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Last day I introduced differentials on affine schemes, for a morphism B → A. The
differential was an A-module, as well as a homomorphism of B-modules, d : A → ΩA/B.
The A-module ΩA/B is generated by da, and d satisfies 3 rules: additivity, Leibniz rule,
and db = 0 (or d1 = 0). It satisfies a universal property: any derivation A → M uniquely
factors through an A-module homomorphism ΩA/B → M.

1. A THIRD DEFINITION OF Ω, SUITABLE FOR EASY GLOBALIZATION

1.1. Third definition. We now want to globalize this definition for an arbitrary morphism
of schemes f : X → Y. We could do this “affine by affine”; we just need to make sure that
the above notion behaves well with respect to “change of affine sets”. Thus a relative
differential on X would be the data of, for every affine U ⊂ X, a differential of the form∑

ai dbi, and on the intersection of two affine open sets U ∩ U ′, with representatives∑
ai dbi on U and

∑
a ′

i db ′

i on the second, an equality on the overlap. Instead, we’ll take
a different tack. We’ll get what intuitively seems to be a very weird definition! I’ll give
the definition, then give you some intuition, and then get back to the definition.

Suppose f : X → Y be any morphism of schemes. Recall that δ : X → X ×Y X is a locally
closed immersion (Class 9, p. 5). Thus there is an open subscheme U ⊂ X ×Y X for which
δ : X → U is a closed immersion, cut out by a quasicoherent sheaf of ideals I. Then I/I2

is a quasicoherent sheaf naturally supported on X (affine-locally this is the statement that
I/I2 is naturally an A/I-module). We call this the conormal sheaf to X (or somewhat more
precisely,to the locally closed immersion). (For the motivation for this name, see last day’s
notes.) We denote it by N∨

X/X×YX. Then we will define ΩX/Y as this conormal sheaf.

(Small technical point for pedants: what does I2 mean? In general, if I and J are
quasicoherent ideal sheaves on a scheme Z, what does IJ mean? Of course it means that
on each affine, we take the product of the two corresponding ideals. To make sure this
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is well-defined, we need only check that if A is a ring, and f ∈ A, and I, J ⊂ A are two
ideals, then (IJ)f = IfJf in Af.)

Brief aside on (co)normal sheaves to locally closed immersions. For any locally closed im-
mersion W → Z, we can define the conormal sheaf N∨

W/Z, a quasicoherent sheaf on W,
similarly, and the normal sheaf as its dual NW/Z := Hom(N∨,OW). This is somewhat im-
perfect notation, as it suggests that the dual of N is always N ∨. This is not always true,
as for A-modules, the natural morphism from a module to its double-dual is not always
an isomorphism. (Modules for which this is true are called reflexive, but we won’t use this
notion.)

1.2. Exercise: normal bundles to effective Cartier divisors. Suppose D ⊂ X is an effective
Cartier divisor. Show that the conormal sheaf N∨

D/X is O(−D)|D (and in particular is an
invertible sheaf), and hence that the normal sheaf is O(D)|D. It may be surprising that the
normal sheaf should be locally free if X ∼= A

2 and D is the union of the two axes (and more
generally if X is nonsingular but D is singular), because you may be used to thinking that
the normal bundle is isomorphic to a “tubular neighborhood”.

Let’s get back to talking about differentials.

We now define the d operator d : OX → ΩX/Y . Let π1, π2 : X ×Y X → X be the two
projections. Then define d : OX → ΩX/Y on the open set U as follows: df = π∗

2f − π∗

1f.
(Warning: this is not a morphism of quasicoherent sheaves, although it is OY-linear.) We’ll
soon see that this is indeed a derivation, and at the same time see that our new notion of
differentials agrees with our old definition on affine open sets, and hence globalizes the
definition.

Before we do, let me try to convince you that this is a reasonable definition to make.
(This paragraph is informal, and is in no way mathematically rigorous.) Say for example
that Y is a point, and X is something smooth. Then the tangent space to X × X is TX ⊕ TX:
TX×X = TX ⊕ TX. Restrict this to the diagonal ∆, and look at the normal bundle exact
sequence:

0 → T∆ → TX×X|∆ → N∆,X → 0.

Now the left morphism sends v to (v, v), so the cokernel can be interpreted as (v, −v).
Thus N∆,X is isomorphic to TX. Thus we can turn this on its head: we know how to find
the normal bundle (or more precisely the conormal sheaf), and we can use this to define
the tangent bundle (or more precisely the cotangent sheaf). (Experts may want to ponder
the above paragraph when Y is more general, but where X → Y is “nice”. You may wish
to think in the category of manifolds, and let X → Y be a submersion.)

Let’s now see how this works for the special case Spec A → Spec B. Then the diagonal
Spec A ↪→ Spec A⊗B A corresponds to the ideal I of A⊗B A that is the cokernel of the ring
map

∑
xi ⊗ yi →

∑
xiyi.
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The derivation is d : A → A ⊗B A, a 7→ da := 1 ⊗ a − a ⊗ 1 (taken modulo I2). (I
shouldn’t really call this “d” until I’ve verified that it agrees with our earlier definition,
but bear with me.)

Let’s check that this satisfies the 3 conditions, i.e. that it is a derivation. Two are imme-
diate: it is linear, vanishes on elements of b. Let’s check the Leibniz rule:

d(aa ′) − a da ′ − a ′ da = 1 ⊗ aa ′ − aa ′ ⊗ 1 − a ⊗ a ′ + aa ′ ⊗ 1 − a ′ ⊗ a + a ′a ⊗ 1

= −a ⊗ a ′ − a ′ ⊗ a + a ′a ⊗ 1 + 1 ⊗ aa ′

= (1 ⊗ a − a ⊗ 1)(1 ⊗ a ′ − a ′ ⊗ 1)

∈ I2.

Thus by the universal property of ΩA/B, we get a natural morphism ΩA/B → I/I2 of
A-modules.

1.3. Theorem. — The natural morphism f : ΩA/B → I/I2 induced by the universal property of
ΩA/B is an isomorphism.

Proof. We’ll show this as follows. (i) We’ll show that f is surjective, and (ii) we will describe
g : I/I2 → ΩA/B such that g ◦ f : ΩA/B → ΩA/B is the identity. Both of these steps will be
very short. Then we’ll be done, as to show f ◦ g is the identity, we need only show (by
surjectivity of g) that (f ◦ g)(f(a)) = f(a), which is true (by (ii) g ◦ f = id).

(i) For surjectivity, we wish to show that I is generated (modulo I2) by a ⊗ 1 − 1 ⊗ a as
a runs over the elements of A. This has a one sentence explanation: If

∑
xi ⊗ yi ∈ I, i.e.∑

xiyi = 0 in A, then
∑

i xi ⊗ yi =
∑

i xi(1 ⊗ yi − yi ⊗ 1).

(ii) Define g : I/I2 → ΩA/B by x ⊗ y 7→ x dy. We need to check that this is well-defined,
i.e. that elements of I2 are sent to 0, i.e. we need that

(∑
xi ⊗ yi

) (∑
x ′

j ⊗ y ′

j

)

=
∑

i,j

xix
′

j ⊗ yiy
′

j 7→ 0

where
∑

i xiyi =
∑

x ′

jy
′

j = 0. But by the Leibniz rule,
∑

i,j

xix
′

j d(yiy
′

j) =
∑

i,j

xix
′

jyi dy ′

j +
∑

i,j

xix
′

jy
′

j dyi

=

(

∑

i

xiyi

)(

∑

j

x ′

j dy ′

j

)

+

(

∑

i

xi dyi

)(

∑

j

x ′

jy
′

j

)

= 0.

Then f ◦ g is indeed the identity, as

da
g
// 1 ⊗ a − a ⊗ 1

f
// 1 da − a d1 = da

as desired. �

We can now use our understanding of how Ω works on affine open sets to state some
global results.
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1.4. Exercise. Suppose f : X → Y is locally of finite type, and X is locally Noetherian.
Show that ΩX/Y is a coherent sheaf on X.

The relative cotangent exact sequence and the conormal exact sequence for schemes
now directly follow.

1.5. Theorem. — (Relative cotangent exact sequence) Suppose X
f

// Y
g

// Z be morphisms
of schemes. Then there is an exact sequence of quasicoherent sheaves on X

f∗ΩY/Z → ΩX/Z → ΩX/Y → 0.

(Conormal exact sequence) Suppose f : X → Y morphism of schemes, Z ↪→ X closed subscheme of
X, with ideal sheaf I. Then there is an exact sequence of sheaves on Z:

I/I2 δ
// ΩX/Y ⊗OZ

// ΩZ/Y
// 0.

Similarly, the sheaf of relative differentials pull back, and behave well under base
change.

1.6. Theorem (pullback of differentials). — (a) If

X ′
g

//

��

X

��

Y ′ // Y

is a commutative diagram of schemes, there is a natural homomorphism of quasicoherent sheaves
on X ′ g∗ΩX/Y → ΩX ′/Y ′ . An important special case is Y = Y ′.
(b) (Ω behaves well under base change) If furthermore the above diagram is a tensor diagram (i.e.
X ′ ∼= X ⊗Y Y ′) then g∗ΩX/Y → ΩX ′/Y ′ is an isomorphism.

This follows immediately from an Exercise in last day’s notes. Part (a) implicitly came
up in our earlier discussion of the Riemann-Hurwitz formula.

As a particular case of part (b), the fiber of the sheaf of relative differentials is indeed
the sheaf of differentials of the fiber. Thus this notion indeed glues together the differentials on
each fiber.

2. EXAMPLES

2.1. The projective line. As an important first example, let’s consider P
1
k, with the usual

projective coordinates x0 and x1. As usual, the first patch corresponds to x0 6= 0, and is of
the form Spec k[x1/0] where x1/0 = x1/x0. The second patch corresponds to x1 6= 0, and is
of the form Spec k[x0/1] where x0/1 = x0/x1.
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Both patches are isomorphic to A
1
k, and ΩA1

k
= OA1

k
. (More precisely, Ωk[x]/k = k[x] dx.)

Thus ΩP1
k

is an invertible sheaf (a line bundle). Now we have classified the invertible
sheaves on P

1
k — they are each of the form O(m). So which invertible sheaf is ΩP1/k?

Let’s take a section, dx1/0 on the first patch. It has no zeros or poles there, so let’s check
what happens on the other patch. As x1/0 = 1/x0/1, we have dx1/0 = −(1/x2

0/1) dx0/1.
Thus this section has a double pole where x0/1 = 0. Hence ΩP1

k
/k

∼= O(−2).

Note that the above argument did not depend on k being a field, and indeed we could
replace k with any ring A (or indeed with any base scheme).

2.2. A plane curve. Consider next the plane curve y2 = x3 − x in A
2
k, where the char-

acteristic of k is not 2. Then the differentials are generated by dx and dy, subject to the
constraint that

2y dy = (3x2 − 1) dx.

Thus in the locus where y 6= 0, dx is a generator (as dy can be expressed in terms of dx).
Similarly, in the locus where 3x2 − 1 6= 0, dy is a generator. These two loci cover the entire
curve, as solving y = 0 gives x3 − x = 0, i.e. x = 0 or ±1, and in each of these cases
3x2 − 1 6= 0.

Now consider the differential dx. Where does it vanish? Answer: precisely where
y = 0. You should find this believable from the picture (which I gave in class).

2.3. Exercise: differentials on hyperelliptic curves. Consider the double cover f : C →
P

1
k branched over 2g+2 distinct points. (We saw earlier that this curve has genus g.) Then

ΩC/k is again an invertible sheaf. What is its degree? (Hint: let x be a coordinate on one
of the coordinate patches of P

1
k. Consider f∗dx on C, and count poles and zeros.) In class

I gave a sketch showing that you should expect the answer to be 2g − 2.

2.4. Exercise: differentials on nonsingular plane curves. Suppose C is a nonsingular
plane curve of degree d in P

2
k, where k is algebraically closed. By considering coordinate

patches, find the degree of ΩC/k. Make any reasonable simplifying assumption (so that
you believe that your result still holds for “most” curves).

Because Ω behaves well under pullback, note that the assumption that k is algebraically
closed may be quickly excised:

2.5. Exercise. Suppose that C is a nonsingular projective curve over k such that ΩC/k is an
invertible sheaf. (We’ll see that for nonsingular curves, the sheaf of differentials is always
locally free. But we don’t yet know that.) Let Ck = C ×Spec k Spec k. Show that ΩC

k
/k is

locally free, and that

deg ΩCk/k = deg ΩC/k.
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2.6. Projective space. We next examine the differentials of projective space P
n
k . As

projective space is covered by affine open sets of the form A
n, on which the differential

form a rank n locally free sheaf, ΩPn
k

/k is also a rank n locally free sheaf.

2.7. Theorem (the Euler exact sequence). — The sheaf of differentials ΩPn
k /k satisfies the following

exact sequence
0 → ΩPn

A
→ OPn

A
(−1)⊕(n+1) → OPn

A
→ 0.

This is handy, because you can get a hold of Ω in a concrete way. Next day I will give
an explicit example, to give you some practice.

I discussed some philosophy behind this theorem. Next day, I’ll give a proof, and repeat
the philosophy.
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