I always forget which way the
quotients are supposed to go, i.e. whether Ek,0 or E0,k is the subobject. One way of re-
membering it is by having some idea of how the result is proved.)

We say that the spectral sequence >E•,•
• converges to H•(E•). We often say that >E•,•

2 (or
any other page) abuts to H•(E•).

Although the filtration gives only partial information about H•(E•), sometimes one can
find H•(E•) precisely. One example is if all Ei,k−i

∞
are zero, or if all but one of them are zero

(e.g. if Ei,k−i
r has precisely one non-zero row or column, in which case one says that the

spectral sequence collapses at the rth step, although we will not use this term). Another
example is in the category of vector spaces over a field, in which case we can find the
dimension of Hk(E•). Also, in lucky circumstances, E2 (or some other small page) already
equals E∞.
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0.A. EXERCISE: INFORMATION FROM THE SECOND PAGE. Show that H0(E•) = E0,0
∞

= E0,0
2

and

0 // E0,1
2

// H1(E•) // E1,0
2

d1,0
2 // E0,2

2
// H2(E•).

0.3. The other orientation.

You may have observed that we could as well have done everything in the opposite di-
rection, i.e. reversing the roles of horizontal and vertical morphisms. Then the sequences
of arrows giving the spectral sequence would look like this (compare to (1)).

(3) •

•

OO

//

''O

O

O

O

O

O

O

O

O

O

O

O

O

O

%%J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

•

•

•

This spectral sequence is denoted ∧E•,•
• (“with the upwards orientation”). Then we would

again get pieces of a filtration of H•(E•) (where we have to be a bit careful with the order
with which ∧Ep,q

∞
corresponds to the subquotients — it in the opposite order to that of (2)

for >Ep,q
∞

). Warning: in general there is no isomorphism between >Ep,q
∞

and ∧Ep,q
∞

.

In fact, this observation that we can start with either the horizontal or vertical maps
was our secret goal all along. Both algorithms compute information about the same thing
(H•(E•)), and usually we don’t care about the final answer — we often care about the
answer we get in one way, and we get at it by doing the spectral sequence in the other
way.

0.4. Examples.

We’re now ready to see how this is useful. The moral of these examples is the following.
In the past, you may have proved various facts involving various sorts of diagrams, which
involved chasing elements around. Now, you’ll just plug them into a spectral sequence,
and let the spectral sequence machinery do your chasing for you.

0.5. Example: Proving the Snake Lemma. Consider the diagram

0 // D // E // F // 0

0 // A //

α

OO

B //

β

OO

C

γ

OO

// 0
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where the rows are exact and the squares commute. (Normally the Snake Lemma is de-
scribed with the vertical arrows pointing downwards, but I want to fit this into my spec-
tral sequence conventions.) We wish to show that there is an exact sequence

(4) 0 → ker α → ker β → ker γ → im α → im β → im γ → 0.

We plug this into our spectral sequence machinery. We first compute the cohomology
using the rightwards orientation, i.e. using the order (1). Then because the rows are exact,
E

p,q
1 = 0, so the spectral sequence has already converged: Ep,q

∞
= 0.

We next compute this “0” in another way, by computing the spectral sequence using
the upwards orientation. Then ∧E•,•

1 (with its differentials) is:

0 // im α // im β // im γ // 0

0 // ker α // ker β // ker γ // 0.

Then ∧E•,•
2 is of the form:

0

''N

N

N

N

N

N

N

N

N

N

N

N

N

N 0

''N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

0

''N

N

N

N

N

N

N

N

N

N

N

N

N

N

N ??

''N

N

N

N

N

N

N

N

N

N

N

N

N

N ?

''N

N

N

N

N

N

N

N

N

N

N

N

N

N

N ? 0

0 ? ?

''N

N

N

N

N

N

N

N

N

N

N

N

N

N

N ??

''N

N

N

N

N

N

N

N

N

N

N

N

N

N 0

0 0

We see that after ∧E2, all the terms will stabilize except for the double-question-marks —
all maps to and from the single question marks are to and from 0-entries. And after ∧E3,
even these two double-quesion-mark terms will stabilize. But in the end our complex
must be the 0 complex. This means that in ∧E2, all the entries must be zero, except for
the two double-question-marks, and these two must be the isormorphic. This means that
0 → ker α → ker β → ker γ and im α → im β → im γ → 0 are both exact (that comes from
the vanishing of the single-question-marks), and

coker(ker β → ker γ) ∼= ker(imα → im β)

is an isomorphism (that comes from the equality of the double-question-marks). Taken
together, we have proved the exactness of (4), and hence the Snake Lemma!

Spectral sequences make it easy to see how to generalize results further. For example,
if A → B is no longer assumed to be injective, how would the conclusion change?

6



0.6. Example: the Five Lemma. Suppose

(5) F // G // H // I // J

A //

α

OO

B //

β

OO

C

γ

OO

// D //

δ

OO

E

ε

OO

where the rows are exact and the squares commute.

Suppose α, β, δ, ε are isomorphisms. We’ll show that γ is an isomorphism.

We first compute the cohomology of the total complex using the rightwards orientation
(1). We choose this because we see that we will get lots of zeros. Then >E•,•

1 looks like this:

? 0 0 0 ?

?

OO

0

OO

0

OO

0

OO

?

OO

Then >E2 looks similar, and the sequence will converge by E2, as we will never get any
arrows between two non-zero entries in a table thereafter. We can’t conclude that the
cohomology of the total complex vanishes, but we can note that it vanishes in all but
four degrees — and most important, it vanishes in the two degrees corresponding to the
entries C and H (the source and target of γ).

We next compute this using the upwards orientation (3). Then ∧E1 looks like this:

0 // 0 // ? // 0 // 0

0 // 0 // ? // 0 // 0

and the spectral sequence converges at this step. We wish to show that those two question
marks are zero. But they are precisely the cohomology groups of the total complex that
we just showed were zero — so we’re done!

The best way to become comfortable with this sort of argument is to try it out yourself
several times, and realize that it really is easy. So you should do the following exercises!

0.B. EXERCISE: THE SUBTLE FIVE LEMMA. By looking at the spectral sequence proof
of the Five Lemma above, prove a subtler version of the Five Lemma, where one of the
isomorphisms can instead just be required to be an injection, and another can instead just
be required to be a surjection. (I am deliberately not telling you which ones, so you can
see how the spectral sequence is telling you how to improve the result.)

0.C. EXERCISE. If β and δ (in (5)) are injective, and α is surjective, show that γ is injective.
State the dual statement (whose proof is of course essentially the same).

0.D. EXERCISE. Use spectral sequences to show that a short exact sequence of complexes
gives a long exact sequence in cohomology.
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0.E. EXERCISE (THE MAPPING CONE). Suppose µ : A•
→ B• is a morphism of complexes.

Suppose C• is the single complex associated to the double complex A•
→ B•. (C• is called

the mapping cone of µ.) Show that there is a long exact sequence of complexes:

· · · → Hi−1(C•) → Hi(A•) → Hi(B•) → Hi(C•) → Hi+1(A•) → · · · .

(There is a slight notational ambiguity here; depending on how you index your double
complex, your long exact sequence might look slightly different.) In particular, we will
use the fact that µ induces an isomorphism on cohomology if and only if the mapping
cone is exact.

You are now ready to go out into the world and use spectral sequences to your heart’s
content!

0.7. ?? Complete definition of the spectral sequence, and proof.

You should most definitely not read this section any time soon after reading the intro-
duction to spectral sequences above. Instead, flip quickly through it to convince yourself
that nothing fancy is involved.

We consider the rightwards orientation. The upwards orientation is of course a trivial
variation of this.

0.8. Goals. We wish to describe the pages and differentials of the spectral sequence
explicitly, and prove that they behave the way we said they did. More precisely, we wish
to:

(a) describe Ep,q
r ,

(b) verify that Hk(E•) is filtered by Ep,k−p
∞

as in (2),
(c) describe dr and verify that d2

r = 0, and
(d) verify that E

p,q
r+1 is given by cohomology using dr.

Before tacking these goals, you can impress your friends by giving this short descrip-
tion of the pages and differentials of the spectral sequence. We say that an element of E•,•

is a (p, q)-strip if it is an element of ⊕l≥0E
p+l,q−l (see Fig. 1). Its non-zero entries lie on a

semi-infinite antidiagonal starting with position (p, q). We say that the (p, q)-entry (the
projection to Ep,q) is the leading term of the (p, q)-strip. Let Sp,q ⊂ E•,• be the submodule
of all the (p, q)-strips. Clearly Sp,q ⊂ Ep+q, and S0,k = Ek.

Note that the differential d = d∧ +d> sends a (p, q)-strip x to a (p, q+ 1)-strip dx. If dx

is furthermore a (p + r, q + r + 1)-strip (r ∈ Z
≥0), we say that x is an r-closed (p, q)-strip.

We denote the set of such Sp,q
r (so for example S

p,q
0 = Sp,q, and S0,k

0 = Ek). An element of
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. . . 0 0 0 0

0 ∗p+2,q−2 0 0 0

0 0 ∗p+1,q−1 0 0

0 0 0 ∗p,q 0

0 0 0 0 0p−1,q+1

FIGURE 1. A (p, q)-strip (in Sp,q ⊂ Ep+q). Clearly S0,k = Ek.

Sp,q
r may be depicted as:

. . . // ?

∗p+2,q−2

OO

// 0

∗p+1,q−1

OO

// 0

∗p,q //

OO

0

0.9. Preliminary definition of Ep,q
r . We are now ready to give a first definition of Ep,q

r ,
which by construction should be a subquotient of Ep,q = E

p,q
0 . We describe it as such by

describing two submodules Yp,q
r ⊂ Xp,q

r ⊂ Ep,q, and defining Ep,q
r = Xp,q

r /Yp,q
r . Let Xp,q

r

be those elements of Ep,q that are the leading terms of r-closed (p, q)-strips. Note that
by definition, d sends (r − 1)-closed Sp−(r−1),q+(r−1)−1-strips to (p, q)-strips. Let Yp,q

r be the
leading ((p, q))-terms of the differential d of (r−1)-closed (p−(r−1), q+(r−1)−1)-strips
(where the differential is considered as a (p, q)-strip).

We next give the definition of the differential dr of such an element x ∈ Xp,q
r . We take

any r-closed (p, q)-strip with leading term x. Its differential d is a (p + r, q − r + 1)-strip,
and we take its leading term. The choice of the r-closed (p, q)-strip means that this is not a
well-defined element of Ep,q. But it is well-defined modulo the (r−1)-closed (p+1, r+1)-
strips, and hence gives a map Ep,q

r → Ep+r,q−r+1
r .

This definition is fairly short, but not much fun to work with, so we will forget it, and
instead dive into a snakes’ nest of subscripts and superscripts.
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We begin with making some quick but important observations about (p, q)-strips.

0.F. EXERCISE. Verify the following.

(a) Sp,q = Sp+1,q−1 ⊕ Ep,q.
(b) (Any closed (p, q)-strip is r-closed for all r.) Any element x of Sp,q = S

p,q
0 that is a

cycle (i.e. dx = 0) is automatically in Sp,q
r for all r. For example, this holds when x

is a boundary (i.e. of the form dy).
(c) Show that for fixed p, q,

S
p,q
0 ⊃ S

p,q
1 ⊃ · · · ⊃ Sp,q

r ⊃ · · ·

stabilizes for r � 0 (i.e. Sp,q
r = S

p,q
r+1 = · · · ). Denote the stabilized module Sp,q

∞
.

Show Sp,q
∞

is the set of closed (p, q)-strips (those (p, q)-strips annihilated by d, i.e.
the cycles). In particular, S0,k

r is the set of cycles in Ek.

0.10. Defining Ep,q
r .

Define Xp,q
r := Sp,q

r /S
p+1,q−1
r−1 and Y := dS

p−(r−1),q+(r−1)−1

r−1 /S
p+1,q−1
r−1 .

Then Yp,q
r ⊂ Xp,q

r by Exercise 0.F(b). We define

(6) Ep,q
r =

Xp,q
r

Y
p,q
r

=
Sp,q

r

dS
p−(r−1),q+(r−1)−1

r−1 + S
p+1,q−1
r−1

We have completed Goal 0.8(a).

You are welcome to verify that these definitions of Xp,q
r and Yp,q

r and hence Ep,q
r agree

with the earlier ones of §0.9 (and in particular Xp,q
r and Yp,q

r are both submodules of Ep,q),
but we won’t need this fact.

0.G. EXERCISE: Ep,k−p
∞

GIVES SUBQUOTIENTS OF Hk(E•). By Exercise 0.F(c), Ep,q
r stabilizes

as r → ∞. For r � 0, interpret Sp,q
r /dS

p−(r−1),q+(r−1)−1

r−1 as the cycles in Sp,q
∞

⊂ Ep+q modulo
those boundary elements of dEp+q−1 contained in Sp,q

∞
. Finally, show that Hk(E•) is indeed

filtered as described in (2).

We have completed Goal 0.8(b).

0.11. Definition of dr.

We shall see that the map dr : Ep,q
r → Ep+r,q−r+1 is just induced by our differential d.

Notice that d sends r-closed (p, q)-strips Sp,q
r to (p + r, q − r + 1)-strips Sp+r,q−r+1, by the

definition “r-closed”. By Exercise 0.F(b), the image lies in Sp+r,q−r+1
r .

0.H. EXERCISE. Verify that d sends

dS
p−(r−1),q+(r−1)−1

r−1 + S
p+1,q−1
r−1 → dS

(p+r)−(r−1),(q−r+1)+(r−1)−1

r−1 + S
(p+r)+1,(q−r+1)−1

r−1 .
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(The first term on the left goes to 0 from d2 = 0, and the second term on the left goes to
the first term on the right.)

Thus we may define

dr : Ep,q
r =

Sp,q
r

dS
p−(r−1),q+(r−1)−1

r−1 + S
p+1,q−1
r−1

→

Sp+r,q−r+1
r

dS
p+1,q−1
r−1 + S

p+r+1,q−r
r−1

= Ep+r,q−r+1
r

and clearly d2
r = 0 (as we may interpret it as taking an element of Sp,q

r and applying d

twice).

We have accomplished Goal 0.8(c).

0.12. Verifying that the cohomology of dr at Ep,q
r is E

p,q
r+1. We are left with the unpleasant job

of verifying that the cohomology of

(7) S
p−r,q+r−1
r

dS
p−2r+1,q−3
r−1

+S
p−r+1,q+r−2
r−1

dr // S
p,q
r

dS
p−r+1,q+r−2
r−1

+S
p+1,q−1
r−1

dr // S
p+r,q−r+1
r

dS
p+1,q−1
r−1

+S
p+r+1,q−r
r−1

is naturally identified with
S

p,q
r+1

dS
p−r,q+r−1
r + S

p+1,q−1
r

and this will conclude our final Goal 0.8(d).

Let’s begin by understanding the kernel of the right map of (7). Suppose a ∈ Sp,q
r is

mapped to 0. This means that da = db+c, where b ∈ S
p+1,q−1
r−1 . If u = a−b, then u ∈ Sp,q,

while du = c ∈ S
p+r+1,q−r
r−1 ⊂ Sp+r+1,q−r, from which u is r-closed, i.e. u ∈ S

p,q
r+1. Hence

a = b + u + x where dx = 0, from which a − x = b + c ∈ S
p+1,q−1
r−1 + S

p,q
r+1. However,

x ∈ Sp,q, so x ∈ S
p,q
r+1 by Exercise 0.F(b). Thus a ∈ S

p+1,q−1
r−1 + S

p,q
r+1. Conversely, any

a ∈ S
p+1,q−1
r−1 + S

p,q
r+1 satisfies

da ∈ dS
p+r,q−r+1
r−1 + dS

p,q
r+1 ⊂ dS

p+r,q−r+1
r−1 + S

p+r+1,q−r
r−1

(using dS
p,q
r+1 ⊂ S

p+r+1,q−r
0 and Exercise 0.F(b)) so any such a is indeed in the kernel of

Sp,q
r →

Sp+r,q−r+1
r

dS
p+1,q−1
r−1 + S

p+r+1,q−r
r−1

.

Hence the kernel of the right map of (7) is

ker =
S

p+1,q−1
r−1 + S

p,q
r+1

dS
p−r+1,q+r−2
r−1 + S

p+1,q−1
r−1

.

Next, the image of the left map of (7) is immediately

im =
dSp−r,q+r−1

r + dS
p−r+1,q+r−2
r−1 + S

p+1,q−1
r−1

dS
p−r+1,q+r−2
r−1 + S

p+1,q−1
r−1

=
dSp−r,q+r−1

r + S
p+1,q−1
r−1

dS
p−r+1,q+r−2
r−1 + S

p+1,q−1
r−1

11



(as Sp−r,q−r+1
r contains S

p−r+1,q+r−1
r−1 ).

Thus the cohomology of (7) is

ker / im =
S

p+1,q−1
r−1 + S

p,q
r+1

dS
p−r,q+r−1
r + S

p+1,q−1
r−1

=
S

p,q
r+1

S
p,q
r+1 ∩ (dS

p−r,q+r−1
r + S

p+1,q−1
r−1 )

where the equality on the right uses the fact that dSp−r,q+r+1
r ⊂ S

p,q
r+1 and an isomorphism

theorem. We thus must show
Sp,q

r+1 ∩ (dSp−r,q+r−1
r + Sp+1,q−1

r−1 ) = dSp−r,q+r−1
r + Sp+1,q−1

r .

However,
S

p,q
r+1 ∩ (dSp−r,q+r−1

r + S
p+1,q−1
r−1 ) = dSp−r,q+r−1

r + S
p,q
r+1 ∩ S

p+1,q−1
r−1

and S
p,q
r+1 ∩ S

p+1,q−1
r−1 consists of (p, q)-strips whose differential vanishes up to row p + r,

from which S
p,q
r+1 ∩ S

p+1,q−1
r−1 = Sp,q

r as desired.

This completes the explanation of how spectral sequences work for a first-quadrant
double complex. The argument applies without significant change to more general situa-
tions, including filtered complexes.

E-mail address: vakil@math.stanford.edu
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