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1. SERRE DUALITY

Our last topic is Serre duality. Recall that Serre duality arose in our section on “fun with
curves” (classes 33–36). We’ll prove the statement used there, and generalize it greatly.

Our goal is to rigorously prove everything we needed for curves, and to generalize the
statement significantly. Serre duality can be generalized beyond belief, and we’ll content
ourselves with the version that is most useful. For the generalization, we will need a few
facts that we haven’t proved, but that we came close to proving.

(i) The existence (and behavior) of the cup product in (Cech) cohomology. For any quasico-
herent sheaves F and G, there is a natural map Hi(X,F) × Hj(X,G) → Hi+j(X,F ⊗ G)

satisfying all the properties you might hope. From the Cech cohomology point of view
this isn’t hard. For those of you who prefer derived functors, I haven’t thought through
why it is true. For i = 0 or j = 0, the meaning of the cup product is easy. (For example,
if i = 0, the map involves the following. The j-cocycle of G is the data of sections of G of
(j+1)-fold intersections of affine open sets. The cup product corresponds to “multiplying
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each of these by the (restriction of the) global section of F”.) This version is all we’ll need
for nonsingular projective curves (as if i, j > 0, i + j > 1).

(ii) The Cohen-Macaulay/flatness theorem. I never properly defined Cohen-Macaulay, so
I didn’t have a chance to prove that nonsingular schemes are Cohen-Macaulay, and if
π : X → Y is a morphism from a pure-dimensional Cohen-Macaulay scheme to a pure-
dimensional nonsingular scheme, then π is flat if all the fibers are of the expected dimen-
sion. (I stated this, however.)

We’ll take these two facts for granted.

Here now is the statement of Serre duality.

Suppose X is a Cohen-Macaulay projective k-scheme of pure dimension n. A dual-
izing sheaf for X over k is a coherent sheaf ωX (or ωX/k) on X along with a trace map
Hn(X, ωW) → k, such that for all finite rank locally free sheaves F on X,

(1) Hi(X,F) × Hn−i(X,F∨ ⊗ ωX) // Hn(X, ωX)
t // k

is a perfect pairing. In terms of the cup product, the first map in (1) is the composition

Hi(X,F) × Hn−i(X,F∨ ⊗ ωX) → Hn(X, (F ⊗F∨) ⊗ ωX) → Hn(X, ωX).

1.1. Theorem (Serre duality). — A dualizing sheaf always exists.

We will proceed as follows.

• We’ll partially extend this to coherent sheaves in general: Hom(F , ωX) → Hn(F)∨

is an isomorphism for all F .
• Using this, we’ll show by a Yoneda argument that (ωX, t) is unique up to unique

isomorphism.
• We will then prove the Serre duality theorem 1.1. This will take us some time.

We’ll first prove that the dualizing sheaf exists for projective space. We’ll then
prove it for anything admitting a finite flat morphism to projective space. Finally
we’ll show that every projective Cohen-Macaulay k-scheme admits a finite flat
morphism to projective space.

• We’ll prove the result in families (i.e. we’ll define a “relative dualizing sheaf” in
good circumstances). This is useful in the theory of moduli of curves, and Gromov-
Witten theory.

• The existence of a dualizing sheaf will be straightforward to show — surprisingly
so, at least to me. However, it is also surprisingly slippery — getting a hold of it in
concrete circumstances is quite difficult. For example, on the open subset where X

is smooth, ωX is an invertible sheaf. We’ll show this. Furthermore, on this locus,
ωX = det ΩX. (Thus in the case of curves, ωX = ΩX. In the “fun with curves”
section, we needed the fact that ΩX is dualizing because we wanted to prove the
Riemann-Hurwitz formula.)
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1.2. Warm-up trivial exercise. Show that if h0(X,OX) = 1 (e.g. if X is geometrically integral),
then the trace map is an isomorphism, and conversely.

2. EXTENSION TO COHERENT SHEAVES; UNIQUENESS OF THE DUALIZING SHEAF

2.1. Proposition. — If (ωX, t) exists, then for any coherent sheaf F on X, the natural map
Hom(F , ωX) × Hn(X,F) → Hn(X, ωX) → k is a perfect pairing.

In other words, (1) holds for i = n and any coherent sheaf (not just locally free coher-
ent sheaves). You might reasonably ask if it holds for general i, and it is true that these
other cases are very useful, although not as useful as the case we’re proving here. In fact
the naive generalization does not hold. The correct generalization involves Ext groups,
which we have not defined. The precise statement is the following. For any quasicoher-
ent sheaves F and G, there is a natural map Exti(F ,G) × Hj(X,F) → Hi+j(G). Via this
morphism,

Exti(F , ωX) × Hn−i(X,F) // Hn(X, ωX)
t // k

is a perfect pairing.

Proof of Proposition 2.1. Given any coherent F , take a partial locally free resolution

E1 → E0 → F → 0.

(Recall that we find a locally free resolution as follows. E0 is a direct sum of line bundles.
We then find E1 that is also a direct sum of line bundles that surjects onto the kernel of
E0 → F .)

Then applying the left-exact functor Hom(·, ωX), we get

0 → Hom(F , ωX) → Hom(E0, ωX) → Hom(E1, ωX)

i.e. 0 → Hom(F , ωX) → (E0)∨ ⊗ ωX → (E1)∨ ⊗ ωX

Also

Hn(E1) → Hn(E0) → Hn(F) → 0

from which

0 → Hn(F)∨ → Hn(E0)∨ → Hn(E1)∨

There is a natural map Hom(H, ωX) × Hn(H) → Hn(ωX) → k for all coherent sheaves,
which by assumption (that ωX is dualizing) is an isomorphism when H is locally free.
Thus we have morphisms (where all squares are commuting)

0 //

∼

��

Hom(F , ω) //

��

(E0)∨(ω) //

∼

��

(E1)∨(ω)

∼

��

0 // Hn(F)∨ // Hn(E0)∨ // Hn(E1)∨

where all vertical maps but one are known to be isomorphisms. Hence by the Five
Lemma, the remaining map is also an isomorphism. �
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We can now use Yoneda’s lemma to prove:

2.2. Proposition. — If a dualizing sheaf (ωX, t) exists, it is unique up to unique isomor-
phism.

Proof. Suppose we have two dualizing sheaves, (ωX, t) and (ω ′
X, t ′). From the two mor-

phisms

(2) Hom(F , ωX) × Hn(X,F) // Hn(X, ωX)
t // k

Hom(F , ω ′
X) × Hn(X,F) // Hn(X, ω ′

X)
t′

// k,

we get a natural bijection Hom(F , ωX) ∼= Hom(F , ω ′
X), which is functorial in F . By

Yoneda’s lemma, this induces a (unique) isomorphism ωX
∼= ω ′

X. From (2), under this
isomorphism, the two trace maps must be the same too. �

3. PROVING SERRE DUALITY FOR PROJECTIVE SPACE OVER A FIELD

3.1. Exercise. Prove (1) for Pn, and F = O(m), where ωPn = O(−n − 1). (Hint: do this by
hand!) Hence (1) holds for direct sums of O(m)’s.

3.2. Proposition. — Serre duality (Theorem 1.1) holds for projective space.

Proof. We now prove (1) for any locally free F on Pn. As usual, take

(3) 0 → K → ⊕O(m) → F → 0.

Note that K is flat (as O(m) and F are flat and coherent), and hence K is also locally free
of finite rank (flat coherent sheaves on locally Noetherian schemes are locally free — this
was one of the important facts about flatness). For convenience, set G = ⊕O(m).

Take the long exact sequence in cohomology, and dualize, to obtain

(4) 0 → Hn(Pn,F)∨ → Hn(Pn,G)∨ → · · · → H0(Pn,H)∨ → 0.

Now instead take (3), tensor with ωPn
∼= OPn(−n − 1) (which preserves exactness, as

OPn(−n − 1) is locally free), and take the corresponding long exact sequence

0 // H0(Pn,F∨ ⊗ ωPn) // H0(Pn,G∨ ⊗ ωPn) // H0(Pn,H∨ ⊗ ωPn)

// H1(Pn,F∨ ⊗ ωPn) // · · ·
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Using the trace morphism, this exact sequence maps to the earlier one (4):

Hi(Pn ,F∨
⊗ ωPn )

αi

F

��

// Hi(Pn, G∨
⊗ ωPn ) //

αi

G

��

Hi(Pn ,H∨
⊗ ωPn )

αi

H

��

// Hi+1(Pn ,F∨
⊗ ωPn )

αi+1

F

��
Hn−i(Pn ,F)∨ // Hi(Pn,G)∨ // Hi(Pn,H)∨ // Hi+1(Pn,F)∨

(At some point around here, I could simplify matters by pointing out that Hi(G) = 0 for
all i 6= 0, n, as G is the direct sum of line bundles, but then I’d still need to deal with the
ends, so I’ll prefer not to.) All squares here commute. This is fairly straightforward check
for those not involving the connecting homomorphism. (Exercise. Check this.) It is longer
and more tedious (but equally straightforward) to check that

Hi(Pn,H∨ ⊗ ωPn)

αi
H

��

// Hi+1(Pn,F∨ ⊗ ωPn)

αi+1
F

��

Hi(Pn,H)∨ // Hi+1(Pn,F)∨

commutes. This requires the definition of the cup product, which we haven’t done, so
this is one of the arguments I promised to omit.

We then induct our way through the sequence as usual: α−1
G is surjective (vacuously),

and α−1
H and α0

G are injective, hence by the “subtle” Five Lemma (class 32, page 10), α0
F

is injective for all locally free F . In particular, α0
H is injective (as H is locally free). But

then α0
H is injective, and α−1

H and α0
G are surjective, hence α0

F is surjective, and thus an
isomorphism for all locally free F . Thus α0

H is also an isomorphism, and we continue
inductively to show that αi

F is an isomorphism for all i. �

4. PROVING SERRE DUALITY FOR FINITE FLAT COVERS OF OTHER SPACES FOR WHICH

DUALITY HOLDS

We’re now going to make a new construction. It will be relatively elementary to de-
scribe, but the intuition is very deep. (Caution: here “cover” doesn’t mean covering
space as in differential geometry; it just means “surjective map”. The word “cover” is
often used in this imprecise way in algebraic geometry.)

Suppose π : X → Y is an affine morphism, and G is a quasicoherent sheaf on Y:

X

π

��

G

�
�
�
�
�
�
�

Y.

Observe that HomY(π∗OX,G) is a sheaf of π∗OX-modules. (The subscript Y is included
to remind us where the sheaf lives.) The reason is that affine-locally on Y, over an affine
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open set Spec B (on which G corresponds to B-module N, and with preimage Spec A ⊂ X)

(5) A

N

~
~
~
~
~
~
~
~

B

OO

this is the statement that HomB(A, N) is naturally an A-module (i.e. the A-module struc-
ture behaves well with respect to localization by b ∈ B, and hence these modules glue
together to form a quasicoherent sheaf).

In our earlier discussion of affine morphisms, we saw that quasicoherent π∗OX-modules
correspond to quasicoherent sheaves on X. Hence HomY(π∗OX,G) corresponds to some
quasicoherent sheaf π ′G on X.

Notational warning. This notation π ′ is my own, and solely for the purposes of this
section. If π is finite, then this construction is called π! (pronounced “upper shriek”).
You may ask why I’m introducing this extra notation “upper shriek”. That’s because this
notation is standard, while my π ′ notation is just made up. π! is one of the “six operations”
on sheaves defined Grothendieck. It is the most complicated one, and is complicated to
define for general π. Those of you attending Young-Hoon Kiem’s lectures on the derived
category may be a little perplexed, as there he defined π! for elements of the derived
category of sheaves, not for sheaves themselves. In the finite case, we can define this
notion at the level of sheaves, but we can’t in general.

Here are some important observations about this notion.

4.1. By construction, we have an isomorphism of quasicoherent sheaves on Y

π∗π
′G ∼= HomY(π∗OX,G).

4.2. π ′ is a covariant functor from the category of quasicoherent sheaves on Y to quasico-
herent sheaves on X.

4.3. If π is a finite morphism, and Y (and hence X) is locally Noetherian, then π ′ is a
covariant functor from the category of coherent sheaves on Y to coherent sheaves on X. We
show this affine locally, see (5). As A and N are both coherent B-modules, HomB(A, N) is
a coherent B-module, hence a finitely generated B-module, and hence a finitely generated
A-module, hence a coherent A-module.

4.4. If F is a quasicoherent sheaf on X, then there is a natural map

(6) π∗ HomX(F , π ′G) → HomY(π∗F ,G).

Reason: if M is an A-module, we have a natural map

(7) HomA(M, HomB(A, N)) → HomB(M, N)
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defined as follows. Given m ∈ M, and an element of HomA(M, HomB(A, N)), send m to
φm(1). This is clearly a homomorphism of B-modules. Moreover, this morphism behaves
well with respect to localization of B with respect to an element of B, and hence this
description yields a morphism of quasicoherent sheaves.

4.5. Lemma. The morphism (6) is an isomorphism.

Is there an obvious reason why the map is an isomorphism? There should be...

Proof. We will show that the natural map (7) is an isomorphism. Fix a presentation of M:

A⊕m → A⊕n → M → 0

(where the direct sums needn’t be finite). Applying HomA(·, HomB(A, N)) to this sequence
yields the top row of the following diagram, and applying HomB(·, N) yields the bottom
row, and the vertical morphisms arise from the morphism (7).

0 //

∼

��

HomA(M, HomB(A, N)) //

��

HomA(A, HomB(A, N))⊕n //

∼

��

HomA(A, HomB(A, N))⊕m

∼

��

0 // HomB(M, N) // HomB(A, N)⊕n // HomB(A, N)⊕m

(The squares clearly commute.) Be sure to convince yourself that

HomB(A, N)⊕n ∼= HomB(A⊕n, N)

even when n isn’t finite (and ditto for the three similar terms)! Then all but one of the
vertical homomorphisms are isomorphisms, and hence by the Five Lemma the remaining
morphism is an isomorphism. �

Hence π ′ is right-adjoint to π∗ for affine morphisms and quasicoherent sheaves. (Also,
by Observation 4.3, it is right-adjoint for finite morphisms and coherent sheaves on locally
Noetherian schemes.) In particular, there is a natural morphism π∗π

!G → G.

4.6. Proposition. — Suppose X → Y is a finite flat morphism of projective k-schemes of pure
dimension n, and (ωY, tY) is a dualizing sheaf for Y. Then π!ωY along with the trace morphism

tX : Hn(X, π!ωY)
∼ // Hn(Y, π∗π

!ωY) // Hn(Y, ωY)
tY // k

is a dualizing sheaf for X.

(That first isomorphism arises because X → Y is affine.)
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Proof.

Hn−i(X,F∨(π!ωY)) ∼= Hn−i(Y, π∗(F
∨ ⊗ π!ωY)) as π is affine

∼= Hn−i(Y, π∗(Hom(F , π!ωY)))

∼= Hn−i(Y, Hom(π∗F , ωY)) by 4.5
∼= Hn−i(Y, (π∗F)∨(ωY))

∼= Hi(Y, π∗F)∨ by Serre duality for Y

∼= Hi(X,F)∨ as π is affine

At the third-last and second-last steps, we are using the fact that π∗F is locally free, and
it is here that we are using flatness! �

5. ALL PROJECTIVE COHEN-MACAULAY k-SCHEMES OF PURE DIMENSION n ARE FINITE

FLAT COVERS OF P
n

We conclude the proof of the Serre duality theorem 1.1 by establishing the result in the
title of this section.

Assume X ↪→ P
N is projective Cohen-Macaulay of pure dimension n (e.g. smooth).

First assume that k is an infinite field. Then long ago in an exercise that I promised
would be important (and has repeatedly been so), we showed that there is a linear space
of dimension N − n − 1 (one less than complementary dimension) missing X. Project
from that linear space, to obtain π : X → Pn. Note that the fibers are finite (the fibers are
all closed subschemes of affine space), and hence π is a finite morphism. I’ve stated the
“Cohen-Macaulay/flatness theorem” that a morphism from a equidimensional Cohen-
Macaulay scheme to a smooth k-scheme is flat if and only if the fibers are of the expected
dimension. Hence π is flat.

5.1. Exercise. Prove the result in general, if k is not necessarily infinite. Hint: show that
there is some d such that there is an intersection of N − n − 1 degree d hypersurfaces
missing X. Then try the above argument with the dth Veronese of P

N.

6. SERRE DUALITY IN FAMILIES

6.1. Exercise: Serre duality in families. Suppose π : X → Y is a flat projective morphism of
locally Noetherian schemes, of relative dimension n. Assume all of the geometric fibers
are Cohen-Macaulay. Then there exists a coherent sheaf ωX/Y on X, along with a trace
map Rnπ∗ωX/Y → OY such that, for every finite rank locally free sheaves F on X, each of
whose higher pushforwards are locally free on Y,

(8) Riπ∗F × Rn−iπ∗(F
∨ ⊗ ωX) // Rnπ∗ωX

t // OY

is a perfect pairing. (Hint: follow through the same argument!)
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Note that the hypothesis, that all higher pushforwards are locally free on Y, is the sort
of thing provided by the cohomology and base change theorem. (In the solution to Exer-
cise 6.1, you will likely show that Rn−iπ∗(F

∨ ⊗ ωX) is a locally free sheaf for all F such
that Riπ∗F is a locally free sheaf.)

You will need the fibral flatness theorem (EGA IV(3).11.3.10–11), which you should feel
free to use: if g : X → S, h : Y → S are locally of finite presentation, and f : X → Y is an
S-morphism, then the following are equivalent:

(a) g is flat and fs : Xs → Ys is flat for all s ∈ s,
(b) h is flat at all points of f(X) and f is flat.

7. WHAT WE STILL WANT

There are three or four more facts I want you to know.

• On the locus of X where k is smooth, there is an isomorphism ωX/k
∼= det ΩX/k.

(Note for experts: it isn’t canonical!) We define det ΩX/k to be KX. We used this in
the case of smooth curves over k (proper, geometrically integral). This is surpris-
ingly hard, certainly harder than the mere existence of the canonical sheaf!

• The adjunction formula. If D is a Cartier divisor on X (so D is also Cohen-Macaulay,
by one of the facts about Cohen-Macaulayness I’ve mentioned), then ωD/k =
(

ωX/k ⊗OX(D)
)

|D.

On can show this using Ext groups, but I haven’t established their existence or proper-
ties. So instead, I’m going to go as far as I can without using them, and then I’ll tell you a
little about them.

But first, here are some exercises assuming that ω is isomorphic to det Ω on the smooth
locus.

7.1. Exercise (Serre duality gives a symmetry of the Hodge diamond). Suppose X is a smooth
projective k-variety of dimension n. Define Ω

p
X = ∧pΩX. Show that we have a natural

isomorphism Hq(X, Ωp) ∼= Hn−q(X, Ωn−p)∨.

7.2. Exercise (adjunction for smooth subvarieties of smooth varieties). Suppose X is a smooth
projective k-scheme, and and D is a smooth effective Cartier divisor. Show that KD

∼=
KX(D)|D. Hence if we knew that KX

∼= ωX and KD
∼= ωD, this would let us compute ωD

in terms of ωX. We will use this shortly.

7.3. Exercise. Compute K for a smooth complete intersection in PN of hypersurfaces of
degree d1, . . . , dn. Compute ω for a complete intersection in PN of hypersurfaces of degree
d1, . . . , dn. (This will be the same calculation!) Find all possible cases where K ∼= O. These
are examples of Calabi-Yau varieties (or Calabi-Yau manifolds if k = C), at least when they
have dimension at least 2. If they have dimension precisely 2, they are called K3 surfaces.
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8. THE DUALIZING SHEAF IS AN INVERTIBLE SHEAF ON THE SMOOTH LOCUS

(I didn’t do this in class, but promised it in the notes. A simpler proof in the case where
X is a curve is given in §9.)

We begin with some preliminaries.

(0) If f : U → U is the identity, and F is a quasicoherent sheaf on U, then f ′F ∼= F .

(i) The ′ construction behaves well with respect to flat base change, as the pushforward
does. In other words, if

X ′
h //

g

��

X

e

��
Y ′

f // Y

is a fiber diagram, where f (and hence h) is flat, and F is any quasicoherent sheaf on Y,
then there is a canonical isomorphism h∗e ′F ∼= g ′f∗F .

(ii) The ′ construction behaves well with respect to disjoint unions of the source. In
other words, if fi : Xi → Y (i = 1, 2) are two morphisms, f : X1 ∪ X2 → Y is the induced
morphism from the disjoint union, and F is a quasicoherent sheaf on Y, then f ′F is f ′

1F
on X1 and f ′

2F on X2. The reason again is that pushforward behaves well with respect to
disjoint union.

Exercise. Prove both these facts, using abstract nonsense.

Given a smooth point x ∈ X, we can choose our projection so that π : X → Pn is etale
at that point. Exercise. Prove this. (Hint: We need only check isomorphisms of tangent
spaces.)

So hence we need only check our desired result on the etale locus U for X → Pn. (This
is an open set, as etaleness is an open condition.) Consider the base change.

X ×Pn
k

U h //

g

��

X

e

��

U
f // Pn

k.

There is a section U → X×Pn U of the vertical morphism on the left. Exercise. Show that it
expresses U as a connected component of X ×Pn U. (Hint: Show that a section of an etale
morphism always expresses the target as a component of the source as follows. Check
that s is a homeomorphism onto its image. Use Nakayama’s lemma.) The dualizing sheaf
ωP

n
k

is invertible, and hence f∗ωP
n
k

is invertible on U. Hence g!f∗ωP
n
k

is invertible on s(U)

(by observation (0)). By observation (i) then, h∗g∗ωP
n
k

∼= h∗ωX is an invertible sheaf.

We are now reduced to showing the following. Suppose h : U → X is an etale mor-
phism. (In the etale topology, this is called an “etale open set”, even though it isn’t an
open set in any reasonable sense.) Its image is an open subset of X (as etale morphisms
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are open maps). Suppose F is a coherent sheaf on X such that h∗F is an invertible sheaf
on U. Then F is an invertible sheaf on the image of U.

(Experts will notice that this is a special case of faithfully flat descent.)

Exercise. Prove this. Hint: it suffices to check that the stalks of F are isomorphic to the
stalks of the structure sheaf. Hence reduce the question to a map of local rings: suppose
(B, n) → (A, m) is etale, and N is a coherent B-module such that M := N ⊗B A is isomor-
phic to A. We wish to show that N is isomorphic to B. Use Nakayama’s lemma to show
that N has the same minimal number of generators (over B) as M (over A), by showing
that dimB/n N − dimA/m M. Hence this number is 1, so N ∼= B/I for some ideal I. Then
show that I = 0 — you’ll use flatness here.

9. AN EASIER PROOF THAT THE DUALIZING SHEAF OF A SMOOTH CURVE IS INVERTIBLE

Here is another proof that for curves, the dualizing sheaf is invertible. We’ll show that
it is torsion-free, and rank 1.

First, here is why it is rank 1 at the generic point. We have observed that f! behaves
well with respect to flat base change. Suppose L/K is a finite extension of degree n. Then
HomK(L, K) is an L-module. What is its rank? As a K-module, it has rank n. Hence as
an L-module it has rank 1. Applying this to C → P1 at the generic point (L = FF(C),
K = FF(P1)) gives us the desired result. (Side remark: its structure as an L-module is a
little mysterious. You can see that some sort of duality is relevant here. Illuminating this
module’s structure involves the norm map.)

Conclusion: the dualizing sheaf is rank 1 at the generic point.

Here is why it is torsion free. Let ωt be the torsion part of ω, and ωnt be the torsion-free
part, so we have an exact sequence

0 → ωt → ω → ωnt → 0.

9.1. Exercise. Show that this splits: ω = ωt ⊕ ωnt. (Hint: It suffices to find a splitting
map ω → ωt. As ωt is supported at a finite set of points, it suffices to find this map in a
neighborhood of one of the points in the support. Restrict to a small enough affine open
set where ωnt is free. Then on this there is a splitting ωnt → ω, from which on that open
set we have a splitting ω → ωt.)

Notice that ωnt is rank 1 and torsion-free, hence an invertible sheaf. By Serre duality,
for any invertible sheaf L, h0(L) = h1(ωnt⊗L∨) and h1(L) = h0(ωnt⊗L∨)+h0(ωt⊗L).
Substitute L = OX in the first of these equations and L = ωX in the second, to obtain that
h0(X, ωt) = 0. But the only skyscraper sheaf with no sections is the 0 sheaf, hence ωt = 0.
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10. THE SHEAF OF DIFFERENTIALS IS DUALIZING FOR A SMOOTH PROJECTIVE CURVE

One can show that the determinant of the sheaf of differentials is the dualizing sheaf
using Ext groups, but this involves developing some more machinery, without proof.
Instead, I’d like to prove it directly for curves, using what we already have proved. (Note
again that our proof of Serre duality for curves was rigorous — the cup product was
already well-defined for dimension 1 schemes.)

I’ll do this in a sequence of exercises.

Suppose C is an geometrically irreducible, smooth projective k-curve.

We wish to show that ΩC
∼= ωC. Both are invertible sheaves. (Proofs that ωC is invert-

ible were given in §8 and §9.)

Define the genus of a curve as g = h1(C,OC). By Serre duality, this is h0(C, ωC). Also,
h0(C,OC) = h1(C, ωC) = 1.

Suppose we knew that h0(C, ΩC) = h0(C, ωC), and h1(C, ΩC) = h1(ωC) (= 1). Then
deg ΩC = deg ωC. Also, by Serre duality h0(C, Ω∨

C ⊗ωC) = h1(ΩC) = 1. Thus Ω∨

C ⊗ωC is
a degree 0 invertible sheaf with a nonzero section. We have seen that this implies that the
sheaf is trivial, so ΩC

∼= ωC.

Thus it suffices to prove that h1(C, ΩC) = 1, and h0(C, ΩC) = h0(C, ωC). By Serre dual-
ity, we can restate the latter equality without reference to ω: h0(C, Ω) = h1(C,OC). Note
that we can assume k = k: all three cohomology group dimensions hi(C, ΩC), h0(C,OC)

are preserved by field extension (shown earlier).

Until this point, the argument is slick and direct. What remains is reasonably pleasant, but
circuitous. Can you think of a faster way to proceed, for example using branched covers of P1?

10.1. Exercise. Show that C can be expressed as a plane curve with only nodes as sin-
gularities. (Hint: embed C in a large projective space, and take a general projection. The
Kleiman-Bertini theorem, or at least its method of proof, will be handy.)

Let the degree of this plane curve be d, and the number of nodes be δ. We then blow
up P

2 at the nodes (let S = Bl P2), obtaining a closed immersion C ↪→ S. Let H be the
divisor class that is the pullback of the line (O(1)) on P2. Let E1, . . . , Eδ be the classes of
the exceptional divisors.

10.2. Exercise. Show that the class of C on P
2 is dH − 2

∑
Ei. (Reason: the total transform

has class dH. Each exceptional divisor appears in the total transform with multiplicity
two.)

10.3. Exercise. Use long exact sequences to show that h1(C,OC) =
(

d−1

2

)

− δ. (Hint:
Compute χ(C,OC) instead. One possibility is to compute χ(C ′,OC′) where C ′ is the image
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of C in P2, and use the Leray spectral sequence for C → C ′. Another possibility is to work
on S directly.)

10.4. Exercise. Show that ΩC = KS(C)|C. Show that this is

(−3H +
∑

Ei) + (dH −
∑

2Ei).

Show that this has degree 2g − 2 where g = h1(OC). (Possible hint: use long exact se-
quences.)

10.5. Exercise. Show that h0(ΩC) > 2g − 2 − g + 1 = g − 1 from

0 → H0(S,KS) → H0(S,KS(C)) → H0(C, ΩC).

10.6. Exercise. Show that ΩC
∼= ωC.

11. EXT GROUPS, AND ADJUNCTION

Let me now introduce Ext groups and their properties, without proof. Suppose i is
a non-negative integer. Given two quasicoherent sheaves, Exti(F ,G) is a quasicoherent
sheaf. Ext0(F ,G) = Hom(F ,G). Then there are long exact sequences in both arguments.
In other words, if

0 → F ′ → F → F ′′ → 0

is a short exact sequence, then there is a long exact sequence starting

0 → Ext0(F ′′,G) → Ext0(F ,G) → Ext0(F ′,G) → Ext1(F ′′,G) → · · · ,

and if
0 → G ′ → G → G ′′ → 0

is a short exact sequence, then there is a long exact sequence starting

0 → Ext0(F ,G ′) → Ext0(F ,G) → Ext0(F ,G ′′) → Ext0(F ,G ′) → · · · .

Also, if F is locally free, there is a canonical isomorphism Exti(F ,G) ∼= Hi(X,G ⊗ F∨).

For any quasicoherent sheaves F and G, there is a natural map Exti(F ,G)×Hj(X,F) →
Hi+j(G).

For any coherent sheaf on X, there is a natural morphism (“cup product”) Exti(F ,G)×

Hj(X,F) → Hi+j(X,G).

11.1. Exercise. Suppose X is Cohen-Macaulay, and finite type and projective over k (so
Serre duality holds). Via this morphism, show that

Exti(F , ωX) × Hn−i(X,F) // Hn(X, ωX)
t // k

is a perfect pairing. Feel free to assume whatever nice properties of Ext-groups you need
(as we haven’t proven any of them anyway).
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Hence Serre duality yields a natural extension to coherent sheaves. This is sometimes
called Serre duality as well. This more general statement is handy to prove the adjunction
formula.

11.2. Adjunction formula. — If X is a Serre duality space (i.e. a space where Serre duality
holds), and D is an effective Cartier divisor, then ωD = (ωX ⊗O(D))|D.

We’ve seen that if X and D were smooth, and we knew that ωX
∼= det ΩX and ωD

∼=
det ΩD, we would be able to prove this easily (Exercise 7.2).

But we get more. For example, complete intersections in projective space have invert-
ible dualizing sheaves, no matter how singular or how nonreduced. Indeed, complete
intersections in any smooth projective k-scheme have invertible dualizing sheaves.

A projective k-schemes with invertible dualizing sheaf is so nice that it has a name: it
is said to be Gorenstein. (Gorenstein has a more general definition, that also involves a
dualizing sheaf. It is a local definition, like nonsingularity and Cohen-Macaulayness.)

11.3. Exercise. Prove the adjunction formula. (Hint: Consider 0 → ωX → ωX(D) →
ωX(D)|D → 0. Apply HomX(F , ·) to this, and take the long exact sequence in Ext-groups.)
As before, feel free to assume whatever facts about Ext groups you need.

The following exercise is a bit distasteful, but potentially handy. Most likely you should
skip it, and just show that ωX

∼= det ΩX using the theory of Ext groups.

11.4. Exercise. We make a (temporary) definition inductively by definition. A k-variety
is “nice” if it is smooth, and (i) it has dimension 0 or 1, or (ii) for any nontrivial invertible
sheaf L on X, there is a nice divisor D such that L|D 6= 0. Show that for any nice k-variety,
ωX

∼= det ΩX. (Hint: use the adjunction formula, and the fact that we know the result for
curves.)

11.5. Remark. You may wonder if ωX is always an invertible sheaf. In fact it isn’t, for
example if X = Spec k[x, y]/(x, y)2. I think I can give you a neat and short explanation of
this fact. If you are curious, just ask.

E-mail address: vakil@math.stanford.edu
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