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I said earlier that I hoped to give you proofs of (i) “Hartogs’ Theorem” for normal Noe-
therian schemes, (ii) Krull’s Principal Ideal Theorem, and (iii) the fact that if (R, m) is a
Noetherian ring, then ∩mi = 0 (corresponding to the fact that a function that is analyti-
cally zero at a point is zero in a neighborhood of that point).

You needn’t read these; but you may appreciate the fact that the proofs aren’t that long.
Thus there are very few statements in this class (beyond Math 210) that we actually used,
but didn’t justify.

I am going to repeat the Nakayama statements, so the entire argument is in one place.

0.1. Nakayama’s Lemma version 1. — Suppose R is a ring, I an ideal of R, and M is a finitely-
generated R-module. Suppose M = IM. Then there exists an a ∈ R with a ≡ 1 (mod I) with
aM = 0.

Proof. Say M is generated by m1, . . . , mn. Then as M = IM, we have mi =
∑

j aijmj for
some aij ∈ I. Thus

(1) (Idn − A)





m1

...
mn



 = 0

where Idn is the n×n identity matrix in R, and A = (aij). We can’t quite invert this matrix,
but we almost can. Recall that any n×n matrix M has an adjoint matrix adj(M) such that
adj(M)M = det(M)Idn. The coefficients of adj(M) are polynomials in the coefficients of
M. (You’ve likely seen this in the form of a formula for M−1 when there is an inverse.)
Multiplying both sides of (1) on the left by adj(M), we obtain

det(Idn − A)





m1

...
mn



 = 0.

But when you expand out det(Idn − A), you get something that is 1 (mod I). �

Here is why you care: Suppose I is contained in all maximal ideals of R. (The intersec-
tion of all the maximal ideals is called the Jacobson radical, but I won’t use this phrase. For
comparison, recall that the nilradical was the intersection of the prime ideals of R.) Then
I claim that any a ≡ 1 (mod I) is invertible. For otherwise (a) 6= R, so the ideal (a) is
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contained in some maximal ideal m — but a ≡ 1 (mod m), contradiction. Then as a is
invertible, we have the following.

0.2. Nakayama’s Lemma version 2. — Suppose R is a ring, I an ideal of R contained in all
maximal ideals, and M is a finitely-generated R-module. (The most interesting case is when R is a
local ring, and I is the maximal ideal.) Suppose M = IM. Then M = 0.

0.3. Important exercise (Nakayama’s lemma version 3). Suppose R is a ring, and I is
an ideal of R contained in all maximal ideals. Suppose M is a finitely generated R-module,
and N ⊂ M is a submodule. If N/IN ↪→ M/IM an isomorphism, then M = N.

0.4. Important exercise (Nakayama’s lemma version 4). Suppose (R, m) is a local ring.
Suppose M is a finitely-generated R-module, and f1, . . . , fn ∈ M, with (the images of)
f1, . . . , fn generating M/mM. Then f1, . . . , fn generate M. (In particular, taking M = m, if
we have generators of m/m2, they also generate m.)

0.5. Important Exercise that we will use soon. Suppose S is a subring of a ring R, and r ∈ R.
Suppose there is a faithful S[r]-module M that is finitely generated as an S-module. Show
that r is integral over S. (Hint: look carefully at the proof of Nakayama’s Lemma version
1, and change a few words.)

We are ready to prove “Hartogs’ Theorem”.

0.6. “Hartogs’ theorem”. — Suppose A is a Noetherian normal domain. Then in Frac(A),

A = ∩p height 1Ap.

More generally, if A is a product of Noetherian normal domains (i.e. Spec A is Noetherian normal
scheme), then in the ring of fractions of A,

A = ∩p height 1Ap.

I stated the special case first so as to convince you that this isn’t scary.

Proof. Obviously the right side is contained in the left. Assume we have some x in all AP

but not in A. Let I be the “ideal of denominators”:

I := {r ∈ A : rx ∈ A}.

(The ideal of denominators arose in an earlier discussion about normality.) We know that
I 6= A, so choose q a minimal prime containing I.

Observe that this construction behaves well with respect to localization (i.e. if p is any
prime, then the ideal of denominators x in Ap is the Ip, and it again measures the failure
of “‘Hartogs’ Theorem” for x,’ this time in Ap). But Hartogs’ Theorem is vacuously true
for dimension 1 rings, so hence no height 1 prime contains I. Thus q has height at least 2.
By localizing at q, we can assume that A is a local ring with maximal ideal q, and that q is
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the only prime containing I. Thus
√

I = q, so there is some n with I ⊂ qn. Take a minimal
such n, so I 6⊂ qn−1, and choose any y ∈ qn−1 − qn. Let z = yx. Then z /∈ A (so qz /∈ q), but
qz ⊂ A: qz is an ideal of A.

I claim qz is not contained in q. Otherwise, we would have a finitely-generated A-
module (namely q) with a faithful A[z]-action, forcing z to be integral over A (and hence
in A) by Exercise 0.5.

Thus qz is an ideal of A not contained in q, so it must be A! Thus qz = A from which
q = A(1/z), from which q is principal. But then ht Q = dim A ≤ dimA/QQ/Q2 ≤ 1 by
Nakayama’s lemma 0.4, contradicting the fact that q has height at least 2. �

We now prove:

0.7. Krull’s Principal Ideal Theorem. — Suppose A is a Noetherian ring, and f ∈ A. Then every
minimal prime p containing f has height at most 1. If furthermore f is not a zero-divisor, then
every minimal prime p containing f has height precisely 1.

0.8. Lemma. — If R is a Noetherian ring with one prime ideal. Then R is Artinian, i.e., it satisfies
the descending chain condition for ideals.

The notion of Artinian rings is very important, but we will get away without discussing
it much.

Proof. If R is a ring, we define more generally an Artinian R-module, which is an R-module
satisfying the descending chain condition for submodules. Thus R is an Artinian ring if it
is Artinian over itself as a module.

If m is a maximal ideal of R, then any finite-dimensional (R/m)-vector space (interpreted
as an R-module) is clearly Artinian, as any descending chain

M1 ⊃ M2 ⊃ · · ·

must eventually stabilize (as dimR/m Mi is a non-increasing sequence of non-negative in-
tegers).

Exercise. Show that for any n, mn/mn+1 is a finitely-dimensional R/m-vector space.
(Hint: show it for n = 0 and n = 1. Use the dimension for n = 1 to bound the dimension
for general n.) Hence mn/mn+1 is an Artinian R-module.

As
√

0 is prime, it must be m. As m is finitely generated, mn = 0 for some n. Exercise.
Prove this. (Hint: suppose m can be generated by m elements, each of which has kth
power 0, and show that mm(k−1)+1 = 0.)

Exercise. Show that if 0 → M ′ → M → M ′′ → 0 is an exact sequence of modules. then
M is Artinian if and only if M ′ and M ′′ are Artinian.
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Thus as we have a finite filtration

R ⊃ m ⊃ · · · ⊃ mn = 0

all of whose quotients are Artinian, so R is Artinian as well. �

Proof of Krull’s principal ideal theorem 0.7. Suppose we are given x ∈ A, with p a minimal
prime containing x. By localizing at p, we may assume that A is a local ring, with maximal
ideal p. Suppose q is another prime strictly containing p.

x � o

��>
>>

>>
>>

p �
�

// A

q
0

�

@@��������

For the first part of the theorem, we must show that Aq has dimension 0. The second part
follows from our earlier work: if any minimal primes are height 0, f is a zero-divisor, by
our identification of the associated primes of a ring as the union of zero-divisors.

Now p is the only prime ideal containing (x), so A/(x) has one prime ideal. By Lemma 0.8,
A/(x) is Artinian.

We invoke a useful construction, the nth symbolic power of a prime ideal: if R is a ring, and
q is a prime ideal, then define

q(n) := {r ∈ R : rs ∈ qn for some s ∈ R − q}.

We have a descending chain of ideals in A

q(1) ⊃ q(2) ⊃ · · · ,

so we have a descending chain of ideals in A/(x)

q(1) + (x) ⊃ q(2) + (x) ⊃ · · ·

which stabilizes, as A/(x) is Artinian. Say q(n) + (x) = q(n+1) + (x), so

q(n) ⊂ q(n+1) + (x).

Hence for any f ∈ q(n), we can write f = ax + g with g ∈ q(n+1). Hence ax ∈ q(n). As p is
minimal over x, x /∈ q, so a ∈ q(n). Thus

q(n) = (x)q(n) + q(n+1).

As x is in the maximal ideal p, the second version of Nakayama’s lemma 0.2 gives q(n) =

q(n+1).

We now shift attention to the local ring Aq, which we are hoping is dimension 0. We
have q(n)Aq = q(n+1)Aq (the symbolic power construction clearly construction commutes
with respect to localization). For any r ∈ qnAq ⊂ q(n)Aq, there is some s ∈ Aq − qAq such
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that rs ∈ qn+1Aq. As s is invertible, r ∈ qn+1Aq as well. Thus qnAq ⊂ qn+1Aq, but as
qn+1Aq ⊂ qnAq, we have qnAq = qn+1Aq. By Nakayama’s Lemma version 4 (Exercise 0.4),

qnAq = 0.

Finally, any local ring (R, m) such that mn = 0 has dimension 0, as Spec R consists of only
one point: [m] = V(m) = V(mn) = V(0) = Spec R. �

Finally:

0.9. Proposition. — If (A, m) is a Noetherian local ring, then ∩im
i = 0.

It is tempting to argue that m(∩im
i) = ∩im

i, and then to use Nakayama’s lemma 0.4
to argue that ∩im

i = 0. Unfortunately, it is not obvious that this first equality is true:
product does not commute with infinite intersections in general. I heard this argument
from Kirsten Wickelgren, who I think heard it from Greg Brumfiel. We used it in showing
an equivalence in that big chain of equivalent characterizations of discrete valuation rings.

Proof. Let I = ∩im
i. We wish to show that I ⊂ mI; then as mI ⊂ I, we have I = mI, and

hence by Nakayama’s Lemma 0.4, I = 0. Fix a primary decomposition of mI. It suffices to
show that p contains I for any p in this primary decomposition, as then I is contained in
all the primary ideals in the decomposition of mI, and hence mI.

Let q =
√

p. If q 6= m, then choose x ∈ m − q. Now x is not nilpotent in R/p, and hence
is not a zero-divisor. But xI ⊂ p, so I ⊂ p.

On the other hand, if q = m, then as m is finitely generated, and each generator is in
√

p,
there is some a such that ma ⊂ p. But I ⊂ ma, so we are done. �
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