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I realize now that you may not have seen the notion of transcendence degree. I’ll tell
you the main thing you need to know about it, which I hope you will find believable.
Suppose K/k is a finitely generated field extension. Then any two maximal sets of alge-
braically independent elements of K over k (i.e. any set with no algebraic relation) have
the same size (a non-negative integer or ∞). If this size is finite, say n, and x1, . . . , xn is
such a set, then K/k(x1, . . . , xn) is necessarily a finitely generated algebraic extension, i.e.
a finite extension. (Such a set x1, . . . , xn is called a transcendence basis, and n is called the
transcendence degree.) A short and well-written proof of this fact is in Mumford’s Red Book
of Varieties and Schemes.

1. DIMENSION, CONTINUED

Last day, I defined the dimension of a scheme. I defined the dimension (or Krull di-
mension) as the supremum of lengths of chains of closed irreducible sets, starting index-
ing with 0. This dimension is allowed to be ∞. For example: a Noetherian topological
space has a finite dimension. The Krull dimension of a ring is the Krull dimension of its
topological space. It is one less than the length of the longest chain of nested prime ideals
you can find.

We are in the midst of proving the following result, which lets us understand dimension
when working in good situations.

1.1. Big Theorem of last day. — Suppose R is a finitely-generated domain over a field k. Then
dim Spec R is the transcendence degree of the fraction field Frac(R) over k.
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1.2. Exercise. Suppose X is an integral scheme, that can be covered by open subsets of
the form Spec R where R is a finitely generated domain over k. Then dim X is the transcen-
dence degree of the function field (the stalk at the generic point) OX,η over k. Thus (as
the generic point lies in all non-empty open sets) the dimension can be computed in any
open set of X.

The proof of the big theorem will rely on two different facts pulling in opposite direc-
tions. The first is the following lemma, which we proved.

1.3. Lemma. — Suppose R is an integral domain over k (not necessarily finitely generated,
although that is the case we will care most about), and p ⊂ R a prime. Then dimtr R ≥ dimtr R/P,
with equality if and only p = (0), or dimtr R/P = ∞.

You should have a picture in your mind when you hear this: if you have an irreducible
space of finite dimension, then any proper subspace has strictly smaller dimension —
certainly believable!

This implies that dim R ≤ dimtr R . (Think this through!)

The other fact we’ll use is Krull’s Principal Ideal Theorem. This result is one of the few
hard facts I’ll not prove. We may prove it later in the class (possibly in a problem set), and
you can also read a proof in Mumford’s Red Book, in §I.7, where you’ll find much of this
exposition.

1.4. Krull’s Principal Ideal Theorem (transcendence degree version). — Suppose R is a finitely
generated domain over k, f ∈ R, p a minimal prime of R/f. Then if f 6= 0, dimtr R/p = dimtr R−1.

This is best understood geometrically: if you have some irreducible space of finite di-
mension, then any non-zero function on it cuts out a set of pure codimension 1. Somewhat
more precisely:

1.5. Theorem (geometric interpretation of Krull). — Suppose X = Spec R where R is a finitely
generated domain over k, g ∈ R, Z an irreducible component of V(g). Then if g 6= 0, dimtr Z =
dimtr X − 1.

Before I get to the proof of the theorem, I want to point out that this is useful on its own.
Consider the scheme Spec k[w, x, y, z]/(wx − yz). What is its dimension? It is cut out by
one non-zero equation wx − yz in A4, so it is a threefold.

1.6. Exercise. What is the dimension of Spec k[w, x, y, z]/(wx − yz, x17 + y17)? (Be careful
to check they hypotheses before invoking Krull!)

1.7. Exercise. Show that Spec k[w, x, y, z]/(wz−xy, wy−x2, xz−y2) is an integral surface.
You might expect it to be a curve, because it is cut out by three equations in 4-space.
(Remark for experts: this is not a random ideal. In language we will later make precise:
it is the affine cone over a curve in P3. This curve is called the twisted cubic. It is in some
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sense the simplest curve in P3 not contained in a hyperplane. You can think of it as the
points of the form (t, t2, t3) in A3. Indeed, you’ll notice that (w, x, y, z) = (a, at, at2, at3)
satisfies the equations above. It turns out that you actually need three equations to cut
out this surface. The first equation cuts out a threefold in four-space (by Krull’s theorem,
see later). The second equation cuts out a surface: our surface, and another surface. The
third equation cuts out our surface. One last aside: notice once again that the cone over
the quadric surface k[w, x, y, z]/(wz − xy) makes an appearance.)

We’ll now put together our lemma, and this geometric interpretation of Krull. Notice
the interplay between the two: the first says that the dimension definitely drops when
you take a proper irreducible closed subset. The second says that you can arrange for it
to drop by precisely 1.

I proved the following result, which I didn’t end up using.

1.8. Proposition. — Suppose X is the Spec of a finitely generated domain over k, and Z is an
irreducible closed subset, maximal among all proper irreducible closed subsets of X. (I gave a
picture here.) Then dimtr Z = dimtr X − 1.

(We certainly have dimtr Z ≤ dimtr X − 1 by our lemma.)

Proof. Suppose Z = V(p) where p is prime. Choose any non-zero g ∈ p. By Krull’s
theorem, the components of V(g) are have dimtr = dimtr X − 1. Z is contained in one of
the components. By the maximality of Z, Z is one of the components. �

1.9. Proof of big theorem. We prove it by induction on dimtr X. The base case dimtr X = 0 is
easy: by our lemma, dim X ≤ dimtr X, so dim X = 0.

Now assume that dimtr X = n. As dim X ≤ dimtr X, our goal will be to produce a chain
of n + 1 irreducible closed subsets. Say X = Spec R. Choose any g 6= 0 in R. Choose
any component Z of V(g). Then dimtr Z = n − 1 by Krull’s theorem, and the inductive
hypothesis, so we can find a chain of n irreducible closed subsets descending from Z.
We’re done. �

I gave a geometric picture of both. Note that equality needn’t hold in the first case.

The big theorem is about the dimension of finitely generated domains over k. For such
rings, dimension is well-behaved. This set of rings behaves well under quotients; I want
to show you that it behaves well under localization as well.

1.10. Proposition. — Suppose R is a finitely generated domain over k, and p is a prime ideal.
Then dim Rp = dim R − dim R/p.

The scheme-theoretic version of this statement about rings is: dimOZ,X
= dim X − dim Z.
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1.11. Exercise. Prove this. (I gave a geometric explanation of why this is true, which
you can take as a “hint” for this exercise.) In the course of this exercise, you will show the
important fact that if n = dim R, then any chain of prime ideals can be extended to a chain
of prime ideals of length n. Further, given a prime ideal, you can tell where it is in any
chain by looking at the transcendence degree of its quotient field. This is a particularly
nice feature of polynomial rings, that will not hold even for Noetherian rings in general
(see the next section).

2. HEIGHT, AND KRULL’S PRINCIPAL IDEAL THEOREM

This is a good excuse to tell you a definition in algebra. Definition: the height of the
prime ideal p in R is dim Rp. Algebraic translation: it is the supremum of lengths of chains
of primes contained in p.

This is a good but imperfect version of codimension. For finitely generated domains
over k, the two notions agree, by Proposition 1.10. An example of a pathology is given
below.

With this definition of height, I can state a more general version of Krull’s Principal
Ideal Theorem.

2.1. Krull’s Principal Ideal Theorem. — Suppose R is a Noetherian ring, and f ∈ A an element
which is not a zero divisor. Then every minimal prime p containing f has height 1. (Atiyah-
Macdonald p. 122)

(We could have V(f) = ∅, if f is a unit — but that doesn’t violate the statement.)

The geometric picture is the same as before: “If f is not a zero-divisor, the codimension
is 1.”

It is possible that I will give a proof later in the course. Either I’ll give an algebraic
proof in the notes, or I will give a geometric proof in class, using concepts we have not
yet developed. (I’ll be careful to make sure the argument is not circular!)

2.2. Important Exercise. (This will be useful soon.) (a) Suppose X = Spec R where
R is a Noetherian domain, and Z is an irreducible component of V(r1, . . . , rn), where
r1, . . . , rn ∈ R. Show that the height of (the prime associated to) Z is at most n. Con-
versely, suppose X = Spec R where R is a Noetherian domain, and Z is an irreducible
subset of height n. Show that there are f1, . . . , fn ∈ R such that Z is an irreducible compo-
nent of V(f1, . . . , fn).
(b) (application to finitely generated k-algebras) Suppose X = Spec R where R is a finitely
generated domain over k, and Z is an irreducible component of V(r1, . . . , rn), where
r1, . . . , rn ∈ R. Show that dim Z ≥ dim X − n. Conversely, suppose X = Spec R where
R is a Noetherian domain, and Z is an irreducible subset of codimension n. Show that
there are f1, . . . , fn ∈ R such that Z is an irreducible component of V(f1, . . . , fr).
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2.3. Important but straightforward exercise. If R is a finitely generated domain over k,
show that dim R[x] = dim R + 1. If R is a Noetherian ring, show that dim R[x] ≥ dim R + 1.
(Fact, proved later: if R is a Noetherian ring, then dim R[x] = dim R + 1. We’ll prove this
later. You may use this fact in exercises in later weeks.)

We now show how the height can behave badly. Let R = k[x](x)[t]. In other words,
elements of R are polynomials in t, whose coefficients are quotients of polynomials in x,
where no factors of x appear in the denominator. R is a domain. (xt − 1) is not a zero
divisor. You can verify that R/(xt − 1) ∼= k[x](x)[1/x] ∼= k(x) — “in k[x](x), we may divide
by everything but x, and now we are allowed to divide by x as well” — so R/(xt − 1) is
a field. Thus (xt − 1) is not just prime but also maximal. By Krull’s theorem, (xt − 1)
is height 1. Thus (0) ⊂ (xt − 1) is a maximal chain. However, R has dimension at least
2: (0) ⊂ (t) ⊂ (x, t) is a chain of primes of length 3. (In fact, R has dimension precisely
2: k[x](x) has dimension 1, and the fact mentioned in the previous exercise 2.3 implies
dim k[x](x)[t] = dim k[x](x) + 1 = 2.) Thus we have a height 1 prime in a dimension 2 ring
that is “codimension 2”. A picture of this lattice of ideals is below.

(x, t)

(t)

DD
D

DD
D

DD
(xt − 1)

vvvvvvvvv

(0)

(This example comes from geometry; it is enlightening to draw a picture. k[x](x) corre-
sponds to a germ of A1

k near the origin, and k[x](x)[t] corresponds to “this × the affine
line”.) For this reason, codimension is a badly behaved notion in Noetherian rings in
general.

I find it disturbing that this misbehavior turns up even in a relative benign-looking
ring.

3. PROPERTIES OF SCHEMES THAT CAN BE CHECKED “AFFINE-LOCALLY”

Now I want to describe a host of important properties of schemes. All of these are
“affine-local” in that they can be checked on any affine cover, by which I mean a covering
by open affine sets.

Before I get going, I want to point out something annoying in the definition of schemes.
I’ve said that a scheme is a topological space with a sheaf of rings, that can be covered
by affine schemes. There is something annoying about this description that I find hard to
express. We have all these affine opens in the cover, but we don’t know how to communi-
cate between any two of them. Put a different way, if I have an affine cover, and you have
an affine cover, and we want to compare them, and I calculate something on my cover,
there should be some way of us getting together, and figuring out how to translate my
calculation over onto your cover. (I’m not sure if you buy what I’m trying to sell here.)
The affine communication lemma I’ll soon describe will do this for us.
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3.1. Remark. In our limited examples so far, any time we’ve had an affine open subset of
an affine scheme Spec S ⊂ Spec R, in fact Spec S = D(f) for some f. But this is not always
true, and we will eventually have an example. (We’ll first need to define elliptic curves!)

3.2. Proposition. — Suppose Spec A and Spec B are affine open subschemes of a scheme X. Then
Spec A ∩ Spec B is the union of open sets that are simultaneously distinguished open subschemes
of Spec A and Spec B.

Proof. (This is best seen with a picture, which unfortunately won’t be in the notes.) Given
any p ∈ Spec A∩ Spec B, we produce an open neighborhood of p in Spec A∩ Spec B that is
simultaneously distinguished in both Spec A and Spec B. Let Spec Af be a distinguished
open subset of Spec A contained in Spec A ∩ Spec B. Let Spec Bg be a distinguished open
subset of Spec B contained in Spec Af. Then g ∈ Γ(Spec B,OX) restricts to an element
g ′ ∈ Γ(SpecAf,OX) = Af. The points of Spec Af where g vanishes are precisely the points
of Spec Af where g ′ vanishes (cf. earlier exercise), so

Spec Bg = Spec Af \ {p : g ′ ∈ p}

= Spec(Af)g ′.

If g ′ = g ′′/fn (g ′′ ∈ A) then Spec(Af)g ′ = Spec Afg ′′ , and we are done. �

3.3. Affine communication lemma. — Let P be some property enjoyed by some affine open sets of
a scheme X, such that

(i) if Spec R ↪→ X has P then for any f ∈ R, Spec Rf ↪→ X does too.
(ii) if (f1, . . . , fn) = R, and Spec Rfi

↪→ X has P for all i, then so does Spec R ↪→ X.

Suppose that X = ∪i∈I Spec Ri where Spec Ri is an affine, and Ri has property P. Then every other
open affine subscheme of X has property P too.

Proof. (This is best done with a picture.) Cover Spec R with a finite number of distin-
guished opens Spec Rgj

, each of which is distinguished in some Rfi
. This is possible by

Proposition 3.2 and the quasicompactness of Spec R. By (i), each Spec Rgj
has P. By (ii),

Spec R has P. �

By choosing P appropriately, we define some important properties of schemes.

3.4. Proposition. — Suppose R is a ring, and (f1, . . . , fn) = R.

(a) If R is a Noetherian ring, then so is Rfi
. If each Rfi

is Noetherian, then so is R.
(b) If R has no nonzero nilpotents (i.e. 0 is a radical ideal), then Rfi

also has no nonzero
nilpotents. If no Rfi

has a nonzero nilpotent, then neither does R. Do we say “a ring is
reduced? radical?”
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(c) Suppose A is a ring, and R is an A-algebra. If R is a finitely generated A-algebra, then so
is Rfi

. If each Rfi
is a finitely-generated A-algebra, then so is R. (I didn’t say this in class,

so I’ll say it on Monday.)
(d) Suppose R is an integral domain. If R is integrally closed, then so is Rfi

. If each Rfi
is

integrally closed, then so is R.

We’ll prove these shortly. But given this, I want to make some definitions.

3.5. Important Definitions. Suppose X is a scheme.

• If X can be covered by affine opens Spec R where R is Noetherian, we say that X

is a locally Noetherian scheme. If in addition X is quasicompact, or equivalently can
be covered by finitely many such affine opens, we say that X is a Noetherian scheme
Exercise. Show that the underlying topological space of a Noetherian scheme is
Noetherian. Exercise. Show that all open subsets of a Noetherian scheme are
quasicompact.

• If X can be covered by affine opens Spec R where R is reduced (nilpotent-free), we
say that X is reduced. Exercise: Check that this agrees with our earlier definition.
This definition is advantageous: our earlier definition required us to check that the
ring of functions over any open set is nilpotent free. This lets us check in an affine
cover. Hence for example An

k and Pn
k are reduced.

• Suppose A is a ring (e.g. A is a field k), and Γ(X,OX) is an A-algebra. Then we
say that X is an A-scheme, or a scheme over A. Suppose X is an A-scheme. (Then
for any non-empty U, Γ(U,OX) is naturally an A-algebra.) If X can be covered by
affine opens Spec R where R is a finitely generated A-algebra, we say that X is locally
of finite type over A, or that it is a locally of finite type A-scheme. (My apologies for
this cumbersome terminology; it will make more sense later.) If furthermore X is
quasicompact, X is finite type over A, or a finite type A-scheme.

• If X is integral, and can be covered by affine opens Spec R where R is a integrally
closed, we say that X is normal. (Thus in my definition, normality can only apply
to integral schemes. I may want to patch this later.) Exercise. If R is a unique
factorization domain, show that Spec R is integrally closed. Hence An

k and Pn
k are

both normal.

Proof. (a) (i) If I1 ( I2 ( I3 ( · · · is a strictly increasing chain of ideals of Rf, then we can
verify that J1 ( J2 ( J3 ( · · · is a strictly increasing chain of ideals of R, where

Jj = {r ∈ R : r ∈ Ij}

where r ∈ Ij means “the image in Rf lies in Ij”. (We think of this as Ij∩R, except in general
R needn’t inject into Rfi

.) Clearly Jj is an ideal of R. If x/fn ∈ Ij+1 \ Ij where x ∈ R, then
x ∈ Jj+1, and x /∈ Jj (or else x(1/f)n ∈ Jj as well). (ii) Suppose I1 ( I2 ( I3 ⊂ · · · is a strictly
increasing chain of ideals of R. Then for each 1 ≤ i ≤ n,

Ii,1 ⊂ Ii,2 ⊂ Ii,3 ⊂ · · ·

is an increasing chain of ideals in Rfi
, where Ii,j = Ij ⊗R Rfi

. We will show that for each j,
Ii,j ( Ii,j+1 for some i; the result will then follow.
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(b) Exercise.

(c) (I’ll present this on Monday.) (i) is clear: if R is generated over S by r1, . . . , rn, then
Rf is generated over S by r1, . . . , rn, 1/f.

(ii) Here is the idea; I’ll leave this as an exercise for you to make this work. We have
generators of Ri: rij/f

j
i, where rij ∈ R. I claim that {rij}ij ∪ {fi}j generate R as a S-algebra.

Here’s why. Suppose you have any r ∈ R. Then in Rfi
, we can write r as some polynomial

in the rij’s and fi, divided by some huge power of fi. So “in each Rfi
, we have described r

in the desired way”, except for this annoying denominator. Now use a partition of unity
type argument to combine all of these into a single expression, killing the denominator.
Show that the resulting expression you build still agrees with r in each of the Rfi

. Thus it
is indeed r.

(d) (i) is easy. If xn + an−1x
n−1 + · · · + a0 = 0 where ai ∈ Rf has a root in the fraction

field. Then we can easily show that the root lies in Rf, by multiplying by enough f’s to kill
the denominator, then replacing fax by y. That is likely incomprehensible, so I’ll leave
this as an exercise.

(ii) (This one involves a neat construction.) Suppose R is not integrally closed. We show
that there is some fi such that Rfi

is also not integrally closed. Suppose
(1) xn + an−1x

n−1 + · · ·+ a0 = 0

(with ai ∈ R) has a solution s in Frac(R). Let I be the “ideal of denominators” of s:
I := {r ∈ R : rs ∈ R}.

(Note that I is clearly an ideal of R.) Now I 6= R, as 1 /∈ I. As (f1, . . . , fn) = R, there must
be some fi /∈ I. Then s /∈ Rfi

, so equation (1) in Rfi
[x] shows that Rfi

is not integrally closed
as well, as desired. �

3.6. Unimportant Exercise relating to the proof of (d). One might naively hope from experi-
ence with unique factorization domains that the ideal of denominators is principal. This
is not true. As a counterexample, consider our new friend R = k[a, b, c, d]/(ad− bc), and
a/c = b/d ∈ Frac(R). Then it turns out that I = (c, d), which is not principal. We’ll likely
show that it is not principal at the start of the second quarter. (I could give a one-line
explanation right now, but this topic makes the most sense when we talk about Zariski
tangent spaces.)

E-mail address: vakil@math.stanford.edu
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