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1. LEFT-OVER: DEGREE OF A CARTIER DIVISOR ON A PROJECTIVE CURVE

As always, there is something small that I should have said last day. Suppose D is an
effective Cartier divisor on a projective curve, or a Cartier divisor on a projective non-
singular curve (over a field k). (I should really say: suppose D is a Cartier divisor on
a projective curve, but I don’t think I defined Cartier divisors in that generality.) Then
define the degree of D (denoted deg D) to be the degree of the corresponding invertible
sheaf.

Exercise. If D is an effective Cartier divisor on a projective nonsingular curve, say D =∑
nipi, prove that deg D =

∑
ni deg pi, where deg pi is the degree of the field extension

of the residue field at pi over k.

(This is also now in the class 29 notes, where it belongs.)

2. COHOMOLOGY CONTINUED

Last day, I gave you lots of facts that we wanted cohomology to satisfy. Suppose X is a
separated and quasicompact R-scheme. In particular, X can be covered by a finite number
of affine open sets, and the intersection of any two affine open sets is another affine open
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set. We are going to define Hi(X,F) for any quasicoherent sheaf F on X, that satisfies the
following properties.

• H0(X,F) = Γ(X,F)

• Hi is a contravariant functor in X and a covariant functor in F .
• Hi(X,⊕jFj) = ⊕jH

i(X,Fj): cohomology commutes with arbitrary direct sums.
• long exact sequences
• Hi(Spec R,F) = 0.
• If X ↪→ Y is a closed immersion, and F is a quasicoherent sheaf on X, then Hi(X,F) =

Hi(Y, f∗F).
• Hi(Pn

R,OP
n
R
(r)) is something nice (we described it in a statement last day that we

will prove today)

Last day, we defined these cohomology groups given the additional data of an affine
open cover U ; I used the notation Hi

U
(X,F). We’ll start today by showing that this is

independent of U .

2.1. Theorem/Definition. — Recall that X is quasicompact and separated. Hi
U
(U,F) is indepen-

dent of the choice of (finite) cover {Ui}. More precisely,

(*) for all k, for any two covers {Ui} ⊂ {Vi} of size at most k, the maps Hi
{Vi}

(X,F) →

Hi
{Ui}

(X,F) induced by the natural maps of complex (1) are isomorphisms.

Define the Cech cohomology group Hi(X,F) to be this group.

(1) 0 →
M

|I| = 1

I ⊂ {1, . . . , n}

F(UI) → · · · →
M

|I| = i

I ⊂ {1, . . . , n}

F(UI) →
M

|I| = i + 1

I ⊂ {1, . . . , n}

F(UI) → · · · .

I needn’t have stated in terms of some k; I’ve stated it in this way so I can prove it by
induction.

(For experts: we’ll get natural quasiisomorphisms of Cech complexes for various U .)

Proof. We prove this by induction on k. The base case is trivial. We need only prove the
result for {Ui}

n
i=1 ⊂ {Ui}

n
i=0, where the case k = n is known. Consider the exact sequence
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of complexes

0

��

0

��

0

��

· · · //

L

|I| = i − 1

0 ∈ I ⊂ {0, . . . , n}

F(UI) //

��

L

|I| = i

0 ∈ I ⊂ {0, . . . , n}

F(UI) //

��

L

|I| = i + 1

0 ∈ I ⊂ {0, . . . , n}

F(UI) //

��

· · ·

· · · //

L

|I| = i − 1

I ⊂ {0, . . . , n}

F(UI) //

��

L

|I| = i

I ⊂ {0, . . . , n}

F(UI) //

��

L

|I| = i + 1

I ⊂ {0, . . . , n}

F(UI) //

��

· · ·

· · · //

L

|I| = i − 1

I ⊂ {1, . . . , n}

F(UI) //

��

L

|I| = i

I ⊂ {1, . . . , n}

F(UI) //

��

L

|I| = i + 1

I ⊂ {1, . . . , n}

F(UI) //

��

· · ·

0 0 0

We get a long exact sequence of cohomology from this. Thus by Exercise 5.2 of last day,
we wish to show that the top row is exact. But the ith cohomology of the top row is
precisely Hi

{Ui∩U0}i>0
(Ui,F) except at step 0, where we get 0 (because the complex starts

off 0 → F(U0) → ⊕n
j=1F(U0 ∩ Uj)). So we just need to show that higher Cech groups of

affine schemes are 0. Hence we are done by the following result. �

2.2. Theorem. — The higher Cech cohomology Hi
U
(X,F) of an affine R-scheme X vanishes (for

any affine cover U , i > 0, and quasicoherent F ).

Serre describes this as a partition of unity argument.

A spectral sequence argument can make quick work of this, but I’d like to avoid intro-
ducing spectral sequences until I have to.

Proof. We want to show that the “extended” complex (where you tack on global sections
to the front) has no cohomology, i.e. that

(2) 0 → F(X) → ⊕|I|=1F(UI) → ⊕|I|=2F(UI) → · · ·

is exact. We do this with a trick.
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Suppose first that some Ui (say U0) is X. Then the complex can be described as the
middle row of the following short exact sequence of complexes

0 // 0 //

��

⊕|I|=1,0∈IF(UI) //

��

⊕|I|=2,0∈IF(UI) //

��

· · ·

0 // F(X) //

��

⊕|I|=1F(UI) //

��

⊕|I|=2F(UI) //

��

· · ·

0 // F(X) // ⊕|I|=1,0/∈IF(UI) // ⊕|I|=2,0/∈IF(UI) // · · ·

The top row is the same as the bottom row, slid over by 1. The corresponding long exact
sequence of cohomology shows that the central row has vanishing cohomology. (Topo-
logical experts will recognize a mapping cone in the above construction.)

We next prove the general case by sleight of hand. Say X = Spec S. We wish to show
that the complex of R-modules (2) is exact. It is also a complex of S-modules, so we wish to
show that the complex of S-modules (2) is exact. To show that it is exact, it suffices to show
that for a cover of Spec S by distinguished opens D(fi) (1 ≤ i ≤ s) (i.e. (f1, . . . , fs) = 1 in
S) the complex is exact. (Translation: exactness of a sequence of sheaves may be checked
locally.) We choose a cover so that each D(fi) is contained in some Uj = Spec Rj. Consider
the complex localized at fi. As

Γ(Spec R,F)f = Γ(Spec(Rj)f,F)

(as this is one of the definitions of a quasicoherent sheaf), as Uj ∩ D(fi) = D(fi), we are in
the situation where one of the Ui’s is X, so we are done. �

2.3. Exercise. Suppose V ⊂ U are open subsets of X. Show that we have restriction mor-
phisms Hi(U,F) → Hi(V,F) (if U and V are quasicompact, and U hence V is separated).
Show that restrictions commute. Hence if X is a Noetherian space, Hi(,̇F) this is a con-
travariant functor from the category Top(X) to abelian groups. (For experts: this means
that it is a presheaf. But this is not a good way to think about it, as its sheafification is 0,
as it vanishes on the affine base.) The same argument will show more generally that for
any map f : X → Y, there exist natural maps Hi(X,F) → Hi(X, f∗F); I should have asked
this instead.

2.4. Exercise. Show that if F → G is a morphism of quasicoherent sheaves on separated
and quasicompact X then we have natural maps Hi(X,F) → Hi(X,G). Hence Hi(X, ·)
is a covariant functor from quasicoherent sheaves on X to abelian groups (or even R-
modules).

In particular, we get the following facts.

1. If X ↪→ Y is a closed subscheme then Hi(X,F) = Hi(Y, f∗F), as promised at start of
our discussion on cohomology.

4



2. Also, if X can be covered by n affine open sets, then Hi(X,F) = 0 for all quasicoherent
F , and i ≥ n. In particular, Hi(Spec R,F) = 0 for i > 0.

3. Cohomology behaves well for arbitrary direct sums of quasicoherent sheaves.

2.5. Dimensional vanishing for projective k-schemes.

2.6. Theorem. — Suppose X is a projective k-scheme, and F is a quasicoherent sheaf on X. Then
Hi(X,F) = 0 for i > dim X.

In other words, cohomology vanishes above the dimension of X. We will later show
that this is true when X is a quasiprojective k-scheme.

Proof. Suppose X ↪→ P
N, and let n = dim X. We show that X may be covered by n affine

open sets. Long ago, we had an exercise saying that we could find n Cartier divisors on
P

N such that their complements U0, . . . , Un covered X. (We did this as follows. Lemma:
Suppose Y ↪→ P

N is a projective scheme. Then Y is Noetherian, and hence has a finite
number of components. We can find a hypersurface H containing none of their associated
points. Then H contains no component of Y, the dimension of H∩Y is strictly smaller than
Y, and if dim Y = 0, then H ∩ Y = ∅.) Then Ui is affine, so Ui ∩ X is affine, and thus we
have covered X with n affine open sets. �

Remark. We actually need n affine open sets to cover X, but I don’t see an easy way to
prove it. One way of proving it is by showing that the complement of an affine set is
always pure codimension 1.

3. COHOMOLOGY OF LINE BUNDLES ON PROJECTIVE SPACE

I’ll now pay off that last IOU.

3.1. Proposition. —

• H0(Pn
R,OP

n
R
(m)) is a free R-module of rank

(

n+m

n

)

if i = 0 and m ≥ 0, and 0 otherwise.
• Hn(Pn

R,OP
n
R
(m)) is a free R-module of rank

(

−m−1

−n−m−1

)

if m ≤ −n − 1, and 0 otherwise.
• Hi(Pn

R,OP
n
R
(m)) = 0 if 0 < i < n.

It is more helpful to say the following imprecise statement: H0(Pn
R,OP

n
R
(m)) should be

interpreted as the homogeneous degree m polynomials in x0, . . . , xn (with R-coefficients),
and Hn(Pn

R,OPn
R
(m)) should be interpreted as the homogeneous degree m Laurent poly-

nomials in x0, . . . , xn, where in each monomial, each xi appears with degree at most −1.

Proof. The H0 statement was an (important) exercise last quarter.
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Rather than consider O(m) for various m, we consider them all at once, by considering
F = ⊕mO(m).

Of course we take the standard cover U0 = D(x0), . . . , Un = D(xn) of P
n
R . Notice that if

I ⊂ {1, . . . , n}, then F(UI) corresponds to the Laurent monomials where each xi for i /∈ I

appears with non-negative degree.

We consider the Hn statement. Hn(Pn
R,F) is the cokernel of the following surjection

⊕n
i=0F(U{1,...,n}−{i}) → FU{1,...,n}

i.e.
⊕n

i=0R[x0, . . . , xn, x−1
0 , . . . , ^x−1

i , . . . x−1
n ] → R[x0, . . . , xn, x−1

0 , . . . , x−1
n ].

This cokernel is precisely as described.

We last consider the Hi statement (0 < i < n). We prove this by induction on n. The
cases n = 0 and 1 are trivial. Consider the exact sequence of quasicoherent sheaves:

0 // F
×xn

// F // F ′ // 0

where F ′ is analogous sheaf on the hyperplane xn = 0 (isomorphic to P
n−1
R ). (This exact

sequence is just the direct sum over all m of the exact sequence

0 // OP
n
R
(m − 1)

×xn
// OP

n
R
(m) // O

P
n−1
R

(m) // 0 ,

which in turn is obtained by twisting the closed subscheme exact sequence

0 // OPn
R
(m − 1)

×xn
// OPn

R
(m) // O

P
n−1
R

(m) // 0

by OP
n
R
(m).)

The long exact sequence in cohomology gives us:

0 // H0(Pn
R,F)

×xn
// H0(Pn

R,F) // H0(Pn−1
R ,F ′)

// H1(Pn
R,F)

×xn
// H1(Pn

R,F) // H1(Pn−1
R ,F ′)

. . . // Hn−1(Pn
R,F)

×xn
// Hn−1(Pn

R,F) // Hn−1(Pn−1
R ,F ′)

// Hn(Pn
R,F)

×xn
// Hn(Pn

R,F) // 0

.

We will now show that this gives an isomorphism

(3) ×xn : Hi(Pn
R,F) → Hi(Pn

R,F)

for 0 < i < n. The inductive hypothesis gives us this except for i = 1 and i = n−1, where
we have to pay a bit more attention. For the first, note that H0(Pn

R,F) // H0(Pn−1
R ,F ′)

is surjective: this map corresponds to taking the set of all polynomials in x0, . . . , xn, and
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setting xn = 0. The last is slightly more subtle: Hn−1(Pn−1
R ,F ′) → Hn(Pn

R,F) is injective,
and corresponds to taking a Laurent polynomial in x0, . . . , xn−1 (where in each monomial,
each xi appears with degree at most −1) and multiplying by x−1

n , which indeed describes
the kernel of Hn(Pn

R,F)
×xn

// Hn(Pn
R,F) . (This is a worthwhile calculation! See the exer-

cise after the end of this proof.) We have thus established (3) above.

We will now show that the localization Hi(Pn
R,F)xn

= 0. (Here’s what we mean by
localization. Notice Hi(Pn

R,F) is naturally a module over R[x0, . . . , xn] — we know how
to multiply by elements of R, and by (3) we know how to multiply by xi. Then we localize
this at xn to get an R[x0, . . . , xn]xn

-module.) This means that each element α ∈ Hi(Pn
R,F)

is killed by some power of xi. But by (3), this means that α = 0, concluding the proof of
the theorem.

Consider the Cech complex computing Hi(Pn
R,F). Localize it at xn. Localization and

cohomology commute (basically because localization commutes with operations of tak-
ing quotients, images, etc.), so the cohomology of the new complex is Hi(Pn

R,F)xn
. But

this complex computes the cohomology of Fxn
on the affine scheme Un, and the higher

cohomology of any quasicoherent sheaf on an affine scheme vanishes (by Theorem 2.2
which we’ve just proved — in fact we used the same trick there), so Hi(Pn

R,F)xn
= 0 as

desired. �

3.2. Exercise. Verify that Hn−1(Pn−1
R ,F ′) → Hn(Pn

R,F) is injective (likely by verifying that
it is the map on Laurent monomials we claimed above).

4. APPLICATION OF COHOMOLOGY: HILBERT POLYNOMIALS AND HILBERT FUNCTIONS;
DEGREES

We’ve already seen some powerful uses of this machinery, to prove things about spaces
of global sections, and to prove Serre vanishing. We’ll now see some classical construc-
tions come out very quickly and cheaply.

In this section, we will work over a field k. Define hi(X,F) := dimk Hi(X,F).

Suppose F is a coherent sheaf on a projective k-scheme X. Define the Euler characteristic

χ(X,F) =

dim X∑

i=0

(−1)ihi(X,F).

We will see repeatedly here and later that while Euler characteristics behave better than
individual cohomology groups. As one sign, notice that for fixed n, and m ≥ 0,

h0(Pn
k ,O(m)) =

(

n + m

m

)

=
(m + 1)(m + 2) · · · (m + n)

n!
.
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Notice that the expression on the right is a polynomial in m of degree n. (For later
reference, I want to point out that the leading term is mn/n!.) But it is not true that

h0(Pn
k ,O(m)) =

(m + 1)(m + 2) · · · (m + n)

n!

for all m — it breaks down for m ≤ −n − 1. Still, you can check that

χ(Pn
k ,O(m)) =

(m + 1)(m + 2) · · · (m + n)

n!
.

So one lesson is this: if one cohomology group (usual the top or bottom) behaves well in
a certain range, and then messes up, likely it is because (i) it is actually the Euler char-
acteristic which is behaving well always, and (ii) the other cohomology groups vanish in
that range.

In fact, we will see that it is often hard to calculate cohomology groups (even h0), but
it is often easier calculating Euler characteristics. So one important way of getting a hold
of cohomology groups is by computing the Euler characteristics, and then showing that
all the other cohomology groups vanish. Hence the ubiquity and importance of vanishing
theorems. (A vanishing theorem usually states that a certain cohomology group vanishes
under certain conditions.)

The following exercise already shows that Euler characteristic behaves well.

4.1. Exercise. Show that Euler characteristic is additive in exact sequences. In other
words, if 0 → F → G → H → 0 is an exact sequence of coherent sheaves on X, then
χ(X,G) = χ(X,F) + χ(X,H). (Hint: consider the long exact sequence in cohomology.)
More generally, if

0 → F1 → · · · → Fn → 0

is an exact sequence of sheaves, show that
n∑

i=1

(−1)iχ(X,Fi) = 0.

4.2. Exercise. Prove the Riemann-Roch theorem for line bundles on a nonsingular projective
curve C over k: suppose L is an invertible sheaf on C. Show that χ(L) = degL+χ(C,OC).
(Possible hint: Write L as the difference of two effective Cartier divisors, L ∼= O(Z − P)

(“zeros” minus “poles”). Describe two exact sequences 0 → OC(−P) → OC → OP → 0

and 0 → L(−Z) → L → OZ ⊗ L → 0, where L(−Z) ∼= OC(P).)

If F is a coherent sheaf on X, define the Hilbert function of F :
hF(n) := h0(X,F(n)).

The Hilbert function of X is the Hilbert function of the structure sheaf. The ancients were
aware that the Hilbert function is “eventually polynomial”, i.e. for large enough n, it
agrees with some polynomial, called the Hilbert polynomial (and denoted pF(n) or pX(n)).
In modern language, we expect that this is because the Euler characteristic should be a
polynomial, and that for n � 0, the higher cohomology vanishes. This is indeed the case,
as we now verify.
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I ended by stating the following, which we will prove next day.

4.3. Claim. — For n � 0, h0(X,F(n)) is a polynomial of degree equal to the dimension of the
support of F . In particular, h0(X,OX(n)) is “eventually polynomial” with degree = dim X.
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