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We'll conclude this quarter by discussing derived functor cohomology, which was in-
troduced by Grothendieck in his celebrated Tohoku article. For quasicoherent sheaves on
quasicompact separated schemes, derived functor will agree with Cech cohomology. Fur-
thermore, Cech cohomology will suffice for most of our purposes, and is quite down to
earth and computable. But derived functor cohomology is worth seeing for a number of
reasons. First of all, it generalizes readily to a wide number of situations. Second, it will
easily provide us with some useful notions, such as Ext-groups and the Leray spectral
sequence.

But to be honest, we won't use it much for the rest of the course, so feel free to just skim
these notes, and come back to them later.

1. THE TOR FUNCTORS

We begin with a warm-up: the case of Tor. This is a hands-on example. But if you
understand it well, you will understand derived functors in general. Tor will be useful to
prove facts about flatness, which we’ll discuss later. Tor is short for “torsion”. The reason
for this name is that the Oth and/or 1st Tor-group measures common torsion in abelian
groups (aka Z-modules).

If you have never seen this notion before, you may want to just remember its properties,
which are natural. But I'd like to prove everything anyway — it is surprisingly easy.

The idea behind Tor is as follows. Whenever we see a right-exact functor, we always
hope that it is the end of a long-exact sequence. Informally, given a short exact sequence,
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we are hoping to see a long exact sequence

(1) - — Tor{ (M, N’) — Tor{ (M, N) — Tor{*(M, N") — - - -

— TorfY(M, N’) — Torp'(M, N) — Tor{*(M, N")

M ®a N’

M @A N

M@AN//

0.

More precisely, we are hoping for covariant functors Tor{*(-,N) from A-modules to A-
modules (giving 2/3 of the morphisms in that long exact sequence), with Torg (M, N) =
M ®a N, and natural 6 morphisms Torﬁ] (M,N”) — Tor{*(M,N’) for every short exact
sequence giving the long exact sequence. (In case you care, “natural” means: given a
morphism of short exact sequences, the natural square you would write down involving

the -morphism must commute. I'm not going to state this explicitly.)

It turns out to be not too hard to make this work, and this will also motivate derived
functors. Let’s now define Tor{*(M, N).

Take any resolution R of N by free modules:
—— AP —— AP —— APV —— N —— (.

More precisely, build this resolution from right to left. Start by choosing generators of N
as an A-module, giving us A®™ — N — 0. Then choose generators of the kernel, and so
on. Note that we are not requiring the n; to be finite, although if N is a finitely-generated
module and A is Noetherian (or more generally if N is coherent and A is coherent over
itself), we can choose the n; to be finite. Truncate the resolution, by stripping off the
last term. Then tensor with M (which may lose exactness!). Let ToriA(M, N)x be the
homology of this complex at the ith stage (i > 0). The subscript R reminds us that our
construction depends on the resolution, although we will soon see that it is independent
of the resolution.

We make some quick observations.

° ToroA(M, N)z = M ®a N, and this isomorphism is canonical. Reason: as tensoring
is right exact, and A®™ — A®% — N — 0 is exact, we have that M¥™ — M%m0 —
M ®a N — 0 is exact, and hence that the homology of the truncated complex M*™ —
Mo — 0is M ®a N.

o If M ® - is exact (i.e. M is flat), then Tor{* (M, N)z = 0 for all i.

Now given two modules N and N’ and resolutions R and R’ of N and N’, we can “lift”
any morphism N — N’ to a morphism of the two resolutions:

~-~—>A@Tli—>~-~—>A@Tll A@TLO N 0
~-~—>A®n{—>~-~—>A®n1’ Aean(’) N’ 0
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Here we are using the freeness of A®™: if a;, ..., a,, are generators of A®™, to lift the
map b : A®™ — A®M to ¢t A — A®M, we arbitrarily lift b(a;) from A®™-1 to A®™,
and declare this to be c(a;).

Denote the choice of lifts by R — R’'. Now truncate both complexes (remove column
N — N’) and tensor with M. Maps of complexes induce maps of homology, so we have
described maps (a priori depending on R — R’)

Tor (M, N)z — Tor{ (M, N')z.

We say two maps of complexes f,g : C, — C] are homotopic if there is a sequence of
maps w : C; — C{,, such that f — g = dw +wd. Two homotopic maps give the same map
on homology. (Exercise: verify this if you haven’t seen this before.)

1.A. CRUCIAL EXERCISE. Show that any two lifts R — R’ are homotopic.

We now pull these observations together.

(1) We get a covariant functor from Tor{'(M, N)z — Tor{'(M, N’)z,, independent of
the lift R — R'.

(2) Hence for any two resolutions R and R’ we get a canonical isomorphism Tor (M, N)z
Tori] (M, N)%. Here’s why. Choose lifts R — R’ and R’ — R. The composition
R — R’ — R is homotopic to the identity (as it is a lift of the identity map N — N).
Thus if fz_,z/ : Tor} (M, N)z — Tor! (M, N)%. is the map induced by R — R’, and
similarly fz/_, is the map induced by R — R’, then fg._,z o fr_, %' is the identity,
and similarly fz_,z’ o fr/_,% is the identity.

(3) Hence the covariant functor doesn’t depend on the resolutions!

~

Finally:
(4) For Zny short exact sequence we get a long exact sequence of Tor’s (1). Here’s why:
given a short exact sequence, choose resolutions of N’ and N”. Then use these to get a
resolution for N in the obvious way (see below; the map A®M=m) — N is the composi-
tion A®™ — N’ — N along with any lift of A% — N” to N) so that we have a short exact
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sequence of resolutions

/

AD™

A®™ N’ 0

e s A@(n1’+n{’) - A@(n{)+n{)’) ——— N ——=0

1

A®M

AP N” 0

0 0 0

Then truncate (removing the right column 0 — N’ — N — N” — 0), tensor with M
(obtaining a short exact sequence of complexes) and take cohomology, yielding a long
exact sequence.

We have thus established the foundations of Tor!

Note that if N is a free module, then Tor{*(M,N) = 0 for all M and all i > 0, as N has
the trivial resolution 0 — N — N — 0 (it is “its own resolution”).

1.B. EXERCISE. Show that the following are equivalent conditions on an A-module M.

(i) M s flat
(i) Tor{'(M,N) = 0 for all i > 0 and all A-modules N,
(iii) Torf (M, N) = 0 for all A-modules N.

2. FROM TOR TO DERIVED FUNCTORS IN GENERAL

2.1. Projective resolutions. We used very little about free modules in the above construction
of Tor; in fact we used only that free modules are projective, i.e. those modules M such
that for any surjection M’ — M”, it is possible to lift any morphism M. — M”toM — M.
This is summarized in the following diagram.

M

I
exists | \

Al
M/ > M/

Equivalently, Hom(M, ) is an exact functor (Hom(M, -) is always left-exact for any M).
More generally, the same idea yields the definition of a projective object in any abelian
category. Hence (i) we can compute Tor{'(M, N) by taking any projective resolution of
N, and (ii) Tor{*(M, N) = 0 for any projective A-module N.
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2.A. INTERESTING EXERCISE: DERIVED FUNCTORS CAN BE COMPUTED USING ACYCLIC
RESOLUTIONS. Show that you can also compute derived functor cohomology using flat
resolutions, i.e. by a resolution

o= —=2F—=2F—=>N=0

by flat A-modules. Hint: show that you can construct a double complex

.. —>A@TL2,1 —>A@m,1 —>A€Bﬂo,1 —>A@m —0

e — A@TLZ,O —_— A@m,o —_— AEB“0,0 —_— A@TLO —0

Fa Fi Fo N 0

where the rows and columns are exact. Do this by constructing the A®” inductively from
the bottom left. Tensor the double complex with M, to obtain a new double complex.
Remove the bottom row, and the right-most nonzero column. Use a spectral sequence
argument to show that (i) the double complex has homology equal to Tor, and (ii) the ho-
mology of the double complex agrees with the homology of the free resolution (truncated)
tensored with M.

You will notice in the solution to the above exercise that what mattered was that flat
modules had no higher Tor’s (Exercise 1.B). This will later directly generalize to the state-
ments that derived functors can be computed with acyclic resolutions (“acyclic” means “no
higher (co)homology”).

2.2. Derived functors of right-exact functors.

The above description was low-tech, but immediately generalizes drastically. All we
are using is that M®4 is a right-exact functor. In general, if F is any right-exact covariant
functor from the category of A-modules to any abelian category, this construction will
define a sequence of functors L;F (called left-derived functors of F) such that LoF = Fand
the Li’s give a long-exact sequence. We can make this more general still. We say that an
abelian category has enough projectives if for any object N there is a surjection onto it
from a projective object. Then if F is any right-exact functor from an abelian category with
enough projectives to any abelian category, then F has left-derived functors.

2.B. UNIMPORTANT EXERCISE. Show that an object P is projective if and only if every
short exact sequence 0 - A — B — P — 0 splits.

2.C. EXERCISE. The notion of an injective object in an abelian category is dual to the
notion of a projective object. (a) State precisely the definition of an injective object. (b)
Define derived functors for (i) covariant left-exact functors (these are called right-derived

5



functors), (ii) contravariant left-exact functors (also called right-derived functors), and
(iii) contravariant right-exact functors (these are called left-derived functors), making ex-
plicit the necessary assumptions of the category having enough injectives or projectives.

2.3. Notation. If Fis a right-exact functor, its (left-)derived functors are denoted L;F (i > 0,
with LoF = F). If F is a left-exact functor, its (right-) derived functors are denoted R'F.
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