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Last day: integral extensions, Going-up theorem, Noether Normalization, proof that
transcendence degree = Krull dimension, proof of Chevalley’s theorem.

Today: Morphisms to (quasi)projective schemes, and invertible sheaves; fibered
products; fibers.

1. IMPORTANT EXAMPLE: MORPHISMS TO PROJECTIVE (AND QUASIPROJECTIVE)
SCHEMES, AND INVERTIBLE SHEAVES

1.1. Important theorem. — Maps to Pn correspond to n + 1 sections of an invertible sheaf, not all
vanishing at any point (= generated by global sections), modulo sections of O∗

X.

Here more precisely is the correspondence. If you have n + 1 sections, then away from
the intersection of their zero-sets, we have a morphism. Conversely, if you have a map to
projective space f : X → Pn, then we have n + 1 sections of OPn(1), corresponding to the
hyperplane sections, x0, . . . , xn+1. then f∗x0, . . . , f∗xn+1 are sections of f∗OPn(1), and they
have no common zero.

So to prove this, we just need to show that these two constructions compose to give the
identity in either direction.

Given n + 1 sections s0, . . . , sn of an invertible sheaf. We get trivializations on the open
sets where each one vanishes. The transition functions are precisely si/sj on Ui ∩ Uj. We
pull back O(1) by this map to projective space, This is trivial on the distinguished open
sets. Furthermore, f∗D(xi) = D(si). Moreover, si/sj = f∗xi/xj. Thus starting with the

Date: Thursday, January 12, 2006.

1



n + 1 sections, taking the map to the projective space, and pulling back O(1) and taking
the sections x0, . . . , xn, we recover the si’s. That’s one of the two directions.

Correspondingly, given a map f : X → Pn, let si = f∗xi. The map [s0; · · · ; sn] is precisely
the map f. We see this as follows. The preimage of Ui is D(si) = D(f∗xi) = f∗D(xi). So
the right open sets go to the right open sets. And D(si) → D(xi) is precisely by sj/si =
f∗(xj/xi). �

1.2. Exercise (Automorphisms of projective space). Show that all the automorphisms of
projective space Pn

k correspond to (n + 1) × (n + 1) invertible matrices over k, modulo
scalars (also known as PGLn+1(k)). (Hint: Suppose f : Pn

k → Pn
k is an automorphism.

Show that f∗O(1) ∼= O(1). Show that f∗ : Γ(Pn,O(1)) → Γ(Pn,O(1)) is an isomorphism.)

This exercise will be useful later, especially for the case n = 1.

(A question for experts: why did I not state that previous exercise over an arbitrary
base ring A? Where does the argument go wrong in that case?)

1.3. Neat Exercise. Show that any map from projective space to a smaller projective space
is constant.

Here are some useful phrases to know.

A linear series on a scheme X over a field k is an invertible sheaf L and a finite-dimensional
k-vector space V of sections. (We will not require that this vector space be a subspace of
Γ(X,L); in general, we just have a map V → Γ(X,L).) If the linear series is Γ(X,L), we call
it a complete linear series, and is often written |L|. Given a linear series, any point x ∈ X

on which all elements of the linear series V vanish, we say that x is a base-point of V . If
V has no base-points, we say that it is base-point-free. The union of base-points is called
the base locus. In fact, it naturally has a scheme-structure — it is the (scheme-theoretic)
intersection of the vanishing loci of the elements of V (or equivalently, of a basis of V). In
this incarnation, it is called the base scheme of the linear series.

Then Theorem 1.1 says that each base-point-free linear series gives a morphism to
projective space X → PV∗ = Proj⊕nL

⊗n. The resulting morphism is often written

X
|V |

// Pn . (I may not have this notation quite standard; I should check with someone. I
always forget whether I should use “linear system” or “linear series”.)

1.4. Exercise. If the image scheme-theoretically lies in a hyperplane of projective space, we
say that it is degenerate (and otherwise, non-degenerate). Show that a base-point-free linear
series V with invertible sheaf L is non-degenerate if and only if the map V → Γ(X,L) is
an inclusion. Hence in particular a complete linear series is always non-degenerate.

Example: The Veronese and Segre morphisms. Whoops! We don’t know much about
fibered products yet, so the Segre discussion may be a bit confusing. But fibered products are

2



coming very very shortly... The Veronese morphism can be interpreted in this way. The dth
Veronese morphism on Pn corresponds to the complete linear series |OPn(d)|.

The Segre morphism can also be interpreted in this way. In case I haven’t defined it yet,
suppose F is a quasicoherent sheaf on a Z-scheme X, and G is a quasicoherent sheaf on a
Z-scheme Y. Let πX, πY be the projections from X×Z Y to X and Y respectively. Then F �G

is defined to be π∗
XF ⊗ π∗

YG. In particular, OPm×Pn(a, b) is defined to be OPm(a) � OPn(b)
(over any base Z). The Segre morphism Pm×Pn → Pmn+m+n corresponds to the complete
linear system for the invertible sheaf O(1, 1).

Both of these complete linear systems are easily seen to be base-point-free (exercise). We
still have to check by hand that they are closed immersions. (We will later see, in class 34,
a criterion for linear series to be a closed immersion, at least in the special case where we
are working over an algebraically closed field.)

2. FIBERED PRODUCTS

We will now construct the fibered product in the category of schemes. In other words,
given X, Y → Z, we will show that X ×Z Y exists. (Recall that the absolute product in a
category is the fibered product over the final object, so X × Y = X ×Z Y in the category of
schemes, and X × Y = X ×S Y if we are implicitly working in the category of S-schemes,
for example if S is the spectrum of a field.)

Here is a notation warning: in the literature (and indeed in this class) lazy people want-
ing to save chalk and ink will write ×k for ×Spec k, and similarly for ×Z. In fact it already
happened in the paragraph above!

As always when showing that certain objects defined by universal properties exist, we
have two ways of looking at the objects in practice: by using the universal property, or by
using the details of the construction.

The key idea, roughly, is this: we cut everything up into affine open sets, do fibered
products in that category (where it turns out we have seen the concept before in a differ-
ent guise), and show that everything glues nicely. We can’t do this too naively (e.g. by
induction), as in general we won’t be able to cut things into a finite number of affine open
sets, so there will be a tiny bit of cleverness.

The argument will be an inspired bit of abstract nonsense, where we’ll have to check
almost nothing. This sort of argument is very powerful, and we will use it immediately
after to construct lots of other interesting notions, so please pay attention!

Before we get started, here is a sign that something interesting happens for fibered
products of schemes. Certainly you should believe that if we take the product of two
affine lines (over your favorite algebraically field k, say), you should get the affine plane:
A1

k ×k A1
k should be A2

k. But the underlying set of the latter is not the underlying set of the
former —- we get additional points! I’ll give an exercise later for you to verify this.
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Let’s take a break to introduce some language. Say

W //

��

Y

��
X

f // Z

is a fiber diagram or Cartesian diagram or base change diagram. It is often called a pullback
diagram, and W → X is called the pullback of Y → Z by f, and W is called the pullback of Y

by f.

At this point, I drew some pictures on the blackboard giving some intuitive idea of
what a pullback does. If Y → Z is a “family of schemes”, then W → Z is the “pulled
back family”. To make this more explicit or precise, I need to tell you about fibers of a
morphism. I also want to give you a bunch of examples. But before doing either of these
things, I want to tell you how to compute fibered products in practice.

Okay, lets get to work.

2.1. Theorem (fibered products always exist). — Suppose f : X → Z and g : Y → Z are
morphisms of schemes. Then the fibered product

X ×Z Y
f ′

//

g ′

��

Y

g

��
X

f // Z

exists in the category of schemes.

We have an extended proof by universal property.

First, if X, Y, Z are affine schemes, say X = Spec A, Y = Spec B, Z = Spec C, the fibered
product exists, and is Spec A ⊗C B. Here’s why. Suppose W is any scheme, along with
morphisms f ′′ : W → X and g ′′ : W → Y such that f◦f ′′ = g◦g ′′ as morphisms W → Z. We
hope that there exists a unique h : W → Spec A⊗C B such that f ′′ = g ′ ◦ h and g ′′ = f ′ ◦h.

W
∃!?

&&L

L

L

L

L

L

L

L

L

L

L

g ′′

++V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

f ′′

��:
:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

Spec A ⊗C B

g ′

��

f ′

// Spec B

g

��
Spec A

f // Spec C
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But maps to affine schemes correspond precisely to maps of global sections in the other
direction (class 19 exercise 0.1):

Γ(W,OW)

A ⊗C B

∃!?
ffM
M

M

M

M

M

M

M

M

M

B
f ′

oo

g ′′
jjU
U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

A

g ′

OOf ′′

^^<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

C
foo

g

OO

But this is precisely the universal property for tensor product! (The tensor product is
the cofibered product in the category of rings.)

Thus indeed A1 × A1 ∼= A2, and more generally (A1)n ∼= An.

Exercise. Show that the fibered product does not induce a bijection of points

points(A1
k) × points(A1

k)
// points(A2

k).

Thus products of schemes do something a little subtle on the level of sets.

Second, we note that the fibered product with open immersions always exists: if Y ↪→ Z

an open immersion, then for any f : X → Z, X ×Z Y is the open subset f−1(Y). (More
precisely, this open subset satisfies the universal property.) We proved this in class 19
(exercise 1.2).

f−1(Y)
� _

��

// Y� _

��
X

f // Z

(An exercise to give you practice with this concept: show that the fibered product of
two open immersions is their intersection.)

Hence the fibered product of a quasiaffine scheme (defined to be an open subscheme
of an affine scheme) with an affine scheme over an affine scheme exists. This isn’t quite
right; what we’ve shown, and what we’ll use, is that the fibered product of a quasi-affine scheme
with an affine scheme over an affine scheme Z exists so long as that quasi-affine scheme is an open
subscheme of an affine scheme that also admits a map to Z extending the map from the quasiaffine.
At some point I’ll retype this to say this better. This sloppiness continues in later lectures, but the
argument remains correct.

Third, we show that X ×Z Y exists if Y and Z are affine and X is general. Before we
show this, we remark that one special case of it is called “extension of scalars”: if X is a
k-scheme, and k ′ is a field extension (often k ′ is the algebraic closure of k), then X ×Spec k

Spec k ′ (sometimes informally written X ×k k ′ or Xk ′) is a k ′-scheme. Often properties of
X can be checked by verifying them instead on Xk ′ . This is the subject of descent — certain
properties “descend” from Xk ′ to X.
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Let’s verify this. It will follow from abstract nonsense and the gluing lemma. Recall
the gluing lemma (a homework problem): assume we are given a bunch of schemes Xi

indexed by some index set I, along with open subschemes Uij ⊂ Xi indexed by I × I, and
isomorphisms fij : Uij

∼ // Uji , satisfying the cocycle condition: fij(Uij∩Uik) = Uji∩Ujk,
and (fjk ◦ fij)|Uij∩Uik

= fik|Uij∩Uik
. Then they glue together to a unique scheme. (This was

a homework problem long ago; I’ll add a reference when I dig it up.)

We’ll now apply this in our case. Cover X with affine open sets Vi. Let Vij = Vi∩Vj. Then
for each of these, Xi := Vi ×Z Y exists, and each of them has open subsets Uij := Vij ×Z Y,
and isomorphisms satisfying the cocycle condition (because the Vi’s and Vij’s could be
glued together via gij which satisfy the cocycle condition).

Call this glued-together scheme W. It comes with morphisms to X and Y (and their
compositions to Z are the same). I claim that this satisfies the universal property for X×ZY,
basically because “morphisms glue” (yet another ancient exercise). Here’s why. Suppose
W ′ is any scheme, along with maps to X and Y that agree when they are composed to Z.
We need to show that there is a unique morphism W ′ → W completing the diagram

W ′

∃!?

!!C
C

C

C

C

C

C

C

g ′′

((Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

f ′′

��1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

W

g ′

��

f ′

// Y

g

��
X

f // Z.

Now break W ′ up into open sets W ′
i = g ′′−1(Ui). Then by the universal property for

Vi = Ui ×Z Y, there is a unique map W ′
i → Vi (which we can interpret as W ′

i → W). (Thus
we have already shown uniqueness of W ′ → W.) These must agree on W ′

i ∩ W ′
j , because

there is only one map W ′
i ∩W ′

j to W making the diagram commute (because of the second
step — (Ui ∩ Uj) ×Z Y exists). Thus all of these morphisms W ′

i → W glue together; we
have shown existence.

Fourth, we show that if Z is affine, and X and Y are arbitrary schemes, then X ×Z Y

exists. We just repeat the process of the previous step, with the roles of X and Y repeated,
using the fact that by the previous step, we can assume that the fibered product with an
affine scheme with an arbitrary scheme over an affine scheme exists.

Fifth, we show that the fibered product of any two schemes over a quasiaffine scheme
exists. Here is why: if Z ↪→ Z ′ is an open immersion into an affine scheme, then X ×Z Y =
X ×Z ′ Y are the same. (You can check this directly. But this is yet again an old exercise —
problem set 1 problem A4 — following from the fact that Z ↪→ Z ′ is a monomorphism.)

Finally, we show that the fibered product of any scheme with any other scheme over
any third scheme always exists. We do this in essentially the same way as the third step,
using the gluing lemma and abstract nonsense. Say f : X → Z, g : Y → Z are two
morphisms of schemes. Cover Z with affine open subsets Zi. Let Xi = f−1Xi and Yi =
g−1Yi. Define Zij = Zi ∩ Zj, and Xij and Yij analogously. Then Wi := Xi ×Zi

Yi exists for
all i, and has as open sets Wij := Xij ×Zij

Yij along with gluing information satisfying the
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cocycle condition (arising from the gluing information for Z from the Zi and Zij). Once
again, we show that this satisfies the universal property. Suppose W ′ is any scheme,
along with maps to X and Y that agree when they are composed to Z. We need to show
that there is a unique morphism W ′ → W completing the diagram

W ′

∃!?

!!C
C

C

C

C

C

C

C

g ′′

((Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

f ′′

��1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

W

g ′

��

f ′

// Y

g

��
X

f // Z.

Now break W ′ up into open sets W ′
i = g ′′ ◦ f

−1(Zi). Then by the universal property for
Wi, there is a unique map W ′

i → Wi (which we can interpret as W ′
i → W). Thus we have

already shown uniqueness of W ′ → W. These must agree on W ′
i ∩ W ′

j , because there is
only one map W ′

i ∩ W ′
j to W making the diagram commute. Thus all of these morphisms

W ′
i → W glue together; we have shown existence. �

3. COMPUTING FIBERED PRODUCTS IN PRACTICE

There are four types of morphisms that it is particularly easy to take fibered products
with, and all morphisms can be built from these four atomic components.

(1) base change by open immersions

We’ve already done the work for this one, and we used it above.

f−1(Y)
� _

��

// Y� _

��
X

f // Z

I’ll describe the remaining three on the level of affine sets, because we obtain general
fibered products by gluing.

(2) adding an extra variable

Exercise. Show that B ⊗A A[t] ∼= B[t].

Hence the following is a fibered diagram.

Spec B[t]

��

// Spec A[t]

��
Spec B // Spec A
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(3) base change by closed immersions

If the right column is obtained by modding out by a certain ideal (i.e. if the morphism
is a closed immersion, i.e. if the map of rings in the other direction is surjective), then the
left column is obtained by modding out by the pulled back elements of that ideal. In other
words, if T → R, S are two ring morphisms, and I is an ideal of R, and Ie is the extension
of I to R ⊗T S (the elements

∑
j ij ⊗ sj, where ij ∈ I and sj ∈ S, then there is a natural

isomorphism
R/I ⊗T S ∼= (R ⊗T S)/Ie.

(This is precisely problem B3 on problem set 1.) Thus the natural morphism R ⊗T S →
R/I ⊗T S is a surjection, and we have a base change diagram:

Spec(R ⊗T S)/Ie
� _

��

// Spec R/I
� _

��
Spec R ⊗T S

��

// Spec R

��
Spec S // Spec T

(where each rectangle is a fiber diagram).

Translation: the fibered product with a subscheme is the subscheme of the fibered prod-
uct in the obvious way. We say that “closed immersions are preserved by base change”.

(4) base change by localization

Exercise. Suppose C → B, A are two morphisms of rings. Suppose S is a multiplicative
set of A. Then (S ⊗ 1) is a multiplicative set of A ⊗C B. Show that there is a natural
morphism (S−1A) ⊗C B ∼= (S ⊗ 1)−1(A ⊗C B).

Hence we have a fiber diagram:

Spec(S ⊗ 1)−1(A ⊗C B)

��

// Spec S−1A

��
Spec A ⊗C B

��

// Spec A

��
Spec B // Spec C

(where each rectangle is a fiber diagram).

Translation: the fibered product with a localization is the localization of the fibered
product in the obvious way. We say that “localizations are preserved by base change”.
This is handy if the localization is of the form A ↪→ Af (corresponding to taking distin-
guished open sets) or A ↪→ FF(A) (from A to the fraction field of A, corresponding to
taking generic points), and various things in between.
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These four tricks let you calculate lots of things in practice. For example,
Spec k[x1, . . . , xm]/(f1(x1, . . . , xm), . . . , fr(x1, . . . , xm))⊗k

Spec k[y1, . . . , yn]/(g1(y1, . . . , yn), . . . , gs(y1, . . . , yn))

∼= Spec k[x1, . . . , xm, y1, . . . , yn]/(f1(x1, . . . , xm), . . . , fr(x1, . . . , xm),

g1(y1, . . . , yn), . . . , gs(y1, . . . , yn)).

Here are many more examples.

4. EXAMPLES

One important example is of fibers of morphisms. Suppose p → Z is the inclusion of a
point (not necessarily closed). Then if g : Y → Z is any morphism, the base change with
p → Z is called the fiber of g above p or the preimage of p, and is denoted g−1(p). If Z is
irreducible, the fiber above the generic point is called the generic fiber. In an affine open
subscheme Spec A containing p, p corresponds to some prime ideal p, and the morphism
corresponds to the ring map A → Ap/pAp. this is the composition if localization and
closed immersion, and thus can be computed by the tricks above.

Here is an interesting example, that we will consider multiple times during this course.
Consider the projection of the parabola y2 = x to the x axis, corresponding to the map of
rings Q[x] → Q[y], with x 7→ y2. (If Q alarms you, replace it with your favorite field and
see what happens.)

Then the preimage of 1 is 2 points:
Spec Q[x, y]/(y2 − x) ⊗Q Spec Q[x]/(x − 1) ∼= Spec Q[x, y]/(y2 − x, x − 1)

∼= Spec Q[y]/(y2 − 1)

∼= Spec Q[y]/(y − 1)
∐

Spec Q[y]/(y + 1).

The preimage of 0 is 1 nonreduced point:
Spec Q[x, y]/(y2 − x, x) ∼= Spec Q[y]/(y2).

The preimage of −1 is 1 reduced point, but of “size 2 over the base field”.
Spec Q[x, y]/(y2 − x, x + 1) ∼= Spec Q[y]/(y2 + 1) ∼= Spec Q[i].

The preimage of the generic fiber is again 1 reduced point, but of “size 2 over the residue
field”.

Spec Q[x, y]/(y2 − x) ⊗ Q(x) ∼= Spec Q[y] ⊗ Q(y2)

i.e. you take elements polynomials in y, and you are allowed to invert polynomials in y2.
A little thought shows you that you are then allowed to invert polynomials in y, as if f(y)
is any polynomial in y, then

1

f(y)
=

f(−y)

f(y)f(−y)
,
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and the latter denominator is a polynomial in y2. Thus

Spec Q[x, y]/(y2 − x) ⊗ Q(x) ∼= Q(y)

which is a degree 2 field extension of Q(x).

For future reference notice the following interesting fact: in each case, the number of
preimages can be interpreted as 2, where you count to two in several ways: you can
count points; you can get non-reduced behavior; or you can have field extensions. This is
going to be symptomatic of a very special and important kind of morphism (a finite flat
morphism).

Here are some other examples.

4.1. Exercise. Prove that An
R

∼= An
Z ×Spec Z Spec R. Prove that Pn

R
∼= Pn

Z ×Spec Z Spec R.

4.2. Exercise. Show that for finite-type schemes over C, the complex-valued points of
the fibered product correspond to the fibered product of the complex-valued points. (You
will just use the fact that C is algebraically closed.)

Here is a definition in common use. The terminology is a bit unfortunate, because it is
a second (different) meaning of “points of a scheme”. If T is a scheme, the T -valued points
of a scheme X are defined to be the morphism T → X. They are sometimes denoted X(T).
If R is a ring (most commonly in this context a field), the R-valued points of a scheme X are
defined to be the morphism Spec R → X. They are sometimes denoted X(R). For example,
if k is an algebraically closed field, then the k-valued points of a finite type scheme are
just the closed points; but in general, things can be weirder. (When we say “points of
a scheme”, and not T -valued points, we will always mean the usual meaning, not this
meaning.)

Exercise. Describe a natural bijection (X ×Z Y)(T) ∼= X(T) ×Z(T) Y(T). (The right side is
a fibered product of sets.) In other words, fibered products behaves well with respect to
T -valued points. This is one of the motivations for this notion.

4.3. Exercise. Describe Spec C ×Spec R Spec C. This small example is the first case of
something incredibly important.

4.4. Exercise. Consider the morphism of schemes X = Spec k[t] → Y = Spec k[u] corre-
sponding to k[u] → k[t], t = u2. Show that X×Y X has 2 irreducible components. Compare
what is happening above the generic point of Y to the previous exercise.

4.5. A little too vague to be an exercise. More generally, suppose K/Q is a finite Galois
field extension. Investigate the analogue of the previous two exercises. Try degree 2. Try
degree 3.
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4.6. Hard but fascinating exercise for those familiar with the Galois group of Q over Q. Show
that the points of Spec Q ⊗Q Q are in natural bijection with Gal(Q/Q), and the Zariski
topology on the former agrees with the profinite topology on the latter.

4.7. Exercise (A weird scheme). Show that Spec Q(t) ⊗Q C is an integral dimension one
scheme, with closed points in natural correspondence with the transcendental complex
numbers. (If the description Spec C[t]⊗Q[t] Q(t) is more striking, you can use that instead.)
This scheme doesn’t come up in nature, but it is certainly neat!

E-mail address: vakil@math.stanford.edu
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