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1. A LITTLE MORE ABOUT CUBIC PLANE CURVES

1.A. IMPORTANT EXERCISE: A DEGENERATE ELLIPTIC CURVE. Consider the genus 1

curve C ⊂ P2
k given by y2z = x3 + x2z, with the point p = [0; 1; 0]. Emulate the above

argument to show that C−[0; 0; 1] is a group variety. Show that it is isomorphic to Gm (the
multiplicative group) with co-ordinate t = y/x, by showing an isomorphism of schemes,
and showing that multiplication and inverse in both group varieties agree under this
isomorphism.

1.B. EXERCISE: AN EVEN MORE DEGENERATE ELLIPTIC CURVE. Consider the genus 1

curve C ⊂ P2
k given by y2z = x3, with the point p = [0; 1; 0]. Emulate the above argument

to show that C− [0; 0; 1] is a group variety. Show that it is isomorphic to A1 (with additive
group structure) with co-ordinate t = y/x, by showing an isomorphism of schemes, and
showing that multiplication/addition and inverse in both group varieties agree under
this isomorphism.

I then gave proofs of Pappas’ Theorem and Pascal’s “Mystical Hexagon” theorem.

2. LINE BUNDLES OF DEGREE 4, AND PONCELET’S PORISM

The story doesn’t stop in degree 3. In the same way that we showed that a canoni-
cally embedded nonhyperelliptic curve of genus 4 is the complete intersection in P3

k of a
quadric and a cubic, we can show the following.

2.A. EXERCISE. Show that the complete linear system for O(4p) embeds E in P3 as the
complete intersection of two quadrics. (Hint: Show the image of E is contained in at least
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2 linearly independent quadrics. Show that neither can be reducible, so they share no
components. Use Bezout’s theorem.)

We can use this to prove a beautiful fact in classical geometry: Poncelet’s porism. Sup-
pose C and D are two ellipses in the real plane, with C containing D. Choose any point
p0 on C. Choose one of the two tangents `1 from p to D. Then `1 meets C at two points in
total: p0 and another points p1. From p1, there are two tangents to D, `1 and another line
`2. The line `2 meets C at some other point p2. Continue this to get a sequence of points
p0, p1, p2, . . . . Suppose this sequence starting with p0 is periodic, i.e. p0 = pn for some n.
Then it is periodic with any starting point p ∈ C. I drew a picture of this.

Let’s see what this has to do with elliptic curves. We work over the complex num-
bers and at the end consider what our results over the real numbers. For the rest of this
discussion, we assume that k is an algebraically closed field of characteristic not 2.

2.B. EXERCISE. Suppose D is a nonsingular conic in the plane P2
k. Suppose p is a point

on the plane not on D. Then there are precisely 2 tangents to D containing p.

Thus we have verified one of the implicit statements in the set-up for Poncelet’s porism.

Next, suppose Q is a nonsingular quadric in P3, and q is a point not on Q. Then the
projection from q to P2 describes Q as a branched double-cover of P2. We should be
explicit about what we mean about “branching”: the lines through q correspond to the
(closed) points of P2. Most lines meet Q in 2 points. The branch points in P2 correspond
to those that meet Q in only one point (with multiplicity 2 of course).

2.C. EXERCISE. Show that this double cover is branched over a nonsingular conic D in
P2. (If it helps, choose explicit co-ordinates.)

Side remark: we have stated earlier that Pic(P2 −D) ∼= Z/2, and that this was related to
the fact that (over the complex numbers) π1(P

2−C) = Z/2. This latter fact implies that the
universal cover of P2 − C is a double cover. We have now produced the double cover: the
quadric Q minus the branch divisor. We can even use this to prove that π1(P

2 −C) = Z/2:
please ask me for the short argument.

Since Q is a nonsingular quadric over an algebraically closed field of characteristic not
2, Q ∼= P1 × P1 , and has two rulings. What are the images of the lines in each ruling in
P2? Suppose ` is a line in P2. Then the preimage of ` in P3 is a plane Π in P3 containing q.
Q meets this plane Π in a conic.

If this conic Q ∩ Π is nonsingular, then we are precisely in the situation of Exercise 2.B,
and this may help you see that the degree of the branch curve is 2 (Exercise 2.C). Also,
since Q∩Π is not singular at any point (i.e. the germ of the equation of Q∩P at any point
r is not contained in the square of the maximal ideal at r), Q ∩ Π is not a tangent plane to
Q.

2



On the other hand, if Q∩Π is singular, then Π is a tangent plane to Q. And this singular
conic is the union of two lines. (Why can’t it be a double line?) Thus the two lines consist
of one of each ruling.

Conversely, if l is a line in a ruling on Q, then the plane Π spanned by l and q must be
tangent to Q: the conic Π ∩ Q contains a line and is thus singular.

We thus conclude that the image of any line on Q is a tangent line to D, and conversely
the preimage of each tangent line on D is two lines on Q, one from each ruling.

We have recovered part of the picture of Poncelet: we have a nonsingular conic D in
the plane. Let C ⊂ P2 be another conic in the plane, not tangent to D. Let G ⊂ P3 be the
quadric surface that is the cone over C with vertex q. (Can you make this precise?)

2.D. EXERCISE. Show that G ∩ C is a nonsingular curve.

The complete intersection E of two quadric surfaces in P3 has genus 1. Choose any
point of it, so E have an elliptic curve. By considering E as a subset of Q ∼= P1 × P1, we
have two maps E → P1, one corresponding to each factor. Both are degree 2. Let D1 and
D2 be the two degree 2 divisors corresponding to these two double covers. If p ′

0 is a point
of E, each ruling through p ′

0 meets E at one other point: the point D1 − p for the first
ruling, and the point D2 − p for the second ruling. The image of p ′

0, the two lines, and
D1 − p and D2 − p in the plane is a point p0 in the plane, the two tangents to D from p0,
and the two points on C also on those two tangents.

Thus if we start at p ′
0, choose the other point of E on the line in the first ruling to obtain

p ′
1 = D1 − p0, and then choose the other point of E through p ′

1 on a line in the second
ruling, we obtain the point p ′

2 = D2 − p ′
1 = p ′

0 + (D2 − D1): a translation of p ′
0 by an

amount independent of p ′
0. Thus p ′

2n = p ′
0 + n(D2 − D1). In particular, if p ′

2n = p ′
0 for one

choice of p ′
0, then this would still hold for any choice of p ′

0.

2.E. EXERCISE. Put the above pieces together to prove Poncelet’s porism.

3. FUN COUNTEREXAMPLES USING ELLIPTIC CURVES

We now give some fun counterexamples using our understanding of elliptic curves.

3.1. An example of a scheme that is locally factorial near a point p, but such that no
affine open neighborhood of p has ring that is a Unique Factorization Domain.

Suppose E is an elliptic curve over C (or some other uncountable field). Consider p ∈ E.
The local ring OE,p is a Discrete Valuation Ring and hence a Unique Factorization Domain.
Then an open neighborhood of E is of the form E − q1 − · · · − qn. I claim that its Picard
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group is nontrivial. Recall the exact sequence:

Zn
(a1,...,an)7→a1q1+···+anqn

// Pic E // Pic(E − q1 − · · · − qn) // 0 .

But the group on the left is countable, and the group in the middle is uncountable, so the
group on the right is non-zero.

3.2. Counterexamples using the existence of a non-torsion point.

We next give a number of counterexamples using the existence of a non-torsion point
of a complex elliptic curve. We show the existence of such a point.

We have a “multiplication by n” map [n] : E → E, which sends p to np. If n = 0, this
has degree 0. If n = 1, it has degree 1. Given the complex picture of a torus, you might
not be surprised that the degree of ×n is n2. If n = 2, we have almost shown that it has
degree 4, as we have checked that there are precisely 4 points q such that 2p = 2q. All
that really shows is that the degree is at least 4. (We could check by hand that the degree
is 4 is we really wanted to.)

3.3. Proposition. — For each n > 0, the “multiplication by n” map has positive degree. In other
words, there are only a finite number of n torsion points, and the [n] 6= [0].

Proof. We prove the result by induction; it is true for n = 1 and n = 2.

If n is odd, then assume otherwise that nq = 0 for all closed points q. Let r be a non-
trivial 2-torsion point, so 2r = 0. But nr = 0 as well, so r = (n−2[n/2])r = 0, contradicting
r 6= 0.

If n is even, then [×n] = [×2]◦ [×(n/2)], and by our inductive hypothesis both [×2] and
[×(n/2)] have positive degree. �

In particular, the total number of torsion points on E is countable, so if k is an uncount-
able field, then E has an uncountable number of closed points (consider an open subset
of the curve as y2 = x3 + ax + b; there are uncountably many choices for x, and each of
them has 1 or 2 choices for y).

Thus almost all points on E are non-torsion. I’ll use this to show you some pathologies.

3.4. An example of an affine open set that is not distinguished.

We can use this to see another example of an affine scheme X and an affine open subset
Y that is not distinguished in X. (Our earlier example was X = P2 minus a conic, and
Y = X minus a line.) Let X = E − p, which is affine (easy, and an earlier exercise).

Let q be another point on E so that q − p is non-torsion. Then E − p − q is affine (we’ve
shown all nonprojective nonsingular curves are affine). Assume that it is distinguished.
Then there is a function f on E − p that vanishes on q (to some positive order d). Thus
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f is a rational function on E that vanishes at q to order d, and (as the total number of
zeros minus poles of f is 0) has a pole at p of order d. But then d(p − q) = 0 in Pic0 E,
contradicting our assumption that p − q is non-torsion.

3.5. Example of variety with non-finitely-generated space of global sections.

We next show an example of a complex variety whose ring of global sections is not
finitely generated. This is related to Hilbert’s fourteenth problem, although I won’t say
how.

We begin with a preliminary exercise.

3.A. EXERCISE. Suppose X is a scheme, and L is the total space of a line bundle corre-
sponding to invertible sheaf L, so L = Spec⊕n≥0(L

∨)⊗n. Show that H0(L,OL) = ⊕H0(X, (L∨)⊗n).

Let E be an elliptic curve over some ground field k, N a degree 0 non-torsion invertible
sheaf on E, and P a positive-degree invertible sheaf on E. Then H0(E, Nm ⊗Pn) is nonzero
if and only if either (i) n > 0, or (ii) m = n = 0 (in which case the sections are elements of
k). Thus the ring R = ⊕m,n≥0H

0(E, Nm ⊗ Pn) is not finitely generated.

Now let X be the total space of the vector bundle N ⊕ P over E. Then the ring of global
sections of X is R.

3.6. A proper nonprojective surface.

We finally sketch an example of a proper surface S over C that is not projective. We
will see that the construction will work over uncountable fields, and (modulo an fact
unproved here) Q. We will construct it as a “fibration” f : S → C where C is a projective
curve, and f is “locally projective”, by which I mean that there is an open cover of C such
that over each open set, f is projective. In particular, we will show that projectivity in the
sense it is usually defined (without the data of a line bundle on the source, as we define
it) is not a Zariski-local property.

As a result, we’ll see some other interesting behavior, about the difficulty of gluing a
scheme to itself (not typed up in the notes).

This is the simplest example I know. There are no examples of curves, as all proper
curves are projective. This example is singular; in fact all proper nonsingular surfaces are
projective.

Let C be two P1’s (C1 and C2) glued together at two points p and q, as shown in Figure 1.
For example, consider a general conic union a line in P2. Clearly C is projective (over C).

Let E be any complex elliptic curve, and r a non-torsion point on it. We construct an
“E-bundle” over C as follows. over C−p, the family is trivial: E× (C−p). Similarly, over
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C − q, the family is trivial. We glue these families together via the identity over C1, and
via translation by r over C2. Call the resulting fibration f : S → C.

Now E is proper, so f is proper over C − p and C − q, and hence (by Zariski-locality
of properness) f is a proper morphism. As C is proper, and properness is preserved by
composition, S is a proper surface.

qp

FIGURE 1. The P1’s glued together at two points

Suppose that S were projective, and that there was a closed immersion S → Pn into
projective space. Choose a hyperplane not containing the fiber of f over either p or q.
This gives an effective Cartier divisor on S. Perhaps this effective Cartier divisor contains
some fibers; if so, subtract them, to get another effective Cartier divisor containing no
fibers. (There is no issue with subtracting these fibers, as away from the fibers over p and
q, S is smooth, so on this locus, effective Weil divisors and effective Cartier divisors are
the same.)

We will show that this is impossible.

I’ll finish typing this in when I get a chance...

All we needed to make this argument work was the existence of a non-torsion point.
Thus this argument works over any uncountable field. It also works over Q once one
verifies that there is an elliptic curve over Q with a non-torsion point. This is a good
excuse to mention the Mordell-Weil Theorem: for any elliptic curve E over Q, the Q-points
of E form a finitely generated abelian group. By the classification of finitely generated
abelian groups, the Q-points are a direct sum of a torsion part, and of a free Z-module.
The rank of the Z-module is called the Mordell-Weil rank. Thus this construction works
once we have verified that there is an elliptic curve with positive Mordell-Weil rank.
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